1
|
Liu Y, Moodley M, Pasipanodya JG, Gumbo T. Determining the Delamanid Pharmacokinetics/Pharmacodynamics Susceptibility Breakpoint Using Monte Carlo Experiments. Antimicrob Agents Chemother 2023; 67:e0140122. [PMID: 36877034 PMCID: PMC10112185 DOI: 10.1128/aac.01401-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/29/2023] [Indexed: 03/07/2023] Open
Abstract
Antimicrobial susceptibility testing, based on clinical breakpoints that incorporate pharmacokinetics/pharmacodynamics (PK/PD) and clinical outcomes, is becoming a new standard in guiding individual patient therapy as well as for drug resistance surveillance. However, for most antituberculosis drugs, breakpoints are instead defined by the epidemiological cutoff values of the MIC of phenotypically wild-type strains irrespective of PK/PD or dose. In this study, we determined the PK/PD breakpoint for delamanid by estimating the probability of target attainment for the approved dose administered at 100 mg twice daily using Monte Carlo experiments. We used the PK/PD targets (0- to 24-h area under the concentration-time curve to MIC) identified in a murine chronic tuberculosis model, hollow fiber system model of tuberculosis, early bactericidal activity studies of patients with drug-susceptible tuberculosis, and population pharmacokinetics in patients with tuberculosis. At the MIC of 0.016 mg/L, determined using Middlebrook 7H11 agar, the probability of target attainment was 100% in the 10,000 simulated subjects. The probability of target attainment fell to 25%, 40%, and 68% for PK/PD targets derived from the mouse model, the hollow fiber system model of tuberculosis, and patients, respectively, at the MIC of 0.031 mg/L. This indicates that an MIC of 0.016 mg/L is the delamanid PK/PD breakpoint for delamanid at 100 mg twice daily. Our study demonstrated that it is feasible to use PK/PD approaches to define a breakpoint for an antituberculosis drug.
Collapse
Affiliation(s)
- Yongge Liu
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland, USA
| | | | - Jotam G. Pasipanodya
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, Texas, USA
| | - Tawanda Gumbo
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, Texas, USA
| |
Collapse
|
2
|
Gordon O, Lee DE, Liu B, Langevin B, Ordonez AA, Dikeman DA, Shafiq B, Thompson JM, Sponseller PD, Flavahan K, Lodge MA, Rowe SP, Dannals RF, Ruiz-Bedoya CA, Read TD, Peloquin CA, Archer NK, Miller LS, Davis KM, Gobburu JVS, Jain SK. Dynamic PET-facilitated modeling and high-dose rifampin regimens for Staphylococcus aureus orthopedic implant-associated infections. Sci Transl Med 2021; 13:eabl6851. [PMID: 34851697 PMCID: PMC8693472 DOI: 10.1126/scitranslmed.abl6851] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is a major human pathogen causing serious implant–associated infections. Combination treatment with rifampin (10 to 15 mg/kg per day), which has dose-dependent activity, is recommended to treat S. aureus orthopedic implant–associated infections. Rifampin, however, has limited bone penetration. Here, dynamic 11C-rifampin positron emission tomography (PET) performed in prospectively enrolled patients with confirmed S. aureus bone infection (n = 3) or without orthopedic infection (n = 12) demonstrated bone/plasma area under the concentration-time curve ratio of 0.14 (interquartile range, 0.09 to 0.19), exposures lower than previously thought. PET-based pharmacokinetic modeling predicted rifampin concentration-time profiles in bone and facilitated studies in a mouse model of S. aureus orthopedic implant infection. Administration of high-dose rifampin (human equipotent to 35 mg/kg per day) substantially increased bone concentrations (2 mg/liter versus <0.2 mg/liter with standard dosing) in mice and achieved higher bacterial killing and biofilm disruption. Treatment for 4 weeks with high-dose rifampin and vancomycin was noninferior to the recommended 6-week treatment of standard-dose rifampin with vancomycin in mice (risk difference, −6.7% favoring high-dose rifampin regimen). High-dose rifampin treatment ameliorated antimicrobial resistance (0% versus 38%; P = 0.04) and mitigated adverse bone remodeling (P < 0.01). Last, whole-genome sequencing demonstrated that administration of high-dose rifampin in mice reduced selection of bacterial mutations conferring rifampin resistance (rpoB) and mutations in genes potentially linked to persistence. These data suggest that administration of high-dose rifampin is necessary to achieve optimal bone concentrations, which could shorten and improve treatments for S. aureus orthopedic implant infections.
Collapse
Affiliation(s)
- Oren Gordon
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Donald E. Lee
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Bessie Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Brooke Langevin
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Alvaro A. Ordonez
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dustin A. Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Babar Shafiq
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John M. Thompson
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul D. Sponseller
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kelly Flavahan
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Martin A. Lodge
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Steven P. Rowe
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert F. Dannals
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Camilo A. Ruiz-Bedoya
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Charles A. Peloquin
- Infectious Disease Pharmacokinetics Laboratory, Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL 32610, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Immunology, Janssen Research and Development, Spring House, PA 19477, USA
| | - Kimberly M. Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jogarao V. S. Gobburu
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Sanjay K. Jain
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Srivastava S, Gumbo T, Thomas T. Repurposing Cefazolin-Avibactam for the Treatment of Drug Resistant Mycobacterium tuberculosis. Front Pharmacol 2021; 12:776969. [PMID: 34744753 PMCID: PMC8569112 DOI: 10.3389/fphar.2021.776969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Background: While tuberculosis (TB) is curable and preventable, the most effective first-line antibiotics cannot kill multi-drug resistant (MDR) Mycobacterium tuberculosis (Mtb). Therefore, effective drugs are needed to combat MDR-TB, especially in children. Our objective was to repurpose cefazolin for MDR-TB treatment in children using principles of pharmacokinetic/pharmacodynamics (PK/PD). Methods: Cefazolin minimum inhibitory concentration (MIC) was identified in 17 clinical Mtb strains, with and without combination of the β-lactamase inhibitor, avibactam. Next, dose-ranging studies were performed using the intracellular hollow fiber model of TB (HFS-TB) to identify the optimal cefazolin exposure. Monte Carlo experiments were then performed in 10,000 children for optimal dose identification based on cumulative fraction of response (CFR) and Mtb susceptibility breakpoint in three age-groups. Results: Avibactam reduced the cefazolin MICs by five tube dilutions. Cefazolin-avibactam demonstrated maximal kill of 4.85 log10 CFU/mL in the intracellular HFS-TB over 28 days. The % time above MIC associated with maximal effect (EC80) was 46.76% (95% confidence interval: 43.04–50.49%) of dosing interval. For 100 mg/kg once or twice daily, the CFR was 8.46 and 61.39% in children <3 years with disseminated TB, 9.70 and 84.07% for 3–5 years-old children, and 17.20 and 76.13% for 12–15 years-old children. The PK/PD-derived susceptibility breakpoint was dose dependent at 1–2 mg/L. Conclusion: Cefazolin-avibactam combination demonstrates efficacy against both drug susceptible and MDR-TB clinical strains in the HFS-TB and could potentially be used to treat children with tuberculosis. Clinical studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Shashikant Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Centre, Tyler, TX, United States.,Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States.,Department of Pharmacy Practice, Texas Tech University Health Science Center, Dallas, TX, United States
| | - Tawanda Gumbo
- Praedicare Laboratories and Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, TX, United States
| | - Tania Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
4
|
Comparative Effectiveness of Methotrexate versus Methylprednisolone in Treatment Naïve Pulmonary Sarcoidosis Patients. Diagnostics (Basel) 2021; 11:diagnostics11081401. [PMID: 34441335 PMCID: PMC8392209 DOI: 10.3390/diagnostics11081401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Among those who study granulomatous diseases, sarcoidosis is of tremendous interest, not only because its cause is unknown, but also because it is still as much an enigma today as it was 150 years ago when Jonathan Hutchinson first described the cutaneous form of the disease as “livid papillary psoriasis”. This piece editorializes a comparative effectiveness study of methotrexate versus methylprednisolone in treatment naïve pulmonary sarcoidosis patients for CT-guided clinical responses and drug-related adverse events.
Collapse
|
5
|
Ordonez AA, Tucker EW, Anderson CJ, Carter CL, Ganatra S, Kaushal D, Kramnik I, Lin PL, Madigan CA, Mendez S, Rao J, Savic RM, Tobin DM, Walzl G, Wilkinson RJ, Lacourciere KA, Via LE, Jain SK. Visualizing the dynamics of tuberculosis pathology using molecular imaging. J Clin Invest 2021; 131:145107. [PMID: 33645551 PMCID: PMC7919721 DOI: 10.1172/jci145107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nearly 140 years after Robert Koch discovered Mycobacterium tuberculosis, tuberculosis (TB) remains a global threat and a deadly human pathogen. M. tuberculosis is notable for complex host-pathogen interactions that lead to poorly understood disease states ranging from latent infection to active disease. Additionally, multiple pathologies with a distinct local milieu (bacterial burden, antibiotic exposure, and host response) can coexist simultaneously within the same subject and change independently over time. Current tools cannot optimally measure these distinct pathologies or the spatiotemporal changes. Next-generation molecular imaging affords unparalleled opportunities to visualize infection by providing holistic, 3D spatial characterization and noninvasive, temporal monitoring within the same subject. This rapidly evolving technology could powerfully augment TB research by advancing fundamental knowledge and accelerating the development of novel diagnostics, biomarkers, and therapeutics.
Collapse
Affiliation(s)
- Alvaro A. Ordonez
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Pediatrics, and
| | - Elizabeth W. Tucker
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Claire L. Carter
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Shashank Ganatra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusets, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Philana L. Lin
- Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cressida A. Madigan
- Department of Biological Sciences, UCSD, San Diego, La Jolla, California, USA
| | - Susana Mendez
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology and Chemistry, Stanford University, Stanford, California, USA
| | - Rada M. Savic
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy and Medicine, UCSF, San Francisco, California, USA
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Gerhard Walzl
- SAMRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robert J. Wilkinson
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- Wellcome Centre for Infectious Diseases Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, United Kingdom
| | - Karen A. Lacourciere
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, and Tuberculosis Imaging Program, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Sanjay K. Jain
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Pediatrics, and
| |
Collapse
|
6
|
Alffenaar JWC, Gumbo T, Dooley KE, Peloquin CA, Mcilleron H, Zagorski A, Cirillo DM, Heysell SK, Silva DR, Migliori GB. Integrating Pharmacokinetics and Pharmacodynamics in Operational Research to End Tuberculosis. Clin Infect Dis 2021; 70:1774-1780. [PMID: 31560376 PMCID: PMC7146003 DOI: 10.1093/cid/ciz942] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) elimination requires innovative approaches. The new Global Tuberculosis Network (GTN) aims to conduct research on key unmet therapeutic and diagnostic needs in the field of TB elimination using multidisciplinary, multisectorial approaches. The TB Pharmacology section within the new GTN aims to detect and study the current knowledge gaps, test potential solutions using human pharmacokinetics informed through preclinical infection systems, and return those findings to the bedside. Moreover, this approach would allow prospective identification and validation of optimal shorter therapeutic durations with new regimens. Optimized treatment using available and repurposed drugs may have an increased impact when prioritizing a person-centered approach and acknowledge the importance of age, gender, comorbidities, and both social and programmatic environments. In this viewpoint article, we present an in-depth discussion on how TB pharmacology and the related strategies will contribute to TB elimination.
Collapse
Affiliation(s)
- Jan-Willem C Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia.,Westmead Hospital, Sydney, Australia
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Kelly E Dooley
- Division of Clinical Pharmacology, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - Helen Mcilleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Andre Zagorski
- Management Sciences for Health, Arlington, Virginia, USA
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Scott K Heysell
- University of Virginia, Division of Infectious Diseases and International Health, Charlottesville, Virginia, USA
| | - Denise Rossato Silva
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| |
Collapse
|
7
|
Sibandze DB, Magazi BT, Malinga LA, Maningi NE, Shey BA, Pasipanodya JG, Mbelle NN. Machine learning reveals that Mycobacterium tuberculosis genotypes and anatomic disease site impacts drug resistance and disease transmission among patients with proven extra-pulmonary tuberculosis. BMC Infect Dis 2020; 20:556. [PMID: 32736602 PMCID: PMC7393820 DOI: 10.1186/s12879-020-05256-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 07/14/2020] [Indexed: 11/10/2022] Open
Abstract
Background There is a general dearth of information on extrapulmonary tuberculosis (EPTB). Here, we investigated Mycobacterium tuberculosis (Mtb) drug resistance and transmission patterns in EPTB patients treated in the Tshwane metropolitan area, in South Africa. Methods Consecutive Mtb culture-positive non-pulmonary samples from unique EPTB patients underwent mycobacterial genotyping and were assigned to phylogenetic lineages and transmission clusters based on spoligotypes. MTBDRplus assay was used to search mutations for isoniazid and rifampin resistance. Machine learning algorithms were used to identify clinically meaningful patterns in data. We computed odds ratio (OR), attributable risk (AR) and corresponding 95% confidence intervals (CI). Results Of the 70 isolates examined, the largest cluster comprised 25 (36%) Mtb strains that belonged to the East Asian lineage. East Asian lineage was significantly more likely to occur within chains of transmission when compared to the Euro-American and East-African Indian lineages: OR = 10.11 (95% CI: 1.56–116). Lymphadenitis, meningitis and cutaneous TB, were significantly more likely to be associated with drug resistance: OR = 12.69 (95% CI: 1.82–141.60) and AR = 0.25 (95% CI: 0.06–0.43) when compared with other EPTB sites, which suggests that poor rifampin penetration might be a contributing factor. Conclusions The majority of Mtb strains circulating in the Tshwane metropolis belongs to East Asian, Euro-American and East-African Indian lineages. Each of these are likely to be clustered, suggesting on-going EPTB transmission. Since 25% of the drug resistance was attributable to sanctuary EPTB sites notorious for poor rifampin penetration, we hypothesize that poor anti-tuberculosis drug dosing might have a role in the development of resistance.
Collapse
Affiliation(s)
- Doctor B Sibandze
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.,National Tuberculosis Control Program, Ministry of Health, Manzini, Kingdom of Eswatini
| | - Beki T Magazi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.,Tshwane Division, National Health Laboratory Services, Pretoria, South Africa
| | - Lesibana A Malinga
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.,Tuberculosis Platform, South African Medical Research Council, Pretoria, South Africa
| | - Nontuthuko E Maningi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa
| | - Bong-Akee Shey
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa
| | - Jotam G Pasipanodya
- Center For Infectious Diseases Research and Experimental Therapeutics, Texas Tech University Health Sciences Center, 5920 Forest Park Road, Dallas, TX, 75235, USA. .,Praedicare Laboratories, 14830 Venture Drive, Dallas, TX, 75234, USA.
| | - Nontombi N Mbelle
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.,Tshwane Division, National Health Laboratory Services, Pretoria, South Africa
| |
Collapse
|
8
|
Ordonez AA, Wang H, Magombedze G, Ruiz-Bedoya CA, Srivastava S, Chen A, Tucker EW, Urbanowski ME, Pieterse L, Fabian Cardozo E, Lodge MA, Shah MR, Holt DP, Mathews WB, Dannals RF, Gobburu JVS, Peloquin CA, Rowe SP, Gumbo T, Ivaturi VD, Jain SK. Dynamic imaging in patients with tuberculosis reveals heterogeneous drug exposures in pulmonary lesions. Nat Med 2020; 26:529-534. [PMID: 32066976 DOI: 10.1038/s41591-020-0770-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/15/2020] [Indexed: 11/09/2022]
Abstract
Tuberculosis (TB) is the leading cause of death from a single infectious agent, requiring at least 6 months of multidrug treatment to achieve cure1. However, the lack of reliable data on antimicrobial pharmacokinetics (PK) at infection sites hinders efforts to optimize antimicrobial dosing and shorten TB treatments2. In this study, we applied a new tool to perform unbiased, noninvasive and multicompartment measurements of antimicrobial concentration-time profiles in humans3. Newly identified patients with rifampin-susceptible pulmonary TB were enrolled in a first-in-human study4 using dynamic [11C]rifampin (administered as a microdose) positron emission tomography (PET) and computed tomography (CT). [11C]rifampin PET-CT was safe and demonstrated spatially compartmentalized rifampin exposures in pathologically distinct TB lesions within the same patients, with low cavity wall rifampin exposures. Repeat PET-CT measurements demonstrated independent temporal evolution of rifampin exposure trajectories in different lesions within the same patients. Similar findings were recapitulated by PET-CT in experimentally infected rabbits with cavitary TB and confirmed using postmortem mass spectrometry. Integrated modeling of the PET-captured concentration-time profiles in hollow-fiber bacterial kill curve experiments provided estimates on the rifampin dosing required to achieve cure in 4 months. These data, capturing the spatial and temporal heterogeneity of intralesional drug PK, have major implications for antimicrobial drug development.
Collapse
Affiliation(s)
- Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hechuan Wang
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Gesham Magombedze
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor University Medical Center and Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Camilo A Ruiz-Bedoya
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor University Medical Center and Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Allen Chen
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth W Tucker
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael E Urbanowski
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lisa Pieterse
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - E Fabian Cardozo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Martin A Lodge
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maunank R Shah
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel P Holt
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William B Mathews
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Dannals
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jogarao V S Gobburu
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor University Medical Center and Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Vijay D Ivaturi
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Chirehwa MT, Velásquez GE, Gumbo T, McIlleron H. Quantitative assessment of the activity of antituberculosis drugs and regimens. Expert Rev Anti Infect Ther 2019; 17:449-457. [PMID: 31144539 PMCID: PMC6581212 DOI: 10.1080/14787210.2019.1621747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
Introduction: Identification of optimal drug doses and drug combinations is crucial for optimized treatment of tuberculosis. Areas covered: An unprecedented level of research activity involving multiple approaches is seeking to improve tuberculosis treatment. This report is a review of the quantitative methods currently used on clinical data sets to identify drug exposure targets and optimal drug combinations for tuberculosis treatment. A high-level summary of the methods, including the strengths and weaknesses of each method and potential methodological improvements is presented. Methods incorporating data generated from multiple sources such as in vitro and clinical studies, and their potential to provide better estimates of pharmacokinetic/pharmacodynamic (PK/PD) targets, are discussed. PK/PD relationships identified are compared between different studies and data analysis methods. Expert opinion: The relationships between drug exposures and tuberculosis treatment outcomes are complex and require analytical methods capable of handling the multidimensional nature of the relationships. The choice of a method is guided by its complexity, interpretability of results, and type of data available.
Collapse
Affiliation(s)
- Maxwell T. Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Gustavo E. Velásquez
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| |
Collapse
|