1
|
Naseem R, Howe N, Williams CJ, Pretorius S, Green K. What diagnostic tests are available for respiratory infections or pulmonary exacerbations in cystic fibrosis: A scoping literature review. Respir Investig 2024; 62:817-831. [PMID: 39024929 DOI: 10.1016/j.resinv.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
A scoping review methodological framework formed the basis of this review. A search of two electronic databases captured relevant literature published from 2013. 1184 articles were screened, 200 of which met inclusion criteria. Included studies were categorised as tests for either respiratory infections OR pulmonary exacerbations. Data were extracted to ascertain test type, sample type, and indication of use for each test type. For infection, culture is the most common testing method, particularly for bacterial infections, whereas PCR is utilised more for the diagnosis of viral infections. Spirometry tests, indicating lung function, facilitate respiratory infection diagnoses. There is no clear definition of what an exacerbation is in persons with CF. A clinical checklist with risk criteria can determine if a patient is experiencing an exacerbation event, however the diagnosis is clinician-led and will vary between individuals. Fuchs criteria are one of the most frequently used tests to assess signs and symptoms of exacerbation in persons with CF. This scoping review highlights the development of home monitoring tests to facilitate earlier and easier diagnoses, and the identification of novel biomarkers for indication of infections/exacerbations as areas of current research and development. Research is particularly prevalent regarding exhaled breath condensate and volatile organic compounds as an alternative sampling/biomarker respectively for infection diagnosis. Whilst there are a wide range of tests available for diagnosing respiratory infections and/or exacerbations, these are typically used clinically in combination to ensure a rapid, accurate diagnosis which will ultimately benefit both the patient and clinician.
Collapse
Affiliation(s)
- Raasti Naseem
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Nicola Howe
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | - Cameron J Williams
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Sara Pretorius
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Kile Green
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
2
|
Wetzstein N, Diricks M, Anton TB, Andres S, Kuhns M, Kohl TA, Schwarz C, Lewin A, Kehrmann J, Kahl BC, Schmidt A, Zimmermann S, Jansson MK, Baron SA, Schulthess B, Hogardt M, Friesen I, Niemann S, Wichelhaus TA. Clinical and genomic features of Mycobacterium avium complex: a multi-national European study. Genome Med 2024; 16:86. [PMID: 38982539 PMCID: PMC11232273 DOI: 10.1186/s13073-024-01359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The Mycobacterium avium complex (MAC) comprises the most frequent non-tuberculous mycobacteria (NTM) in Central Europe and currently includes twelve species. M. avium (MAV), M. intracellulare subsp. intracellulare (MINT), and M. intracellulare subsp. chimaera (MCH) are clinically most relevant. However, the population structure and genomic landscape of MAC linked with potential pathobiological differences remain little investigated. METHODS Whole genome sequencing (WGS) was performed on a multi-national set of MAC isolates from Germany, France, and Switzerland. Phylogenetic analysis was conducted, as well as plasmids, resistance, and virulence genes predicted from WGS data. Data was set into a global context with publicly available sequences. Finally, detailed clinical characteristics were associated with genomic data in a subset of the cohort. RESULTS Overall, 610 isolates from 465 patients were included. The majority could be assigned to MAV (n = 386), MCH (n = 111), and MINT (n = 77). We demonstrate clustering with less than 12 SNPs distance of isolates obtained from different patients in all major MAC species and the identification of trans-European or even trans-continental clusters when set into relation with 1307 public sequences. However, none of our MCH isolates clustered closely with the heater-cooler unit outbreak strain Zuerich-1. Known plasmids were detected in MAV (325/1076, 30.2%), MINT (62/327, 19.0%), and almost all MCH-isolates (457/463, 98.7%). Predicted resistance to aminoglycosides or macrolides was rare. Overall, there was no direct link between phylogenomic grouping and clinical manifestations, but MCH and MINT were rarely found in patients with extra-pulmonary disease (OR 0.12 95% CI 0.04-0.28, p < 0.001 and OR 0.11 95% CI 0.02-0.4, p = 0.004, respectively) and MCH was negatively associated with fulfillment of the ATS criteria when isolated from respiratory samples (OR 0.28 95% CI 0.09-0.7, p = 0.011). With 14 out of 43 patients with available serial isolates, co-infections or co-colonizations with different strains or even species of the MAC were frequent (32.6%). CONCLUSIONS This study demonstrates clustering and the presence of plasmids in a large proportion of MAC isolates in Europe and in a global context. Future studies need to urgently define potential ways of transmission of MAC isolates and the potential involvement of plasmids in virulence.
Collapse
Affiliation(s)
- Nils Wetzstein
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital, Theodor-Stern-Kai 7, FrankfurtFrankfurt Am Main, 60590, Germany.
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
| | - Margo Diricks
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Thomas B Anton
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital, Theodor-Stern-Kai 7, FrankfurtFrankfurt Am Main, 60590, Germany
| | - Sönke Andres
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Martin Kuhns
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Carsten Schwarz
- Division of Cystic Fibrosis, CF Center Westbrandenburg, Campus Potsdam, Klinikum Potsdam, Potsdam, Germany
| | - Astrid Lewin
- Unit Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Annika Schmidt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz K Jansson
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Sophie A Baron
- Faculté de Médecine Et de Pharmacie, IRD, APHM, Aix Marseille Univ, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Bettina Schulthess
- National Reference Laboratory for Mycobacteria, Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Michael Hogardt
- Institute of Medical Microbiology and Infection Control, Goethe University, University Hospital, FrankfurtFrankfurt Am Main, Germany
- German National Consiliary Laboratory On Cystic Fibrosis Bacteriology, Frankfurt Am Main, Germany
| | - Inna Friesen
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas A Wichelhaus
- Institute of Medical Microbiology and Infection Control, Goethe University, University Hospital, FrankfurtFrankfurt Am Main, Germany
| |
Collapse
|
3
|
Gross JE, Finklea JD, Caceres SM, Poch KR, Hasan NA, Jia F, Epperson LE, Lipner EM, Vang CK, Honda JR, Strand MJ, Nogueira de Moura VC, Daley CL, Strong M, Nick JA. Genomic epidemiology of Mycobacterium abscessus at an adult cystic fibrosis programme reveals low potential for healthcare-associated transmission. ERJ Open Res 2024; 10:00165-2024. [PMID: 38978544 PMCID: PMC11228611 DOI: 10.1183/23120541.00165-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 07/10/2024] Open
Abstract
Rationale Nontuberculous mycobacteria (NTM) has been reported to be transmitted between people with cystic fibrosis (CF) attending CF centres. A suspected Mycobacterium abscessus outbreak was investigated at the University of Texas Southwestern (UTSW) Adult CF Program using a combination of pathogen genomic sequencing and epidemiologic methods. The objectives of the present study were to apply the Healthcare-Associated Links in Transmission of NTM (HALT NTM) study to investigate the occurrence of potential healthcare-associated transmission and/or acquisition of NTM among people with CF infected with genetically similar NTM isolates. Methods Whole-genome sequencing of respiratory M. abscessus isolates from 50 people with CF receiving care at UTSW was performed to identify genetically similar isolates. Epidemiologic investigation, comparison of respiratory and environmental isolates, and home residence watershed mapping were studied. Measurements and main results Whole-genome sequencing analysis demonstrated seven clusters of genetically similar M. abscessus (four ssp. abscessus and three ssp. massiliense). Epidemiologic investigation revealed potential opportunities for healthcare-associated transmission within three of these clusters. Healthcare environmental sampling did not recover M. abscessus, but did recover four human disease-causing species of NTM. No subjects having clustered infections lived in the same home residence watershed. Some subjects were infected with more than one M. abscessus genotype, both within and outside of the dominant circulating clones. Conclusions Healthcare-associated person-to-person transmission of M. abscessus appears to be rare at this centre. However, polyclonal infections of M. abscessus species and subspecies, not originating from the endemic hospital environment, suggest multiple shared modes of acquisition outside the healthcare setting.
Collapse
Affiliation(s)
- Jane E Gross
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - James D Finklea
- Department of Medicine, University of Texas Southwestern, Dallas, TX, USA
| | | | - Katie R Poch
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Nabeeh A Hasan
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Fan Jia
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - L Elaine Epperson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Ettie M Lipner
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charmie K Vang
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Jennifer R Honda
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Matthew J Strand
- Division of Biostatistics, National Jewish Health, Denver, CO, USA
| | | | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, CO, USA
| | - Michael Strong
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
4
|
Buenestado-Serrano S, Martínez-Lirola M, Herranz-Martín M, Esteban J, Broncano-Lavado A, Molero-Salinas A, Sanz-Pérez A, Blázquez J, Ruedas-López A, Toro C, López-Roa P, Domingo D, Zamarrón E, Ruiz Serrano MJ, Muñoz P, Pérez-Lago L, García de Viedma D. Microevolution, reinfection and highly complex genomic diversity in patients with sequential isolates of Mycobacterium abscessus. Nat Commun 2024; 15:2717. [PMID: 38548737 PMCID: PMC10979023 DOI: 10.1038/s41467-024-46552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/01/2024] [Indexed: 04/01/2024] Open
Abstract
Mycobacterium abscessus is an opportunistic, extensively drug-resistant non-tuberculous mycobacterium. Few genomic studies consider its diversity in persistent infections. Our aim was to characterize microevolution/reinfection events in persistent infections. Fifty-three sequential isolates from 14 patients were sequenced to determine SNV-based distances, assign resistance mutations and characterize plasmids. Genomic analysis revealed 12 persistent cases (0-13 differential SNVs), one reinfection (15,956 SNVs) and one very complex case (23 sequential isolates over 192 months), in which a first period of persistence (58 months) involving the same genotype 1 was followed by identification of a genotype 2 (76 SNVs) in 6 additional alternating isolates; additionally, ten transient genotypes (88-243 SNVs) were found. A macrolide resistance mutation was identified from the second isolate. Despite high diversity, the genotypes shared a common phylogenetic ancestor and some coexisted in the same specimens. Genomic analysis is required to access the true intra-patient complexity behind persistent infections involving M. abscessus.
Collapse
Affiliation(s)
- Sergio Buenestado-Serrano
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Escuela de Doctorado, Universidad de Alcalá, Plaza de San Diego, s/n, 28801, Alcalá de Henares, Madrid, Spain
| | | | - Marta Herranz-Martín
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain
| | - Jaime Esteban
- Servicio de Microbiología, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, Hospital Universitario La Fundación Jiménez Díaz, Av. de los Reyes Católicos, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas - CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Broncano-Lavado
- Servicio de Microbiología, Instituto de Investigación Sanitaria Fundación Jiménez Díaz-UAM, Hospital Universitario La Fundación Jiménez Díaz, Av. de los Reyes Católicos, 28040, Madrid, Spain
| | - Andrea Molero-Salinas
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain
| | - Amadeo Sanz-Pérez
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain
| | - Jesús Blázquez
- Department of Microbial Biotechnology, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), C/ Darwin, 3, Campus de la Universidad Autónoma-Cantoblanco, 28049, Madrid, Spain
| | - Alba Ruedas-López
- Microbiología y Enfermedades Infecciosas, Hospital Universitario 12 de Octubre, Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Carlos Toro
- Servicio de Microbiología y Parasitología, Hospital Universitario La Paz - IdiPAZ, Madrid, Spain
| | - Paula López-Roa
- Microbiología y Enfermedades Infecciosas, Hospital Universitario 12 de Octubre, Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Diego Domingo
- Servicio de Microbiología, Instituto de Investigación Sanitaria, Hospital Universitario La Princesa, Calle de Diego de León, 62, 28006, Madrid, Spain
| | - Ester Zamarrón
- Servicio de Neumología, Hospital Universitario La Paz -IdiPAZ, Madrid, Spain
| | - María Jesús Ruiz Serrano
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias - CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Muñoz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias - CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina, Universidad Complutense, Av. Séneca, 2, 28040, Madrid, Spain
| | - Laura Pérez-Lago
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain.
| | - Darío García de Viedma
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Doctor Esquerdo, 46, 28007, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), C/Doctor Esquerdo, 46, 28007, Madrid, Spain.
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias - CIBERES, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Kwak N, Park J, Kim SJ, Kim JY, Kim TS, Yoon JK, Whang J, Lee W, Shin SJ, Yim JJ. Genetic stability of Mycobacterium abscessus during antibiotic treatment. J Glob Antimicrob Resist 2024; 36:45-49. [PMID: 38128724 DOI: 10.1016/j.jgar.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVES Genetic changes in Mycobacterium abscessus during antibiotic treatment are not fully understood. This study aimed to investigate the genetic changes in M. abscessus in patients receiving antibiotic treatment, and their clinical implications. METHODS Pretreatment and 12-month post-treatment M. abscessus isolates were obtained from patients with M. abscessus pulmonary disease. Isolates from each time point were separated into six groups based on their distinctive morphological characteristics. Twenty-four isolates, comprising 12 from patient A exhibiting progressive disease and 12 from patient B demonstrating stable disease, underwent sequencing. Subsequently, minimal inhibitory concentrations (MICs) for the administered antibiotics were measured. RESULTS Persistent infection with a single strain was observed in patients A and B. During 12 months of treatment, MICs for administered drugs did not generally change over time in either patient and single nucleotide variations (SNV) associated with antimicrobial resistance (rrl, rrs, erm(41), gyrA, gyrB, whiB7 and hflX) were not mutated. Although not significant, 47 and 52 non-synonymous SNVs occurred in M. abscessus from patients A and B, respectively, and the accumulation of these SNVs differed in patients A and B, except for five SNVs. The most variable positions were within a probable NADH-dependent glutamate synthase gene and a putative YrbE family protein gene in patients A and B, respectively. CONCLUSIONS Persistent infections by a single strain of M. abscessus were observed in two patients with different clinical courses. Genetic changes in M. abscessus during antibiotic treatment were relatively stable in these patients. CLINICAL TRIALS IDENTIFIER NCT01616745 (ClinicalTrials.gov ID).
Collapse
Affiliation(s)
- Nakwon Kwak
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, The Republic of Korea
| | - Jiyun Park
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, The Republic of Korea
| | - Sun Ju Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, The Republic of Korea
| | - Joong-Yub Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, The Republic of Korea
| | - Taek Soo Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, The Republic of Korea
| | - Jung-Ki Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, The Republic of Korea
| | - Jake Whang
- Department of Research and Development, Korean Institute of Tuberculosis, Osong, The Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, The Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, The Republic of Korea
| | - Jae-Joon Yim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, The Republic of Korea.
| |
Collapse
|
6
|
Cao Yao JC, Navas Méndez J, Tórtola Fernández MT. Analysis of Phenotypic and Genotypic Susceptibility to Clarithromycin and Amikacin of Mycobacterium abscessus Complex Strains Isolated from Cystic Fibrosis Patients. Microorganisms 2023; 11:2897. [PMID: 38138041 PMCID: PMC10745751 DOI: 10.3390/microorganisms11122897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Mycobacterium abscessus complex infections are ever on the rise. To curb their increasing evolution, we performed an in-depth study of 43 clinical isolates of cystic fibrosis patients obtained from 2009 to 2020. We identified their subspecies, uncovered their genotypic resistance profiles, characterised their antibiotic-resistant genes, and assessed their phenotypic antibiotic susceptibilities. The phenotypic and genotypic methods showed total agreement in terms of resistance to clarithromycin and amikacin. Of the 43 clinical strains, 28 belonged to M. abscessus subsp. abscessus (65.1%), 13 to M. abscessus subsp. massiliense (30.2%), and 2 to M. abscessus subsp. bolletii (4.6%). The resistant rates for clarithromycin and amikacin, the two main drugs against M. abscessus complex pulmonary infections, were 64.2% and 14.2%, respectively. We found three strains of M. abscessus subsp. abscessus that showed heteroresistance in the rrl and rrs genes, and these strains also presented double-resistance since they were macrolide- and aminoglycoside-resistant. M. abscessus subsp. abscessus showed a high minimum inhibitory concentration (MIC) and a resistant percentage larger than or equal to 88% to cefoxitin, ciprofloxacin, moxifloxacin, doxycycline, imipenem, and trimethoprim-sulfamethoxazole. These results show a panorama of the high resistance of Mycobacterium abscessus complex to current drugs for cystic fibrosis patients. Thus, other treatment methods are urgently needed.
Collapse
Affiliation(s)
- Juan Carlos Cao Yao
- Department of Molecular Biology and Biomedicine, University of Cantabria, 39011 Santander, Spain
| | - Jesús Navas Méndez
- Department of Molecular Biology and Biomedicine, University of Cantabria, 39011 Santander, Spain
| | - María Teresa Tórtola Fernández
- Mycobacteria Unit, Clinical Laboratories, Microbiology Service, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona; 08035 Barcelona, Spain
| |
Collapse
|
7
|
Busby EJ, Doyle RM, Leboreiro Babe C, Harris KA, Mack D, Méndez-Cervantes G, O’Sullivan DM, Pang V, Sadouki Z, Solanki P, Huggett JF, McHugh TD, Wey EQ. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Molecular Typing of Acinetobacter baumannii in Comparison with Orthogonal Methods. Microbiol Spectr 2023; 11:e0499522. [PMID: 37154773 PMCID: PMC10269802 DOI: 10.1128/spectrum.04995-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Colonization and subsequent health care-associated infection (HCAI) with Acinetobacter baumannii are a concern for vulnerable patient groups within the hospital setting. Outbreaks involving multidrug-resistant strains are associated with increased patient morbidity and mortality and poorer overall outcomes. Reliable molecular typing methods can help to trace transmission routes and manage outbreaks. In addition to methods deployed by reference laboratories, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) may assist by making initial in-house judgments on strain relatedness. However, limited studies on method reproducibility exist for this application. We applied MALDI-TOF MS typing to A. baumannii isolates associated with a nosocomial outbreak and evaluated different methods for data analysis. In addition, we compared MALDI-TOF MS with whole-genome sequencing (WGS) and Fourier transform infrared spectroscopy (FTIR) as orthogonal methods to further explore their resolution for bacterial strain typing. A related subgroup of isolates consistently clustered separately from the main outbreak group by all investigated methods. This finding, combined with epidemiological data from the outbreak, indicates that these methods identified a separate transmission event unrelated to the main outbreak. However, the MALDI-TOF MS upstream approach introduced measurement variability impacting method reproducibility and limiting its reliability as a standalone typing method. Availability of in-house typing methods with well-characterized sources of measurement uncertainty could assist with rapid and dependable confirmation (or denial) of suspected transmission events. This work highlights some of the steps to be improved before such tools can be fully integrated into routine diagnostic service workflows for strain typing. IMPORTANCE Managing the transmission of antimicrobial resistance necessitates reliable methods for tracking outbreaks. We compared the performance of MALDI-TOF MS with orthogonal approaches for strain typing, including WGS and FTIR, for Acinetobacter baumannii isolates correlated with a health care-associated infection (HCAI) event. Combined with epidemiological data, all methods investigated identified a group of isolates that were temporally and spatially linked to the outbreak, yet potentially attributed to a separate transmission event. This may have implications for guiding infection control strategies during an outbreak. However, the technical reproducibility of MALDI-TOF MS needs to be improved for it to be employed as a standalone typing method, as different stages of the experimental workflow introduced bias influencing interpretation of biomarker peak data. Availability of in-house methods for strain typing of bacteria could improve infection control practices following increased reports of outbreaks of antimicrobial-resistant organisms during the COVID-19 pandemic, related to sessional usage of personal protective equipment (PPE).
Collapse
Affiliation(s)
- Eloise J. Busby
- National Measurement Laboratory, LGC, Teddington, Middlesex, United Kingdom
| | - Ronan M. Doyle
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- Clinical Research Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Clara Leboreiro Babe
- Centre for Clinical Microbiology, Royal Free Campus, Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Kathryn A. Harris
- Virology Department, ESEL Pathology Partnership, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Damien Mack
- Centre for Clinical Microbiology, Royal Free Campus, Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
- Royal Free Hospital NHS Foundation Trust, London, United Kingdom
| | | | | | - Vicky Pang
- Royal Free Hospital NHS Foundation Trust, London, United Kingdom
| | - Zahra Sadouki
- Centre for Clinical Microbiology, Royal Free Campus, Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Priya Solanki
- Centre for Clinical Microbiology, Royal Free Campus, Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Jim F. Huggett
- National Measurement Laboratory, LGC, Teddington, Middlesex, United Kingdom
- School of Biosciences & Medicine, Faculty of Health & Medical Science, University of Surrey, Guildford, United Kingdom
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, Royal Free Campus, Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Emmanuel Q. Wey
- Centre for Clinical Microbiology, Royal Free Campus, Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
- Royal Free Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
8
|
Bolden N, Mell JC, Logan JB, Planet PJ. Phylogenomics of nontuberculous mycobacteria respiratory infections in people with cystic fibrosis. Paediatr Respir Rev 2023; 46:63-70. [PMID: 36828670 PMCID: PMC10659050 DOI: 10.1016/j.prrv.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Nontuberculous mycobacteria (NTM) can cause severe pulmonary disease in people with cystic fibrosis (pwCF). These infections present unique challenges for diagnosis and treatment, prompting a recent interest in understanding NTM transmission and pathogenesis during chronic infection. Major gaps remain in our knowledge regarding basic pathogenesis, immune evasion strategies, population dynamics, recombination potential, and the evolutionary implications of host and antibiotic pressures of long-term NTM infections in pwCF. Phylogenomic techniques have emerged as an important tool for tracking global patterns of transmission and are beginning to be used to ask fundamental biological questions about adaptation to the host during pathogenesis. In this review, we discuss the burden of NTM lung disease (NTM-LD), highlight the use of phylogenomics in NTM research, and address the clinical implications associated with these studies.
Collapse
Affiliation(s)
- Nicholas Bolden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Joshua Chang Mell
- Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, PA, United States; Department of Microbiology & Immunology, Drexel University, Philadelphia, PA, United States.
| | - Jennifer Bouso Logan
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pulmonary Medicine and Cystic Fibrosis Center, Lehigh Valley Reilly Children's Hospital, PA, United States.
| | - Paul J Planet
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Comparative Genomics, American Museum of Natural History, New York, NY, United States.
| |
Collapse
|
9
|
Commins N, Sullivan MR, McGowen K, Koch EM, Rubin EJ, Farhat M. Mutation rates and adaptive variation among the clinically dominant clusters of Mycobacterium abscessus. Proc Natl Acad Sci U S A 2023; 120:e2302033120. [PMID: 37216535 PMCID: PMC10235944 DOI: 10.1073/pnas.2302033120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Mycobacterium abscessus (Mab) is a multidrug-resistant pathogen increasingly responsible for severe pulmonary infections. Analysis of whole-genome sequences (WGS) of Mab demonstrates dense genetic clustering of clinical isolates collected from disparate geographic locations. This has been interpreted as supporting patient-to-patient transmission, but epidemiological studies have contradicted this interpretation. Here, we present evidence for a slowing of the Mab molecular clock rate coincident with the emergence of phylogenetic clusters. We performed phylogenetic inference using publicly available WGS from 483 Mab patient isolates. We implement a subsampling approach in combination with coalescent analysis to estimate the molecular clock rate along the long internal branches of the tree, indicating a faster long-term molecular clock rate compared to branches within phylogenetic clusters. We used ancestry simulation to predict the effects of clock rate variation on phylogenetic clustering and found that the degree of clustering in the observed phylogeny is more easily explained by a clock rate slowdown than by transmission. We also find that phylogenetic clusters are enriched in mutations affecting DNA repair machinery and report that clustered isolates have lower spontaneous mutation rates in vitro. We propose that Mab adaptation to the host environment through variation in DNA repair genes affects the organism's mutation rate and that this manifests as phylogenetic clustering. These results challenge the model that phylogenetic clustering in Mab is explained by person-to-person transmission and inform our understanding of transmission inference in emerging, facultative pathogens.
Collapse
Affiliation(s)
- Nicoletta Commins
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Mark R. Sullivan
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Kerry McGowen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Evan M. Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA02114
| |
Collapse
|
10
|
Sarrazin M, Martin BP, Avellan R, Gnawali GR, Poncin I, Le Guenno H, Spilling CD, Cavalier JF, Canaan S. Synthesis and Biological Characterization of Fluorescent Cyclipostins and Cyclophostin Analogues: New Insights for the Diagnosis of Mycobacterial-Related Diseases. ACS Infect Dis 2022; 8:2564-2578. [PMID: 36379042 DOI: 10.1021/acsinfecdis.2c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with cystic fibrosis (CF) have a significantly higher risk of acquiring nontuberculous mycobacteria infections, predominantly due to Mycobacterium abscessus, than the healthy population. Because M. abscessus infections are a major cause of clinical decline and morbidity in CF patients, improving treatment and the detection of this mycobacterium in the context of a polymicrobial culture represents a critical component to better manage patient care. We report here the synthesis of fluorescent Dansyl derivatives of four active cyclipostins and cyclophostin analogues (CyCs) and provide new insights regarding the CyC's lack of activity against Gram-negative and Gram-positive bacteria, and above all into their mode of action against intramacrophagic M. abscessus cells. Our results pointed out that the intracellularly active CyC accumulate in acidic compartments within macrophage cells, that this accumulation appears to be essential for their delivery to mycobacteria-containing phagosomes, and consequently, for their antimicrobial effect against intracellular replicating M. abscessus, and that modification of such intracellular localization via disruption of endolysosomal pH strongly affects the CyC accumulation and efficacy. Moreover, we discovered that these fluorescent compounds could become efficient probes to specifically label mycobacterial species with high sensitivity, including M. abscessus in the presence several other pathogens like Pseudomonas aeruginosa and Staphylococcus aureus. Collectively, all present and previous data emphasized the therapeutic potential of unlabeled CyCs and the attractiveness of the fluorescent CyC as a potential new efficient diagnostic tool to be exploited in future diagnostic developments against mycobacterial-related infections, especially against M. abscessus.
Collapse
Affiliation(s)
- Morgane Sarrazin
- CNRS, LISM, IMM FR3479, Aix-Marseille Univ, Marseille 13009, France
| | - Benjamin P Martin
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Romain Avellan
- CNRS, LISM, IMM FR3479, Aix-Marseille Univ, Marseille 13009, France
| | - Giri Raj Gnawali
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Isabelle Poncin
- CNRS, LISM, IMM FR3479, Aix-Marseille Univ, Marseille 13009, France
| | - Hugo Le Guenno
- Microscopy Core Facility, IMM FR3479, CNRS, Aix-Marseille Univ, Marseille 13009, France
| | - Christopher D Spilling
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | | | - Stéphane Canaan
- CNRS, LISM, IMM FR3479, Aix-Marseille Univ, Marseille 13009, France
| |
Collapse
|
11
|
Abstract
Nontuberculous mycobacteria (NTM) are important pathogens, with a longitudinal prevalence of up to 20% within the cystic fibrosis (CF) population. Diagnosis of NTM pulmonary disease in people with CF (pwCF) is challenging, as a majority have NTM infection that is transient or indolent, without evidence of clinical consequence. In addition, the radiographic and clinical manifestations of chronic coinfections with typical CF pathogens can overlap those of NTM, making diagnosis difficult. Comprehensive care of pwCF must be optimized to assess the true clinical impact of NTM and to improve response to treatment. Treatment requires prolonged, multidrug therapy that varies depending on NTM species, resistance pattern, and extent of disease. With a widespread use of highly effective modulator therapy (HEMT), clinical signs and symptoms of NTM disease may be less apparent, and sensitivity of sputum cultures further reduced. The development of a disease-specific approach to the diagnosis and treatment of NTM infection in pwCF is a research priority, as a lifelong strategy is needed for this high-risk population.
Collapse
|
12
|
Nimmo C, Millard J, Faulkner V, Monteserin J, Pugh H, Johnson EO. Evolution of Mycobacterium tuberculosis drug resistance in the genomic era. Front Cell Infect Microbiol 2022; 12:954074. [PMID: 36275027 PMCID: PMC9585206 DOI: 10.3389/fcimb.2022.954074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis has acquired drug resistance to all drugs that have been used against it, including those only recently introduced into clinical practice. Compared to other bacteria, it has a well conserved genome due to its role as an obligate human pathogen that has adapted to a niche over five to ten thousand years. These features facilitate reconstruction and dating of M. tuberculosis phylogenies, giving key insights into how resistance has been acquired and spread globally. Resistance to each new drug has occurred within five to ten years of clinical use and has occurred even more rapidly with recently introduced drugs. In most cases, resistance-conferring mutations come with a fitness cost, but this can be overcome by compensatory mutations which restore fitness to that of wild-type bacteria. It is likely that M. tuberculosis acquires drug resistance while maintaining limited genomic variability due the generation of low frequency within-host variation, combined with ongoing purifying selection causing loss of variants without a clear fitness advantage. However, variants that do confer an advantage, such as drug resistance, can increase in prevalence amongst all bacteria within a host and become the dominant clone. These resistant strains can then be transmitted leading to primary drug resistant infection in a new host. As many countries move towards genomic methods for diagnosis of M. tuberculosis infection and drug resistance, it is important to be aware of the implications for the evolution of resistance. Currently, understanding of resistance-conferring mutations is incomplete, and some targeted genetic diagnostics create their own selective pressures. We discuss an example where a rifampicin resistance-conferring mutation which was not routinely covered by standard testing became dominant. Finally, resistance to new drugs such as bedaquiline and delamanid is caused by individually rare mutations occurring across a large mutational genomic target that have been detected over a short time, and do not provide statistical power for genotype-phenotype correlation – in contrast to longer-established drugs that form the backbone of drug-sensitive antituberculosis therapy. Therefore, we need a different approach to identify resistance-conferring mutations of new drugs before their resistance becomes widespread, abrogating their usefulness.
Collapse
Affiliation(s)
- Camus Nimmo
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
- *Correspondence: Camus Nimmo,
| | - James Millard
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Valwynne Faulkner
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Johana Monteserin
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Hannah Pugh
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| | - Eachan Oliver Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
13
|
Waglechner N, Tullis E, Stephenson AL, Waters V, McIntosh F, Ma J, Jamieson FB, Behr MA, Batt J, Lee RS. Genomic epidemiology of Mycobacterium abscessus in a Canadian cystic fibrosis centre. Sci Rep 2022; 12:16116. [PMID: 36167715 PMCID: PMC9514693 DOI: 10.1038/s41598-022-19666-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
The Mycobacterium abscessus complex causes significant morbidity and mortality among patients with Cystic Fibrosis (CF). It has been hypothesized that these organisms are transmitted from patient to patient based on genomics. However, few studies incorporate epidemiologic data to confirm this hypothesis. We longitudinally sampled 27 CF and 7 non-CF patients attending a metropolitan hospital in Ontario, Canada from 2013 to 2018. Whole genome sequencing along with epidemiological data was used to evaluate the likelihood of transmission. Overall, the genetic diversity of M. abscessus was large, with a median pairwise distance (IQR) of 1,279 (143-134) SNVs between all Ontario M. abscessus isolates and 2,908 (21-3,204) single nucleotide variants (SNVs) between M. massiliense isolates. This reflects the global diversity of this pathogen, with Ontario isolates widely dispersed throughout global phylogenetic trees of each subspecies. Using a maximum distance of 25 SNVs as a threshold to identify possible transmission, we identified 23 (of 276 total) pairs of closely-related isolates. However, transmission was probable for only one pair based on both genomic and epidemiological data. This suggests that person-to-person transmission of M. abscessus among CF patients is indeed rare and reinforces the critical importance of epidemiological data for inferences of transmission.
Collapse
Affiliation(s)
- Nicholas Waglechner
- Dalla Lana School of Public Health, University of Toronto, 155 College St., Toronto, ON, M5T 3M7, Canada.
| | - Elizabeth Tullis
- Adult Cystic Fibrosis Program, Division of Respirology, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Anne L Stephenson
- Adult Cystic Fibrosis Program, Division of Respirology, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Valerie Waters
- Department of Pediatrics, Division of Infectious Diseases, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Fiona McIntosh
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Jennifer Ma
- Public Health Ontario, Public Health Ontario Laboratories, 661 University Avenue, Suite 1701, Toronto, ON, M5G 1V2, Canada
| | - Frances B Jamieson
- Public Health Ontario, Public Health Ontario Laboratories, 661 University Avenue, Suite 1701, Toronto, ON, M5G 1V2, Canada
| | - Marcel A Behr
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Jane Batt
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Tuberculosis Program, St. Michael's Hospital Unity Health Toronto, Toronto, ON, M5B 1WB, Canada
| | - Robyn S Lee
- Dalla Lana School of Public Health, University of Toronto, 155 College St., Toronto, ON, M5T 3M7, Canada.
- McGill International TB Centre, McGill University, Montreal, QC, Canada.
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
14
|
Boopathi S, Ramasamy S, Haridevamuthu B, Murugan R, Veerabadhran M, Jia AQ, Arockiaraj J. Intercellular communication and social behaviors in mycobacteria. Front Microbiol 2022; 13:943278. [PMID: 36177463 PMCID: PMC9514802 DOI: 10.3389/fmicb.2022.943278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-to-cell communication is a fundamental process of bacteria to exert communal behaviors. Sputum samples of patients with cystic fibrosis have often been observed with extensive mycobacterial genetic diversity. The emergence of heterogenic mycobacterial populations is observed due to subtle changes in their morphology, gene expression level, and distributive conjugal transfer (DCT). Since each subgroup of mycobacteria has different hetero-resistance, they are refractory against several antibiotics. Such genetically diverse mycobacteria have to communicate with each other to subvert the host immune system. However, it is still a mystery how such heterogeneous strains exhibit synchronous behaviors for the production of quorum sensing (QS) traits, such as biofilms, siderophores, and virulence proteins. Mycobacteria are characterized by division of labor, where distinct sub-clonal populations contribute to the production of QS traits while exchanging complimentary products at the community level. Thus, active mycobacterial cells ensure the persistence of other heterogenic clonal populations through cooperative behaviors. Additionally, mycobacteria are likely to establish communication with neighboring cells in a contact-independent manner through QS signals. Hence, this review is intended to discuss our current knowledge of mycobacterial communication. Understanding mycobacterial communication could provide a promising opportunity to develop drugs to target key pathways of mycobacteria.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subbiah Ramasamy
- Department of Biochemistry, Cardiac Metabolic Disease Laboratory, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Maruthanayagam Veerabadhran
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - Ai-Qun Jia
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- *Correspondence: Ai-Qun Jia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
- Jesu Arockiaraj ;
| |
Collapse
|
15
|
Planet PJ. Adaptation and Evolution of Pathogens in the Cystic Fibrosis Lung. J Pediatric Infect Dis Soc 2022; 11:S23-S31. [PMID: 36069898 PMCID: PMC9451014 DOI: 10.1093/jpids/piac073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023]
Abstract
As opposed to acute respiratory infections, the persistent bacterial infections of the lung that characterize cystic fibrosis (CF) provide ample time for bacteria to evolve and adapt. The process of adaptation is recorded in mutations that accumulate over time in the genomes of the infecting bacteria. Some of these mutations lead to obvious phenotypic differences such as antibiotic resistance or the well-known mucoid phenotype of Pseudomonas aeruginosa. Other mutations may be just as important but harder to detect such as increased mutation rates, cell surface changes, and shifts in metabolism and nutrient acquisition. Remarkably, many of the adaptations occur again and again in different patients, signaling that bacteria are adapting to solve specific challenges in the CF respiratory tract. This parallel evolution even extends across distinct bacterial species. This review addresses the bacterial systems that are known to change in long-term CF infections with a special emphasis on cross-species comparisons. Consideration is given to how adaptation may impact health in CF, and the possible evolutionary mechanisms that lead to the repeated parallel adaptations.
Collapse
Affiliation(s)
- Paul J Planet
- Corresponding Author: Paul J. Planet, MD, PhD, 3615 Civic Center Blvd, Philadelphia, PA 19104. E-mail:
| |
Collapse
|
16
|
Whole-Genome Sequencing and Drug-Susceptibility Analysis of Serial Mycobacterium abscessus Isolates from Thai Patients. BIOLOGY 2022; 11:biology11091319. [PMID: 36138798 PMCID: PMC9495349 DOI: 10.3390/biology11091319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
Mycobacterium abscessus is an important pathogen that can cause serious human diseases and is difficult to treat due to antibiotic resistance. In this study, we analyzed, using whole-genome sequence (WGS) data, M. abscessus strains serially isolated from patients at various time intervals. We undertook genetic diversity analysis between subspecies, mutation-rate estimation and identification of drug-resistant mutations with minimum inhibitory concentration (MIC) analysis. Clonal isolates of M. abscessus:—subsp. abscessus (MAB) and subsp. massiliense (MMAS)—causing persistent infection through time, differed by 0−7 and 0−14 SNPs, respectively, despite being isolated 1 to 659 days apart. Two cases caused by MMAS differed by ≥102 SNPs at 350 days apart and were regarded as examples of reinfection. Isolates collected ≤7 days apart exhibited a high mutation rate (133.83 ± 0.00 SNPs/genome (5 Mb)/year for MMAS and 127.75 SNPs/genome (5 Mb)/year for MAB). Mutation rates declined in a time-dependent manner in both subspecies. Based on isolates collected > 180 days apart, MMAS had a significantly higher average mutation rate than MAB (2.89 ± 1.02 versus 0.82 ± 0.83 SNPs/genome (5 Mb)/year, (p = 0.01), respectively). All well-known drug-resistance mutations were found to be strongly associated with high MIC levels for clarithromycin and ciprofloxacin. No known mutations were identified for strains resistant to linezolid and amikacin. MAB strains in the study were susceptible to amikacin, while most MMAS strains were susceptible to clarithromycin, amikacin and linezolid. No hetero-resistance was found in the strains analyzed. Our study reports the genetic diversity and mutation rate of M. abscessus between the two major subspecies and confirms the drug resistance-associated mutations. Information about drug-resistance and associated mutations can be applied in diagnosis and patient management.
Collapse
|
17
|
Gross JE, Caceres S, Poch K, Hasan NA, Jia F, Epperson LE, Lipner E, Vang C, Honda JR, Strand M, Calado Nogueira de Moura V, Daley CL, Strong M, Davidson RM, Nick JA. Investigating Nontuberculous Mycobacteria Transmission at the Colorado Adult Cystic Fibrosis Program. Am J Respir Crit Care Med 2022; 205:1064-1074. [PMID: 35085056 PMCID: PMC9851486 DOI: 10.1164/rccm.202108-1911oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rationale: Healthcare-associated transmission of nontuberculous mycobacteria (NTM) among people with cystic fibrosis (pwCF) has been investigated at CF centers worldwide, with conflicting conclusions. We investigated transmission at the Colorado Adult CF Program. Objectives: To systematically investigate healthcare-associated transmission and/or acquisition of NTM to determine similarity among respiratory and environmental isolates, and to compare home residence watershed mapping among pwCF having genetically similar NTM isolates. Methods: Whole-genome sequencing of NTM isolates from 80 pwCF was conducted to identify genetically similar isolate clusters (⩽30 SNP differences). Epidemiology, comparison of respiratory and environmental isolates, and home residence watershed mapping were analyzed. Measurements and Main Results: Whole-genome sequencing analysis revealed 11 clusters of NTM [6 Mycobacterium abscessus subspecies (ssp.) abscessus, 1 M. abscessus ssp. massiliense, 2 Mycobacterium avium, and 2 Mycobacterium intracellulare] among pwCF. Epidemiologic investigation demonstrated opportunities for healthcare-associated transmission in two M. abscessus and two M. avium clusters. Respiratory and healthcare environmental isolate comparisons revealed no genetic similarity. Individuals comprising one M. abscessus cluster, with no plausible healthcare-associated transmission, resided in the same watershed. Conclusions: This study suggests healthcare-associated transmission of M. abscessus is rare and includes a report of potential healthcare-associated transmission of M. avium among pwCF. One M. abscessus cluster possibly had common acquisition arising from residing in the same watershed. The presence of genetically similar isolates is insufficient to demonstrate healthcare-associated NTM transmission. Standardizing epidemiologic investigation, combined with environmental sampling and watershed analysis, will improve understanding of the frequency and nature of healthcare-associated NTM transmission among pwCF.
Collapse
Affiliation(s)
| | | | | | | | - Fan Jia
- Center for Genes, Environment and Health
| | | | | | | | | | | | | | - Charles L. Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, Colorado
| | | | | | | |
Collapse
|
18
|
Detection of Mixed Populations of Clarithromycin-Susceptible and -Resistant Mycobacterium abscessus Strains. J Clin Microbiol 2022; 60:e0169421. [PMID: 35313731 DOI: 10.1128/jcm.01694-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clarithromycin resistance in Mycobacterium abscessus subsp. abscessus, massiliense, and bolletii occurs through induction of erm(41) or mutations in rrl (23S rRNA) genes. Phenotypic detection of clarithromycin resistance is hindered by the need for extended incubation as well as co-occurrence of mixed populations of M. abscessus with different susceptibility profiles. We developed a quantitative EvaGreen-based droplet digital PCR (ddPCR) scheme for rapid detection of full-length or truncated erm(41) and a probe based ddPCR screening assay for assessment of 23S rRNA rrl mutational resistance. We tested 100 M. abscessus strains, synthetic mixes with different susceptibility profiles, and 13 positive MGIT samples. Truncated and full-length erm(41) genes were detected in 27/100 and 73/100 strains and 4/13 and 9/13 MGIT samples, respectively yielding a sensitivity and specificity of 100%. Clarithromycin resistance mutations in rrl were detected in 26/100 isolates, i.e., A2058G (18/100), A2058C (7/100), and A2059G (1/100), and in 3/13 MGIT samples, i.e., A2058G (2/13) and A2059G (1/13). A screening assay of rrl ddPCR (A2058A/A2058G probes) showed 100% sensitivity in detecting the wild type or A2058G mutation as well as identifying samples requiring further testing. Upon inclusion of additional ddPCR assays, we were able to detect A2058C and A2059G clarithromycin resistance-conferring mutations in the rrl gene. Our ddPCR scheme can differentiate between full-length and truncated erm(41) and identify clarithromycin resistance-conferring mutations in the rrl gene from clinical isolates and positive MGIT samples as well as deconvolute and quantitate mixed populations of M. abscessus with different clarithromycin resistance traits.
Collapse
|
19
|
Abstract
The number of lung transplantations is progressively increasing worldwide, providing new challenges to interprofessional teams and the intensive care units. The outcome of lung transplantation recipients is critically affected by a complex interplay of particular pathophysiologic conditions and risk factors, knowledge of which is fundamental to appropriately manage these patients during the early postoperative course. As high-grade evidence-based guidelines are not available, the authors aimed to provide an updated review of the postoperative management of lung transplantation recipients in the intensive care unit, which addresses six main areas: (1) management of mechanical ventilation, (2) fluid and hemodynamic management, (3) immunosuppressive therapies, (4) prevention and management of neurologic complications, (5) antimicrobial therapy, and (6) management of nutritional support and abdominal complications. The integrated care provided by a dedicated multidisciplinary team is key to optimize the complex postoperative management of lung transplantation recipients in the intensive care unit.
Collapse
|
20
|
Nick JA, Daley CL, Lenhart-Pendergrass PM, Davidson RM. Nontuberculous mycobacteria in cystic fibrosis. Curr Opin Pulm Med 2021; 27:586-592. [PMID: 34431787 DOI: 10.1097/mcp.0000000000000816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Nontuberculous mycobacteria (NTM) are challenging infections among people with cystic fibrosis (pwCF) as the source, modes of transmission, and best practices for diagnosis and treatment are not known. Investigators have defined aspects of NTM infection that are unique to the CF population, as well as features shared with other conditions at risk. This review describes recent advances in our understanding of NTM infection among pwCF. RECENT FINDINGS The presence of dominant circulating clones of Mycobacterium abscessus within the CF community worldwide continue to be described, as well as pathogen phenotypes that could evoke greater environmental fitness and infectivity. The risk of direct or indirect transmission between pwCF remains an active focus of investigation, with divergent findings and conclusions reached in a site-specific fashion. Derived largely from studies in non-CF populations, new clinical guidelines are now available. A wide variety of agents are in preclinical development or early phase trials with promising findings, and new therapeutic targets have been identified as our understanding of the complex biology of NTM continues to expand. SUMMARY Significant challenges remain in the fight against NTM, however, recent advances in our understanding of the genetics, epidemiology and pathophysiology of pulmonary NTM infection in pwCF are leading efforts to improve clinical care.
Collapse
Affiliation(s)
- Jerry A Nick
- Department of Medicine, National Jewish Health, Denver
- University of Colorado Denver, School of Medicine
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver
- University of Colorado Denver, School of Medicine
| | | | - Rebecca M Davidson
- Center for Genes, Environment and Health and Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
21
|
Dohál M, Porvazník I, Solovič I, Mokrý J. Whole Genome Sequencing in the Management of Non-Tuberculous Mycobacterial Infections. Microorganisms 2021; 9:microorganisms9112237. [PMID: 34835363 PMCID: PMC8621650 DOI: 10.3390/microorganisms9112237] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Infections caused by non-tuberculous mycobacteria (NTM) have been a public health problem in recent decades and contribute significantly to the clinical and economic burden globally. The diagnosis of infections is difficult and time-consuming and, in addition, the conventional diagnostics tests do not have sufficient discrimination power in species identification due to cross-reactions and not fully specific probes. However, technological advances have been made and the whole genome sequencing (WGS) method has been shown to be an essential part of routine diagnostics in clinical mycobacteriology laboratories. The use of this technology has contributed to the characterization of new species of mycobacteria, as well as the identification of gene mutations encoding resistance and virulence factors. Sequencing data also allowed to track global outbreaks of nosocomial NTM infections caused by M. abscessus complex and M. chimaera. To highlight the utility of WGS, we summarize recent scientific studies on WGS as a tool suitable for the management of NTM-induced infections in clinical practice.
Collapse
Affiliation(s)
- Matúš Dohál
- Biomedical Center Martin, Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, 036 01 Martin, Slovakia;
- Correspondence: ; Tel.: +42-19-0252-4199
| | - Igor Porvazník
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, 059 81 Vyšné Hágy, Slovakia; (I.P.); (I.S.)
- Faculty of Health, Catholic University, 034 01 Ružomberok, Slovakia
| | - Ivan Solovič
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, 059 81 Vyšné Hágy, Slovakia; (I.P.); (I.S.)
- Faculty of Health, Catholic University, 034 01 Ružomberok, Slovakia
| | - Juraj Mokrý
- Biomedical Center Martin, Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, 036 01 Martin, Slovakia;
| |
Collapse
|
22
|
Lewin A, Kamal E, Semmler T, Winter K, Kaiser S, Schäfer H, Mao L, Eschenhagen P, Grehn C, Bender J, Schwarz C. Genetic diversification of persistent Mycobacterium abscessus within cystic fibrosis patients. Virulence 2021; 12:2415-2429. [PMID: 34546836 PMCID: PMC8526041 DOI: 10.1080/21505594.2021.1959808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium (M.) abscessus infections in Cystic Fibrosis (CF) patients cause a deterioration of lung function. Treatment of these multidrug-resistant pathogens is associated with severe side-effects, while frequently unsuccessful. Insight on M. abscessus genomic evolvement during chronic lung infection would be beneficial for improving treatment strategies. A longitudinal study enrolling 42 CF patients was performed at a CF center in Berlin, Germany, to elaborate phylogeny and genomic diversification of in-patient M. abscessus. Eleven of the 42 CF patients were infected with M. abscessus. Five of these 11 patients were infected with global human-transmissible M. abscessus cluster strains. Phylogenetic analysis of 88 genomes from isolates of the 11 patients excluded occurrence of M. abscessus transmission among members of the study group. Genome sequencing and variant analysis of 30 isolates from 11 serial respiratory samples collected over 4.5 years from a chronically infected patient demonstrated accumulation of gene mutations. In total, 53 genes exhibiting non-synonymous variations were identified. Enrichment analysis emphasized genes involved in synthesis of glycopeptidolipids, genes from the embABC (arabinosyltransferase) operon, betA (glucose-methanol-choline oxidoreductase) and choD (cholesterol oxidase). Genetic diversity evolved in a variety of virulence- and resistance-associated genes. The strategy of M. abscessus populations in chronic lung infection is not clonal expansion of dominant variants, but to sustain simultaneously a wide range of genetic variants facilitating adaptation of the population to changing living conditions in the lung. Genomic diversification during chronic infection requires increased attention when new control strategies against M. abscessus infections are explored.
Collapse
Affiliation(s)
- Astrid Lewin
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Elisabeth Kamal
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Unit NG 1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Katja Winter
- Unit MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Sandra Kaiser
- Unit MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Hubert Schäfer
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Lei Mao
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany.,Unit 31 Infectious Disease Data Science Unit, Robert Koch Institute, Berlin, Germany
| | - Patience Eschenhagen
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany.,Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Grehn
- Department of Pediatrics, Division of Pulmonology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin, Berlin, Germany
| | - Jennifer Bender
- Unit 13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany.,ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Carsten Schwarz
- Klinikum Westbrandenburg, Campus Potsdam, Cystic Fibrosis Section, Potsdam, Germany.,Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
23
|
Affiliation(s)
- Rossa Brugha
- Respiratory Medicine and Cardiothoracic Transplantation, Great Ormond Street Hospital, London, UK.,Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Helen Spencer
- Respiratory Medicine and Cardiothoracic Transplantation, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
24
|
Bordin A, Pandey S, Coulter C, Syrmis M, Pardo C, Hackett H, Bell SC, Wainwright CE, Nimmo GR, Jennison AV, Clark JE, Whiley DM. Rapid macrolide and amikacin resistance testing for Mycobacterium abscessus in people with cystic fibrosis. J Med Microbiol 2021; 70. [PMID: 33909552 DOI: 10.1099/jmm.0.001349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction. Mycobacterium abscessus complex (MABSC) is an environmental organism and opportunistic pathogen. MABSC pulmonary infections in people with cystic fibrosis are of growing clinical concern. Resistance data guide the use of macrolides and amikacin in MABSC pulmonary disease treatment. MABSC can acquire resistance against macrolides or amikacin via 23S or 16S rRNA gene mutations, respectively.Gap Statement. Current culture-based methods for MABSC detection and antibiotic resistance characterization are typically prolonged, limiting their utility to directly inform treatment or clinical trials. Culture-independent molecular methods may help address this limitation.Aim. To develop real-time PCR assays for characterization of key 23S or 16S rRNA gene mutations associated with constitutive resistance in MABSC.Methodology. We designed two real-time PCR assays to detect the key 23S and 16S rRNA gene mutations. The highly conserved nature of rRNA genes was a major design challenge. To reduce potential cross-reactivity, primers included non-template bases and targeted single-nucleotide polymorphisms unique to MABSC. We applied these assays, as well as a previously developed real-time PCR assay for MABSC detection, to 968 respiratory samples from people with cystic fibrosis. The results from the molecular methods were compared to those for gold standard culture methods and 23S and 16S rRNA gene sequencing.Results.The real-time PCR MABSC detection assay provided a sensitivity of 83.8 % and a specificity of 97.8 % compared to culture. The results from the real-time PCR resistance detection assays were mostly concordant (>77.4 %) with cultured isolate sequencing. The real-time PCR resistance detection assays identified several samples harbouring both resistant and susceptible MABSC, while culture-dependent methods only identified susceptible MABSC in these samples.Conclusion. Using the molecular methods described here, results for health care providers or researchers could be available days or weeks earlier than is currently possible via culture-based antibiotic susceptibility testing.
Collapse
Affiliation(s)
- Amanda Bordin
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Sushil Pandey
- Queensland Mycobacterium Reference Laboratory, Pathology Queensland, Brisbane, Queensland, Australia
| | - Christopher Coulter
- Queensland Mycobacterium Reference Laboratory, Pathology Queensland, Brisbane, Queensland, Australia
| | - Melanie Syrmis
- Queensland Mycobacterium Reference Laboratory, Pathology Queensland, Brisbane, Queensland, Australia.,The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Carolyn Pardo
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Hazel Hackett
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Scott C Bell
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,The Prince Charles Hospital, Department of Thoracic Medicine, Brisbane, Queensland, Australia
| | - Claire E Wainwright
- Respiratory and Sleep Medicine Department, Queensland Children's Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Graeme R Nimmo
- Central Laboratory, Pathology Queensland, Brisbane, Queensland, Australia
| | - Amy V Jennison
- Forensic and Scientific Services, Queensland Health, Brisbane, Queensland, Australia
| | - Julia E Clark
- Infection Management and Prevention Service, Queensland Children's Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - David M Whiley
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia.,Central Laboratory, Pathology Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Mycobacterium abscessus Strain Morphotype Determines Phage Susceptibility, the Repertoire of Therapeutically Useful Phages, and Phage Resistance. mBio 2021; 12:mBio.03431-20. [PMID: 33785625 PMCID: PMC8092298 DOI: 10.1128/mbio.03431-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium abscessus infections in cystic fibrosis patients are challenging to treat due to widespread antibiotic resistance. The therapeutic use of lytic bacteriophages presents a new potential strategy, but the great variation among clinical M. abscessus isolates demands determination of phage susceptibility prior to therapy. Mycobacterium abscessus is an opportunistic pathogen whose treatment is confounded by widespread multidrug resistance. The therapeutic use of bacteriophages against Mycobacterium abscessus infections offers a potential alternative approach, although the spectrum of phage susceptibilities among M. abscessus isolates is not known. We determined the phage infection profiles of 82 M. abscessus recent clinical isolates and find that colony morphotype—rough or smooth—is a key indicator of phage susceptibility. None of the smooth strains are efficiently killed by any phages, whereas 80% of rough strains are infected and efficiently killed by at least one phage. The repertoire of phages available for potential therapy of rough morphotype infections includes those with relatively broad host ranges, host range mutants of Mycobacterium smegmatis phages, and lytically propagated viruses derived from integrated prophages. The rough colony morphotype results from indels in the glycopeptidolipid synthesis genes mps1 and mps2, negating reversion to smooth as a common route to phage resistance. Resistance is thus rare, and although mutations in polyketide synthesis, uvrD2, and rpoZ can confer resistance, these likely also impair survival in vivo. The expanded therapeutic repertoire and the resistance profiles show that small cocktails or single phages could be suitable for controlling infections with rough strains.
Collapse
|
26
|
Gutiérrez AV, Baron SA, Sardi FS, Saad J, Coltey B, Reynaud-Gaubert M, Drancourt M. Beyond phenotype: The genomic heterogeneity of co-infecting Mycobacterium abscessus smooth and rough colony variants in cystic fibrosis patients. J Cyst Fibros 2021; 20:421-423. [PMID: 33610476 DOI: 10.1016/j.jcf.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/18/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Two unrelated cystic fibrosis patients were co-infected with Mycobacterium abscessus smooth and rough phenotypes. Smooth M. abscessus is proposed as the infecting form, and the subsequent loss of glycopeptidolipids in the host leads to a rough phenotype. Whole-genome sequencing (WGS) diagnosed two different M. abscessus strains in patient N°1 but only one strain in patient N°2. In patient N°1, rough isolate had novel mutations potentially involved in smooth-to-rough morphology changes. In patient N°2, four genes were present in only the smooth isolate. In addition, we obtained different susceptibility profiles in the four clinical isolates. We revealed a new paradigm describing a cystic fibrosis patient infected with two different clones, including a rough isolate, and identifying a rough M. abscessus clone that did not lose glycopeptidolipids. We propose WGS for the identification of heterogenic isolates and genetic determinants of antimicrobial resistance, which we believe will positively influence treatment prognosis.
Collapse
Affiliation(s)
- Ana Victoria Gutiérrez
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Feyrouz Sonia Sardi
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Jamal Saad
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Bérengère Coltey
- Department of Respiratory Diseases, Adult Cystic Fibrosis Centre, Lung Transplant Team, University Hospital of Marseille, Marseille, France
| | - Martine Reynaud-Gaubert
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; Department of Respiratory Diseases, Adult Cystic Fibrosis Centre, Lung Transplant Team, University Hospital of Marseille, Marseille, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
27
|
Flohr S, Ramette A, Agyeman PKA, Duppenthaler A, Scherer C, Keller PM, Aebi C. Recurrent Mycobacterium chelonae Skin Infection Unmasked as Factitious Disorder Using Bacterial Whole Genome Sequence Analysis. Open Forum Infect Dis 2020; 7:ofaa506. [PMID: 33204765 PMCID: PMC7654377 DOI: 10.1093/ofid/ofaa506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium chelonae infections usually resolve with adequate therapy. We report the case of an adolescent with a chronic and progressive M chelonae infection refractory to combined antimicrobial and surgical therapy. Whole genome sequence analysis of consecutive isolates distinguished reinfection from recurrence and contributed to the diagnosis of a factitious disorder.
Collapse
Affiliation(s)
- Sarah Flohr
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Bern, Bern, Switzerland
| | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philipp K A Agyeman
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Bern, Bern, Switzerland
| | - Andrea Duppenthaler
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Bern, Bern, Switzerland
| | - Cordula Scherer
- Department of Pediatric Surgery, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Christoph Aebi
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Doyle RM, Rubio M, Dixon G, Hartley J, Klein N, Coll P, Harris KA. Cross-transmission Is Not the Source of New Mycobacterium abscessus Infections in a Multicenter Cohort of Cystic Fibrosis Patients. Clin Infect Dis 2020; 70:1855-1864. [PMID: 31225586 PMCID: PMC7156781 DOI: 10.1093/cid/ciz526] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mycobacterium abscessus is an extensively drug-resistant pathogen that causes pulmonary disease, particularly in cystic fibrosis (CF) patients. Identifying direct patient-to-patient transmission of M. abscessus is critically important in directing an infection control policy for the management of risk in CF patients. A variety of clinical labs have used molecular epidemiology to investigate transmission. However, there is still conflicting evidence as to how M. abscessus is acquired and whether cross-transmission occurs. Recently, labs have applied whole-genome sequencing (WGS) to investigate this further and, in this study, we investigated whether WGS can reliably identify cross-transmission in M. abscessus. METHODS We retrospectively sequenced the whole genomes of 145 M. abscessus isolates from 62 patients, seen at 4 hospitals in 2 countries over 16 years. RESULTS We have shown that a comparison of a fixed number of core single nucleotide variants alone cannot be used to infer cross-transmission in M. abscessus but does provide enough information to replace multiple existing molecular assays. We detected 1 episode of possible direct patient-to-patient transmission in a sibling pair. We found that patients acquired unique M. abscessus strains even after spending considerable time on the same wards with other M. abscessus-positive patients. CONCLUSIONS This novel analysis has demonstrated that the majority of patients in this study have not acquired M. abscessus through direct patient-to-patient transmission or a common reservoir. Tracking transmission using WGS will only realize its full potential with proper environmental screening, as well as patient sampling.
Collapse
Affiliation(s)
- Ronan M Doyle
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital National Health Service Foundation Trust
- National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children National Health Service Foundation Trust and University College London, United Kingdom
| | - Marc Rubio
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Garth Dixon
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital National Health Service Foundation Trust
- National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children National Health Service Foundation Trust and University College London, United Kingdom
| | - John Hartley
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital National Health Service Foundation Trust
- National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children National Health Service Foundation Trust and University College London, United Kingdom
| | - Nigel Klein
- National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children National Health Service Foundation Trust and University College London, United Kingdom
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Pere Coll
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Servei de Microbiologia, Fundació de Gestió de l’Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Kathryn A Harris
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital National Health Service Foundation Trust
- National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children National Health Service Foundation Trust and University College London, United Kingdom
| |
Collapse
|
29
|
Muñoz-Egea MC, Carrasco-Antón N, Esteban J. State-of-the-art treatment strategies for nontuberculous mycobacteria infections. Expert Opin Pharmacother 2020; 21:969-981. [PMID: 32200657 DOI: 10.1080/14656566.2020.1740205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Non-tuberculous Mycobacteria (NTM) are a group of organisms whose importance in medicine seems to be increasing in recent times. The increasing number of patients susceptible to these diseases make it necessary to expand our knowledge of therapeutic options and to explore future possibilities for the development of a therapeutic arsenal. AREAS COVERED In this review, the authors provide a brief introduction about the present importance of NTM and describe the present recommendations of the available guidelines for their treatment. They include a description of the future options for the management of these patients, especially focusing on new antibiotics. The authors also look at possibilities for future therapeutic options, such as antibiofilm strategies. EXPERT OPINION No actual changes have been made to the current recommendations for the management of most NTM infections (except perhaps the availability of nebulized amikacin). However, it is also true that we have increased the number of available antibiotic treatment options with good in vitro activity against NTM. The use of these drugs in selected cases could increase the therapeutic possibilities. However, some problems are still present, such as the knowledge of the actual meaning of a NTM isolate, and will probably be a key part of future research.
Collapse
Affiliation(s)
| | | | - Jaime Esteban
- Departments of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM , Madrid, Spain
| |
Collapse
|
30
|
Kavaliunaite E, Harris KA, Aurora P, Dixon G, Shingadia D, Muthialu N, Spencer H. Outcome according to subspecies following lung transplantation in cystic fibrosis pediatric patients infected with Mycobacterium abscessus. Transpl Infect Dis 2020; 22:e13274. [PMID: 32129923 DOI: 10.1111/tid.13274] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/23/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Mycobacterium abscessus infection has been associated with variable outcomes following lung transplantation. M abscessus comprises three subspecies (M abscessus subsp abscessus, M abscessus subsp massiliense, and M abscessus subsp bolletii). We investigated whether lung transplantation outcome in cystic fibrosis (CF) patients in a single center was related to the M abscessus subspecies and genetic cluster. METHODS CF patients with chronic M abscessus infection transplanted at Great Ormond Street Hospital between 2004 and 2017 were retrospectively examined. All M abscessus isolates were identified to subspecies level by polymerase chain reaction and sequencing. Genetic cluster was determined by variable number tandem repeat profiling and whole-genome sequencing (WGS), and sequence type inferred from WGS. RESULTS Thirteen patients with chronic M abscessus infection underwent heart/lung or lung transplantation. Subspecies identification showed n = 1 with M abscessus bolletii, n = 5 with M abscessus massiliense, and n = 7 with M abscessus abscessus infection. Eight (62%) patients (one with M abscessus massiliense and seven with M abscessus abscessus) died post-lung transplant. The patient with M abscessus bolletii and three patients with M abscessus massiliense did well post-transplant. One patient with M abscessus massiliense is receiving ongoing treatment. CONCLUSIONS Dramatically worse outcomes are observed in patients infected with M abscessus subspecies abscessus, the majority of whom were infected with ST-1 and ST-26 strains. Patients infected with other M abcsessus strains can have acceptable outcomes.
Collapse
Affiliation(s)
- Ema Kavaliunaite
- Department of Cardiothoracic Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kathryn A Harris
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Paul Aurora
- Department of Cardiothoracic Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Garth Dixon
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Delane Shingadia
- Department of Infectious Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Nagarajan Muthialu
- Department of Cardiothoracic Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Helen Spencer
- Department of Cardiothoracic Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
31
|
Lipworth S, Hough N, Buchanan R, Smith EG, Robinson E, Alexander E, Peto T, Crook D, Walker T. Improved Performance Predicting Clarithromycin Resistance in Mycobacterium abscessus on an Independent Data Set. Antimicrob Agents Chemother 2019; 63:e00400-19. [PMID: 31160290 PMCID: PMC6658746 DOI: 10.1128/aac.00400-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Samuel Lipworth
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Natasha Hough
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ruaridh Buchanan
- National Mycobacterium Reference Service-South, London, United Kingdom
| | - E Grace Smith
- Public Health England Regional Mycobacterial Reference Laboratory, Birmingham Heartlands Hospital, Birmingham, United Kingdom
| | - Esther Robinson
- Public Health England Regional Mycobacterial Reference Laboratory, Birmingham Heartlands Hospital, Birmingham, United Kingdom
| | - Eliza Alexander
- National Mycobacterium Reference Service-South, London, United Kingdom
| | - Tim Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Derrick Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Timothy Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Lopeman RC, Harrison J, Desai M, Cox JAG. Mycobacterium abscessus: Environmental Bacterium Turned Clinical Nightmare. Microorganisms 2019; 7:microorganisms7030090. [PMID: 30909391 PMCID: PMC6463083 DOI: 10.3390/microorganisms7030090] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Mycobacteria are a large family of over 100 species, most of which do not cause diseases in humans. The majority of the mycobacterial species are referred to as nontuberculous mycobacteria (NTM), meaning they are not the causative agent of tuberculous (TB) or leprosy, i.e., Mycobacterium tuberculous complex and Mycobacterium leprae, respectively. The latter group is undoubtedly the most infamous, with TB infecting an estimated 10 million people and causing over 1.2 million deaths in 2017 alone TB and leprosy also differ from NTM in that they are only transmitted from person to person and have no environmental reservoir, whereas NTM infections are commonly acquired from the environment. It took until the 1950′s for NTM to be recognised as a potential lung pathogen in people with underlying pulmonary disease and another three decades for NTM to be widely regarded by the medical community when Mycobacterium avium complex was identified as the most common group of opportunistic pathogens in AIDS patients. This review focuses on an emerging NTM called Mycobacterium abscessus (M. abs). M. abs is a rapidly growing NTM that is responsible for opportunistic pulmonary infections in patients with structural lung disorders such as cystic fibrosis and bronchiectasis, as well as a wide range of skin and soft tissue infections in humans. In this review, we discuss how we came to understand the pathogen, how it is currently treated and examine drug resistance mechanisms and novel treatments currently in development. We highlight the urgent need for new and effective treatments for M. abs infection as well as improved in vivo methods of efficacy testing.
Collapse
Affiliation(s)
- Rose C Lopeman
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - James Harrison
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Maya Desai
- Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK.
| | - Jonathan A G Cox
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|