1
|
Todorov SD, Tagg J, Algburi A, Tiwari SK, Popov I, Weeks R, Mitrokhin OV, Kudryashov IA, Kraskevich DA, Chikindas ML. The Hygienic Significance of Microbiota and Probiotics for Human Wellbeing. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10419-9. [PMID: 39688648 DOI: 10.1007/s12602-024-10419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
The human body can be viewed as a combination of ecological niches inhabited by trillions of bacteria, viruses, fungi, and parasites, all united by the microbiota concept. Human health largely depends on the nature of these relationships and how they are built and maintained. However, personal hygiene practices have historically been focused on the wholesale elimination of pathogens and "hygiene-challenging microorganisms" without considering the collateral damage to beneficial and commensal species. The microbiota can vary significantly in terms of the qualitative and quantitative composition both between different people and within one person during life, and the influence of various environmental factors, including age, nutrition, bad habits, genetic factors, physical activity, medication, and hygienic practices, facilitates these changes. Disturbance of the microbiota is a predisposing factor for the development of diseases and also greatly influences the course and severity of potential complications. Therefore, studying the composition of the microbiota of the different body systems and its appropriate correction is an urgent problem in the modern world. The application of personal hygiene products or probiotics must not compromise health through disruption of the healthy microbiota. Where changes in the composition or metabolic functions of the microbiome may occur, they must be carefully evaluated to ensure that essential biological functions are unaffected. As such, the purpose of this review is to consider the microbiota of each of the "ecological niches" of the human body and highlight the importance of the microbiota in maintaining a healthy body as well as the possibility of its modulation through the use of probiotics for the prevention and treatment of certain human diseases.
Collapse
Affiliation(s)
- Svetoslav D Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - John Tagg
- Blis Technologies, South Dunedin, 9012, New Zealand
| | - Ammar Algburi
- Department of Microbiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Olimpijskij Ave., 1, Federal Territory Sirius, Sirius, 354340, Russia
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, Villafloraweg, 1, 5928 SZ, Venlo, The Netherlands
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Oleg V Mitrokhin
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Ilya A Kudryashov
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Denis A Kraskevich
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia.
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia.
| |
Collapse
|
2
|
Jørgensen MR. Pathophysiological microenvironments in oral candidiasis. APMIS 2024; 132:956-973. [PMID: 38571459 DOI: 10.1111/apm.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Oral candidiasis (OC), a prevalent opportunistic infection of the oral mucosa, presents a considerable health challenge, particularly in individuals with compromised immune responses, advanced age, and local predisposing conditions. A considerable part of the population carries Candida in the oral cavity, but only few develop OC. Therefore, the pathogenesis of OC may depend on factors other than the attributes of the fungus, such as host factors and other predisposing factors. Mucosal trauma and inflammation compromise epithelial integrity, fostering a conducive environment for fungal invasion. Molecular insights into the immunocompromised state reveal dysregulation in innate and adaptive immunity, creating a permissive environment for Candida proliferation. Detailed examination of Candida species (spp.) and their virulence factors uncovers a nuanced understanding beyond traditional C. albicans focus, which embrace diverse Candida spp. and their strategies, influencing adhesion, invasion, immune evasion, and biofilm formation. Understanding the pathophysiological microenvironments in OC is crucial for the development of targeted therapeutic interventions. This review aims to unravel the diverse pathophysiological microenvironments influencing OC development focusing on microbial, host, and predisposing factors, and considers Candida resistance to antifungal therapy. The comprehensive approach offers a refined perspective on OC, seeking briefly to identify potential therapeutic targets for future effective management.
Collapse
Affiliation(s)
- Mette Rose Jørgensen
- Section of Oral Pathology and Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Hill JH, Round JL. Intestinal fungal-host interactions in promoting and maintaining health. Cell Host Microbe 2024; 32:1668-1680. [PMID: 39389031 DOI: 10.1016/j.chom.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024]
Abstract
The resident microbiota are a key component of a healthy organism. The vast majority of microbiome studies have focused on bacterial members, which constitute a significant portion of resident microbial biomass. Recent studies have demonstrated how the fungal component of the microbiota, or the mycobiome, influences mammalian biology despite its low abundance compared to other microbes. Fungi are known for their pathogenic potential, yet fungi are also prominent colonizers in healthy states, highlighting their duality. We summarize the characteristics that define the gut mycobiome across life, the factors that can impact its composition, and studies that identify mechanisms of how fungi confer health benefits. The goal of this review is to synthesize our knowledge regarding the composition and function of a healthy mycobiome with a view to inspiring future therapeutic advances.
Collapse
Affiliation(s)
- Jennifer H Hill
- University of Colorado Boulder, BioFrontiers Institute, Department of Molecular, Cellular & Developmental Biology, Boulder, CO 80303, USA.
| | - June L Round
- University of Utah, School of Medicine, Department of Pathology, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Chantanawilas P, Pahumunto N, Teanpaisan R. Aggregation and adhesion ability of various probiotic strains and Candida species: An in vitro study. J Dent Sci 2024; 19:2163-2171. [PMID: 39347096 PMCID: PMC11437301 DOI: 10.1016/j.jds.2024.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/13/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose The ability of probiotics to inhibit Candida adhesion is a crucial characteristic that prevents Candida colonization and infection progression. This study aimed to explore aggregation, adhesion, and cell surface characterization of probiotic and Candida strains and to evaluate the effect of probiotics and their cell-free supernatants (CFSs) as postbiotics on Candida adhesion to human oral keratinocytes. Materials and methods Eight probiotic strains and five reference Candida strains were tested for autoaggregation, coaggregation, adhesin on human oral keratinocytes (H357), and cell surface properties. The anti-Candida adhesion activities of probiotic strains and CFSs were investigated. Results The results showed that most probiotics exhibited high adhesion to H357 cells, specifically oral probiotic Lacticaseibacillus rhamnosus SD4, Limosilactobacillus fermentum SD7, and L. rhamnosus SD11, and adhesion ability of probiotic strains was strongly related to their autoaggregation, cell surface charges, and hydrophobicity. Candida strains also revealed a high level of adhesion to H357 cells. Candida albicans and C andida glabrata showed significantly higher adhesion abilities than others. After a combination of Candida with probiotics or their CFSs, Candida adhesion was significantly reduced. The anti-Candida adhesion property of probiotics was strongly related to their autoaggregation, coaggregation, and adhesion abilities. Conclusion This study demonstrated that oral probiotic strains may be useful probiotics for preventing and treating oral candidiasis due to their high ability of aggregation, adhesion, and anti-Candida adhesion to H357 cells.
Collapse
Affiliation(s)
- Panita Chantanawilas
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nuntiya Pahumunto
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rawee Teanpaisan
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Medical Science Research and Innovation Institute, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
5
|
Ferreira RLPS, Nova BGV, Carmo MS, Abreu AG. Mechanisms of action of Lactobacillus spp. in the treatment of oral candidiasis. BRAZ J BIOL 2024; 84:e282609. [PMID: 39319927 DOI: 10.1590/1519-6984.282609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/16/2024] [Indexed: 09/26/2024] Open
Abstract
Candida albicans is often associated with oral candidiasis, and drug-resistance profiles have contributed to an increase in morbidity and mortality. It is known that Lactobacillus spp. acts by competing for adhesion to the epithelium, absorption of nutrients and modulation of the human microbiota. Therefore, they are important to assist in the host's microbiological balance and reduce the growth of Candida spp. Until now, there have been no reports in the literature of reviews correlating to the use of Lactobacillus spp. in the treatment of oral candidiasis. Thus, this review aims to highlight the mechanisms of action of Lactobacillus spp. and methods that can be used in the treatment of oral candidiasis. This is a study carried out through the databases PubMed Central and Scientific Electronic Library Online, using the following keywords: Oral Candidiasis and Lactobacillus. Original articles about oral candidiasis were included, with both in vitro and in vivo analyses, and published from 2012 to 2022. Lactobacillus rhamnosus was the most common microorganism used in the experiments against Candida, acting mainly in the reduction of biofilm, filamentation, and competing for adhesion sites of Candida spp. Among in vivo studies, most researchers used immunosuppressed mouse modelsof Candida infection. The studies showed that Lactobacillus has a great potential as a probiotic, acting mainly in the prevention and treatment of mucosal diseases. Thus, the use of Lactobacillus may be a good strategy for the treatment of oral candidiasis.
Collapse
Affiliation(s)
- R L P S Ferreira
- Universidade Ceuma - UniCEUMA, Laboratório de Patogenicidade Microbiana, São Luís, MA, Brasil
- Universidade Federal do Maranhão - UFMA, Programa de Pós-graduação em Ciências da Saúde, São Luís, MA, Brasil
| | - B G V Nova
- Universidade Ceuma - UniCEUMA, Laboratório de Patogenicidade Microbiana, São Luís, MA, Brasil
| | - M S Carmo
- Universidade Ceuma - UniCEUMA, Laboratório de Patogenicidade Microbiana, São Luís, MA, Brasil
| | - A G Abreu
- Universidade Ceuma - UniCEUMA, Laboratório de Patogenicidade Microbiana, São Luís, MA, Brasil
- Universidade Federal do Maranhão - UFMA, Programa de Pós-graduação em Ciências da Saúde, São Luís, MA, Brasil
| |
Collapse
|
6
|
Li Y, Li Z, Zheng S, Xu X. Probiotics in the management of radiation-induced oral mucositis. Front Cell Infect Microbiol 2024; 14:1477143. [PMID: 39359935 PMCID: PMC11445617 DOI: 10.3389/fcimb.2024.1477143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Oral mucositis is a common and debilitating oral complication in head and neck cancer patients undergoing radiotherapy, resulting in diminished quality of life and potential treatment disruptions. Oral microbiota has long been recognized as a contributing factor in the initiation and progression of radiation-induced oral mucositis (RIOM). Numerous studies have indicated that the radiation-induced oral microbial dysbiosis promotes the occurrence and severity of oral mucositis. Therefore, approaches that modulate oral microbial ecology are promising for the management of RIOM. Probiotics as a relatively predicable and safe measure that modulates microecology have garnered significant interest. In this review, we discussed the correlation between RIOM and oral microbiota, with a particular focus on the efficacy of probiotics in the control of RIOM, in order to provide novel paradigm for the management of this disease.
Collapse
Affiliation(s)
- Yixuan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zixia Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuhao Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Elsayes SA, El Attar MS, ElHadary A, Aboulela AG, Essawy MM, Soliman IS. Antimycotic prophylaxis with multispecies probiotics against oral candidiasis in new complete denture wearers: A randomized clinical trial. J Prosthet Dent 2024:S0022-3913(24)00369-X. [PMID: 38906771 DOI: 10.1016/j.prosdent.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
STATEMENT OF PROBLEM Changes in the oral microbiota of new complete denture wearers are the main cause of oral candidiasis. The drawbacks associated with traditional antimycotic therapies, especially drug resistance, have led to the search for potent therapeutic and prophylaxis agents with less harmful effects, including probiotics. However, investigation of the prophylaxis and preventive effects of probiotics on new complete denture wearers are lacking. PURPOSE The purpose of this randomized clinical trial was to assess the prophylactic efficiency of multistrain probiotics (Lactobacillus and Bifidobacterium) in combating oral candidiasis in new complete denture wearers. The Candida relapse after 4 weeks of intervention cessation was also evaluated. MATERIAL AND METHODS A total of 50 new maxillary and mandibular complete denture wearers with asymptomatic detectable levels of Candida were enrolled. The participants in the probiotics group received a daily dose of probiotic lozenges for 8 weeks versus placebo tablets taken by those in the placebo group. Collected mouth-rinse samples were microbiologically assessed to count Candida colonies and identify different species at different time intervals: baseline, 2 weeks after denture delivery, 4 and 8 weeks after the beginning of intervention, and 4 weeks postintervention follow-up. Data were assessed by performing the Shapiro-Wilk test to check the normality of the colony count, while the difference in the colony count between timelines was analyzed using the Freidman test followed by multiple comparison tests (α=.05). RESULTS Two weeks after denture delivery, the Candida load had not risen significantly from the baseline count (P>.05). After the intervention, the probiotics had reduced the Candida count significantly in the fourth week and in subsequent follow-up periods, with the highest decrease observed in the eighth week, recording a median count of (0.00) compared with (2.74) at the baseline level (P<.001). Furthermore, in assessing the differential count of Candida species, a noteworthy decrease was found in the level of the most prevalent Candida albicans in the eighth week, with a relapse noticed in the twelfth week of posttreatment follow-up. CONCLUSIONS Probiotic lozenges had antimycotic efficiency in asymptomatic new complete denture wearers, with short-term extended preventive effects after intervention cessation.
Collapse
Affiliation(s)
- Salma A Elsayes
- Postgraduate student, Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Mohamed Sherine El Attar
- Professor, Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Amany ElHadary
- Professor, Department of Prosthodontics, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt; and Adjunct Professor, Department of Prosthodontics, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Aliaa Gamaleldin Aboulela
- Associate Professor, Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Marwa M Essawy
- Assistant Consultant, Oral Pathology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ingy S Soliman
- Associate Professor, Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Dai P, Yang M, Du J, Wang K, Chen R, Feng X, Chen C, Zhang X. Epidemiological investigation of feline chronic gingivostomatitis and its relationship with oral microbiota in Xi'an, China. Front Vet Sci 2024; 11:1418101. [PMID: 38948672 PMCID: PMC11211630 DOI: 10.3389/fvets.2024.1418101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024] Open
Abstract
Feline chronic gingivostomatitis (FCGS) is an ulcerative and/or proliferative disease that typically affects the palatoglossal folds. Because of its unknown pathogenesis and long disease course, it is difficult to treat and has a high recurrence rate. Most of the bacteria in the oral microbiota exist in the mouth symbiotically and maintain a dynamic balance, and when the balance is disrupted, they may cause disease. Disturbance of the oral microbiota may play an important role in the development of FCGS. In this study, the medical records of 3109 cats in three general pet hospitals in Xi 'an were collected. Sixty-one cats with FCGS were investigated via questionnaires, routine oral examinations and laboratory examinations. Oral microbiota samples were collected from 16 FCGS-affected cats, and microbial species were identified by 16S rDNA sequencing. The results showed that the incidence of FCGS had no significant correlation with age, sex or breed. However, the incidence of FCGS was associated with immunization, a history of homelessness and multicat rearing environments. The number of neutrophils and the serum amyloid A concentration were increased, and the percentage of cells positive for calicivirus antigen was high in all cases. All the cats had different degrees of dental calculus, and there were problems such as loss of alveolar bone or tooth resorption. Compared with those in healthy cats, the bacterial diversity and the abundance of anaerobic bacteria were significantly increased in cats with FCGS. Porphyromonas, Treponemas and Fusobacterium were abundant in the mouths of the affected cats and may be potential pathogens of FCGS. After tooth extraction, a shift could be seen in the composition of the oral microbiota in cats with FCGS. An isolated bacteria obtained from the mouths of the affected cats was homologous to P. gulae. Both the identified oral microbiota and the isolated strain of the cats with FCGS had high sensitivity to enrofloxacin and low sensitivity to metronidazole. This study provides support to current clinical criteria in diagnosing FCGS and proposes a more suitable antibiotic therapy.
Collapse
Affiliation(s)
- Pengxiu Dai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingxia Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Juanjuan Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Keyi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruiqi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiancheng Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chen Chen
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinke Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Che J, Shi J, Fang C, Zeng X, Wu Z, Du Q, Tu M, Pan D. Elimination of Pathogen Biofilms via Postbiotics from Lactic Acid Bacteria: A Promising Method in Food and Biomedicine. Microorganisms 2024; 12:704. [PMID: 38674648 PMCID: PMC11051744 DOI: 10.3390/microorganisms12040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Pathogenic biofilms provide a naturally favorable barrier for microbial growth and are closely related to the virulence of pathogens. Postbiotics from lactic acid bacteria (LAB) are secondary metabolites and cellular components obtained by inactivation of fermentation broth; they have a certain inhibitory effect on all stages of pathogen biofilms. Postbiotics from LAB have drawn attention because of their high stability, safety dose parameters, and long storage period, which give them a broad application prospect in the fields of food and medicine. The mechanisms of eliminating pathogen biofilms via postbiotics from LAB mainly affect the surface adhesion, self-aggregation, virulence, and QS of pathogens influencing interspecific and intraspecific communication. However, there are some factors (preparation process and lack of target) which can limit the antibiofilm impact of postbiotics. Therefore, by using a delivery carrier and optimizing process parameters, the effect of interfering factors can be eliminated. This review summarizes the concept and characteristics of postbiotics from LAB, focusing on their preparation technology and antibiofilm effect, and the applications and limitations of postbiotics in food processing and clinical treatment are also discussed.
Collapse
Affiliation(s)
- Jiahao Che
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Jingjing Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Chenguang Fang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (J.C.); (J.S.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China;
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315832, China
| |
Collapse
|
10
|
Wang Y, Liu Z, Chen T. Vaginal microbiota: Potential targets for vulvovaginal candidiasis infection. Heliyon 2024; 10:e27239. [PMID: 38463778 PMCID: PMC10923723 DOI: 10.1016/j.heliyon.2024.e27239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
Vulvovaginal candidiasis (VVC) is the second most common cause of vaginal infection globally after bacterial vaginosis (BV) and associated with adverse reproductive and obstetric outcomes, including preterm delivery, sexually transmitted infections and pelvic inflammatory disease. Although effective control of VVC is achievable with the use of traditional treatment strategies (i.e., antifungals), the possibility of drug intolerance, treatment failure and recurrence, as well as the appearance of antifungal-resistant Candida species remain critical challenges. Therefore, alternative therapeutic strategies against VVC are urgently required. In recent years, an improved understanding of the dysbiotic vaginal microbiota (VMB) during VVC has prompted the consideration of administering -biotics to restore the balance of the VMB within the context of VVC prevention and treatment. Here, we aim to summarize the current evidence of the anti-Candida effects of probiotics, postbiotics and synbiotics and their potential use as an alternative/complementary therapy against VVC. Additionally, this review discusses advantages and challenges associated with the application of -biotics in VVC to provide guidance for their later use. We also review new developments in VVC therapy, i.e., vaginal microbiota transplantation (VMT) as an emerging live biotherapeutic therapy against VVC and discuss existing shortcomings associated with this nascent field, expecting to stimulate further investigations for introduction of new therapies against VVC.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University Jiangxi Medical College, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University Jiangxi Medical College, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University Jiangxi Medical College, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
- School of Pharmacy, National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
| |
Collapse
|
11
|
Mohamad Lal MT, Seng Lim L, Lau LM, Long Chang ES, Momin AA, Izzan Hamid MS. Fungal infections and control strategies in cultured marine finfish: a minireview. JOURNAL OF MICROORGANISM CONTROL 2024; 29:127-132. [PMID: 39805610 DOI: 10.4265/jmc.29.4_127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Marine fish farming served as a sustainable alternative to capture fisheries. However, it faced challenges such as disease management, water quality maintenance, and minimizing environmental impacts. Among these challenges, fungal infections are particularly concerning. Traditionally, chemical treatments raise concerns about potential toxicity to fish and humans, environmental impact, and resistance development. In response to these issues, there is growing interest in sustainable biocontrol strategies, including the use of probiotics, phytobiotics, postbiotics, microalgae, and fungal parasites as antifungal agents. This mini-review provides a brief overview of fungal infections in marine fish and discusses current fungal biocontrol strategies in aquaculture. By adopting these sustainable control methods, the aquaculture industry can improve fish health and productivity while reducing its reliance on harmful chemicals.
Collapse
Affiliation(s)
| | - Leong Seng Lim
- Higher Institution Centre of Excellence(HICoE) Borneo Marine Research Institute, Universiti Malaysia Sabah
| | - Lik-Ming Lau
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak
| | - Elden Sai Long Chang
- Higher Institution Centre of Excellence(HICoE) Borneo Marine Research Institute, Universiti Malaysia Sabah
| | - Asyraf Abdul Momin
- Higher Institution Centre of Excellence(HICoE) Borneo Marine Research Institute, Universiti Malaysia Sabah
| | - Muhd Sharil Izzan Hamid
- Higher Institution Centre of Excellence(HICoE) Borneo Marine Research Institute, Universiti Malaysia Sabah
| |
Collapse
|
12
|
Abramov VM, Kosarev IV, Machulin AV, Priputnevich TV, Deryusheva EI, Panin AN, Chikileva IO, Abashina TN, Melnikov VG, Suzina NE, Nikonov IN, Akhmetzyanova AA, Khlebnikov VS, Sakulin VK, Vasilenko RN, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Protective Properties of S-layer Protein 2 from Lactobacillus crispatus 2029 against Candida albicans Infections. Biomolecules 2023; 13:1740. [PMID: 38136611 PMCID: PMC10741940 DOI: 10.3390/biom13121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Previously, the protective role of the S-layer protein 2 (Slp2) of the vaginal Lactobacillus crispatus 2029 (LC2029) strain against foodborne pathogens Campylobacter jejuni, Salmonella enterica serovar Enteritidis, and Escherichia coli O157:H was demonstrated. We demonstrate the new roles of the Slp2-positive LC2029 strain and soluble Slp2 against C. albicans infections. We show that LC2029 bacteria can adhere to the surface of the cervical epithelial HeLa cells, prevent their contact with C. albicans, and block yeast transition to a pathogenic hyphal form. Surface-bound Slp2 provides the ability for LC2029 to co-aggregate with various C. albicans strains, including clinical isolates. C. albicans-induced necrotizing epithelial damage is reduced by colonization with the Slp2-positive LC2029 strain. Slp2 inhibits the adhesion of various strains of C. albicans to different human epithelial cells, blocks yeast transition to a pathogenic hyphal form, and prevents the colonization and pathogenic infiltration of mucosal barriers. Only Slp2 and LC2029 bacteria stimulate the production of protective human β-defensin 3 in various epithelial cells. These findings support the anti-Candida albicans potential of the probiotic LC2029 strain and Slp2 and form the basis for further research on their ability to prevent and manage invasive Candida infections.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia (A.N.P.)
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia (A.N.P.)
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia;
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia (A.N.P.)
| | - Irina O. Chikileva
- Laboratory of Cell Immunity, Blokhin National Research Center of Oncology, Ministry of Health RF, 115478 Moscow, Russia;
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ilia N. Nikonov
- Federal State Educational Institution of Higher Professional Education Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia
| | - Anna A. Akhmetzyanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia (A.N.P.)
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia (R.N.V.)
| | - Raisa N. Vasilenko
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia (R.N.V.)
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK;
| |
Collapse
|
13
|
Inchingolo F, Inchingolo AM, Malcangi G, De Leonardis N, Sardano R, Pezzolla C, de Ruvo E, Di Venere D, Palermo A, Inchingolo AD, Corriero A, Dipalma G. The Benefits of Probiotics on Oral Health: Systematic Review of the Literature. Pharmaceuticals (Basel) 2023; 16:1313. [PMID: 37765121 PMCID: PMC10534711 DOI: 10.3390/ph16091313] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Aim: Probiotic microorganisms, commonly used to bolster gut health, might also have benefits for dental health, according to certain studies. Probiotics (PBs) are associated with reducing cariogenic pathogens and protecting against periodontal diseases, although the exact way they function in the mouth is not fully clear. Our study aimed to explore the use of PBs to improve oral health, focusing on issues such as cavities, gum disease, bad breath, mucositis, and periimplantitis. Materials and Methods: We utilized the Boolean keywords "Probiotics" AND "Oral health" to search the databases of PubMed, Scopus, and Web of Science. The search was restricted to English-language papers published from 1 January 2019 to 13 April 2023. Results: A total of 3460 articles were found through our computerized search. After removing duplicates, reviewing the papers, and determining their relevance, 12 were selected for inclusion. Conclusions: Assessing how bacteria in food or dietary supplements might alter the stable oral microbiota is a complex task. Although probiotic microorganisms have been found to have proven therapeutic benefits, their application in dental health is not yet solidly backed by evidence. Further research is necessary to thoroughly understand the long-term effects of probiotic bacteria on the oral environment, including their ability to colonize and form biofilms.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (G.M.); (N.D.L.); (R.S.); (C.P.); (E.d.R.); (D.D.V.); (A.D.I.); (A.C.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (G.M.); (N.D.L.); (R.S.); (C.P.); (E.d.R.); (D.D.V.); (A.D.I.); (A.C.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (G.M.); (N.D.L.); (R.S.); (C.P.); (E.d.R.); (D.D.V.); (A.D.I.); (A.C.); (G.D.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (G.M.); (N.D.L.); (R.S.); (C.P.); (E.d.R.); (D.D.V.); (A.D.I.); (A.C.); (G.D.)
| | - Roberta Sardano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (G.M.); (N.D.L.); (R.S.); (C.P.); (E.d.R.); (D.D.V.); (A.D.I.); (A.C.); (G.D.)
| | - Carmela Pezzolla
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (G.M.); (N.D.L.); (R.S.); (C.P.); (E.d.R.); (D.D.V.); (A.D.I.); (A.C.); (G.D.)
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (G.M.); (N.D.L.); (R.S.); (C.P.); (E.d.R.); (D.D.V.); (A.D.I.); (A.C.); (G.D.)
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (G.M.); (N.D.L.); (R.S.); (C.P.); (E.d.R.); (D.D.V.); (A.D.I.); (A.C.); (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (G.M.); (N.D.L.); (R.S.); (C.P.); (E.d.R.); (D.D.V.); (A.D.I.); (A.C.); (G.D.)
| | - Alberto Corriero
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (G.M.); (N.D.L.); (R.S.); (C.P.); (E.d.R.); (D.D.V.); (A.D.I.); (A.C.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (G.M.); (N.D.L.); (R.S.); (C.P.); (E.d.R.); (D.D.V.); (A.D.I.); (A.C.); (G.D.)
| |
Collapse
|
14
|
Araujo LDC, da Silva RAB, Silva CMPC, Salvador SLS, Messora MR, Furlaneto FAC, Mastrange MDA, Pucinelli CM, da Silva LAB. Bifidobacterium animalis subsp. lactis HN019 has antimicrobial activity against endodontic pathogens in vitro. Braz J Microbiol 2023; 54:2289-2295. [PMID: 37632683 PMCID: PMC10484865 DOI: 10.1007/s42770-023-01083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/25/2023] [Indexed: 08/28/2023] Open
Abstract
The aim of the present study was to evaluate, in vitro, the antimicrobial activity of the probiotic Bifidobacterium animalis subsp. lactis HN019, through the well technique, against 10 microorganisms can be found involved in endodontic infections. The antimicrobial activity of the probiotic was performed on Streptococcus mutans, Streptococcus sobrinus, Lacticaseibacillus casei, Enterococcus faecalis, Staphylococcus aureus, Candida albicans, Porphyromonas gingivalis, Porphyromonas endodontalis, Fusobacterium nucleatum and Prevotella intermedia. For the control group, it was used non-pathogenic bacteria Escherichia coli, Saccharomyces cerevisiae, and Kocuria rizhopilla. After 48 to 72 h of incubation of the petri dishes containing the culture medium, the microorganism strains, and the probiotic, the plates were examined to assess the uniformity of microbial growth, presence of contaminants, and the halo of inhibition. After visual inspection, the reading of the halo of inhibition was performed with the aid of a digital caliper using a reflected light source to illuminate the inverted plate on a black, opaque background after removing the cap. Thus, 3 values were obtained from each bacterial inoculum, which were added and divided by three to obtain the average of the values. The results of the in vitro study demonstrated that the probiotic B. animalis subsp. lactis HN019 promoted the inhibition of all strains of the pathogens evaluated, with the exception of Candida albicans, demonstrating antimicrobial activity on these microorganisms.
Collapse
Affiliation(s)
- Lisa Danielly Curcino Araujo
- Department of Pediatric Dentistry, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | - Raquel Assed Bezerra da Silva
- Department of Pediatric Dentistry, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Sérgio Luiz Sousa Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Flávia Aparecida Chaves Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marina Del Arco Mastrange
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Maschietto Pucinelli
- Department of Pediatric Dentistry, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Léa Assed Bezerra da Silva
- Department of Pediatric Dentistry, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
15
|
Li G, Li Q, Zhang C, Yu Q, Li Q, Zhou X, Yang R, Yang X, Liu H, Yang Y. The impact of gene polymorphism and hepatic insufficiency on voriconazole dose adjustment in invasive fungal infection individuals. Front Genet 2023; 14:1242711. [PMID: 37693307 PMCID: PMC10484623 DOI: 10.3389/fgene.2023.1242711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Voriconazole (VRZ) is a broad-spectrum antifungal medication widely used to treat invasive fungal infections (IFI). The administration dosage and blood concentration of VRZ are influenced by various factors, posing challenges for standardization and individualization of dose adjustments. On the one hand, VRZ is primarily metabolized by the liver, predominantly mediated by the cytochrome P450 (CYP) 2C19 enzyme. The genetic polymorphism of CYP2C19 significantly impacts the blood concentration of VRZ, particularly the trough concentration (Ctrough), thereby influencing the drug's efficacy and potentially causing adverse drug reactions (ADRs). Recent research has demonstrated that pharmacogenomics-based VRZ dose adjustments offer more accurate and individualized treatment strategies for individuals with hepatic insufficiency, with the possibility to enhance therapeutic outcomes and reduce ADRs. On the other hand, the security, pharmacokinetics, and dosing of VRZ in individuals with hepatic insufficiency remain unclear, making it challenging to attain optimal Ctrough in individuals with both hepatic insufficiency and IFI, resulting in suboptimal drug efficacy and severe ADRs. Therefore, when using VRZ to treat IFI, drug dosage adjustment based on individuals' genotypes and hepatic function is necessary. This review summarizes the research progress on the impact of genetic polymorphisms and hepatic insufficiency on VRZ dosage in IFI individuals, compares current international guidelines, elucidates the current application status of VRZ in individuals with hepatic insufficiency, and discusses the influence of CYP2C19, CYP3A4, CYP2C9, and ABCB1 genetic polymorphisms on VRZ dose adjustments and Ctrough at the pharmacogenomic level. Additionally, a comprehensive summary and analysis of existing studies' recommendations on VRZ dose adjustments based on CYP2C19 genetic polymorphisms and hepatic insufficiency are provided, offering a more comprehensive reference for dose selection and adjustments of VRZ in this patient population.
Collapse
Affiliation(s)
- Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinhui Li
- Department of Medical, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qin Yu
- College of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rou Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailin Liu
- Department of Pharmacy, The People’s Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
16
|
Rebai Y, Wagner L, Gnaien M, Hammer ML, Kapitan M, Niemiec MJ, Mami W, Mosbah A, Messadi E, Mardassi H, Vylkova S, Jacobsen ID, Znaidi S. Escherichia coli Nissle 1917 Antagonizes Candida albicans Growth and Protects Intestinal Cells from C. albicans-Mediated Damage. Microorganisms 2023; 11:1929. [PMID: 37630490 PMCID: PMC10457924 DOI: 10.3390/microorganisms11081929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
Candida albicans is a pathobiont of the gastrointestinal tract. It can contribute to the diversity of the gut microbiome without causing harmful effects. When the immune system is compromised, C. albicans can damage intestinal cells and cause invasive disease. We hypothesize that a therapeutic approach against C. albicans infections can rely on the antimicrobial properties of probiotic bacteria. We investigated the impact of the probiotic strain Escherichia coli Nissle 1917 (EcN) on C. albicans growth and its ability to cause damage to intestinal cells. In co-culture kinetic assays, C. albicans abundance gradually decreased over time compared with C. albicans abundance in the absence of EcN. Quantification of C. albicans survival suggests that EcN exerts a fungicidal activity. Cell-free supernatants (CFS) collected from C. albicans-EcN co-culture mildly altered C. albicans growth, suggesting the involvement of an EcN-released compound. Using a model of co-culture in the presence of human intestinal epithelial cells, we further show that EcN prevents C. albicans from damaging enterocytes both distantly and through direct contact. Consistently, both C. albicans's filamentous growth and microcolony formation were altered by EcN. Taken together, our study proposes that probiotic-strain EcN can be exploited for future therapeutic approaches against C. albicans infections.
Collapse
Affiliation(s)
- Yasmine Rebai
- Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (Y.R.)
| | - Lysett Wagner
- Septomics Research Center, Friedrich Schiller University, 07745 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Mayssa Gnaien
- Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (Y.R.)
| | - Merle L. Hammer
- Septomics Research Center, Friedrich Schiller University, 07745 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
- Center for Sepsis Control and Care, 07747 Jena, Germany
| | - Maria Joanna Niemiec
- Septomics Research Center, Friedrich Schiller University, 07745 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Wael Mami
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Amor Mosbah
- Laboratory of Biotechnology and Bio-Geo Resources Valorization (LR11ES31), Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Tunis 2010, Tunisia
| | - Erij Messadi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Helmi Mardassi
- Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (Y.R.)
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University, 07745 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Ilse D. Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
- Center for Sepsis Control and Care, 07747 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Sadri Znaidi
- Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (Y.R.)
- Institut Pasteur, Institut National de la Recherche Agronomique (INRA), Département Mycologie, Unité Biologie et Pathogénicité Fongiques, 75015 Paris, France
| |
Collapse
|
17
|
Xu J, Chen C, Gan S, Liao Y, Fu R, Hou C, Yang S, Zheng Z, Chen W. The Potential Value of Probiotics after Dental Implant Placement. Microorganisms 2023; 11:1845. [PMID: 37513016 PMCID: PMC10383117 DOI: 10.3390/microorganisms11071845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Dental implantation is currently the optimal solution for tooth loss. However, the health and stability of dental implants have emerged as global public health concerns. Dental implant placement, healing of the surgical site, osseointegration, stability of bone tissues, and prevention of peri-implant diseases are challenges faced in achieving the long-term health and stability of implants. These have been ongoing concerns in the field of oral implantation. Probiotics, as beneficial microorganisms, play a significant role in the body by inhibiting pathogens, promoting bone tissue homeostasis, and facilitating tissue regeneration, modulating immune-inflammatory levels. This review explores the potential of probiotics in addressing post-implantation challenges. We summarize the existing research regarding the importance of probiotics in managing dental implant health and advocate for further research into their potential applications.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenfeng Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Poon Y, Hui M. Inhibitory effect of lactobacilli supernatants on biofilm and filamentation of Candida albicans, Candida tropicalis, and Candida parapsilosis. Front Microbiol 2023; 14:1105949. [PMID: 36860488 PMCID: PMC9969145 DOI: 10.3389/fmicb.2023.1105949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
Introduction Probiotic Lactobacillus strains had been investigated for the potential to protect against infection caused by the major fungal pathogen of human, Candida albicans. Besides antifungal activity, lactobacilli demonstrated a promising inhibitory effect on biofilm formation and filamentation of C. albicans. On the other hand, two commonly isolated non-albicans Candida species, C. tropicalis and C. parapsilosis, have similar characteristics in filamentation and biofilm formation with C. albicans. However, there is scant information of the effect of lactobacilli on the two species. Methods In this study, biofilm inhibitory effects of L. rhamnosus ATCC 53103, L. plantarum ATCC 8014, and L. acidophilus ATCC 4356 were tested on the reference strain C. albicans SC5314 and six bloodstream isolated clinical strains, two each of C. albicans, C. tropicalis, and C. parapsilosis. Results and Discussion Cell-free culture supernatants (CFSs) of L. rhamnosus and L. plantarum significantly inhibited in vitro biofilm growth of C. albicans and C. tropicalis. L. acidophilus, conversely, had little effect on C. albicans and C. tropicalis but was more effective on inhibiting C. parapsilosis biofilms. Neutralized L. rhamnosus CFS at pH 7 retained the inhibitory effect, suggesting that exometabolites other than lactic acid produced by the Lactobacillus strain might be accounted for the effect. Furthermore, we evaluated the inhibitory effects of L. rhamnosus and L. plantarum CFSs on the filamentation of C. albicans and C. tropicalis strains. Significantly less Candida filaments were observed after co-incubating with CFSs under hyphae-inducing conditions. Expressions of six biofilm-related genes (ALS1, ALS3, BCR1, EFG1, TEC1, and UME6 in C. albicans and corresponding orthologs in C. tropicalis) in biofilms co-incubated with CFSs were analyzed using quantitative real-time PCR. When compared to untreated control, the expressions of ALS1, ALS3, EFG1, and TEC1 genes were downregulated in C. albicans biofilm. In C. tropicalis biofilms, ALS3 and UME6 were downregulated while TEC1 was upregulated. Taken together, the L. rhamnosus and L. plantarum strains demonstrated an inhibitory effect, which is likely mediated by the metabolites secreted into culture medium, on filamentation and biofilm formation of C. albicans and C. tropicalis. Our finding suggested an alternative to antifungals for controlling Candida biofilm.
Collapse
|
19
|
Takano T, Kudo H, Eguchi S, Matsumoto A, Oka K, Yamasaki Y, Takahashi M, Koshikawa T, Takemura H, Yamagishi Y, Mikamo H, Kunishima H. Inhibitory effects of vaginal Lactobacilli on C andida albicans growth, hyphal formation, biofilm development, and epithelial cell adhesion. Front Cell Infect Microbiol 2023; 13:1113401. [PMID: 37201113 PMCID: PMC10188118 DOI: 10.3389/fcimb.2023.1113401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Antifungal agents are not always efficient in resolving vulvovaginal candidiasis (VVC), a common genital infection caused by the overgrowth of Candida spp., including Candida albicans, or in preventing recurrent infections. Although lactobacilli (which are dominant microorganisms constituting healthy human vaginal microbiota) are important barriers against VVC, the Lactobacillus metabolite concentration needed to suppress VVC is unknown. Methods We quantitatively evaluated Lactobacillus metabolite concentrations to determine their effect on Candida spp., including 27 vaginal strains of Lactobacillus crispatus, L. jensenii, L. gasseri, Lacticaseibacillus rhamnosus, and Limosilactobacillus vaginalis, with inhibitory abilities against biofilms of C. albicans clinical isolates. Results Lactobacillus culture supernatants suppressed viable fungi by approximately 24%-92% relative to preformed C. albicans biofilms; however, their suppression differed among strains and not species. A moderate negative correlation was found between Lactobacillus lactate production and biofilm formation, but no correlation was observed between hydrogen peroxide production and biofilm formation. Both lactate and hydrogen peroxide were required to suppress C. albicans planktonic cell growth. Lactobacillus strains that significantly inhibited biofilm formation in culture supernatant also inhibited C. albicans adhesion to epithelial cells in an actual live bacterial adhesion competition test. Discussion Healthy human microflora and their metabolites may play important roles in the development of new antifungal agent against C. albicans-induced VVC.
Collapse
Affiliation(s)
- Tomonori Takano
- Department of Infectious Diseases, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan
| | - Hayami Kudo
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Shuhei Eguchi
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Asami Matsumoto
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Kentaro Oka
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Yukitaka Yamasaki
- Department of Infectious Diseases, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan
| | - Motomichi Takahashi
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Takuro Koshikawa
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki-shi, Japan
| | - Hiromu Takemura
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki-shi, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Aichi, Japan
- Department of Clinical Infectious Diseases, Kochi Medical School, Nankoku-shi, Kochi, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hiroyuki Kunishima
- Department of Infectious Diseases, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan
- *Correspondence: Hiroyuki Kunishima,
| |
Collapse
|
20
|
Shan Q, Liu N, Wang X, Zhu Y, Yin J, Wang J. Lactobacillus rhamnosus GR-1 attenuates foodborne Bacillus cereus-induced NLRP3 inflammasome activity in bovine mammary epithelial cells by protecting intercellular tight junctions. J Anim Sci Biotechnol 2022; 13:101. [PMID: 36076276 PMCID: PMC9461272 DOI: 10.1186/s40104-022-00752-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background Bacillus cereus is an important pathogen that causes human food poisoning, specifically diarrhea and vomiting. B. cereus can also induce mastitis in dairy cows and has a strong survival ability in milk, as it cannot be inactivated by high-temperature short-time pasteurization. Therefore, B. cereus can enter the market through pasteurized milk and other dairy products, imposing enormous hidden dangers on food safety and human health. Results In this study, B. cereus 2101 (BC) was isolated from milk samples of cows with mastitis. BC grew rapidly with strong hemolysis, making it difficult to prevent mastitis and ensure food security. MAC-T cells were treated with BC and/or Lactobacillus rhamnosus GR-1 (LGR-1). Pretreatment with LGR-1 protected the integrity of tight junctions and the expression of zonula occludens-1 (ZO-1) and occludin destroyed by BC. Furthermore, LGR-1 pretreatment reduced the expression of NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3), caspase recruitment and activation domain (ASC), Caspase-1 p20, gasdermin D (GSDMD) p30, inflammatory factors (interleukin (IL)-1β and IL-18), and cell death induced by BC. Moreover, LGR-1 pretreatment reduced NLRP3 inflammasome activity and increased expressions of ZO-1 and occludin induced by lipopolysaccharides (LPS) + ATP stimulation. MAC-T cells were transfected with NLRP3 siRNA or MCC950 and/or treated with BC and/or LGR-1. NLRP3-siRNA transfection and MCC950 attenuated BC-induced NLRP3 inflammasome activity. Expression of inflammatory cytokines and cell death suggested that the inflammatory pathway might play an important role in the induction of the NLRP3 inflammasome by BC and the protection of LGR-1. Conclusions These results suggest that LGR-1 might be a probiotic alternative to antibiotics and could be administered to prevent mastitis in dairy cows, thus ensuring food security. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00752-w.
Collapse
Affiliation(s)
- Qiang Shan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ning Liu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xue Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yaohong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jinhua Yin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. .,College of Animal Science and Technology, Tarim University, Alar, 843300, China.
| | - Jiufeng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Jakab Á, Kovács F, Balla N, Tóth Z, Ragyák Á, Sajtos Z, Csillag K, Nagy-Köteles C, Nemes D, Bácskay I, Pócsi I, Majoros L, Kovács ÁT, Kovács R. Physiological and transcriptional profiling of surfactin exerted antifungal effect against Candida albicans. Biomed Pharmacother 2022; 152:113220. [PMID: 35671583 DOI: 10.1016/j.biopha.2022.113220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022] Open
Abstract
Given the risk of Candida albicans overgrowth in the gut, novel complementary therapies should be developed to reduce fungal dominancy. This study highlights the antifungal characteristics of a Bacillus subtilis-derived secondary metabolite, surfactin with high potential against C. albicans. Surfactin inhibited the growth of C. albicans following a 1-hour exposure, in addition to reduced adhesion and morphogenesis. Specifically, surfactin did not affect the level of reactive oxygen species but increased the level of reduced glutathione. Surprisingly, ethanol production was increased following 2 h of surfactin exposure. Surfactin treatment caused a significant reduction in intracellular iron, manganese and zinc content compared to control cells, whereas the level of copper was not affected. Alongside these physiological properties, surfactin also enhanced fluconazole efficacy. To gain detailed insights into the surfactin-related effects on C. albicans, genome-wide gene transcription analysis was performed. Surfactin treatment resulted in 1390 differentially expressed genes according to total transcriptome sequencing (RNA-Seq). Of these, 773 and 617 genes with at least a 1.5-fold increase or decrease in transcription, respectively, were selected for detailed investigation. Several genes involved in morphogenesis or related to metabolism (e.g., glycolysis, ethanol and fatty acid biosynthesis) were down-regulated. Moreover, surfactin decreased the expression of ERG1, ERG3, ERG9, ERG10 and ERG11 involved in ergosterol synthesis, whereas genes associated with ribosome biogenesis and iron metabolism and drug transport-related genes were up-regulated. Our data demonstrate that surfactin significantly influences the physiology and gene transcription of C. albicans, and could contribute to the development of a novel innovative complementary therapy.
Collapse
Affiliation(s)
- Ágnes Jakab
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary; Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Noémi Balla
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Ágota Ragyák
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary; Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, Debrecen, Hungary
| | - Zsófi Sajtos
- Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, Debrecen, Hungary
| | - Kinga Csillag
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Csaba Nagy-Köteles
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Dániel Nemes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
22
|
Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptations that compromise pathogenicity. Nat Commun 2022; 13:3192. [PMID: 35680868 PMCID: PMC9184479 DOI: 10.1038/s41467-022-30661-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
Intestinal microbiota dysbiosis can initiate overgrowth of commensal Candida species - a major predisposing factor for disseminated candidiasis. Commensal bacteria such as Lactobacillus rhamnosus can antagonize Candida albicans pathogenicity. Here, we investigate the interplay between C. albicans, L. rhamnosus, and intestinal epithelial cells by integrating transcriptional and metabolic profiling, and reverse genetics. Untargeted metabolomics and in silico modelling indicate that intestinal epithelial cells foster bacterial growth metabolically, leading to bacterial production of antivirulence compounds. In addition, bacterial growth modifies the metabolic environment, including removal of C. albicans' favoured nutrient sources. This is accompanied by transcriptional and metabolic changes in C. albicans, including altered expression of virulence-related genes. Our results indicate that intestinal colonization with bacteria can antagonize C. albicans by reshaping the metabolic environment, forcing metabolic adaptations that reduce fungal pathogenicity.
Collapse
|
23
|
García-Carnero LC, Mora-Montes HM. Mucormycosis and COVID-19-Associated Mucormycosis: Insights of a Deadly but Neglected Mycosis. J Fungi (Basel) 2022; 8:445. [PMID: 35628701 PMCID: PMC9144279 DOI: 10.3390/jof8050445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The ongoing COVID-19 pandemic has quickly become a health threat worldwide, with high mortality and morbidity among patients with comorbidities. This viral infection promotes the perfect setting in patients for the development of opportunistic infections, such as those caused by fungi. Mucormycosis, a rare but deadly fungal infection, has recently increased its incidence, especially in endemic areas, since the onset of the pandemic. COVID-19-associated mucormycosis is an important complication of the pandemic because it is a mycosis hard to diagnose and treat, causing concern among COVID-19-infected patients and even in the already recovered population. The risk factors for the development of mucormycosis in these patients are related to the damage caused by the SARS-CoV-2 itself, the patient's overstimulated immune response, and the therapy used to treat COVID-19, causing alterations such as hyperglycemia, acidosis, endothelial and lung damage, and immunosuppression. In this review, the molecular aspects of mucormycosis and the main risk factors for the development of COVID-19-associated mucormycosis are explained to understand this virus-fungi-host interaction and highlight the importance of this neglected mycosis.
Collapse
Affiliation(s)
- Laura C. García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| |
Collapse
|
24
|
Archambault LS, Dongari-Bagtzoglou A. Probiotics for Oral Candidiasis: Critical Appraisal of the Evidence and a Path Forward. FRONTIERS IN ORAL HEALTH 2022; 3:880746. [PMID: 35495563 PMCID: PMC9046664 DOI: 10.3389/froh.2022.880746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Oropharyngeal Candidiasis (OPC) is a mucosal fungal infection that is prevalent among patients with compromised immunity. The success of probiotics in treating chronic diseases with a microbial etiology component at other mucosal sites (i.e., gastro-intestinal, genitourinary and alveolar mucosae) has inspired research into the use of probiotics in the treatment of OPC. A growing body of research in vitro and in animal models indicates that some probiotic species and strains have inhibitory activities against Candida albicans growth, morphological switching, and biofilm formation. However, recent review and meta-analysis studies reveal a dearth of human randomized, controlled clinical trials on the efficacy of probiotics to treat or prevent OPC, while the majority of these have not based their selection of probiotic strains or the type of administration on sound pre-clinical evidence. In this mini-review, we assess the state of the field, outline some of the difficulties in translating lab results to clinical efficacy, and make recommendations for future research needed in order to move the field forward.
Collapse
Affiliation(s)
- Linda S. Archambault
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, United States
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Anna Dongari-Bagtzoglou
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, United States
- *Correspondence: Anna Dongari-Bagtzoglou
| |
Collapse
|
25
|
Tomičić R, Tomičić Z, Raspor P. Influence of culture conditions on co-aggregation of probiotic yeast Saccharomyces boulardii with Candida spp. and their auto-aggregation. Folia Microbiol (Praha) 2022; 67:507-515. [PMID: 35169980 DOI: 10.1007/s12223-022-00956-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022]
Abstract
Systemic infections caused by pathogenic Candida species pose a significant threat to public health in the past decades due to increasing resistance to existing antifungal drugs. Given this scenario, probiotics have been suggested as an alternative approach for managing Candida infections. Hence, the purpose of this study was to evaluate whether probiotic yeast Saccharomyces boulardii co-aggregate with Candida spp. as well as to determine their auto-aggregation ability in dependence on temperature (28 °C, 37 °C, 42 °C) and pH (4.5, 7.0, 8.5) after 5 h and 24 h. Our results revealed that the aggregation of tested yeasts was lower in the first 5 h but increased significantly after 24 h. All strains were able to auto-aggregate in different degrees ranging from 47.46 to 95.95% assessed at 24 h of incubation. Among them the highest auto-aggregation values had C. albicans and C. krusei strains followed by probiotic strain S. boulardii, while the less were observed in C. glabrata strains. In addition, co-aggregation between probiotic and Candida strains was strain-specific. It was evident that S. boulardii significantly inhibited the aggregation of C. albicans ATCC 10261, C. krusei ATCC 6258, and C. glabrata ZIM 2369. However, in C. glabrata ZIM 2382, the aggregation was even enhanced. Temperature and pH also affected the ability to aggregate in a different way only after 5 h of incubation, with the highest cell aggregation evidenced at temperature 37 °C in most cases and pH 4.5. These findings may be of importance when trying to establish probiotic use against pathogenic Candida species.
Collapse
Affiliation(s)
- Ružica Tomičić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Zorica Tomičić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Peter Raspor
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
26
|
Manzoor S, Wani SM, Mir SA, Rizwan D. Role of probiotics and prebiotics in mitigation of different diseases. Nutrition 2022; 96:111602. [PMID: 35182833 DOI: 10.1016/j.nut.2022.111602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
|
27
|
OUP accepted manuscript. Med Mycol 2022; 60:6526320. [PMID: 35142862 PMCID: PMC8929677 DOI: 10.1093/mmy/myac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Candida auris is an emerging, multi drug resistant fungal pathogen that has caused infectious outbreaks in over 45 countries since its first isolation over a decade ago, leading to in-hospital crude mortality rates as high as 72%. The fungus is also acclimated to disinfection procedures and persists for weeks in nosocomial ecosystems. Alarmingly, the outbreaks of C. auris infections in Coronavirus Disease-2019 (COVID-19) patients have also been reported. The pathogenicity, drug resistance and global spread of C. auris have led to an urgent exploration of novel, candidate antifungal agents for C. auris therapeutics. This narrative review codifies the emerging data on the following new/emerging antifungal compounds and strategies: antimicrobial peptides, combinational therapy, immunotherapy, metals and nano particles, natural compounds, and repurposed drugs. Encouragingly, a vast majority of these exhibit excellent anti- C. auris properties, with promising drugs now in the pipeline in various stages of development. Nevertheless, further research on the modes of action, toxicity, and the dosage of the new formulations are warranted. Studies are needed with representation from all five C. auris clades, so as to produce data of grater relevance, and broader significance and validity.
Collapse
|
28
|
Samson R, Dharne M. COVID-19 associated mucormycosis: evolving technologies for early and rapid diagnosis. 3 Biotech 2022; 12:6. [PMID: 34900512 PMCID: PMC8647065 DOI: 10.1007/s13205-021-03080-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
The post-coronavirus disease (COVID-19) mucormycosis is a deadly addition to the pandemic spectrum. Although it’s a rare, aggressive, and opportunistic disease, the associated morbidity and mortality are significant. The complex interplay of factors aggravating CAM is uncontrolled diabetes, irrational and excessive use of antibiotics, steroids, and an impaired immune system. Recently, India has been witnessing a rapid surge in the cases of coronavirus disease-associated mucormycosis (CAM), since the second wave of COVID-19. The devastating and lethal implications of CAM had now become a matter of global attention. A delayed diagnosis is often associated with a poor prognosis. Therefore, the rapid and early diagnosis of infection would be life-saving. Prevention and effective management of mucormycosis depend upon its early and accurate diagnosis followed by a multimodal therapeutic approach. The current review summarizes an array of detection methods and highlights certain evolving technologies for early and rapid diagnosis of CAM. Furthermore, several potential management strategies have also been discussed, which would aid in tackling the neglected yet fatal crisis of mucormycosis associated with COVID-19.
Collapse
|
29
|
Bakhshi M, Salari S, Almani PGN, Afshari SAK. Evaluation of the antifungal activity of Lactobacillus reuteri against Candida species. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Pandey M, Bhati A, Priya K, Sharma KK, Singhal B. Precision Postbiotics and Mental Health: the Management of Post-COVID-19 Complications. Probiotics Antimicrob Proteins 2021; 14:426-448. [PMID: 34806151 PMCID: PMC8606251 DOI: 10.1007/s12602-021-09875-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 01/14/2023]
Abstract
The health catastrophe originated by COVID-19 pandemic construed profound impact on a global scale. However, a plethora of research studies corroborated convincing evidence conferring severity of infection of SARS-CoV-2 with the aberrant gut microbiome that strongly speculated its importance for development of novel therapeutic modalities. The intense exploration of probiotics has been envisaged to promote the healthy growth of the host, and restore intestinal microecological balance through various metabolic and physiological processes. The demystifying effect of probiotics cannot be defied, but there exists a strong skepticism related to their safety and efficacy. Therefore, molecular signature of probiotics termed as "postbiotics" are of paramount importance and there is continuous surge of utilizing postbiotics for enhancing health benefits, but little is explicit about their antiviral effects. Therefore, it is worth considering their prospective role in post-COVID regime that pave the way for exploring the pastoral vistas of postbiotics. Based on previous research investigations, the present article advocates prospective role of postbiotics in alleviating the health burden of viral infections, especially SARS-CoV-2. The article also posits current challenges and proposes a futuristic model describing the concept of "precision postbiotics" for effective therapeutic and preventive interventions that can be used for management of this deadly disease.
Collapse
Affiliation(s)
- Muskan Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Archana Bhati
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Kumari Priya
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - K K Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Barkha Singhal
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India.
| |
Collapse
|
31
|
Paniágua AL, Correia AF, Pereira LC, de Alencar BM, Silva FBA, Almeida RM, de Medeiros Nóbrega YK. Inhibitory effects of Lactobacillus casei Shirota against both Candida auris and Candida spp. isolates that cause vulvovaginal candidiasis and are resistant to antifungals. BMC Complement Med Ther 2021; 21:237. [PMID: 34556109 PMCID: PMC8461885 DOI: 10.1186/s12906-021-03405-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Vulvovaginal candidiasis (VVC), the second leading cause of genital infection in women of reproductive age, is caused by yeasts of the genus Candida. Treatment is usually empirical and performed with azoles, which have shown increasing ineffectiveness due to resistance from these species. This therapeutic challenge has led to the search for new treatment strategies. Lactobacillus spp. produce several components with microbicidal effects, such as lactic acid. These species are the main components of a healthy vaginal microbiota and have been used as probiotics. The aim of this work was to investigate the in vitro inhibitory effects of Lactobacillus casei Shirota on both the Candida spp. that cause VVC and on C. auris. METHODS The microbicidal effects of L. casei Shirota on the main VVC-causing species, C. albicans, C. tropicalis, C. norvegensis and C. parapsilosis, in addition to C. auris were investigated by counting the Colony-forming Units (CFUs) after cocultivation. The antifungal activity of lactic acid against these Candida strains was assessed using the microtiter broth dilution method to determine the minimum inhibitory concentrations (MICs). The effects of L. casei Shirota on hyphal and early biofilm formation was measured by optical microscopy. RESULTS L. casei Shirota showed inhibitory action against all tested Candida spp., ranging from 66.9 to 95.6% inhibition depending on the species. This inhibition is possibly related to the production of lactic acid, since lactic acid has shown microbicidal action against these same Candida spp. at a concentration of 5 mg/mL, which corresponds to half of the normal physiological concentration. In addition, L. casei Shirota was able to reduce the formation of C. albicans hyphae and early biofilms, showing strong anti-Candida effects. CONCLUSIONS These results suggest that L. casei Shirota has antifungal activity against the Candida species that cause VVC. L. casei also has microbicidal action against C. auris.
Collapse
Affiliation(s)
- Aline Lorenzoni Paniágua
- Clinical Microbiology and Immunology Laboratory, Department of Pharmacy, University of Brasilia, Campus Darcy Ribeiro, Brasilia, DF, 70910-900, Brazil
| | - Amabel Fernandes Correia
- Central Public Health Laboratory of the District Federal (LACEN-DF), Medical Biology Management, Center of Parasitology and Mycology, Brasília, DF, Brazil
| | - Lívia Custódio Pereira
- Vulvar Pathology Clinic, Department of Gynecology, Brasilia University Hospital, University of Brasilia, Brasilia, DF, Brazil
| | - Bruna Maciel de Alencar
- Clinical Microbiology and Immunology Laboratory, Department of Pharmacy, University of Brasilia, Campus Darcy Ribeiro, Brasilia, DF, 70910-900, Brazil
| | - Fabiana Brandão Alves Silva
- Clinical Microbiology and Immunology Laboratory, Department of Pharmacy, University of Brasilia, Campus Darcy Ribeiro, Brasilia, DF, 70910-900, Brazil
| | - Rosane Mansan Almeida
- Clinical Microbiology and Immunology Laboratory, Department of Pharmacy, University of Brasilia, Campus Darcy Ribeiro, Brasilia, DF, 70910-900, Brazil.
| | - Yanna Karla de Medeiros Nóbrega
- Clinical Microbiology and Immunology Laboratory, Department of Pharmacy, University of Brasilia, Campus Darcy Ribeiro, Brasilia, DF, 70910-900, Brazil
| |
Collapse
|
32
|
Lordello VB, Meneguin AB, de Annunzio SR, Taranto MP, Chorilli M, Fontana CR, Cavallini DCU. Orodispersible Film Loaded with Enterococcus faecium CRL183 Presents Anti- Candida albicans Biofilm Activity In Vitro. Pharmaceutics 2021; 13:pharmaceutics13070998. [PMID: 34209453 PMCID: PMC8309053 DOI: 10.3390/pharmaceutics13070998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Probiotic bacteria have been emerging as a trustworthy choice for the prevention and treatment of Candida spp. infections. This study aimed to develop and characterize an orodispersible film (ODF) for delivering the potentially probiotic Enterococcus faecium CRL 183 into the oral cavity, evaluating its in vitro antifungal activity against Candida albicans. Methods and Results: The ODF was composed by carboxymethylcellulose, gelatin, and potato starch, and its physical, chemical, and mechanical properties were studied. The probiotic resistance and viability during processing and storage were evaluated as well as its in vitro antifungal activity against C. albicans. The ODFs were thin, resistant, and flexible, with neutral pH and microbiologically safe. The probiotic resisted the ODF obtaining process, demonstrating high viability (>9 log10 CFU·g−1), up to 90 days of storage at room temperature. The Probiotic Film promoted 68.9% of reduction in fungal early biofilm and 91.2% in its mature biofilm compared to the group stimulated with the control film. Those results were confirmed through SEM images. Conclusion: The probiotic ODF developed is a promising strategy to prevent oral candidiasis, since it permits the local probiotic delivery, which in turn was able to reduce C. albicans biofilm formation.
Collapse
Affiliation(s)
- Virgínia Barreto Lordello
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
| | - Andréia Bagliotti Meneguin
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
| | - Sarah Raquel de Annunzio
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
| | - Maria Pía Taranto
- Reference Center for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145, Tucumán T4000 ILC, Argentina;
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
| | - Carla Raquel Fontana
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
- Correspondence: (C.R.F.); (D.C.U.C.)
| | - Daniela Cardoso Umbelino Cavallini
- School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km 01-s/n, Campus Ville, Araraquara 14800-903, Brazil; (V.B.L.); (A.B.M.); (S.R.d.A.); (M.C.)
- Correspondence: (C.R.F.); (D.C.U.C.)
| |
Collapse
|
33
|
Andrade JC, Kumar S, Kumar A, Černáková L, Rodrigues CF. Application of probiotics in candidiasis management. Crit Rev Food Sci Nutr 2021; 62:8249-8264. [PMID: 34024191 DOI: 10.1080/10408398.2021.1926905] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Candidiasis (e.g., oral, gastrointestinal, vaginal, urinary tract, systemic) is a worldwide growing problem, since antifungal resistance and immunosuppression states are rising. To address this problem, very few drugs are available for the treatment of Candida spp. infections. Therefore, novel therapeutic strategies are urgently required. Probiotics have been proposed for the prevention and treatment of bacterial infections due to their safety record and efficacy, however, little is still known about their potential role regarding fungal infections. The purpose of this review is to present an updated summary of the evidence of the antifungal effects of probiotics along with a discussion of their potential use as an alternative/complementary therapy against Candida spp. infections. Thus, we performed a literature search using appropriate keywords ("Probiotic + Candida", "Candidiasis treatment", and "Probiotic + candidiasis") to retrieve relevant studies (both preclinical and clinical) with special emphasis on the works published in the last 5 years. An increasing amount of evidence has shown the potential usefulness of probiotics in the management of oral and vulvovaginal candidiasis in recent years. Among other results, we found that, as for bacterial infections, Lactobacillus, Bifidobacterium, and Saccharomyces are the most studied and effective genus for this purpose. However, in other areas, particularly in skincandidiaisis, studies are low or lacking. Thus, further investigation is necessary including in vitro and in vivo studies to establish the usefulness of probiotics in the management of candidiasis.
Collapse
Affiliation(s)
- José Carlos Andrade
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, Gandra PRD, Portugal
| | - Sunil Kumar
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Célia F Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
34
|
Potential of probiotics for use as functional foods in patients with non-infectious gastric ulcer. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Petrova MI, Reid G, Ter Haar JA. Lacticaseibacillus rhamnosus GR-1, a.k.a. Lactobacillus rhamnosus GR-1: Past and Future Perspectives. Trends Microbiol 2021; 29:747-761. [PMID: 33865678 DOI: 10.1016/j.tim.2021.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Lacticaseibacillus rhamnosus GR-1 (LGR-1) (previously classified as Lactobacillus rhamnosus GR-1) is the most researched probiotic strain for women's health. Its various urogenital health effects, including a reduction in the recurrence of bacterial vaginosis and urinary-tract infection, are well documented. The strain has also been safely used by HIV-positive subjects, a portion of whom have reported reduced diarrhea and increased CD4 counts. Unlike most probiotic strains used for urogenital health, LGR-1 has been extensively studied for its properties, including its genomic and metabolic traits and its surface properties. This review aims to highlight the totality of research performed with LGR-1, to act as a rigorous scientific benchmark for probiotic microbes, especially for application to women's health.
Collapse
Affiliation(s)
- Mariya I Petrova
- Microbiome Insights and Probiotics Consultancy, Karlovo, Bulgaria.
| | - Gregor Reid
- Canadian Research and Development Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, Canada; Department of Microbiology and Immunology, The University of Western Ontario, London, Canada; Department of Surgery, The University of Western Ontario, London, Canada
| | | |
Collapse
|
36
|
Demin KA, Refeld AG, Bogdanova AA, Prazdnova EV, Popov IV, Kutsevalova OY, Ermakov AM, Bren AB, Rudoy DV, Chistyakov VA, Weeks R, Chikindas ML. Mechanisms of Candida Resistance to Antimycotics and Promising Ways to Overcome It: The Role of Probiotics. Probiotics Antimicrob Proteins 2021; 13:926-948. [PMID: 33738706 DOI: 10.1007/s12602-021-09776-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Pathogenic Candida and infections caused by those species are now considered as a serious threat to public health. The treatment of candidiasis is significantly complicated by the increasing resistance of pathogenic strains to current treatments and the stagnant development of new antimycotic drugs. Many species, such as Candida auris, have a wide range of resistance mechanisms. Among the currently used synthetic and semi-synthetic antifungal drugs, the most effective are azoles, echinocandins, polyenes, nucleotide analogs, and their combinations. However, the use of probiotic microorganisms and/or the compounds they produce is quite promising, although underestimated by modern pharmacology, to control the spread of pathogenic Candida species.
Collapse
Affiliation(s)
- Konstantin A Demin
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Aleksandr G Refeld
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Anna A Bogdanova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgenya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Igor V Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | | | - Alexey M Ermakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Anzhelica B Bren
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Dmitry V Rudoy
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A Chistyakov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia. .,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA. .,I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
37
|
Vij R, Hube B, Brunke S. Uncharted territories in the discovery of antifungal and antivirulence natural products from bacteria. Comput Struct Biotechnol J 2021; 19:1244-1252. [PMID: 33680363 PMCID: PMC7905183 DOI: 10.1016/j.csbj.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
Many fungi can cause deadly diseases in humans, and nearly every human will suffer from some kind of fungal infection in their lives. Only few antifungals are available, and some of these fail to treat intrinsically resistant species and the ever-increasing number of fungal strains that have acquired resistance. In nature, bacteria and fungi display versatile interactions that range from friendly co-existence to predation. The first antifungal drugs, nystatin and amphotericin B, were discovered in bacteria as mediators of such interactions, and bacteria continue to be an important source of antifungals. To learn more about the ecological bacterial-fungal interactions that drive the evolution of natural products and exploit them, we need to identify environments where such interactions are pronounced, and diverse. Here, we systematically analyze historic and recent developments in this field to identify potentially under-investigated niches and resources. We also discuss alternative strategies to treat fungal infections by utilizing the antagonistic potential of bacteria to target fungal stress pathways and virulence factors, and thereby suppress the evolution of antifungal resistance.
Collapse
Affiliation(s)
- Raghav Vij
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
| |
Collapse
|
38
|
Authier H, Salon M, Rahabi M, Bertrand B, Blondeau C, Kuylle S, Holowacz S, Coste A. Oral Administration of Lactobacillus helveticus LA401 and Lactobacillus gasseri LA806 Combination Attenuates Oesophageal and Gastrointestinal Candidiasis and Consequent Gut Inflammation in Mice. J Fungi (Basel) 2021; 7:57. [PMID: 33467443 PMCID: PMC7830595 DOI: 10.3390/jof7010057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is an opportunistic pathogen that causes mucosal gastrointestinal (GI) candidiasis tightly associated with gut inflammatory status. The emergence of drug resistance, the side effects of currently available antifungals and the high frequency of recurrent candidiasis indicate that new and improved therapeutics are needed. Probiotics have been suggested as a useful alternative for the management of candidiasis. We demonstrated that oral administration of Lactobacillus gasseri LA806 alone or combined with Lactobacillus helveticus LA401 in Candida albicans-infected mice decrease the Candida colonization of the oesophageal and GI tract, highlighting a protective role for these strains in C. albicans colonization. Interestingly, the probiotic combination significantly modulates the composition of gut microbiota towards a protective profile and consequently dampens inflammatory and oxidative status in the colon. Moreover, we showed that L. helveticus LA401 and/or L. gasseri LA806 orient macrophages towards a fungicidal phenotype characterized by a C-type lectin receptors signature composed of Dectin-1 and Mannose receptor. Our findings suggest that the use of the LA401 and LA806 combination might be a promising strategy to manage GI candidiasis and the inflammation it causes by inducing the intrinsic antifungal activities of macrophages. Thus, the probiotic combination is a good candidate for managing GI candidiasis by inducing fungicidal functions in macrophages while preserving the GI integrity by modulating the microbiota and inflammation.
Collapse
Affiliation(s)
- Hélène Authier
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| | - Marie Salon
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| | - Mouna Rahabi
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| | - Bénédicte Bertrand
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| | | | | | | | - Agnès Coste
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| |
Collapse
|
39
|
Antagonistic effect of isolated and commercially available probiotics on the growth of Candida albicans on acrylic resin denture surfaces. J Prosthet Dent 2020; 127:338-344. [PMID: 33250196 DOI: 10.1016/j.prosdent.2020.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
STATEMENT OF PROBLEM Biofilms can be retained on dental prostheses leading to the development of infections. The indiscriminate use of antifungal drugs can result in the development of microorganisms that are resistant to these antimicrobial agents. Whether probiotics are a suitable alternative for reducing the prevalence of oral candidiasis is unclear. PURPOSE The purpose of this in vitro study was to evaluate the influence of 6 different live strains of probiotics and 2 commercially available probiotic supplements used for inhibiting the growth of Candida albicans biofilm in heat-polymerized acrylic resin denture base material and to determine whether biofilm byproducts modify the surface of specimens. MATERIAL AND METHODS Biofilms of C. albicans were formed on acrylic resin specimens in the presence of probiotics and quantified by colony-forming units (CFUs), and the surface roughness (Ra) of the specimens was assessed before and after the formation of biofilms. The CFU and roughness data were analyzed by analysis of variance and the Tukey HSD test (α=.05). RESULTS A significant decrease in the number (CFU/mL) of C. albicans cells was found when they were cultured with 4 probiotics: B. lactis (P=.045), B. longum (P<.001), L. casei (P<.001), and L. helveticus (P<.001) and with the commercially available probiotic Prolive (P=.05). The Ra of specimens decreased after exposure to different microbial biofilms (P≤.05) except in 3 experimental groups. CONCLUSIONS In general, the tested probiotics had an antagonistic effect on the growth of C. albicans, and the surface of acrylic resin was altered after exposure to biofilm byproducts.
Collapse
|
40
|
Skin Fungal Infections in Children: Diagnostic Challenges. CURRENT FUNGAL INFECTION REPORTS 2020. [DOI: 10.1007/s12281-020-00407-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Widyarman AS, Ramajayanti T, Theodorea CF. Indonesian Strain of Lactobacillus reuteri Probiotic Reduces the Initial Biofilm Colonization. Open Dent J 2020. [DOI: 10.2174/1874210602014010544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
The benefits of probiotics for human health have long been proven. Probiotic Lactobacillus reuteri, can produce a beneficial broad-spectrum antibacterial compound called reuterin by metabolizing glycerol.
Objective:
The aim of the study was to investigate the effect of the Indonesian strain of L. reuteri LC382415 on mono- and dual-species Streptococcus mutans and Streptococcus sanguinis biofilms in vitro.
Methods:
Streptococcus mutans and S. sanguinis were cultured in BHI broth. Lactobacillus reuteri LC382415 was inoculated on MRS agar. The different concentrations effect of L. reuteri (1×104, 1×106, and 1×108 CFU/mL) with and without glycerol supplementation on microbial biofilms were examined using a biofilm assay after incubation for 1,3,6, and 24-h. The biofilm mass optical density was measured with a microplate spectrophotometer at 490 nm. Chlorhexidine gluconate (0.2%) was used as a positive control, and wells without treatment were used as negative controls.
Results:
A significant reduction in mono- and dual-species S. mutans and S. sanguinis biofilm formation was observed after treatment with all concentrations of L.reuteri and after all incubation periods (p<0.05) with or without glycerol supplementation. The concentration of 1×104 CFU/mL after 3-h incubation was the most effective in inhibiting biofilm formation, with 87.8% S. mutans, 95.9% S. sanguinis, and 80.4% dual-species biofilm reduction compared to the negative control (p<0.05).
Conclusion:
The Indonesian strain of L. reuteri effectively reduces mono- and dual-species S.mutans and S. sanguinis biofilms. This suggests that it may be useful in preventing biofilm formation in oral cavities. Future studies on the mechanism of action of this active component are warranted.
Collapse
|
42
|
Lombardi A, Ouanounou A. Fungal infections in dentistry: Clinical presentations, diagnosis, and treatment alternatives. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130:533-546. [DOI: 10.1016/j.oooo.2020.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/17/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
43
|
Rose Jørgensen M, Thestrup Rikvold P, Lichtenberg M, Østrup Jensen P, Kragelund C, Twetman S. Lactobacillus rhamnosus strains of oral and vaginal origin show strong antifungal activity in vitro. J Oral Microbiol 2020; 12:1832832. [PMID: 33178403 PMCID: PMC7594750 DOI: 10.1080/20002297.2020.1832832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Intake of probiotic bacteria may prevent oral Candida infection. Objective: To screen the antifungal activity of 14 Lactobacillus candidate strains of human origin, against six opportunistic C. albicans and non-albicans species. A second aim was to study the acid production of the four strains showing the strongest antifungal activity. Methods: We used an agar overlay growth inhibition assay to the assess the antifungal activity of the lactobacilli. The acid-producing capacity was measured with pH micro-sensors. Results: All 14 Lactobacillus candidates inhibited the growth of the Candida spp. The four best-performing strains were L. rhamnosus DSM 32992 (oral origin), L. rhamnosus DSM 32991 (oral), L. jensenii 22B42 (vaginal), and L. rhamnosus PB01 (vaginal). The difference between L. rhamnosus DSM 32992 and the other three strains was statistically significant (p < 0.001). The Candida spp. differed in susceptibility; C. parapsilosis was highly inhibited, while C. krusei was not or slightly inhibited. The oral L. rhamnosus DSM 32992 and DSM 32991 strains showed the lowest pH-values. Conclusion: Screening of probiotic lactobacilli showed significant strain-dependent variations in their antifungal capacity in a pH-dependent mode. Two strains of oral origin were most effective. A further characterization seems justified to elaborate on their probiotic properties.
Collapse
Affiliation(s)
- Mette Rose Jørgensen
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Thestrup Rikvold
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Camilla Kragelund
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Svante Twetman
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
de Alvarenga JA, de Barros PP, de Camargo Ribeiro F, Rossoni RD, Garcia MT, Dos Santos Velloso M, Shukla S, Fuchs BB, Shukla A, Mylonakis E, Junqueira JC. Probiotic Effects of Lactobacillus paracasei 28.4 to Inhibit Streptococcus mutans in a Gellan-Based Formulation. Probiotics Antimicrob Proteins 2020; 13:506-517. [PMID: 32980974 DOI: 10.1007/s12602-020-09712-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2020] [Indexed: 12/21/2022]
Abstract
Streptococcus mutans is considered to be a major bacterium involved in dental caries, and the control of virulence mechanisms is fundamental to prevent disease. Probiotics present a promising preventive method; however, the use of probiotics requires its incorporation into delivery materials to facilitate oral colonization. Thus, we performed a comprehensive study examining preventive effects of Lactobacillus paracasei 28.4-enriched gellan hydrogel materials to inhibit S. mutans in planktonic and biofilm states, addressing its influence in the production of extracellular polysaccharides (EPS) and altered gene expression of several cariogenic virulence factors. L. paracasei 28.4, a strain isolated from the oral cavity of a caries-free individual, was incorporated in three gellan hydrogels (0.5%, 0.75%, and 1% w/v). The pretreatment with probiotic-gellan formulations provided a release of L. paracasei cells over 24 h that was sufficient to inhibit the planktonic growth of S. mutans, independent of the gellan concentrations and pH variations. This pretreatment also had inhibitory activity against S. mutans biofilms, exhibiting a reduction of 0.57 to 1.54 log10 in CFU/mL (p < 0.0001) and a decrease of 68.8 to 71.3% in total biomass (p < 0.0001) compared with the control group. These inhibitory effects were associated with the decreased production of EPS by 80% (p < 0.0001) and the downregulation of luxS, brpA, gbpB, and gtfB genes. The gellan formulation containing L. paracasei 28.4 exhibited probiotic effects for preventing S. mutans growth, biofilm formation, and production of cariogenic factors to suggest possible use in tooth decay prevention.
Collapse
Affiliation(s)
- Janaína Araújo de Alvarenga
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Marisol Dos Santos Velloso
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Shashank Shukla
- School of Engineering, Brown University, Providence, RI, USA
| | - Beth Burgwyn Fuchs
- Rhode Island Hospital, Alpert Medical School & Brown University, Providence, RI, USA
| | - Anita Shukla
- School of Engineering, Brown University, Providence, RI, USA
| | - Eleftherios Mylonakis
- Rhode Island Hospital, Alpert Medical School & Brown University, Providence, RI, USA
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, Av. Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| |
Collapse
|
45
|
Jia L, Kosgey JC, Wang J, Yang J, Nyamao RM, Zhao Y, Teng X, Gao L, Wabo MC, Vasilyeva NV, Fang Y, Zhang F. Antimicrobial and mechanism of antagonistic activity of Bacillus sp. A2 against pathogenic fungus and bacteria: The implication on honey's regulatory mechanism on host's microbiota. Food Sci Nutr 2020; 8:4857-4867. [PMID: 32994947 PMCID: PMC7500754 DOI: 10.1002/fsn3.1770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Honey is thought to act against microbes and regulates microbiota balance, and this is mainly attributed to the enzymatic production of hydrogen peroxide, high osmolarity, and nonperoxidase factors, for example, lysozyme and botanical sources of nectar, while the effect of honey's probiotic is recently considered. The study of honey as source of beneficial microbes is understudied. The purpose of this study was to screen for the beneficial microorganisms in honey with antagonistic property against important pathogens and the mechanism of antimicrobial activity and thus play a beneficial role as probiotics. The results showed that one out of the fourteen bacterial isolates had antimicrobial activity and was identified as Bacillus Sp. A2 by 16S rRNA sequence and morphology. Antimicrobial activity of the isolate against C. albicans, E. coli, and S. aureus was confirmed by Agar well diffusion and liquid coculture assays, and the propagation of those microbes was significantly inhibited after treatment with the isolate Bacillus sp. A2 (p < .05) in comparison with untreated negative control and positive control (fluconazole, chloramphenicol, L. plantarum). The morphological changes including the distorted shape with indentations and leakages (SEM), damaged cell membrane, and cell wall with the disintegration and attachment of the Bacillus sp. A2 (TEM) in treated C. albicans were observed. Meanwhile, reactive oxygen species accumulation and decreased mitochondrial membrane potential were detected in treated C. albicans. These results revealed that the isolate Bacillus sp. A2 from honey has significant antimicrobial activity (p < .05) against C. albicans in comparison with untreated negative control and positive control L. plantarum, which depends on the accumulation of reactive oxygen species, mitochondrial damage, and the cell apoptosis. We concluded that the Bacillus sp. A2 possess the antimicrobial property, which may contribute to regulation of host's microbiota as a beneficial microbe or probiotic.
Collapse
Affiliation(s)
- Lina Jia
- Department of Microbiology WU Lien-Teh Institute Harbin Medical University Harbin China
| | - Janet Cheruiyot Kosgey
- School of biological and life sciences The Technical University of Kenya Nairobi Kenya
- Department of Microbiology WU Lien-Teh Institute Harbin Medical University Harbin China
| | - Jielin Wang
- Department of Microbiology WU Lien-Teh Institute Harbin Medical University Harbin China
| | - Jianxun Yang
- Department of Dermatology The 2nd Hospital of Harbin Medical University Harbin China
| | - Rose Magoma Nyamao
- Department of Microbiology WU Lien-Teh Institute Harbin Medical University Harbin China
- School of Medicine Kenyatta University Nairobi Kenya
| | - Yi Zhao
- Department of Microbiology WU Lien-Teh Institute Harbin Medical University Harbin China
| | - Xue Teng
- Department of Microbiology WU Lien-Teh Institute Harbin Medical University Harbin China
| | - Lei Gao
- Department of Microbiology WU Lien-Teh Institute Harbin Medical University Harbin China
| | | | - Natalia V Vasilyeva
- Department of Microbiology Kashkin Research Institute of Medical Mycology North-Western State Medical University named after I.I. Machnikov Saint Petersburg Russia
| | - Yong Fang
- Department of Microbiology WU Lien-Teh Institute Harbin Medical University Harbin China
| | - Fengmin Zhang
- Department of Microbiology WU Lien-Teh Institute Harbin Medical University Harbin China
| |
Collapse
|
46
|
Probiotics-A complete oral healthcare package. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:462-469. [PMID: 32907783 DOI: 10.1016/j.joim.2020.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/24/2020] [Indexed: 12/16/2022]
Abstract
Probiotics are living bacterial cells that have significant therapeutic potential for treating human infectious diseases. There is a huge market for probiotics in the pharmaceutical sector. They have been frequently used to treat the gastrointestinal diseases and improve gut immunity. In this review, the strains currently in use for manufacturing oral probiotic formulations are discussed. The review further recommends the use of probiotics for the control of various oral health disorders, like dental caries, periodontitis, gingivitis, halitosis, burning mouth syndrome, and oral cancer. Finally, this review also explores the use of various commercial probiotic products in maintaining oral health, their market values, and government acts and regulations that are relevant to the production and marketing of probiotics. Probiotics have tremendous therapeutic potential and more in-depth research must be done on these beneficial bacteria to make them one of the leading drugs in treating oral disorders.
Collapse
|
47
|
Rossoni RD, de Barros PP, Mendonça IDC, Medina RP, Silva DHS, Fuchs BB, Junqueira JC, Mylonakis E. The Postbiotic Activity of Lactobacillus paracasei 28.4 Against Candida auris. Front Cell Infect Microbiol 2020; 10:397. [PMID: 32850495 PMCID: PMC7417517 DOI: 10.3389/fcimb.2020.00397] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Candida auris has emerged as a medically important pathogen with considerable resistance to antifungal agents. The ability to produce biofilms is an important pathogenicity feature of this species that aids escape of host immune responses and antimicrobial agents. The objective of this study was to verify antifungal action using in vitro and in vivo models of the Lactobacillus paracasei 28.4 probiotic cells and postbiotic activity of crude extract (LPCE) and fraction 1 (LPF1), derived from L. paracasei 28.4 supernatant. Both live cells and cells free supernatant of L. paracasei 28.4 inhibited C. auris suggesting probiotic and postbiotic effects. The minimum inhibitory concentration (MIC) for LPCE was 15 mg/mL and ranges from 3.75 to 7.5 mg/mL for LPF1. Killing kinetics determined that after 24 h treatment with LPCE or LPF1 there was a complete reduction of viable C. auris cells compared to fluconazole, which decreased the initial inoculum by 1-logCFU during the same time period. LPCE and LPF1 significantly reduced the biomass (p = 0.0001) and the metabolic activity (p = 0.0001) of C. auris biofilm. There was also a total reduction (~108 CFU/mL) in viability of persister C. auris cells after treatment with postbiotic elements (p < 0.0001). In an in vivo study, injection of LPCE and LPF1 into G. mellonella larvae infected with C. auris prolonged survival of these insects compared to a control group (p < 0.05) and elicited immune responses by increasing the number of circulating hemocytes and gene expression of antimicrobial peptide galiomicin. We concluded that the L. paracasei 28.4 cells and postbiotic elements (LPCE and LPF1) have antifungal activity against planktonic cells, biofilms, and persister cells of C. auris. Postbiotic supplementation derived from L. paracasei 28.4 protected G. mellonella infected with C. auris and enhanced its immune status indicating a dual function in modulating a host immune response.
Collapse
Affiliation(s)
- Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil.,Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil.,Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Iatã do Carmo Mendonça
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Rebeca Previate Medina
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Dulce Helena Siqueira Silva
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
48
|
Minj J, Chandra P, Paul C, Sharma RK. Bio-functional properties of probiotic Lactobacillus: current applications and research perspectives. Crit Rev Food Sci Nutr 2020; 61:2207-2224. [PMID: 32519883 DOI: 10.1080/10408398.2020.1774496] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lactic acid bacteria as a starter culture are very important component in the fermentation process of dairy and food industry. Application of lactic acid bacteria as probiotic bacteria adds more functionality to the developed product. Gut colonizing bacteria have attractive benefits related to human health. Bio-functional properties such as antimicrobial activity, anti-inflammatory, ACE-inhibitory, antioxidant, antidiarrheal, antiviral, immunomodulatory, hypocholesterolemic, anti-diabetic and anti-cancer activities are the most applicable research areas of lactic acid bacteria. Different strains of Lactobacillus are generally consumed as probiotics and colonize the gastrointestinal tract. Sometimes these bacteria may possess antimicrobial activity and may positively influence the effect of antibiotics. Use of Lactobacillus spp. for the development of functional foods is one of the promising areas of current research and applications. Individual bacterial species have unique biological activity, which may vary from strains to strains and identification of this uniqueness could be helpful in the development of functional and therapeutic food products.
Collapse
Affiliation(s)
- Jagrani Minj
- Department of Food Science and Technology, Nebraska Innovation Campus (NIC), University of Nebraska, Lincoln, Nebraska, USA
| | | | - Catherine Paul
- Department of Food Science and Technology, Nebraska Innovation Campus (NIC), University of Nebraska, Lincoln, Nebraska, USA
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
49
|
Development of Probiotic Formulations for Oral Candidiasis Prevention: Gellan Gum as a Carrier To Deliver Lactobacillus paracasei 28.4. Antimicrob Agents Chemother 2020; 64:AAC.02323-19. [PMID: 32253208 DOI: 10.1128/aac.02323-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/29/2020] [Indexed: 01/12/2023] Open
Abstract
Probiotics might provide an alternative approach for the control of oral candidiasis. However, studies on the antifungal activity of probiotics in the oral cavity are based on the consumption of yogurt or other dietary products, and it is necessary to use appropriate biomaterials and specific strains to obtain probiotic formulations targeted for local oral administration. In this study, we impregnated gellan gum, a natural biopolymer used as a food additive, with a probiotic and investigated its antifungal activity against Candida albicans Lactobacillus paracasei 28.4, a strain recently isolated from the oral cavity of a caries-free individual, was incorporated in several concentrations of gellan gum (0.6% to 1% [wt/vol]). All tested concentrations could incorporate L. paracasei cells while maintaining bacterial viability. Probiotic-gellan gum formulations were stable for 7 days when stored at room temperature or 4°C. Long-term storage of bacterium-impregnated gellan gum was achieved when L. paracasei 28.4 was lyophilized. The probiotic-gellan gum formulations provided a release of L. paracasei cells over 24 h that was sufficient to inhibit the growth of C. albicans, with effects dependent on the cell concentrations incorporated into gellan gum. The probiotic-gellan gum formulations also had inhibitory activity against Candida sp. biofilms by reducing the number of Candida sp. cells (P < 0.0001), decreasing the total biomass (P = 0.0003), and impairing hyphae formation (P = 0.0002), compared to the control group which received no treatment. Interestingly, a probiotic formulation of 1% (wt/vol) gellan gum provided an oral colonization of L. paracasei in mice with approximately 6 log CFU/ml after 10 days. This formulation inhibited C. albicans growth (P < 0.0001), prevented the development of candidiasis lesions (P = 0.0013), and suppressed inflammation (P = 0.0006) compared to the mice not treated in the microscopic analysis of the tongue dorsum. These results indicate that gellan gum is a promising biomaterial and can be used as a carrier system to promote oral colonization for probiotics that prevent oral candidiasis.
Collapse
|
50
|
Hu L, Zhou P, Zhao W, Hua H, Yan Z. Fluorescence staining vs. routine KOH smear for rapid diagnosis of oral candidiasis—A diagnostic test. Oral Dis 2020; 26:941-947. [PMID: 32011074 DOI: 10.1111/odi.13293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/17/2019] [Accepted: 01/14/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Lijun Hu
- Department of Oral Medicine Peking University School and Hospital of Stomatology National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing China
- Department of Oral Medicine The Affiliated Stomatology Hospital Zhejiang University School of Medicine Key Laboratory of Oral Biomedical Research of Zhejiang Province Zhejiang University School of Stomatology Hangzhou China
| | - Peiru Zhou
- Department of Oral Medicine Peking University School and Hospital of Stomatology National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing China
| | - Weiwei Zhao
- Department of Oral Medicine Peking University School and Hospital of Stomatology National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing China
| | - Hong Hua
- Department of Oral Medicine Peking University School and Hospital of Stomatology National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing China
| | - Zhimin Yan
- Department of Oral Medicine Peking University School and Hospital of Stomatology National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing China
| |
Collapse
|