1
|
Meireles J, Moraes RFF, Lins D, Oliveira TDS, de Carvalho EB, Rainha K, Ferreira EDO. Dogs in Rio de Janeiro as reservoirs of Clostridioides difficile ribotypes causing CDI in humans. Anaerobe 2024; 90:102917. [PMID: 39393610 DOI: 10.1016/j.anaerobe.2024.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024]
Abstract
INTRODUCTION In the past decade, the incidence of community-acquired Clostridioides difficile infection (CA-CDI) has increased, suggesting a role for community reservoirs such as animals in its spread. OBJECTIVE This study aimed to isolate and characterize C. difficile strains from domestic dogs at veterinary clinics to enhance our understanding of C. difficile epidemiology in Rio de Janeiro. MATERIAL AND METHODS For this study 90 stool samples from dogs were collected and cultured in a selective medium (Clostridioides difficile Brucella agar - CDBA) for isolation. Species were identified by MALDI-TOF MS, with confirmation provided by PCR targeting the tpi gene. The antibiotic susceptibility test of the strains was performed using five antibiotics: vancomycin, metronidazole, moxifloxacin, rifampicin, and erythromycin. Strains resistant to metronidazole were further analyzed for the presence of the plasmid pCD-METRO using PCR. The presence of toxin genes (tcdA, tcdB, and cdtB) was investigated, alongside ribotyping and tcdC sequencing analyses. The strains were also tested for biofilm formation and motility. RESULTS C. difficile was isolated in 15.5 % (14/90) of the samples. Among the strains analyzed, 87.71 % (12/14) tested positive for both toxin genes tcdA and tcdB and belonged to ribotypes 106 (10/14) and 014/020 (2/14). The remaining 14.3 % (2/14) were non-toxigenic and were identified as ribotype 010. Regarding the antibiotic profile, 42.85 % (6/14) of the strains exhibited resistance to at least one antibiotic, including vancomycin (1/14) and metronidazole (1/14). The metronidazole-resistant strain was also positive for the plasmid pCD-METRO. All strains exhibited both biofilm formation and motility. Among the 12 toxigenic strains sequenced for the tcdC gene, two exhibited a deletion in the same region as the epidemic strain, NAP1 (RT027). CONCLUSION Our study found some overlap between C. difficile ribotypes isolated from dogs and from cases of CDI in humans, and the C. difficile prevalence was higher in dogs with diarrhea (p = 0.034).
Collapse
Affiliation(s)
- Júlia Meireles
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, IMPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Lins
- Clínica Veterinária Vet Staff, Leblon, Rio de Janeiro, Brazil
| | | | | | - Kelly Rainha
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, IMPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane de O Ferreira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, IMPG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Kolte B, Nübel U. Genetic determinants of resistance to antimicrobial therapeutics are rare in publicly available Clostridioides difficile genome sequences. J Antimicrob Chemother 2024; 79:1320-1328. [PMID: 38598696 PMCID: PMC11144481 DOI: 10.1093/jac/dkae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVES To determine the frequencies and clonal distributions of putative genetic determinants of resistance to antimicrobials applied for treatment of Clostridioides difficile infection (CDI), as documented in the genomic record. METHODS We scanned 26 557 C. difficile genome sequences publicly available from the EnteroBase platform for plasmids, point mutations and gene truncations previously reported to reduce susceptibility to vancomycin, fidaxomicin or metronidazole, respectively. We measured the antimicrobial susceptibility of 143 selected C. difficile isolates. RESULTS The frequency of mutations causing reduced susceptibility to vancomycin and metronidazole, respectively, increased strongly after 2000, peaking at up to 52% of all sequenced C. difficile genomes. However, both mutations declined sharply more recently, reflecting major changes in CDI epidemiology. We detected mutations associated with fidaxomicin resistance in several major genotypes, but found no evidence of international spread of resistant clones. The pCD-METRO plasmid, conferring metronidazole resistance, was detected in a single previously unreported C. difficile isolate, recovered from a hospital patient in Germany in 2008. The pX18-498 plasmid, putatively associated with decreased vancomycin susceptibility, was confined to related, recent isolates from the USA. Phenotype measurements confirmed that most of those genetic features were useful predictors of antibiotic susceptibility, even though ranges of MICs typically overlapped among isolates with and without specific mutations. CONCLUSIONS Genomic data suggested that resistance to therapeutic antimicrobial drugs is rare in C. difficile. Public antimicrobial resistance marker databases were not equipped to detect most of the genetic determinants relevant to antibiotic therapy of CDI.
Collapse
Affiliation(s)
- Baban Kolte
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Inhoffenstr. 7B, 38124, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Inhoffenstr. 7B, 38124, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| |
Collapse
|
3
|
Coia CW, Banks AL, Cottom L, Fitzpatrick F. The Need for European Surveillance of CDI. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:13-31. [PMID: 38175469 DOI: 10.1007/978-3-031-42108-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Since the turn of the millennium, the epidemiology of Clostridioides difficile infection (CDI) has continued to challenge. Changes in clinical presentation, severity of disease, descriptions of new risk factors and the occurrence of outbreaks all emphasised the importance of early diagnosis and standardised surveillance systems. However, a lack of consensus on case definitions, clinical guidelines and optimal laboratory diagnostics across Europe has led to the underestimation of CDI and impeded comparison between countries. These inconsistencies have prevented the true burden of disease from being appreciated.Acceptance that a multi-country CDI surveillance program and optimised diagnostic strategies are required has built the foundations for a more robust, unified surveillance. The concerted efforts of the European Centre for Disease Prevention and Control (ECDC) CDI networks led to the development of the European surveillance protocol and an over-arching long-term CDI surveillance strategy for 2014-2020, which has been followed by the development of surveillance systems in at least 20 European countries. However, surveillance activities in individual countries have slowed during the COVID-19 pandemic as resources were diverted to the global health crisis. A renewed and strengthened focus on CDI surveillance and prevention is therefore urgently needed post COVID-19.
Collapse
Affiliation(s)
- Camilla Wiuff Coia
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
| | - A-Lan Banks
- St. Helens & Knowsley Teaching Hospitals NHS Trust Whiston Hospital, Prescot, Merseyside, UK
| | - Laura Cottom
- Department of Clinical Microbiology, Glasgow Royal Infirmary, Greater Glasgow & Clyde, Glasgow, UK
| | - Fidelma Fitzpatrick
- Departments of Clinical Microbiology, The Royal College of Surgeons in Ireland, and Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Anwar F, Clark M, Lindsey J, Claus-Walker R, Mansoor A, Nguyen E, Billy J, Lainhart W, Shehab K, Viswanathan VK, Vedantam G. Prevalence of diagnostically-discrepant Clostridioides difficile clinical specimens: insights from longitudinal surveillance. Front Med (Lausanne) 2023; 10:1238159. [PMID: 37928470 PMCID: PMC10622765 DOI: 10.3389/fmed.2023.1238159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Background Clostridioides difficile Infection (CDI) is a healthcare-associated diarrheal disease prevalent worldwide. A common diagnostic algorithm relies on a two-step protocol that employs stool enzyme immunoassays (EIAs) to detect the pathogen, and its toxins, respectively. Active CDI is deemed less likely when the Toxin EIA result is negative, even if the pathogen-specific EIA is positive for C. difficile. We recently reported, however, that low-toxin-producing C. difficile strains recovered from Toxin-negative ('discrepant') clinical stool specimens can be fully pathogenic, and cause lethality in a rodent CDI model. To document frequency of discrepant CDI specimens, and evaluate C. difficile strain diversity, we performed longitudinal surveillance at a Southern Arizona tertiary-care hospital. Methods Diarrheic stool specimens from patients with clinical suspicion of CDI were obtained over an eight-year period (2015-2022) from all inpatient and outpatient Units of a > 600-bed Medical Center in Southern Arizona. Clinical laboratory EIA testing identified C. difficile-containing specimens, and classified them as Toxin-positive or Toxin-negative. C. difficile isolates recovered from the stool specimens were DNA fingerprinted using an international phylogenetic lineage assignment system ("ribotyping"). For select isolates, toxin abundance in stationary phase supernatants of pure cultures was quantified via EIA. Results Of 8,910 diarrheic specimens that underwent diagnostic testing, 1733 (19.4%) harbored C. difficile. Our major findings were that: (1) C. difficile prevalence and phylogenetic diversity was stable over the 8-year period; (2) toxigenic C. difficile was recovered from 69% of clinically Tox-neg ('discrepant') specimens; (3) the six most prevalent USA ribotypes were recovered in significant proportions (>60%) from Tox-neg specimens; and (4) toxin-producing C. difficile recovered from discrepant specimens produced less toxin than strains of the same ribotype isolated from non-discrepant specimens. Conclusion Our study highlights the dominance of Toxin EIA-negative CDI specimens in a clinical setting and the high frequency of known virulent ribotypes in these specimens. Therefore, a careful reevaluation of the clinical relevance of diagnostically-discrepant specimens particularly in the context of missed CDI diagnoses and C. difficile persistence, is warranted.
Collapse
Affiliation(s)
- Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Marielle Clark
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Jason Lindsey
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Rachel Claus-Walker
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Asad Mansoor
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Evy Nguyen
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Justin Billy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - William Lainhart
- Department of Pathology, Clinical Microbiology Laboratories, Banner University Medical Center, Tucson, AZ, United States
| | - Kareem Shehab
- Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - V. K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
- Bio5 Institute for Collaborative Research, University of Arizona, Tucson, AZ, United States
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
- Bio5 Institute for Collaborative Research, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Healthcare System, Tucson, AZ, United States
| |
Collapse
|
5
|
de-la-Rosa-Martinez D, Bobadilla Del Valle M, Esteban-Kenel V, Zinser Peniche P, Ponce De León Garduño A, Cornejo Juárez P, Sánchez Cruz MN, Camacho-Ortiz A, Vilar-Compte D. Molecular characterization and genotyping of isolates from cancer patients with Clostridioides difficile infection or asymptomatic colonization. J Med Microbiol 2023; 72. [PMID: 37624363 DOI: 10.1099/jmm.0.001748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Abstract
Introduction. Cancer patients with Clostridioides difficile infection (CDI) are at a higher risk for adverse outcomes. In addition, a high prevalence of Clostridioides difficile asymptomatic colonization (CDAC) has been reported in this vulnerable population.Gap Statement. The molecular characteristics and potential role of CDAC in healthcare-related transmission in the cancer population have been poorly explored.Aim. We aimed to compare the molecular and genotypic characteristics of C. difficile isolates from cancer patients with CDAC and CDI.Method. We conducted a prospective cohort study of cancer patients with CDAC or CDI from a referral centre. Molecular characterization, typification and tcdC gene expression of isolates were performed.Results. The hospital-onset and community-onset healthcare facility-associated CDI rates were 4.5 cases/10 000 patient-days and 1.4 cases/1 000 admissions during the study period. Fifty-one C. difficile strains were isolated: 37 (72 %) and 14 (28 %) from patients with CDI or CDAC, respectively. All isolates from symptomatic patients were tcdA+/tcdB+, and four (10 %) were ctdA+/ctdB+. In the CDAC group, 10 (71 %) isolates were toxigenic, and none were ctdA+/ctdB+. The Δ18 in-frame tcdC deletion and two transition mutations were found in five isolates. After bacterial typing, 60 % of toxigenic isolates from asymptomatic carriers were clonal to those from patients with C. difficile-associated diarrhoea. No NAP1/027/BI strains were detected.Conclusions. We found a clonal association between C. difficile isolates from patients with CDAC and CDI. Studies are needed to evaluate the potential role of asymptomatic carriers in the dynamics of nosocomial transmission to support infection control measures and reduce the burden of CDI in high-risk groups.
Collapse
Affiliation(s)
- Daniel de-la-Rosa-Martinez
- Plan de Estudios Combinados en Medicina (PECEM), Faculty of Medicine, Universidad Nacional Autonoma de Mexico, México City, Mexico
- Departament of Infectious Diseases, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Miriam Bobadilla Del Valle
- Laboratory of Clinical Microbiology, Departament of Infectious Diseases, Instituto Nacional de Ciencias Medicas y Nutrición, Mexico City, Mexico
| | - Veronica Esteban-Kenel
- Laboratory of Clinical Microbiology, Departament of Infectious Diseases, Instituto Nacional de Ciencias Medicas y Nutrición, Mexico City, Mexico
| | - Paola Zinser Peniche
- Departament of Infectious Diseases, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Alfredo Ponce De León Garduño
- Laboratory of Clinical Microbiology, Departament of Infectious Diseases, Instituto Nacional de Ciencias Medicas y Nutrición, Mexico City, Mexico
| | | | - María Nancy Sánchez Cruz
- Laboratory of Clinical Microbiology, Departament of Infectious Diseases, Instituto Nacional de Ciencias Medicas y Nutrición, Mexico City, Mexico
| | - Adrian Camacho-Ortiz
- Department of Infectious Diseases, Department of Internal Medicine, Hospital Universitario Dr. Jose Eleuterio Gonzalez, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Diana Vilar-Compte
- Departament of Infectious Diseases, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
6
|
Carvalho FAC, Silva ROS, Santos BMRTD, Diniz AN, Vilela EG. CLINICAL OUTCOME AND SEVERITY OF CLOSTRIDIOIDES (CLOSTRIDIUM) DIFFICILE INFECTION AT A TERTIARY REFERRAL HOSPITAL IN BRAZIL. ARQUIVOS DE GASTROENTEROLOGIA 2023; 60:330-338. [PMID: 37792762 DOI: 10.1590/s0004-2803.230302023-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/21/2023] [Indexed: 10/06/2023]
Abstract
•The outcomes of CDI were evaluated in 65 patients with CDI in a Brazilian tertiary hospital. •Lack of clinical improvement after treatment and the severity score (ATLAS) increased the risk of death. •The use of multiple antimicrobial agents was associated with longer hospital stays. •Patients with high Charlson comorbidity index (>7) were more likely to recur. Background - Clostridioides difficile infection (CDI) is a potentially severe disease that can present with refractoriness, recurrence, and evolution to death. In Brazil, the epidemiology of CDI seems to differ from that of the United States and most European countries, with only one ribotype (RT) 027-related case and a high prevalence of RT106. Objective - The aim of this study was to evaluate the outcomes of CDI and its possible association with ribotypes at a university hospital in Brazil. Methods - A total of 65 patients with CDI were included and stool samples were submitted to A/B toxin detection and toxigenic culture, and toxigenic isolates (n=44) were also PCR ribotyped. Results - Patients' median age was 59 (20-87) years and there were 16 (24.6%) deaths. The median Charlson comorbidity index (CCI) was 4 (0-15) and 16.9% of the patients had CCI ≥8. The ATLAS score and non-improvement of diarrhea were related to higher mortality. A longer length of hospitalization was related to the enteral nutrition and use of multiple antibiotics. The period between CDI diagnosis and hospital discharge was longer in those who received new antibiotics after diagnosis, multiple antibiotics, and required intensive care treatment. Recurrence was associated with CCI >7. Twenty ribotypes were identified and RT106 was the most frequently detected strain (43.2%). No relationship was observed between the ribotypes and outcomes. CDI was present in patients with more comorbidities. Conclusion - Risk factors for higher mortality, longer hospital stay and recurrence were identified. A diversity of ribotypes was observed and C. difficile strains were not related to the outcomes.
Collapse
Affiliation(s)
| | | | | | - Amanda Nádia Diniz
- Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Eduardo Garcia Vilela
- Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
7
|
Liu C, Monaghan T, Yadegar A, Louie T, Kao D. Insights into the Evolving Epidemiology of Clostridioides difficile Infection and Treatment: A Global Perspective. Antibiotics (Basel) 2023; 12:1141. [PMID: 37508237 PMCID: PMC10376792 DOI: 10.3390/antibiotics12071141] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Clostridioides difficile remains an important public health threat, globally. Since the emergence of the hypervirulent strain, ribotype 027, new strains have been reported to cause C. difficile infection (CDI) with poor health outcomes, including ribotypes 014/020, 017, 056, 106, and 078/126. These strains differ in their geographic distribution, genetic makeup, virulence factors, and antimicrobial susceptibility profiles, which can affect their ability to cause disease and respond to treatment. As such, understanding C. difficile epidemiology is increasingly important to allow for effective prevention measures. Despite the heightened epidemiological surveillance of C. difficile over the past two decades, it remains challenging to accurately estimate the burden and international epidemiological trends given the lack of concerted global effort for surveillance, especially in low- and middle-income countries. This review summarizes the changing epidemiology of C. difficile based on available data within the last decade, highlights the pertinent ribotypes from a global perspective, and discusses evolving treatments for CDI.
Collapse
Affiliation(s)
- Crystal Liu
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tanya Monaghan
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Thomas Louie
- Medicine and Microbiology, School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Dina Kao
- Division of Gastroenterology, University of Alberta, Edmonton, AB T6G 2P8, Canada
| |
Collapse
|
8
|
Tarasi A. Nightmare in the ward: difficult Clostridioides infection. Eur Heart J Suppl 2023; 25:B161-B165. [PMID: 37091633 PMCID: PMC10121063 DOI: 10.1093/eurheartjsupp/suad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, spore-forming bacillus. It is isolated in 80% of the stools of children and infants and in 3% of healthy adults. It causes gastrointestinal tract infections and affects patients who make prolonged use of antibiotics. It causes C. difficile colitis with symptoms ranging from diarrhoea to pseudomembranous colitis to toxic megacolon. The main virulence factors of C. difficile are toxin A, toxin B, and binary toxin. It is one of the most common nosocomial infections but in recent years, however, many infections have also been found at the community level. They are associated not only with a high risk of mortality but also with a prolongation of hospital stay. One of the critical aspects of C. difficile infections is also represented by the high frequency of relapses. Consequently, the economic impact is significant. Specific situations constitute risk factors for infection, such as exposure to antibiotic therapy in the previous months, in particular fluoroquinolones, third-generation cephalosporins, clindamycin, repeated hospitalizations in healthcare facilities, including long-term care, as well as the patient's clinical conditions such as comorbidities, age >65, chemotherapy and immunosuppressive treatments, recent surgery of any type, and pump inhibitor therapy. Treatment protocols will be described in the paper.
Collapse
|
9
|
Whole Genome Sequencing Evidences High Rates of Relapse in Clostridioides difficile Infection Caused by the Epidemic Ribotype 106. Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An increasing prevalence and spread of Clostridioides difficile infection (CDI) caused by DH/NAP11/106/ST-42 has been observed worldwide, probably fostered by its great capacity to produce spores or by the higher resistance rates observed for some strains. Based on the results of our previous study where RT106 showed higher recurrence rates than other relevant ribotypes, a genetic analysis by whole-genome sequencing (WGS) of primary and recurrent RT106 isolates from ten patients was performed to determine whether the higher rate of recurrence associated with RT106 is due to relapses, caused by the same strain, or reinfections, caused by different strains. MLST profiles, resistance mutations, and phylogenetic relatedness were determined by comparative single nucleotide variant (SNV) analysis. All isolates were classified as ST42, and those belonging to the same patient were isogenic, with one exception; strains belonging to different patients were not with two exceptions, pointing to putative transmission events. Phylogenetic analysis also suggested the presence of similar local epidemic lineages associated with moxifloxacin resistance, except for one patient whose isolates clustered with different nonresistant US strains. Our results show that recurrent CDIs caused by RT06/ST42 are mainly due to relapses caused by the primary strains, showing the higher capacity of RT106/ST42 to persist and cause recurrences as compared to other ribotypes.
Collapse
|
10
|
Nale JY, Thanki AM, Rashid SJ, Shan J, Vinner GK, Dowah ASA, Cheng JKJ, Sicheritz-Pontén T, Clokie MRJ. Diversity, Dynamics and Therapeutic Application of Clostridioides difficile Bacteriophages. Viruses 2022; 14:v14122772. [PMID: 36560776 PMCID: PMC9784644 DOI: 10.3390/v14122772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile causes antibiotic-induced diarrhoea and pseudomembranous colitis in humans and animals. Current conventional treatment relies solely on antibiotics, but C. difficile infection (CDI) cases remain persistently high with concomitant increased recurrence often due to the emergence of antibiotic-resistant strains. Antibiotics used in treatment also induce gut microbial imbalance; therefore, novel therapeutics with improved target specificity are being investigated. Bacteriophages (phages) kill bacteria with precision, hence are alternative therapeutics for the targeted eradication of the pathogen. Here, we review current progress in C. difficile phage research. We discuss tested strategies of isolating C. difficile phages directly, and via enrichment methods from various sample types and through antibiotic induction to mediate prophage release. We also summarise phenotypic phage data that reveal their morphological, genetic diversity, and various ways they impact their host physiology and pathogenicity during infection and lysogeny. Furthermore, we describe the therapeutic development of phages through efficacy testing in different in vitro, ex vivo and in vivo infection models. We also discuss genetic modification of phages to prevent horizontal gene transfer and improve lysis efficacy and formulation to enhance stability and delivery of the phages. The goal of this review is to provide a more in-depth understanding of C. difficile phages and theoretical and practical knowledge on pre-clinical, therapeutic evaluation of the safety and effectiveness of phage therapy for CDI.
Collapse
Affiliation(s)
- Janet Y. Nale
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, Scotland’s Rural College, Inverness IV2 5NA, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Anisha M. Thanki
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Srwa J. Rashid
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Jinyu Shan
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Gurinder K. Vinner
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Ahmed S. A. Dowah
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- School of Pharmacy, University of Lincoln, Lincoln LN6 7TS, UK
| | | | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, 1353 Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Correspondence:
| |
Collapse
|
11
|
Enkirch T, Mernelius S, Magnusson C, Kühlmann‐Berenzon S, Bengnér M, Åkerlund T, Rizzardi K. Molecular epidemiology of community- and hospital-associated Clostridioides difficile infections in Jönköping, Sweden, October 2017 - March 2018. APMIS 2022; 130:661-670. [PMID: 35980252 PMCID: PMC9826108 DOI: 10.1111/apm.13270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/17/2022] [Indexed: 01/11/2023]
Abstract
Clostridioides difficile infections (CDIs) in Sweden are mostly hospital-associated (HA) with limited knowledge regarding community-associated (CA) infections. Here, we investigated the molecular epidemiology of clinical isolates of CA-CDI and HA-CDI in a Swedish county. Data and isolates (n = 156) of CDI patients (n = 122) from Jönköping county, October 2017-March 2018, were collected and classified as CA (without previous hospital care or onset ≤2 days after admission or >12 weeks after discharge from hospital) or HA (onset >3 days after hospital admission or within 4 weeks after discharge). Molecular characterization of isolates included PCR ribotyping (n = 156 isolates) and whole genome sequencing with single nucleotide polymorphisms (SNP) analysis (n = 53 isolates). We classified 47 patients (39%) as CA-CDI and 75 (61%) as HA-CDI. Between CA-CDI and HA-CDI patients, we observed no statistically significant differences regarding gender, age, 30-day mortality or recurrence. Ribotype 005 (RR 3.1; 95% CI: 1.79-5.24) and 020 (RR 2.5; 95% CI: 1.31-4.63) were significantly associated with CA-CDI. SNP analysis identified seven clusters (0-2 SNP difference) involving 17/53 isolates of both CA-CDI and HA-CDI. Molecular epidemiology differed between CA-CDI and HA-CDI and WGS analysis suggests transmission of CDI within and between hospitals and communities.
Collapse
Affiliation(s)
- Theresa Enkirch
- Public Health Agency of SwedenSolnaSweden,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC)StockholmSweden
| | - Sara Mernelius
- Laboratory MedicineRegion Jönköping CountyJönköpingSweden,Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| | - Cecilia Magnusson
- Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden,Department of Infectious DiseasesRegion Jönköping CountyJönköpingSweden
| | | | - Malin Bengnér
- Office for Control of Communicable DiseasesRegion Jönköping CountyJönköpingSweden
| | | | | |
Collapse
|
12
|
de Carvalho TP, Dos Santos DO, Oliveira AR, Vasconcelos IMA, Tinoco HP, Coelho CM, Carvalho GM, Xavier RGC, Silva ROS, Paixão TA, Santos RDL. Lethal acute diarrhea associated with Clostridioides difficile toxin A and B in a buffy-tufted-ear marmoset (Callithrix aurita). J Med Primatol 2022; 51:400-403. [PMID: 35989431 DOI: 10.1111/jmp.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
This is a case of lethal acute diarrhea associated with a mild neutrophilic enteritis in a buffy-tufted-ear marmoset (Callithrix aurita) with detection of A/B toxins and isolation of a toxigenic clade 3 Clostridioides difficile strain (A+ B+ CDT+ , ST5), which should be considered as a potential cause of enteritis in this species.
Collapse
Affiliation(s)
- Thaynara Parente de Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel Oliveira Dos Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ayisa Rodrigues Oliveira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Gabriela Muniz Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael Gariglio Clark Xavier
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Otávio Silveira Silva
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiane Alves Paixão
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renato de Lima Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Kullin B, Abratt VR, Reid SJ, Riley TV. Clostridioides difficile infection in Africa: A narrative review. Anaerobe 2022; 74:102549. [PMID: 35337974 DOI: 10.1016/j.anaerobe.2022.102549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
Clostridioides (Clostridium) difficile infection (CDI) places a burden on healthcare facilities worldwide. Most research studies have been concentrated in high-income countries in North America, Europe, Asia and Australia, where C. difficile is the leading cause of diarrhoea associated with antimicrobial use. This narrative review summarises African CDI studies, focussing on reports published in the last 20 years. Although relatively sparse, the data suggest that CDI is an important cause of diarrhoea on the continent. African CDI patient populations are often younger than in European and North American settings, probably due to the high prevalence of co-morbid conditions such as tuberculosis, particularly in sub-Saharan Africa. Strain typing data are rare and where reported generally limited to single sites and institutions. Despite challenges, including a lack of facilities and awareness, there is a need for further investigation to more accurately determine the true burden of disease caused by C. difficile in Africa.
Collapse
Affiliation(s)
- Brian Kullin
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Valerie R Abratt
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Sharon J Reid
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Thomas V Riley
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; Department of Microbiology, PathWest Laboratory Medicine, Nedlands, WA, Australia; School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
14
|
Anwar F, Vedantam G. Surface-displayed glycopolymers of Clostridioides difficile. Curr Opin Microbiol 2022; 66:86-91. [DOI: 10.1016/j.mib.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
|
15
|
Abdrabou AMM, Bischoff M, Mellmann A, von Müller L, Margardt L, Gärtner BC, Berger FK, Haase G, Häfner H, Hoffmann R, Simon V, Stappmanns H, Hischebeth GT, Büchler C, Rößler S, Hochauf-Stange K, Pfeffer K, MacKenzie C, Kunz C, Alsalameh R, Dziobaka J, le Chapot VS, Sanabria E, Hogardt M, Komp J, Imirzalioglu C, Schmiedel J, Pararas M, Sommer F, Groß U, Bohne W, Kekulé AS, Dagwadordsch U, Löffler B, Rödel J, Walker SV, Tobys D, Weikert-Asbeck S, Hauswaldt S, Kaasch AJ, Zautner AE, Joß N, Siegel E, Kehr K, Schaumburg F, Schoeler S, Hamprecht A, Hellkamp J, Hagemann JB, Kubis J, Hering S, Warnke P. Implementation of a Clostridioides difficile sentinel surveillance system in Germany: First insights for 2019–2021. Anaerobe 2022; 77:102548. [DOI: 10.1016/j.anaerobe.2022.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/01/2022]
|
16
|
Colitis caused by Clostridioides difficile infection in a domestic dog: A case report. Anaerobe 2022; 73:102511. [DOI: 10.1016/j.anaerobe.2021.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
|
17
|
Asaoka R, Oishi A, Fujino Y, Murata H, Azuma K, Miyata M, Obata R, Inoue T. Association between the number of visual fields and the accuracy of future prediction in eyes with retinitis pigmentosa. BMJ Open Ophthalmol 2021; 6:e000900. [PMID: 34869907 PMCID: PMC8603256 DOI: 10.1136/bmjophth-2021-000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose To evaluate the minimum number of visual fields (VFs) required to precisely predict future VFs in eyes with retinitis pigmentosa (RP). Methods A series of 12 VFs (Humphrey Field Analyzer 10–2 test (8.9 years in average) were analysed from 102 eyes of 52 patients with RP. The absolute error to predict the 12th VF using the prior 11 VFs was calculated in a pointwise manner, using the linear regression, and the 95% CI range was determined. Then, using 3–10 initial VFs, next VFs (4th to 11th VFs, respectively) were also predicted. The minimum number of VFs required for the mean absolute prediction error to reach the 95% CI was identified. Similar analyses were iterated for the second and third next VF predictions. Similar analyses were conducted using mean deviation (MD). Results In the pointwise analysis, the minimum number of VFs required to reach the 95% CI for the 12th VF was five (first and second next VF predictions) and six (third next VF prediction). For the MD analysis, three (first and second next VF predictions) and four (third next VF prediction) VFs were required to reach 95% CI for the 12th VF. Conclusions The minimum number of VFs required to obtain accurate predictions of the future VF was five or six in the pointwise analysis and three or four in the analysis with MD.
Collapse
Affiliation(s)
- Ryo Asaoka
- Department of Ophthalmology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan.,Nanovision Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka, Japan.,The Graduate School for the Creation of New Photonics Industries, Shizuoka, Japan.,Seirei Christopher University, Shizuoka, Japan
| | - Akio Oishi
- Department of Ophthalmology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yuri Fujino
- Department of Ophthalmology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan.,Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Hiroshi Murata
- Department of Ophthalmology, University of Tokyo, Tokyo, Japan.,Department of Ophthalmology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Keiko Azuma
- Department of Ophthalmology, Graduate School of Medicine, Tokyo, Japan
| | - Manabu Miyata
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto City, Kyoto Prefecture, Japan
| | - Ryo Obata
- Department of Ophthalmology, University of Tokyo Graduate School of Medichine, Tokyo, Japan
| | - Tatsuya Inoue
- Department of Ophthalmology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan.,Department of Ophthalmology and Micro-Technology, Yokohama City University, Kanagawa, Japan
| |
Collapse
|
18
|
Mizusawa M, Carroll KC. The future of Clostridioides difficile diagnostics. Curr Opin Infect Dis 2021; 34:483-490. [PMID: 34524199 DOI: 10.1097/qco.0000000000000754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Although the epidemiology of Clostridioides difficile has changed, this organism continues to cause significant morbidity and mortality. This review addresses current and future approaches to the diagnosis of C. difficile disease. RECENT FINDINGS Over the last several years, large prospective studies have confirmed that there is no single optimal test for the diagnosis of C. difficile disease. The pendulum has swung from a focus on rapid molecular diagnosis during the years of the ribotype 027 epidemic, to a call for use of algorithmic approaches that include a test for toxin detection. In addition, diagnostic stewardship has been shown to improve test utilization, especially with molecular methods. Advances in testing include development of ultrasensitive toxin tests and an expansion of biomarkers that may be more C. difficile specific. Microbiome research may be leveraged to inform novel diagnostic approaches based on measurements of volatile and nonvolatile organic compounds in stool. SUMMARY As rates of C. difficile infection decline, emphasis is now on improving test utilization and a quest for improved diagnostic approaches. These approaches may involve implementation of technologies that improve toxin testing, predict patients likely to have disease and/or a severe outcome, and harnessing research on changes in the microbiome to advance metabolomics.
Collapse
Affiliation(s)
- Masako Mizusawa
- Section of Infectious Diseases, Department of Internal Medicine, University of Missouri, Kansas City, Missouri
| | - Karen C Carroll
- Division of Medical Microbiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Antimicrobial resistance progression in the United Kingdom: A temporal comparison of Clostridioides difficile antimicrobial susceptibilities. Anaerobe 2021; 70:102385. [PMID: 34048922 DOI: 10.1016/j.anaerobe.2021.102385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Clostridioides difficile (CD) is widely reported as one of the most prevalent multi-drug resistant (MDR) organisms. Assessment of temporally disparate isolate collections can give valuable epidemiological data to further the understanding of antimicrobial resistance progression. METHODS A collection of 75 CD isolates (1980-86) was characterised by PCR ribotyping, cell cytotoxicity assay and susceptibility testing with a panel of 16 antimicrobials and compared to a modern surveillance collection consisting of 416 UK isolates (2012-2016). Agar-incorporation was performed to ascertain susceptibility data for vancomycin, metronidazole, rifampicin, fidaxomicin, moxifloxacin, clindamycin, imipenem, chloramphenicol, tigecycline, linezolid, ciprofloxacin, piperacillin/tazobactam, ceftriaxone, amoxicillin, tetracycline and erythromycin. Genomes were obtained using Illumina HiSeq3000 sequencing and assembled using CLC Genomics Workbench. Resistance genes were identified using the Comprehensive Antibiotic Research Database's Resistance Gene Identifier and ResFinder3.0. RESULTS Twenty-six known and one previously unobserved ribotype (RT) were detected. RT015 and RT020 dominated; 21.3% and 17.3%, respectively. Three moxifloxacin resistant (16-32 mg/L) RT027 isolates were recovered, pre-dating the earliest reports of this phenotype/genotype. Phenotypic resistance was observed to moxifloxacin (9.3% of isolates), ciprofloxacin (100%), erythromycin (17.3%), tetracycline (9.3%), linezolid and chloramphenicol (4.0%). Phenotypic comparisons with modern strains revealed increasing minimum inhibitory concentrations (MIC), with MIC50 elevations of one doubling-dilution for the majority of compounds, excluding clindamycin and imipenem. Moxifloxacin MIC90 comparisons revealed a two doubling-dilution increase between temporal isolate collections. Historical genomes revealed twenty different resistance determinants, including ermB (8.0% of isolates), tetM (9.3%), cfr (5.3%) and gyrA substitution Thr-82→Ile (9.3%). Seventeen isolates (22.7%) were resistant to ≥3 compounds (MDR), demonstrating ten different combinations. Intra-RT diversity was observed. CONCLUSIONS Antibiotic resistance in CD has increased since the early 1980s, across the majority of classes. Moxifloxacin resistance determinants may pre-date its introduction.
Collapse
|
20
|
Mizusawa M, Carroll KC. Advances and required improvements in methods to diagnosing Clostridioides difficile infections in the healthcare setting. Expert Rev Mol Diagn 2021; 21:311-321. [PMID: 33682564 DOI: 10.1080/14737159.2021.1900737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Clostrididioides difficile is associated with adverse clinical outcomes and increased morbidity, mortality, length of hospital stay, and health-care costs.Areas Covered: We searched relevant papers in PubMed for the last 10 years. In major papers, we scanned the bibliographies to ensure that important articles were included. This review addresses the evolving epidemiology of Clostridioides difficile infection (CDI) and discusses novel methods/approaches for improving the diagnosis of this important disease. EXPERT OPINION No single diagnostic test to date has demonstrated optimum sensitivity and specificity for detection of CDI. Many institutions have developed multi-step algorithms consistent with guidelines established by various professional societies. Some institutions have successfully tried to improve the pretest probability of molecular assays by implementing appropriate sample rejection criteria and establishing best practice alerts at the time of electronic order entry. Others have established PCR cycle threshold cutoffs to attempt to differentiate symptomatic patients from asymptomatic carriers or to make predictions about severity of disease with variable success. As research advances our understanding of C. difficile pathogenesis and pathophysiology, more information on CDI specific biomarkers is emerging. Finally, assessments of the microbiome and metabolome may expand the diagnostic armamentarium with advances in mass spectrometry and sequencing technologies.
Collapse
Affiliation(s)
- Masako Mizusawa
- Section of Infectious Diseases, Department of Internal Medicine, University of Missouri, Kansas City, Missouri, Kansas City, MO, USA
| | - Karen C Carroll
- Director Division of Medical Microbiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Kampouri E, Croxatto A, Prod’hom G, Guery B. Clostridioides difficile Infection, Still a Long Way to Go. J Clin Med 2021; 10:jcm10030389. [PMID: 33498428 PMCID: PMC7864166 DOI: 10.3390/jcm10030389] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Clostridioides difficile is an increasingly common pathogen both within and outside the hospital and is responsible for a large clinical spectrum from asymptomatic carriage to complicated infection associated with a high mortality. While diagnostic methods have considerably progressed over the years, the optimal diagnostic algorithm is still debated and there is no single diagnostic test that can be used as a standalone test. More importantly, the heterogeneity in diagnostic practices between centers along with the lack of robust surveillance systems in all countries and an important degree of underdiagnosis due to lack of clinical suspicion in the community, hinder a more accurate evaluation of the burden of disease. Our improved understanding of the physiopathology of CDI has allowed some significant progress in the treatment of CDI, including a broader use of fidaxomicine, the use of fecal microbiota transplantation for multiples recurrences and newer approaches including antibodies, vaccines and new molecules, already developed or in the pipeline. However, the management of CDI recurrences and severe infections remain challenging and the main question remains: how to best target these often expensive treatments to the right population. In this review we discuss current diagnostic approaches, treatment and potential prevention strategies, with a special focus on recent advances in the field as well as areas of uncertainty and unmet needs and how to address them.
Collapse
Affiliation(s)
- Eleftheria Kampouri
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, 1011 Lausanne, Switzerland;
| | - Antony Croxatto
- Institute of Microbiology, Department of Medical Laboratory and Pathology, University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (A.C.); (G.P.)
| | - Guy Prod’hom
- Institute of Microbiology, Department of Medical Laboratory and Pathology, University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (A.C.); (G.P.)
| | - Benoit Guery
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, 1011 Lausanne, Switzerland;
- Correspondence: ; Tel.: +41-21-314-1643
| |
Collapse
|
22
|
Antibiotic stewardship teams and Clostridioides difficile practices in United States hospitals: A national survey in The Joint Commission antibiotic stewardship standard era. Infect Control Hosp Epidemiol 2021; 41:143-148. [PMID: 31806059 DOI: 10.1017/ice.2019.313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Clostridioides difficile infection (CDI) can be prevented through infection prevention practices and antibiotic stewardship. Diagnostic stewardship (ie, strategies to improve use of microbiological testing) can also improve antibiotic use. However, little is known about the use of such practices in US hospitals, especially after multidisciplinary stewardship programs became a requirement for US hospital accreditation in 2017. Thus, we surveyed US hospitals to assess antibiotic stewardship program composition, practices related to CDI, and diagnostic stewardship. METHODS Surveys were mailed to infection preventionists at 900 randomly sampled US hospitals between May and October 2017. Hospitals were surveyed on antibiotic stewardship programs; CDI prevention, treatment, and testing practices; and diagnostic stewardship strategies. Responses were compared by hospital bed size using weighted logistic regression. RESULTS Overall, 528 surveys were completed (59% response rate). Almost all (95%) responding hospitals had an antibiotic stewardship program. Smaller hospitals were less likely to have stewardship team members with infectious diseases (ID) training, and only 41% of hospitals met The Joint Commission accreditation standards for multidisciplinary teams. Guideline-recommended CDI prevention practices were common. Smaller hospitals were less likely to use high-tech disinfection devices, fecal microbiota transplantation, or diagnostic stewardship strategies. CONCLUSIONS Following changes in accreditation standards, nearly all US hospitals now have an antibiotic stewardship program. However, many hospitals, especially smaller hospitals, appear to struggle with access to ID expertise and with deploying diagnostic stewardship strategies. CDI prevention could be enhanced through diagnostic stewardship and by emphasizing the role of non-ID-trained pharmacists and clinicians in antibiotic stewardship.
Collapse
|
23
|
Edgeworth JD, Batra R, Wulff J, Harrison D. Reductions in Methicillin-resistant Staphylococcus aureus, Clostridium difficile Infection and Intensive Care Unit-Acquired Bloodstream Infection Across the United Kingdom Following Implementation of a National Infection Control Campaign. Clin Infect Dis 2021; 70:2530-2540. [PMID: 31504311 PMCID: PMC7286372 DOI: 10.1093/cid/ciz720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile infections declined across the UK National Health Service in the decade that followed implementation of an infection control campaign. The national impact on intensive care unit (ICU)-acquired infections has not been documented. Methods Data on MRSA, C. difficile, vancomycin-resistant Enterococcus (VRE), and ICU–acquired bloodstream infections (UABSIs) for 1 189 142 patients from 2007 to 2016 were analyzed. Initial coverage was 139 ICUs increasing to 276 ICUs, representing 100% of general adult UK ICUs. Results ICU MRSA and C. difficile acquisitions per 1000 patients decreased between 2007 and 2016 (MRSA acquisitions, 25.4 to 4.1; and C. difficile acquisitions, 11.1 to 3.5), whereas VRE acquisitions increased from 1.5 to 5.9. There were 13 114 UABSIs in 1.8% of patients who stayed longer than 48 hours on ICU. UABSIs fell from 7.3 (95% confidence interval [CI], 6.9–7.6) to 1.6 (95% CI, 1.5–1.7)/1000 bed days. Adjusting for patient factors, the incidence rate ratio was 0.21 (95% CI, 0.19–0.23, P < .001) from 2007 to 2016. The greatest reduction, comparing rates in 2007/08 and 2015/16, was for MRSA (97%), followed by P. aeruginosa (81%), S. aureus (79%) and Candida spp (72%), with lower reductions for the coliforms (E. coli 57% and Klebsiella 49%). Conclusions Large decreases in ICU-acquired infections occurred across the UK ICU network linked with the first few years of a national infection control campaign, but rates have since been static. Further reductions will likely require a new intervention framework.
Collapse
Affiliation(s)
- Jonathan D Edgeworth
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, King's College London and Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, King's College London and Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - Jerome Wulff
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, United Kingdom
| | - David Harrison
- Clinical Trials Unit, Intensive Care National Audit and Research Centre, London, United Kingdom
| |
Collapse
|
24
|
Heise J, Witt P, Maneck C, Wichmann-Schauer H, Maurischat S. Prevalence and phylogenetic relationship of Clostridioides difficile strains in fresh poultry meat samples processed in different cutting plants. Int J Food Microbiol 2020; 339:109032. [PMID: 33388709 DOI: 10.1016/j.ijfoodmicro.2020.109032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/07/2023]
Abstract
Clostridioides difficile is one of the most frequent causes of nosocomial infections in humans leading to (antibiotic-associated) diarrhea and severe pseudomembranous colitis. With an increasing frequency, C. difficile infections (CDI) are also observed independently of hospitalization and the age of the patients in an ambulant setting. One potential source of so-called community-acquired CDI is a zoonotic transmission to humans based on direct contact with animals or the consumption of food. To estimate the exposure of humans with C. difficile via food, we screened 364 different retail fresh poultry meat products purchased in Berlin and Brandenburg, Germany and further characterized the isolates. None of the 42 turkey or chicken meat samples without skin was contaminated. However, 51 (15.8%) of 322 tested fresh chicken meat samples with skin were C. difficile-positive. The vast majority (84.3%) of all isolates exhibited toxin genes tcdA and tcdB, whereas the binary toxin cdtA/B was absent. Most of the isolates (50/51) were susceptible to all six investigated antimicrobials. However, one non-toxigenic strain was multidrug resistant to the antimicrobials clindamycin and erythromycin. The isolates were mainly represented by PCR-ribotypes (RT) 001, RT002, RT005, and RT014, which were already associated with human CDI cases in Germany and were partially detected in poultry. The relatively high contamination rate of fresh retail chicken meat with skin purchased in Germany indicates chicken meat as a potential source of human infections. Moreover, we identified cutting plants with a higher rate of a C. difficile-contamination (21.4-32.8%). To compare the phylogenetic relationship of the isolated strains from certain cutting plants over several months in 2018 and 2019, we analyzed them using NGS followed by core genome MLST. Interestingly, highly related strains (0-3 alleles distance) of common clinical RT001 and RT002 isolates, as well as of the non-toxigenic RT205 isolates were detectable in same cutting plants over a period of three and 16 months, respectively.The continuous contamination with the same strain could be explained by the longterm persistence of this strain within the cutting plant (e.g., within the scalder), or with a recurring entry e.g. from the same fattening farm.
Collapse
Affiliation(s)
- Janine Heise
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Pascal Witt
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Corinna Maneck
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Heidi Wichmann-Schauer
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Sven Maurischat
- German Federal Institute for Risk Assessment, Department Biological Safety, Unit Bacterial Toxins, Food Service, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
25
|
Roxas BAP, Roxas JL, Claus-Walker R, Harishankar A, Mansoor A, Anwar F, Jillella S, Williams A, Lindsey J, Elliott SP, Shehab KW, Viswanathan VK, Vedantam G. Phylogenomic analysis of Clostridioides difficile ribotype 106 strains reveals novel genetic islands and emergent phenotypes. Sci Rep 2020; 10:22135. [PMID: 33335199 PMCID: PMC7747571 DOI: 10.1038/s41598-020-79123-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a major healthcare-associated diarrheal disease. Consistent with trends across the United States, C. difficile RT106 was the second-most prevalent molecular type in our surveillance in Arizona from 2015 to 2018. A representative RT106 strain displayed robust virulence and 100% lethality in the hamster model of acute CDI. We identified a unique 46 KB genomic island (GI1) in all RT106 strains sequenced to date, including those in public databases. GI1 was not found in its entirety in any other C. difficile clade, or indeed, in any other microbial genome; however, smaller segments were detected in Enterococcus faecium strains. Molecular clock analyses suggested that GI1 was horizontally acquired and sequentially assembled over time. GI1 encodes homologs of VanZ and a SrtB-anchored collagen-binding adhesin, and correspondingly, all tested RT106 strains had increased teicoplanin resistance, and a majority displayed collagen-dependent biofilm formation. Two additional genomic islands (GI2 and GI3) were also present in a subset of RT106 strains. All three islands are predicted to encode mobile genetic elements as well as virulence factors. Emergent phenotypes associated with these genetic islands may have contributed to the relatively rapid expansion of RT106 in US healthcare and community settings.
Collapse
Affiliation(s)
- Bryan Angelo P Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Rachel Claus-Walker
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Anusha Harishankar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Asad Mansoor
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Shobitha Jillella
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Alison Williams
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jason Lindsey
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Sean P Elliott
- Department of Pediatrics, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Kareem W Shehab
- Department of Pediatrics, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - V K Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA.,Department of Immunobiology, The University of Arizona, Tucson, AZ, USA.,Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA. .,Department of Immunobiology, The University of Arizona, Tucson, AZ, USA. .,Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, USA. .,Southern Arizona VA Health Care System, Tucson, AZ, USA. .,School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E Lowell St, Bldg. 90, Room 227, Tucson, AZ, 85721, USA.
| |
Collapse
|
26
|
Durham SH, Le P, Cassano AT. Navigating changes in Clostridioides difficile prevention and treatment. J Manag Care Spec Pharm 2020; 26:S3-S23. [PMID: 33533699 PMCID: PMC10408425 DOI: 10.18553/jmcp.2020.26.12-a.s3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Clostridioides difficile (C. difficile, previously known as Clostridium difficile) infections are a major health care concern. The Centers for Disease Control and Prevention (CDC) estimates that C. difficile causes almost half a million illnesses in the United States yearly, and approximately 1 in 5 patients with a C. difficile infection (CDI) will experience 1 or more recurrent infections. The incidence of infection has risen dramatically in recent years, and infection severity has increased due to the emergence of hypervirulent strains. There have been noteworthy advances in the development of CDI prevention and treatment, including a growth in the understanding of the role a patient's gut microbiome plays. The 2017 Infectious Diseases Society of America (IDSA) guidelines made a significant change in treatment recommendations for first time CDI episodes by recommending the use of oral vancomycin or fidaxomicin in place of metronidazole as a first-line treatment. The guidelines also included detailed recommendations on the use of fecal microbiota transplant (FMT) in those patients who experience 3 or more recurrent CDI episodes. A number of novel therapies for the treatment of CDI are in various stages of development. Treatments currently in phase 3 trials include the antibiotic ridinilazole, the microbiome products SER-109 and RBX2660, and a vaccine. All of these agents have shown promise in phase 1 and 2 trials. Additionally, several other antibiotic and microbiome candidates are currently in phase 1 or phase 2 trials. A qualitative review and evaluation of the literature on the cost-effectiveness of treatments for CDI in the U.S. setting was conducted, and the summary provided herein. Due to the higher cost of newer agents, cost-effectiveness evaluations will continue to be critical in clinical decision making for CDI. This paper reviews the updated CDI guidelines for prevention and treatment, the role of the microbiome in new and recurrent infections, pipeline medications, and comparative effectiveness research (CER) data on these treatments. DISCLOSURES: Durham and Le have nothing to disclose. Cassano reports consulting fees from Baxter Healthcare. Peer reviewers Drs. Ami Gopalan and Mark Rubin and Ms. Kathleen Jarvis have nothing to disclose. Planners Dr. Christine L. Cooper and Ms. Susan Yarbrough have nothing to disclose.
Collapse
Affiliation(s)
- Spencer H Durham
- BCPS, BCIDP, Auburn University Harrison School of Pharmacy, Auburn, AL
| | - Phuc Le
- Lerner College of Medicine, Case Western Reserve University and Center for Value-based Care Research, Cleveland Clinic, Cleveland, OH
| | | |
Collapse
|
27
|
Khurana S, Kahl A, Yu K, DuPont AW. Recent advances in the treatment of Clostridioides difficile infection: the ever-changing guidelines. Fac Rev 2020; 9:13. [PMID: 33659945 PMCID: PMC7886080 DOI: 10.12703/b/9-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile infection (CDI), formerly known as Clostridium difficile, continues to be the most common healthcare-associated infection worldwide. With the shifting epidemiology towards higher a incidence of community-acquired CDI and the continued burden on the healthcare system posed by high rates of CDI recurrence, there has been an impetus to advance the diagnostic testing and treatment strategies. Recent advancements over the past decade have led to rapidly changing guidelines issued by the Infectious Diseases Society of America and European Society of Clinical Microbiology and Infectious Diseases. With our comprehensive review, we aim to summarize the latest advances in diagnosing and treating CDI and thus attempt to help readers guide best practices for patient care. This article also focusses on cost-effectiveness of various therapies currently available on the market and provides an analysis of the current evidence on a relatively new monoclonal antibody therapy, Bezlotoxumab, to treat recurrent CDI.
Collapse
Affiliation(s)
- Shruti Khurana
- Department of Internal Medicine and Pediatrics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alyssa Kahl
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kevin Yu
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andrew W DuPont
- Associate Professor, Department of Gastroenterology, Hepatology and Nutrition, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
28
|
Inpatient fluoroquinolone use in Veterans' Affairs hospitals is a predictor of Clostridioides difficile infection due to fluoroquinolone-resistant ribotype 027 strains. Infect Control Hosp Epidemiol 2020; 42:57-62. [PMID: 32962774 DOI: 10.1017/ice.2020.383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Reduction in the use of fluoroquinolone antibiotics has been associated with reductions in Clostridioides difficile infections (CDIs) due to fluoroquinolone-resistant strains. OBJECTIVE To determine whether facility-level fluoroquinolone use predicts healthcare facility-associated (HCFA) CDI due to fluoroquinolone-resistant 027 strains. METHODS Using a nationwide cohort of hospitalized patients in the Veterans' Affairs Healthcare System, we identified hospitals that categorized >80% of CDI cases as positive or negative for the 027 strain for at least one-quarter of fiscal years 2011-2018. Within these facilities, we used visual summaries and multilevel logistic regression models to assess the association between facility-level fluoroquinolone use and rates of HCFA-CDI due to 027 strains, controlling for time and facility complexity level, and adjusting for correlated outcomes within facilities. RESULTS Between 2011 and 2018, 55 hospitals met criteria for reporting 027 results, including a total of 5,091 HCFA-CDI cases, with 1,017 infections (20.0%) due to 027 strains. Across these facilities, the use of fluoroquinolones decreased by 52% from 2011 to 2018, with concurrent reductions in the overall HCFA-CDI rate and the proportion of HCFA-CDI cases due to the 027 strain of 13% and 55%, respectively. A multilevel logistic model demonstrated a significant effect of facility-level fluoroquinolone use on the proportion of infections in the facility due to the 027 strain, most noticeably in low-complexity facilities. CONCLUSIONS Our findings provide support for interventions to reduce use of fluroquinolones as a control measure for CDI, particularly in settings where fluoroquinolone use is high and fluoroquinolone-resistant strains are common causes of infection.
Collapse
|
29
|
Korać M, Rupnik M, Nikolić N, Jovanović M, Tošić T, Malinić J, Mitrović N, Marković M, Vujović A, Peruničić S, Bojović K, Djordjević V, Barać A, Milošević I. Clostridioides difficile ribotype distribution in a large teaching hospital in Serbia. Gut Pathog 2020; 12:26. [PMID: 32477428 PMCID: PMC7243319 DOI: 10.1186/s13099-020-00364-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background The global epidemic of nosocomial diarrhea caused by Clostridioides (Clostridium) difficile started in 2000, with high mortality rates and emergence of a new hypervirulent strain NAP1/BI/027. The aim of this study was to assess the presence of ribotype 027 and other C. difficile ribotypes in a Serbian University Hospital, compare the temporal variability of ribotypes 3 years apart, as well as to compare clinical, demographic and laboratory characteristics and disease outcome among patients infected with 027 and non-027 ribotype. This was a prospective observational cohort study addressing 4-month intervals during 2014/2015 and 2017/2018. Results Ribotyping was performed in 64 non-duplicate C. difficile strains. Ribotype 027 was the most prevalent, and was detected in 53 (82.8%) patients (43/45 and 10/19 patients in 2014-2015 and 2017/2018, respectively). Other detected ribotypes were 001/072 in 4 (6.3%), 002 in 4 (6.3%), 014/020 in 2 (3.1%) and 176 in 1 (1.5%) patient. The percentage of the patients infected with ribotype 027 significantly decreased during the 3-year period, from 95.6 to 52.6% (p < 0.001). Ribotype 027 infection was associated with fluoroquinolone treatment more frequently than infection with other ribotypes [33 (62.3%) vs. 2 (18.2%), p = 0.010)]. A severe C. difficile infection was diagnosed more often in patients with the detected ribotype 027 compared to those infected with non-027 ribotypes (p = 0.006). No significant difference in the mortality and recurrence rates was found between the patients infected with ribotype 027 and those infected with other ribotypes [10/53 (18.8%) vs. 2/11 (18.2%), p = 0.708, and 10/35 (28.6%) vs. 0/2 (0%), p = 1.000, respectively]. Conclusion Clostridium difficile ribotype 027 was the most prevalent ribotype among patients in a large Serbian hospital, but there is a clear decreasing trend.
Collapse
Affiliation(s)
- Miloš Korać
- 1University of Belgrade, Faculty of Medicine, Dr Subotića 8, 11000 Belgrade, Serbia.,2University Hospital for Infectious and Tropical Diseases, Clinical Centre of Serbia, Bulevar oslobođenja 16, 11000 Belgrade, Serbia
| | - Maja Rupnik
- 4Department for Microbiological Research, Centre for Medical Microbiology, National Laboratory for Health, Environment and Food, Prvomajska 1, 2000 Maribor, Slovenia.,5University of Maribor, Faculty of Medicine, Taborska 8, 2000 Maribor, Slovenia
| | - Nataša Nikolić
- 1University of Belgrade, Faculty of Medicine, Dr Subotića 8, 11000 Belgrade, Serbia.,2University Hospital for Infectious and Tropical Diseases, Clinical Centre of Serbia, Bulevar oslobođenja 16, 11000 Belgrade, Serbia
| | - Milica Jovanović
- 3Microbiology Department, Clinical Centre of Serbia, Pasterova 4, Belgrade, Serbia
| | - Tanja Tošić
- 3Microbiology Department, Clinical Centre of Serbia, Pasterova 4, Belgrade, Serbia
| | - Jovan Malinić
- 1University of Belgrade, Faculty of Medicine, Dr Subotića 8, 11000 Belgrade, Serbia.,2University Hospital for Infectious and Tropical Diseases, Clinical Centre of Serbia, Bulevar oslobođenja 16, 11000 Belgrade, Serbia
| | - Nikola Mitrović
- 1University of Belgrade, Faculty of Medicine, Dr Subotića 8, 11000 Belgrade, Serbia.,2University Hospital for Infectious and Tropical Diseases, Clinical Centre of Serbia, Bulevar oslobođenja 16, 11000 Belgrade, Serbia
| | - Marko Marković
- 2University Hospital for Infectious and Tropical Diseases, Clinical Centre of Serbia, Bulevar oslobođenja 16, 11000 Belgrade, Serbia
| | - Ankica Vujović
- 1University of Belgrade, Faculty of Medicine, Dr Subotića 8, 11000 Belgrade, Serbia.,2University Hospital for Infectious and Tropical Diseases, Clinical Centre of Serbia, Bulevar oslobođenja 16, 11000 Belgrade, Serbia
| | - Sanja Peruničić
- 2University Hospital for Infectious and Tropical Diseases, Clinical Centre of Serbia, Bulevar oslobođenja 16, 11000 Belgrade, Serbia
| | - Ksenija Bojović
- 1University of Belgrade, Faculty of Medicine, Dr Subotića 8, 11000 Belgrade, Serbia.,2University Hospital for Infectious and Tropical Diseases, Clinical Centre of Serbia, Bulevar oslobođenja 16, 11000 Belgrade, Serbia
| | - Vladimir Djordjević
- 1University of Belgrade, Faculty of Medicine, Dr Subotića 8, 11000 Belgrade, Serbia.,6Clinic for Digestive Surgery, Clinical Centre of Serbia, Dr Koste Todorovića 6, 11000 Belgrade, Serbia
| | - Aleksandra Barać
- 1University of Belgrade, Faculty of Medicine, Dr Subotića 8, 11000 Belgrade, Serbia.,2University Hospital for Infectious and Tropical Diseases, Clinical Centre of Serbia, Bulevar oslobođenja 16, 11000 Belgrade, Serbia
| | - Ivana Milošević
- 1University of Belgrade, Faculty of Medicine, Dr Subotića 8, 11000 Belgrade, Serbia.,2University Hospital for Infectious and Tropical Diseases, Clinical Centre of Serbia, Bulevar oslobođenja 16, 11000 Belgrade, Serbia
| |
Collapse
|
30
|
Karlowsky JA, Adam HJ, Baxter MR, Dutka CW, Nichol KA, Laing NM, Golding GR, Zhanel GG. Antimicrobial susceptibility of Clostridioides difficile isolated from diarrhoeal stool specimens of Canadian patients: summary of results from the Canadian Clostridioides difficile (CAN-DIFF) surveillance study from 2013 to 2017. J Antimicrob Chemother 2020; 75:1824-1832. [DOI: 10.1093/jac/dkaa118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Abstract
Objectives
To summarize data generated by the Canadian Clostridioides difficile (CAN-DIFF) surveillance study from 2013 to 2017.
Methods
Isolates of C. difficile (n = 2158) were cultured from toxin-positive diarrhoeal stool specimens submitted by eight hospital laboratories to a coordinating laboratory. Antimicrobial susceptibility testing was performed according to the CLSI agar dilution method (M11, 2018). Isolate ribotypes were determined using an international, standardized, high-resolution capillary gel-based electrophoresis protocol.
Results
Of the 2158 isolates of C. difficile, 2133 (98.8%) had vancomycin MICs ≤2 mg/L [i.e. were vancomycin susceptible (EUCAST breakpoint tables, v 9.0, 2019) or WT (CLSI M100, 29th edition, 2019)]. Fidaxomicin MICs were lower than those of all other agents tested (MIC90, 0.5 mg/L); however, one isolate with a fidaxomicin MIC of >8 mg/L was identified. Metronidazole MICs ranged from 0.12 to 4 mg/L; all isolates were metronidazole susceptible by the CLSI breakpoint (≤8 mg/L) compared with 96.8% susceptible by the EUCAST breakpoint (≤2 mg/L). In total, 182 different ribotypes were identified from 2013 to 2017. The most common ribotypes identified were 027 (19.3% of isolates) and 106 (8.2%). Ribotype 027 isolates were frequently moxifloxacin resistant (87.3% of isolates) and MDR (48.6%), associated with vancomycin (10/25, 40.0%) and metronidazole (58/69, 84.1%) resistance and from patients aged ≥80 years. The prevalence of ribotype 027 decreased significantly (P < 0.0001) from 2013 (27.5%) to 2017 (9.0%) and was replaced by increases in ribotype 106 (P = 0.0003) and multiple less common ribotypes.
Conclusions
Periodic surveillance is required to monitor clinical isolates of C. difficile for changes to in vitro susceptibility testing profiles and ribotype evolution.
Collapse
Affiliation(s)
- James A Karlowsky
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Heather J Adam
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Melanie R Baxter
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher W Dutka
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kim A Nichol
- Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Nancy M Laing
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - George R Golding
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- National Microbiology Laboratory – Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - George G Zhanel
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
31
|
Carlson TJ, Blasingame D, Gonzales-Luna AJ, Alnezary F, Garey KW. Clostridioides difficile ribotype 106: A systematic review of the antimicrobial susceptibility, genetics, and clinical outcomes of this common worldwide strain. Anaerobe 2020; 62:102142. [PMID: 32007682 PMCID: PMC7153973 DOI: 10.1016/j.anaerobe.2019.102142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
Clostridioides difficile typing is invaluable for the investigation of both institution-specific outbreaks as well as national surveillance. While the epidemic ribotype 027 (RT027) has received a significant amount of resources and attention, ribotype 106 (RT106) has become more prevalent throughout the past decade. The purpose of this systematic review was to comprehensively summarize the genetic determinants, antimicrobial susceptibility, epidemiology, and clinical outcomes of infection caused by RT106. A total of 68 articles published between 1999 and 2019 were identified as relevant to this review. Although initially identified in the United Kingdom in 1999, RT106 is now found worldwide and became the most prevalent strain in the United States in 2016. Current data indicate that RT106 harbors the tcdA and tcdB genes, lacks binary toxin genes, and does not contain any deletions in the tcdC gene, which differentiates it from other epidemic strains, including ribotypes 027 and 078. Interestingly, RT106 produces more spores than other strains, including RT027. Overall, RT106 is highly resistant to erythromycin, clindamycin, fluoroquinolones, and third-generation cephalosporins. However, the MIC90 in most studies are one to two fold dilutions below the epidemiologic cut-off values of metronidazole and vancomycin, suggesting both are acceptable treatment options from an in vitro perspective. The few clinical outcomes studies available concluded that RT106 causes less severe disease than RT027, but patients were significantly more likely to experience multiple CDI relapses when infected with a RT106 strain. Specific areas warranting future study include potential survival advantages provided by genetic elements as well as a more robust investigation of clinical outcomes associated with RT106.
Collapse
Affiliation(s)
- T J Carlson
- High Point University Fred Wilson School of Pharmacy, High Point, NC, USA
| | - D Blasingame
- The University of Houston College of Pharmacy, Houston, TX, USA
| | | | - F Alnezary
- The University of Houston College of Pharmacy, Houston, TX, USA; Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Medinah, Saudi Arabia
| | - K W Garey
- The University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
32
|
Shaw HA, Preston MD, Vendrik KEW, Cairns MD, Browne HP, Stabler RA, Crobach MJT, Corver J, Pituch H, Ingebretsen A, Pirmohamed M, Faulds-Pain A, Valiente E, Lawley TD, Fairweather NF, Kuijper EJ, Wren BW. The recent emergence of a highly related virulent Clostridium difficile clade with unique characteristics. Clin Microbiol Infect 2020; 26:492-498. [PMID: 31525517 PMCID: PMC7167513 DOI: 10.1016/j.cmi.2019.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Clostridium difficile is a major global human pathogen divided into five clades, of which clade 3 is the least characterized and consists predominantly of PCR ribotype (RT) 023 strains. Our aim was to analyse and characterize this clade. METHODS In this cohort study the clinical presentation of C. difficile RT023 infections was analysed in comparison with known 'hypervirulent' and non-hypervirulent strains, using data from the Netherlands national C. difficile surveillance programme. European RT023 strains of diverse origin were collected and whole-genome sequenced to determine the genetic similarity between isolates. Distinctive features were investigated and characterized. RESULTS Clinical presentation of C. difficile RT023 infections show severe infections akin to those seen with 'hypervirulent' strains from clades 2 (RT027) and 5 (RT078) (35%, 29% and 27% severe CDI, respectively), particularly with significantly more bloody diarrhoea than RT078 and non-hypervirulent strains (RT023 8%, other RTs 4%, p 0.036). The full genome sequence of strain CD305 is presented as a robust reference. Phylogenetic comparison of CD305 and a further 79 previously uncharacterized European RT023 strains of diverse origin revealed minor genetic divergence with >99.8% pairwise identity between strains. Analyses revealed distinctive features among clade 3 strains, including conserved pathogenicity locus, binary toxin and phage insertion toxin genotypes, glycosylation of S-layer proteins, presence of the RT078 four-gene trehalose cluster and an esculinase-negative genotype. CONCLUSIONS Given their recent emergence, virulence and genomic characteristics, the surveillance of clade 3 strains should be more highly prioritized.
Collapse
Affiliation(s)
- H A Shaw
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK; Division of Bacteriology, National Institute for Biological Standards and Controls, South Mimms, Potters Bar, UK
| | - M D Preston
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK; Analytical Biological Service Division, National Institute for Biological Standards and Controls, Potters Bar, UK
| | - K E W Vendrik
- National Reference Laboratory for CDI Surveillance, Department of Medical Microbiology and RIVM, Leiden University Medical Centre, Leiden, the Netherlands
| | - M D Cairns
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK; Public Health Laboratory London, Division of Infection, The Royal London Hospital, London, UK
| | - H P Browne
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - R A Stabler
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - M J T Crobach
- National Reference Laboratory for CDI Surveillance, Department of Medical Microbiology and RIVM, Leiden University Medical Centre, Leiden, the Netherlands
| | - J Corver
- National Reference Laboratory for CDI Surveillance, Department of Medical Microbiology and RIVM, Leiden University Medical Centre, Leiden, the Netherlands
| | - H Pituch
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - A Ingebretsen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Infection Prevention, Oslo University Hospital, Oslo, Norway
| | - M Pirmohamed
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK
| | - A Faulds-Pain
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - E Valiente
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - T D Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - E J Kuijper
- National Reference Laboratory for CDI Surveillance, Department of Medical Microbiology and RIVM, Leiden University Medical Centre, Leiden, the Netherlands
| | - B W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
33
|
Abstract
Clostridium difficile, the most common cause of hospital-associated diarrhoea in developed countries, presents major public health challenges. The high clinical and economic burden from C. difficile infection (CDI) relates to the high frequency of recurrent infections caused by either the same or different strains of C. difficile. An interval of 8 weeks after index infection is commonly used to classify recurrent CDI episodes. We assessed strains of C. difficile in a sample of patients with recurrent CDI in Western Australia from October 2011 to July 2017. The performance of different intervals between initial and subsequent episodes of CDI was investigated. Of 4612 patients with CDI, 1471 (32%) were identified with recurrence. PCR ribotyping data were available for initial and recurrent episodes for 551 patients. Relapse (recurrence with same ribotype (RT) as index episode) was found in 350 (64%) patients and reinfection (recurrence with new RT) in 201 (36%) patients. Our analysis indicates that 8- and 20-week intervals failed to adequately distinguish reinfection from relapse. In addition, living in a non-metropolitan area modified the effect of age on the risk of relapse. Where molecular epidemiological data are not available, we suggest that applying an 8-week interval to define recurrent CDI requires more consideration.
Collapse
|
34
|
Abstract
Clostridium (reclassified as " Clostridioides ") difficile infection (CDI) is a healthcare-associated infection and significant source of potentially preventable morbidity, recurrence, and death, particularly among hospitalized older adults. Additional risk factors include antibiotic use and severe underlying illness. The increasing prevalence of community-associated CDI is gaining recognition as a novel source of morbidity in previously healthy patients. Even after recovery from initial infection, patients remain at risk for recurrence or reinfection with a new strain. Some pharmaco-epidemiologic studies have suggested an increased risk associated with proton pump inhibitors and protective effect from statins, but these findings have not been uniformly reproduced in all studies. Certain ribotypes of C. difficile , including the BI/NAP1/027, 106, and 018, are associated with increased antibiotic resistance and potential for higher morbidity and mortality. CDI remains a high-morbidity healthcare-associated infection, and better understanding of ribotypes and medication risk factors could help to target treatment, particularly for patients with high recurrence risk.
Collapse
Affiliation(s)
- Ana C. De Roo
- Center for Healthcare Outcomes and Policy, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Scott E. Regenbogen
- Center for Healthcare Outcomes and Policy, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
35
|
Heart Failure Is a Risk Factor for Suffering and Dying of Clostridium difficile Infection. Results of a 15-Year Nationwide Study in Spain. J Clin Med 2020; 9:jcm9030614. [PMID: 32106444 PMCID: PMC7141109 DOI: 10.3390/jcm9030614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background: We aimed to (1) analyze time trends in the incidence and in-hospital outcomes of heart failure (HF) patients suffering Clostridioides difficile infection (CDI); (2) compare clinical characteristics of CDI patients between those with HF and matched non-HF patients; and (3) identify predictors of in-hospital mortality (IHM) among HF patients suffering CDI. Methods: Retrospective study using the Spanish National Hospital Discharge Database from 2001 to 2015. Patients of age ≥40 years with CDI were included. For each HF patient, we selected a year, age, sex, and readmission status-matched non-HF patient. Results: We found 44,695 patients hospitalized with CDI (15.46% with HF). HF patients had a higher incidence of CDI (202.05 vs. 145.09 per 100,000 hospitalizations) than patients without HF (adjusted IRR 1.35; 95% CI 1.31–1.40). IHM was significantly higher in patients with HF when CDI was coded as primary (18.39% vs. 7.63%; p < 0.001) and secondary diagnosis (21.12% vs. 14.76%; p < 0.001). Among HF patient’s predictor of IHM were older age (OR 8.80; 95% CI 2.55–20.33 for ≥85 years old), those with more comorbidities (OR 1.68; 95% CI 1.12–2.53 for those with Charlson Comorbidity index ≥2), and in those with severe CDI (OR 6.19; 95% CI 3.80–10.02). Conclusions: This research showed that incidence of CDI was higher in HF than non-HF patients. HF is a risk factor for IHM after suffering CDI.
Collapse
|
36
|
Fuzi M, Rodriguez Baño J, Toth A. Global Evolution of Pathogenic Bacteria With Extensive Use of Fluoroquinolone Agents. Front Microbiol 2020; 11:271. [PMID: 32158437 PMCID: PMC7052298 DOI: 10.3389/fmicb.2020.00271] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
It is well-established that the spread of many multidrug-resistant (MDR) bacteria is predominantly clonal. Interestingly the international clones/sequence types (STs) of most pathogens emerged and disseminated during the last three decades. Strong experimental evidence from multiple laboratories indicate that diverse fitness cost associated with high-level resistance to fluoroquinolones contributed to the selection and promotion of the international clones/STs of hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA), extended-spectrum β-lactamase-(ESBL)-producing Klebsiella pneumoniae, ESBL-producing Escherichia coli and Clostridioides difficile. The overwhelming part of the literature investigating the epidemiology of the pathogens as a function of fluoroquinolone use remain in concordence with these findings. Moreover, recent in vitro data clearly show the potential of fluoroquinolone exposure to shape the clonal evolution of Salmonella Enteritidis. The success of the international clones/STs in all these species was linked to the strains' unique ability to evolve multiple energetically beneficial gyrase and topoisomerase IV mutations conferring high-level resistance to fluorquinolones and concomittantly permitting the acquisition of an extra resistance gene load without evoking appreciable fitness cost. Furthermore, by analyzing the clonality of multiple species, the review highlights, that in environments under high antibiotic exposure virulence factors play only a subsidiary role in the clonal dynamics of bacteria relative to multidrug-resistance coupled with favorable fitness (greater speed of replication). Though other groups of antibiotics should also be involved in selecting clones of bacterial pathogens the role of fluoroquinolones due to their peculiar fitness effect remains unique. It is suggested that probably no bacteria remain immune to the influence of fluoroquinolones in shaping their evolutionary dynamics. Consequently a more judicious use of fluoroquinolones, attuned to the proportion of international clone/ST isolates among local pathogens, would not only decrease resistance rates against this group of antibiotics but should also ameliorate the overall antibiotic resistance landscape.
Collapse
Affiliation(s)
- Miklos Fuzi
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Jesus Rodriguez Baño
- Unit of Infectious Diseases, Clinical Microbiology and Preventive Medicine, Department of Medicine, Hospital Universitario Virgen Macarena, University of Seville - Biomedicine Institute of Seville (IBiS), Seville, Spain
| | - Akos Toth
- Department of Bacteriology, Mycology and Parasitology, National Public Health Center, Budapest, Hungary
| |
Collapse
|
37
|
Epidemiological Aspects of Clostridium Difficile Infection in the Southeast Region of Romania. ARS MEDICA TOMITANA 2020. [DOI: 10.2478/arsm-2019-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Clostridium difficile infection (CDI) in Galati county is an very important public health problem, the number of cases per 100 outpatients being in the first 5, nationally. The percentage of community-associated infection in this county is higher than the national and european ones. We performed a prospective observational study on 720 patients admitted between 1.01.2017-31.12.2018 in the Clinical Hospital of Infectious Diseases „St. Cuv. Parascheva“ Galati and we analyzed comparative demographic data, risk factors, disease evolution and prognosis of a batch of 565 (78.47%) patients with healthcare facility associated infection, with a batch of 144 patients (20%) with community-associated infection. The identified type of Clostridium difficile was ribotype 027 in 93.61% of the toxigenic strains studied. The study showed that CDI predominantly affects women in urban areas. Patients with community source are younger, with less comorbidities, have episodes of illness with lower severity and better prognosis both in terms of CDI recurrence and post-CDI death. Patients with a nosocomial source are older, with multiple comorbidities, with greater exposure to antibiotic, proton pump inhibitor and recent abdominal surgery, have severe episodes of the disease and have a poorer prognosis than those with a community source.
Collapse
|
38
|
Gonzales-Luna AJ, Carlson TJ, Dotson KM, Poblete K, Costa G, Miranda J, Lancaster C, Walk ST, Tupy S, Begum K, Alam MJ, Garey KW. PCR ribotypes of Clostridioides difficile across Texas from 2011 to 2018 including emergence of ribotype 255. Emerg Microbes Infect 2020; 9:341-347. [PMID: 32037964 PMCID: PMC7033716 DOI: 10.1080/22221751.2020.1721335] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/22/2022]
Abstract
Clostridioides difficile infection (CDI) is the most prevalent healthcare-associated infection in the United States and carries a significant healthcare system burden. As part of an ongoing, active surveillance system of C. difficile throughout Texas, the objective of this study was to assess changes in C. difficile ribotypes of clinical isolates obtained from hospitalized patients in Texas over the past seven years. Fifty hospitals located in Texas, USA sent C. difficile positive stool specimens to a centralized laboratory for PCR ribotyping and toxin characterization between 2011 and 2018. Data collected included specimen collection date, patient age, and sex. Strain genotypes were compiled, and changes in ribotype distribution over time were assessed. Overall, 7796 samples were ribotyped from predominately female patients (58.4%) aged 62 ± 19 years. Samples were obtained from all geographic regions of Texas including Houston/Southwest region (n = 5129; 85%), Dallas/North Texas (n = 579, 9.6%), Central Texas (n = 164; 2.7%), and South Texas (n = 162; 2.6%). The 10 most common ribotypes comprised 73% of all isolates tested during the study period. The most common ribotypes were 027 (17.5%), followed by 014-020 (16.1%), 106 (11.6%), and 002 (9.1%). The prevalence of ribotypes 027, 001, and 078-126 declined significantly over time, while ribotypes 106 and 054 increased in prevalence (P < 0.001). Furthermore, the emergence of a novel ribotype 255 strain was observed. Differences in ribotype distribution were also noted based on age and geographic distribution (P < 0.001, each). This seven-year study demonstrated changing molecular epidemiology of C. difficile in Texas, including the emergence of a novel ribotype 255.
Collapse
Affiliation(s)
- Anne J. Gonzales-Luna
- Department of Pharmacy Practice and Translational
Research, University of Houston College of Pharmacy, Houston, TX,
USA
| | - Travis J. Carlson
- Department of Clinical Sciences, Fred Wilson
School of Pharmacy, High Point University, High Point, NC,
USA
| | - Kierra M. Dotson
- Division of Clinical and Administrative Science,
Xavier University of Louisiana College of Pharmacy, New Orleans, LA,
USA
| | - Kelley Poblete
- Department of Pharmacy Practice and Translational
Research, University of Houston College of Pharmacy, Houston, TX,
USA
| | - Gabriela Costa
- Department of Pharmacy Practice and Translational
Research, University of Houston College of Pharmacy, Houston, TX,
USA
| | - Julie Miranda
- Department of Pharmacy Practice and Translational
Research, University of Houston College of Pharmacy, Houston, TX,
USA
| | - Chris Lancaster
- Department of Pharmacy Practice and Translational
Research, University of Houston College of Pharmacy, Houston, TX,
USA
| | - Seth T. Walk
- Department of Microbiology & Immunology,
Montana State University, Bozeman, MO, USA
| | - Shawn Tupy
- Texas Department of State Health
Services, Austin, TX, USA
| | - Khurshida Begum
- Department of Pharmacy Practice and Translational
Research, University of Houston College of Pharmacy, Houston, TX,
USA
| | - M. Jahangir Alam
- Department of Pharmacy Practice and Translational
Research, University of Houston College of Pharmacy, Houston, TX,
USA
| | - Kevin W. Garey
- Department of Pharmacy Practice and Translational
Research, University of Houston College of Pharmacy, Houston, TX,
USA
| |
Collapse
|
39
|
Surveillance von nosokomialen Infektionen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:228-241. [DOI: 10.1007/s00103-019-03077-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Pereira JA, McGeer A, Tomovici A, Selmani A, Chit A. Incidence and economic burden of Clostridioides difficile infection in Ontario: a retrospective population-based study. CMAJ Open 2020; 8:E16-E25. [PMID: 32001435 PMCID: PMC7004222 DOI: 10.9778/cmajo.20190018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Understanding the impact of prevention programs on Clostridioides difficile infection rates is important, and decisions on future program changes, including how to use vaccines currently in development, requires a detailed understanding of the epidemiologic features of C. difficile infection. We analyzed Ontario health administrative data to determine incidence rates and medical costs of C. difficile infection, based on whether acquisition and onset occurred in acute care hospitals (ACHs), long-term care facilities or the community. METHODS We performed a retrospective analysis using individual-level data from Ontario health databases from Apr. 1, 2005, to Mar. 31, 2015, identifying rates of C. difficile infection requiring hospital admission per 100 000 person-years in adults aged 18 years or more for categories of acquisition and onset. We estimated health care system costs of infection 180 and 365 days after admission by matching patients with C. difficile infection with control patients with similar characteristics. RESULTS Over the study period, 33 909 people in Ontario were admitted to hospital with C. difficile infection; 17 272 cases (50.9%) were associated with ACHs. The number of cases per 100 000 person-years ranged from 27.7 in 2009/10 to 37.0 in 2012/13. Annually, the highest incidence of infection was for ACH-associated/ACH-onset. Community-associated infection became more prevalent over time, rising from 19.4% of cases in 2005/06 to 29.2% in 2014/15. Infection costs were mostly due to hospital admission within 180 days after hospital discharge. Infection associated with ACHs had the highest total costs and the largest cost attributable to C. difficile infection (median $38 953 for infected patients v. $13 542 for control patients). Median costs attributable to C. difficile infection were $1051 for that associated with long-term care facilities, $13 249 for community-associated infection and $11 917 for ACH-associated/community-onset infection. INTERPRETATION Community-associated C. difficile infection had similar health care cost implications as hospital-associated infection. With rates of community-associated C. difficile infection on the rise, family physicians should be supported to prevent this infection in their patients.
Collapse
Affiliation(s)
- Jennifer A Pereira
- JRL Research and Consulting (Pereira), Mississauga, Ont.; Department of Microbiology (McGeer), Mount Sinai Hospital; Sanofi Pasteur (Tomovici), Toronto, Ont.; Sanofi Pasteur (Selmani, Chit), Swiftwater, Penn.
| | - Allison McGeer
- JRL Research and Consulting (Pereira), Mississauga, Ont.; Department of Microbiology (McGeer), Mount Sinai Hospital; Sanofi Pasteur (Tomovici), Toronto, Ont.; Sanofi Pasteur (Selmani, Chit), Swiftwater, Penn
| | - Antigona Tomovici
- JRL Research and Consulting (Pereira), Mississauga, Ont.; Department of Microbiology (McGeer), Mount Sinai Hospital; Sanofi Pasteur (Tomovici), Toronto, Ont.; Sanofi Pasteur (Selmani, Chit), Swiftwater, Penn
| | - Alex Selmani
- JRL Research and Consulting (Pereira), Mississauga, Ont.; Department of Microbiology (McGeer), Mount Sinai Hospital; Sanofi Pasteur (Tomovici), Toronto, Ont.; Sanofi Pasteur (Selmani, Chit), Swiftwater, Penn
| | - Ayman Chit
- JRL Research and Consulting (Pereira), Mississauga, Ont.; Department of Microbiology (McGeer), Mount Sinai Hospital; Sanofi Pasteur (Tomovici), Toronto, Ont.; Sanofi Pasteur (Selmani, Chit), Swiftwater, Penn
| |
Collapse
|
41
|
Virulence Factors of Clostridioides ( Clostridium) difficile Linked to Recurrent Infections. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2019; 2019:7127850. [PMID: 31933709 PMCID: PMC6942709 DOI: 10.1155/2019/7127850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Abstract
From 20 to 30% of Clostridioides (Clostridium) difficile infection (CDI), patients might develop recurrence of the infection (RCDI) and, after the first recurrence, the risk of further episodes increases up to 60%. Several bacterial virulence factors have been associated with RCDI, including the elevated production of toxins A and B, the presence of a binary toxin CDT, and mutations in the negative regulator of toxin expression, tcdC. Additional factors have shown to regulate toxin production and virulence in C. difficile in RCDI, including the accessory-gene regulator agr, which acts as a positive switch for toxin transcription. Furthermore, adhesion and motility-associated factors, such as Cwp84, SlpA, and flagella, have shown to increase the adhesion efficiency to host epithelia, cell internalization, and the formation of biofilm. Finally, biofilm confers to C. difficile protection from antibiotics and acts as a reservoir for spores that allow the persistence of the infection in the host. In this review, we describe the key virulence factors of C. difficile that have been associated with recurrent infections.
Collapse
|
42
|
Martin JSH, Eyre DW, Fawley WN, Griffiths D, Davies K, Mawer DPC, Peto TEA, Crook DW, Walker AS, Wilcox MH. Patient and Strain Characteristics Associated With Clostridium difficile Transmission and Adverse Outcomes. Clin Infect Dis 2019; 67:1379-1387. [PMID: 29659753 PMCID: PMC6186849 DOI: 10.1093/cid/ciy302] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
Background No study has used whole-genome sequencing (WGS) to investigate risk factors for Clostridium difficile (CD) transmission between cases, or assessed the impact of recent acquisition on patient outcome. Methods This 20 month retrospective cohort study included consecutive cytotoxin-positive diarrheal samples, which underwent culture, ribotyping, and WGS (Illumina). Sequenced isolates were compared using single nucleotide variants (SNVs). Independent predictors of acquisition from another case, onward transmission, 120-day recurrence, and 30-day mortality were identified using logistic regression with backwards elimination. Results Of 660 CD cases, 640 (97%) were sequenced, of which 567 (89%) shared a ribotype with a prior case, but only 227 (35%) were ≤2 SNVs from a prior case, supporting recent acquisition. Plausible (<2 SNVs) recent ward-based acquisition from a symptomatic case was more frequent in certain ribotypes; 64% (67/105) for ribotype-027 cases, compared with 11% (6/57) for ribotype-078. Independent risk factors (adjusted P < .05) for CD acquisition included older age, longer inpatient duration, and ribotype; these factors, and male sex, increased onward transmission. Patients with a plausible donor had a greater risk of recurrence (adjusted P = .001) and trended towards greater 30-day mortality (adjusted P = .06). Ribotype had no additional mortality or recurrence impact after adjusting for acquisition (P > .1). Conclusions Greater transmission of certain lineages suggests CD may have different reservoirs and modes of transmission. Acquiring CD from a recent case is associated with poorer clinical outcomes. Clinical characteristics associated with increased healthcare-associated CD transmission could be used to target preventative interventions.
Collapse
Affiliation(s)
| | - David W Eyre
- Nuffield Department of Medicine, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, United Kingdom
| | - Warren N Fawley
- Public Health England-Leeds Regional Laboratory, United Kingdom
| | - David Griffiths
- Nuffield Department of Medicine, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, United Kingdom
| | - Kerrie Davies
- Leeds Teaching Hospitals & University of Leeds, United Kingdom
| | | | - Timothy E A Peto
- Nuffield Department of Medicine, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, United Kingdom
| | - Derrick W Crook
- Nuffield Department of Medicine, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, United Kingdom.,Public Health England, Colindale, United Kingdom
| | - A Sarah Walker
- Nuffield Department of Medicine, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, United Kingdom
| | - Mark H Wilcox
- Leeds Teaching Hospitals & University of Leeds, United Kingdom
| |
Collapse
|
43
|
Risk factors for Clostridioides difficile infection in hospitalized patients and associated mortality in Japan: a multi-centre prospective cohort study. J Hosp Infect 2019; 104:350-357. [PMID: 31542458 DOI: 10.1016/j.jhin.2019.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/13/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Although population characteristics and antimicrobial prescribing practices suggest that the hospitalized population in Japan is at high risk of Clostridioides difficile infection (CDI), the epidemiology of CDI in Japan is poorly understood. AIM This prospective cohort study aimed to investigate the epidemiology of CDI at 12 hospitals in Japan. METHODS Patients with clinically significant diarrhoea (CSD) were enrolled. Stool specimens were tested for C. difficile by toxin A and/or B enzyme immunoassay (EIA) in the hospital laboratories, and a toxigenic culture and nucleic acid amplification tests were performed at a central laboratory. The risk factors of CDI and the impact of CDI on mortality were investigated. FINDINGS In total, 566 patients with CSD were included in the analyses. A total of 152 patients received the diagnosis of CDI by Toxin A/B EIA, toxigenic culture, or nucleic acid amplification test. Factors associated with CDI included low albumin (adjusted odds ratio (aOR): 1.56; 95% confidence interval (CI): 1.03-2.34) and length of hospital stay before stool collection >18 days (aOR: 1.73; 95% CI: 1.09-2.75). CDI was associated with an increased mortality on univariate analysis (OR: 1.6, 95% CI: 1.0-2.6) but was not associated with an increased risk of mortality on multivariable analysis. CONCLUSION Risk factors for CDI in Japan were similar to those identified in the USA and Europe. However, CDI was not associated with an increased risk of mortality in this population of patients with CSD.
Collapse
|
44
|
Lv T, Chen Y, Guo L, Xu Q, Gu S, Shen P, Quan J, Fang Y, Chen L, Gui Q, Ye G, Li L. Whole genome analysis reveals new insights into the molecular characteristics of Clostridioides difficile NAP1/BI/027/ST1 clinical isolates in the People's Republic of China. Infect Drug Resist 2019; 12:1783-1794. [PMID: 31308704 PMCID: PMC6613002 DOI: 10.2147/idr.s203238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/08/2019] [Indexed: 02/01/2023] Open
Abstract
Background: The epidemic new strain NAP1/BI/027/ST-1 of Clostridioides difficile (C. difficile) causes more severe coliti and a higher mortality rate than historical strains. However, C. difficile NAP1/BI/027/ST-1 (C. difficile RT027) infections have been rarely reported in Asia, particularly in China. Purpose: The objective of this study was to strengthen the understanding of the molecular characterizations of C. difficile RT027 in China. Patients and methods: Two C. difficile NAP1/BI/027/ST-1 were detected from two patients, and no additional isolates were found. Whole genome sequencing (WGS) was used to characterize two C. difficile RT027 isolates and control strain CD6 (from Hong Kong), and comparative genomic analysis was performed to compare genomic differences between seven isolates from Mainland China, CD6, and 10 isolates from North America and Europe. Results: The comparative genomic analysis revealed that isolates obtained from Mainlan China were outside of the two epidemic lineages, FQR1 and FQR2, and might have decreased virulence and transmissibility for outbreak. Furthermore, unique SNP mutations were detected in isolates obtained from Mainland China, which may affect the biological function of C. difficile. Conclusion: We speculate that C. difficile RT027 isolates in Mainland China may have different features, compared to those in North America and Europe.
Collapse
Affiliation(s)
- Tao Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lihua Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiazheng Quan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yunhui Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lifeng Chen
- Medical Engineering Department, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Qiaodi Gui
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Guangyong Ye
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
45
|
Williamson CHD, Stone NE, Nunnally AE, Hornstra HM, Wagner DM, Roe CC, Vazquez AJ, Nandurkar N, Vinocur J, Terriquez J, Gillece J, Travis J, Lemmer D, Keim P, Sahl JW. A global to local genomics analysis of Clostridioides difficile ST1/RT027 identifies cryptic transmission events in a northern Arizona healthcare network. Microb Genom 2019; 5:e000271. [PMID: 31107202 PMCID: PMC6700662 DOI: 10.1099/mgen.0.000271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile is a ubiquitous, diarrhoeagenic pathogen often associated with healthcare-acquired infections that can cause a range of symptoms from mild, self-limiting disease to toxic megacolon and death. Since the early 2000s, a large proportion of C. difficile cases have been attributed to the ribotype 027 (RT027) lineage, which is associated with sequence type 1 (ST1) in the C. difficile multilocus sequence typing scheme. The spread of ST1 has been attributed, in part, to resistance to fluoroquinolones used to treat unrelated infections, which creates conditions ideal for C. difficile colonization and proliferation. In this study, we analysed 27 isolates from a healthcare network in northern Arizona, USA, and 1352 publicly available ST1 genomes to place locally sampled isolates into a global context. Whole genome, single nucleotide polymorphism analysis demonstrated that at least six separate introductions of ST1 were observed in healthcare facilities in northern Arizona over an 18-month sampling period. A reconstruction of transmission networks identified potential nosocomial transmission of isolates, which were only identified via whole genome sequence analysis. Antibiotic resistance heterogeneity was observed among ST1 genomes, including variability in resistance profiles among locally sampled ST1 isolates. To investigate why ST1 genomes are so common globally and in northern Arizona, we compared all high-quality C. difficile genomes and identified that ST1 genomes have gained and lost a number of genomic regions compared to all other C. difficile genomes; analyses of other toxigenic C. difficile sequence types demonstrate that this loss may be anomalous and could be related to niche specialization. These results suggest that a combination of antimicrobial resistance and gain and loss of specific genes may explain the prominent association of this sequence type with C. difficile infection cases worldwide. The degree of genetic variability in ST1 suggests that classifying all ST1 genomes into a quinolone-resistant hypervirulent clone category may not be appropriate. Whole genome sequencing of clinical C. difficile isolates provides a high-resolution surveillance strategy for monitoring persistence and transmission of C. difficile and for assessing the performance of infection prevention and control strategies.
Collapse
Affiliation(s)
| | - Nathan E. Stone
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Amalee E. Nunnally
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Heidie M. Hornstra
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Chandler C. Roe
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Adam J. Vazquez
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nivedita Nandurkar
- Northern Arizona Healthcare, Flagstaff Medical Center, Flagstaff, AZ 86001, USA
| | - Jacob Vinocur
- Northern Arizona Healthcare, Flagstaff Medical Center, Flagstaff, AZ 86001, USA
| | - Joel Terriquez
- Northern Arizona Healthcare, Flagstaff Medical Center, Flagstaff, AZ 86001, USA
| | - John Gillece
- Translational Genomics Research Institute, Flagstaff, AZ 86001, USA
| | - Jason Travis
- Translational Genomics Research Institute, Flagstaff, AZ 86001, USA
| | - Darrin Lemmer
- Translational Genomics Research Institute, Flagstaff, AZ 86001, USA
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
46
|
Kociolek LK, Ozer EA, Gerding DN, Hecht DW, Patel SJ, Hauser AR. Whole-genome analysis reveals the evolution and transmission of an MDR DH/NAP11/106 Clostridium difficile clone in a paediatric hospital. J Antimicrob Chemother 2019; 73:1222-1229. [PMID: 29342270 DOI: 10.1093/jac/dkx523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background Clostridium difficile strain DH/NAP11/106, a relatively antibiotic-susceptible strain, is now the most common cause of C. difficile infection (CDI) among adults in the USA. Objectives To identify mechanisms underlying the evolution and transmission of an MDR DH/NAP11/106 clone. Methods WGS (Illumina MiSeq), restriction endonuclease analysis (REA) and antibiotic susceptibility testing were performed on 134 C. difficile isolates collected from paediatric patients with CDI over a 2 year period. Results Thirty-one of 134 (23%) isolates were REA group DH. Pairwise single-nucleotide variant (SNV) analyses identified a DH clone causing seven instances of CDI in two patients. During the 337 days between the first and second CDI, Patient 1 (P1) received 313 days of antibiotic therapy. Clindamycin and rifaximin resistance, and reduced vancomycin susceptibility (MIC 0.5-2 mg/L), were newly identified in the relapsed isolate. This MDR clone was transmitted to Patient 2 (P2) while P1 and P2 received care in adjacent private rooms. P1 and P2 each developed two additional CDI relapses. Comparative genomics analyses demonstrated SNVs in multiple antibiotic resistance genes, including rpoB (rifaximin resistance), gyrB and a gene encoding PBP; gyrB and PBP mutations did not consistently confer a resistance phenotype. The clone also acquired a 46 000 bp genomic element, likely a conjugative plasmid, which contained ermB (clindamycin resistance). The element shared 99% identity with the genomic sequence of Faecalibacterium prausnitzii, an enteric commensal. Conclusions These data highlight the emergence of MDR in C. difficile strain DH/NAP11/106 through multiple independent mechanisms probably as a consequence of profound antibiotic pressure.
Collapse
Affiliation(s)
- Larry K Kociolek
- Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA.,Northwestern University Feinberg School of Medicine, 320 E. Superior St, Chicago, IL 60611, USA
| | - Egon A Ozer
- Northwestern University Feinberg School of Medicine, 320 E. Superior St, Chicago, IL 60611, USA
| | - Dale N Gerding
- Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Ave, Maywood, IL 60153, USA.,Edward Hines, Jr. Veterans Administration Hospital, 5000 S. 5th Ave, Hines, IL 60141, USA
| | - David W Hecht
- Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Ave, Maywood, IL 60153, USA.,Loyola University Medical Center, 2160 S. 1st Ave, Maywood, IL 60153, USA
| | - Sameer J Patel
- Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA.,Northwestern University Feinberg School of Medicine, 320 E. Superior St, Chicago, IL 60611, USA
| | - Alan R Hauser
- Northwestern University Feinberg School of Medicine, 320 E. Superior St, Chicago, IL 60611, USA
| |
Collapse
|
47
|
Hygienemaßnahmen bei Clostridioides difficile-Infektion (CDI). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 62:906-923. [DOI: 10.1007/s00103-019-02959-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Herbert R, Hatcher J, Jauneikaite E, Gharbi M, d'Arc S, Obaray N, Rickards T, Rebec M, Blandy O, Hope R, Thomas A, Bamford K, Jepson A, Sriskandan S. Two-year analysis of Clostridium difficile ribotypes associated with increased severity. J Hosp Infect 2019; 103:388-394. [PMID: 31220480 PMCID: PMC6926500 DOI: 10.1016/j.jhin.2019.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/10/2019] [Indexed: 11/25/2022]
Abstract
Background Certain Clostridium difficile ribotypes have been associated with complex disease phenotypes including recurrence and increased severity, especially the well-described hypervirulent RT027. This study aimed to determine the pattern of ribotypes causing infection and the association, if any, with severity. Methods All faecal samples submitted to a large diagnostic laboratory for C. difficile testing between 2011 and 2013 were subject to routine testing and culture. All C. difficile isolates were ribotyped, and associated clinical and demographic patient data were retrieved and linked to ribotyping data. Results In total, 86 distinct ribotypes were identified from 705 isolates of C. difficile. RT002 and RT015 were the most prevalent (22.5%, N=159). Only five isolates (0.7%) were hypervirulent RT027. Ninety of 450 (20%) patients with clinical information available died within 30 days of C. difficile isolation. RT220, one of the 10 most common ribotypes, was associated with elevated median C-reactive protein and significantly increased 30-day all-cause mortality compared with RT002 and RT015, and with all other ribotypes found in the study. Conclusions A wide range of C. difficile ribotypes were responsible for C. difficile infection presentations. Although C. difficile-associated mortality has reduced in recent years, expansion of lineages associated with increased severity could herald increases in future mortality. Enhanced surveillance for emerging lineages such as RT220 that are associated with more severe disease is required, with genomic approaches to dissect pathogenicity.
Collapse
Affiliation(s)
- R Herbert
- Imperial College Healthcare NHS Trust, London, UK
| | - J Hatcher
- Imperial College Healthcare NHS Trust, London, UK
| | - E Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - M Gharbi
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - S d'Arc
- Imperial College Healthcare NHS Trust, London, UK
| | - N Obaray
- Imperial College Healthcare NHS Trust, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - T Rickards
- Imperial College Healthcare NHS Trust, London, UK
| | - M Rebec
- Imperial College Healthcare NHS Trust, London, UK
| | - O Blandy
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - R Hope
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK; National Infection Service, Public Health England, London, UK
| | - A Thomas
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - K Bamford
- Imperial College Healthcare NHS Trust, London, UK
| | - A Jepson
- Imperial College Healthcare NHS Trust, London, UK
| | - S Sriskandan
- Imperial College Healthcare NHS Trust, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK.
| |
Collapse
|
49
|
Tickler IA, Obradovich AE, Goering RV, Fang FC, Tenover FC. Changes in molecular epidemiology and antimicrobial resistance profiles of Clostridioides (Clostridium) difficile strains in the United States between 2011 and 2017. Anaerobe 2019; 60:102050. [PMID: 31173889 DOI: 10.1016/j.anaerobe.2019.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/13/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022]
Abstract
PCR ribotyping and antimicrobial susceptibility testing were used to characterize 940 Clostridioides (Clostridium) difficile isolates collected from 26 U S. hospitals over three time periods from 2011 to 2017. The proportion of ribotype (RT) 027 isolated during the three surveys decreased significantly over time from 31% in 2011-2012, to 22% in 2013-2014, and to 14% in 2015-2017 (p < 0.001 and p = 0.010, respectively), while we observed an increase in prevalence of RT106, that rose from 7% in our first survey to 19% of isolates in our last survey (p < 0.001). In addition, both RT056 and RT002 rose from 3% to 10% (p < 0.001). The proportions of all other ribotypes remained steady over time, and RT014/020 was the third most common strain type in our convenience sample in the final survey. Overall, resistance to moxifloxacin, rifampin, and vancomycin decreased during our studies, mainly due to the decline in RT027 isolates. A decrease in moxifloxacin resistance and an increase in tetracycline resistance were found among RT027 strains isolated in the last survey. Although the proportion of RT027 isolates declined, multidrug resistance among this ribotype continues to be common.
Collapse
Affiliation(s)
| | | | | | - Ferric C Fang
- University of Washington School of Medicine, Seattle, WA, United States
| | | | | |
Collapse
|
50
|
Eyre DW, Didelot X, Buckley AM, Freeman J, Moura IB, Crook DW, Peto TEA, Walker AS, Wilcox MH, Dingle KE. Clostridium difficile trehalose metabolism variants are common and not associated with adverse patient outcomes when variably present in the same lineage. EBioMedicine 2019; 43:347-355. [PMID: 31036529 PMCID: PMC6558026 DOI: 10.1016/j.ebiom.2019.04.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clostridium difficile ribotype-027, ribotype-078, and ribotype-017 are virulent and epidemic lineages. Trehalose metabolism variants in these ribotypes, combined with increased human trehalose consumption, have been hypothesised to have contributed to their emergence and virulence. METHODS 5232 previously whole-genome sequenced C. difficile isolates were analysed. Clinical isolates were used to investigate the impact of trehalose metabolism variants on mortality. Import data were used to estimate changes in dietary trehalose. Ribotype-027 virulence was investigated in a clinically reflective gut model. FINDINGS Trehalose metabolism variants found in ribotype-027 and ribotype-017 were widely distributed throughout C. difficile clade-2 and clade-4 in 24/29 (83%) and 10/11 (91%) of sequence types (STs), respectively. The four-gene trehalose metabolism cluster described in ribotype-078 was common in genomes from all five clinically-important C. difficile clades (40/167 [24%] STs). The four-gene cluster was variably present in 208 ribotype-015 infections (98 [47%]); 27/208 (13%) of these patients died within 30-days of diagnosis. Adjusting for age, sex, and infecting ST, there was no association between 30-day all-cause mortality and the four-gene cluster (OR 0.36 [95%CI 0.09-1.34, p = 0.13]). Synthetic trehalose imports in the USA, UK, Germany and the EU were < 1 g/capita/year during 2000-2006, and < 9 g/capita/year 2007-2012, compared with dietary trehalose from natural sources of ~100 g/capita/year. Trehalose supplementation did not increase ribotype-027 virulence in a clinically-validated gut model. INTERPRETATION Trehalose metabolism variants are common in C. difficile. Increases in total dietary trehalose during the early-mid 2000s C. difficile epidemic were likely relatively minimal. Alternative explanations are required to explain why ribotype-027, ribotype-078 and ribotype-017 have been successful. FUNDING National Institute for Health Research. Gut model experiments only: Hayashibara Co. Ltd.
Collapse
Affiliation(s)
- David W Eyre
- Big Data Institute, University of Oxford, UK; Nuffield Department of Medicine, University of Oxford, UK.
| | - Xavier Didelot
- School of Life Sciences, Department of Statistics, University of Warwick, UK
| | - Anthony M Buckley
- Healthcare Associated Infections Research Group, University of Leeds, Leeds, UK
| | - Jane Freeman
- Healthcare Associated Infections Research Group, University of Leeds, Leeds, UK
| | - Ines B Moura
- Healthcare Associated Infections Research Group, University of Leeds, Leeds, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, UK; National Institutes of Health Research Health Protection Unit on Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, UK; National Institutes of Health Research Biomedical Research Centre, University of Oxford, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford, UK; National Institutes of Health Research Health Protection Unit on Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, UK; National Institutes of Health Research Biomedical Research Centre, University of Oxford, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, UK; National Institutes of Health Research Health Protection Unit on Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, UK; National Institutes of Health Research Biomedical Research Centre, University of Oxford, UK
| | - Mark H Wilcox
- Healthcare Associated Infections Research Group, University of Leeds, Leeds, UK
| | - Kate E Dingle
- Nuffield Department of Medicine, University of Oxford, UK
| |
Collapse
|