1
|
Yousef Yengej FA, Pou Casellas C, Ammerlaan CME, Olde Hanhof CJA, Dilmen E, Beumer J, Begthel H, Meeder EMG, Hoenderop JG, Rookmaaker MB, Verhaar MC, Clevers H. Tubuloid differentiation to model the human distal nephron and collecting duct in health and disease. Cell Rep 2024; 43:113614. [PMID: 38159278 DOI: 10.1016/j.celrep.2023.113614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Organoid technology is rapidly gaining ground for studies on organ (patho)physiology. Tubuloids are long-term expanding organoids grown from adult kidney tissue or urine. The progenitor state of expanding tubuloids comes at the expense of differentiation. Here, we differentiate tubuloids to model the distal nephron and collecting ducts, essential functional parts of the kidney. Differentiation suppresses progenitor traits and upregulates genes required for function. A single-cell atlas reveals that differentiation predominantly generates thick ascending limb and principal cells. Differentiated human tubuloids express luminal NKCC2 and ENaC capable of diuretic-inhibitable electrolyte uptake and enable disease modeling as demonstrated by a lithium-induced tubulopathy model. Lithium causes hallmark AQP2 loss, induces proliferation, and upregulates inflammatory mediators, as seen in vivo. Lithium also suppresses electrolyte transport in multiple segments. In conclusion, this tubuloid model enables modeling of the human distal nephron and collecting duct in health and disease and provides opportunities to develop improved therapies.
Collapse
Affiliation(s)
- Fjodor A Yousef Yengej
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carla Pou Casellas
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carola M E Ammerlaan
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Charlotte J A Olde Hanhof
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Emre Dilmen
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Joep Beumer
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, 3584 CT Utrecht, the Netherlands; Institute of Human Biology, Roche Pharma Research and Early Development, 4058 Basel, Switzerland
| | - Harry Begthel
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, 3584 CT Utrecht, the Netherlands
| | - Elise M G Meeder
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Joost G Hoenderop
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, 6525 GA Nijmegen, the Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute-KNAW, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
2
|
Saly DL, Eswarappa MS, Street SE, Deshpande P. Renal Cell Cancer and Chronic Kidney Disease. Adv Chronic Kidney Dis 2021; 28:460-468.e1. [PMID: 35190112 DOI: 10.1053/j.ackd.2021.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
The association between chronic kidney disease (CKD) and renal cell carcinoma (RCC) is bidirectional and multifactorial. Risk factors such as hypertension, diabetes mellitus, obesity, and smoking increase the risk of both CKD and RCC. CKD can lead to RCC via an underlying cystic disease or oxidative stress. RCC can cause CKD because of the tumor itself, surgical reduction of renal mass (either partial or radical nephrectomy), and perioperative acute kidney injury. Medical therapies such as immune checkpoint inhibitors and vascular endothelial growth factor inhibitors can lead to acute kidney injury and resultant CKD. Clinicians need to be aware of the complex, bidirectional interplay between both diseases.
Collapse
|
3
|
Peired AJ, Lazzeri E, Guzzi F, Anders HJ, Romagnani P. From kidney injury to kidney cancer. Kidney Int 2021; 100:55-66. [PMID: 33794229 DOI: 10.1016/j.kint.2021.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Epidemiologic studies document strong associations between acute or chronic kidney injury and kidney tumors. However, whether these associations are linked by causation, and in which direction, is unclear. Accumulating data from basic and clinical research now shed light on this issue and prompt us to propose a new pathophysiological concept with immanent implications in the management of patients with kidney disease and patients with kidney tumors. As a central paradigm, this review proposes the mechanisms of kidney damage and repair that are active during acute kidney injury but also during persistent injuries in chronic kidney disease as triggers of DNA damage, promoting the expansion of (pre-)malignant cell clones. As renal progenitors have been identified by different studies as the cell of origin for several benign and malignant kidney tumors, we discuss how the different types of kidney tumors relate to renal progenitors at specific sites of injury and to germline or somatic mutations in distinct signaling pathways. We explain how known risk factors for kidney cancer rather represent risk factors for kidney injury as an upstream cause of cancer. Finally, we propose a new role for nephrologists in kidney cancer (i.e., the primary and secondary prevention and treatment of kidney injury to reduce incidence, prevalence, and recurrence of kidney cancer).
Collapse
Affiliation(s)
- Anna Julie Peired
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies, University of Florence, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies, University of Florence, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Francesco Guzzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik and Poliklinik IV, Ludwig Maximilian University Klinikum, Munich, Germany
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies, University of Florence, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy; Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy.
| |
Collapse
|
4
|
Nguyen AK, Goering PL, Elespuru RK, Sarkar Das S, Narayan RJ. The Photoinitiator Lithium Phenyl (2,4,6-Trimethylbenzoyl) Phosphinate with Exposure to 405 nm Light Is Cytotoxic to Mammalian Cells but Not Mutagenic in Bacterial Reverse Mutation Assays. Polymers (Basel) 2020; 12:E1489. [PMID: 32635323 PMCID: PMC7408440 DOI: 10.3390/polym12071489] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP) is a free radical photo-initiator used to initiate free radical chain polymerization upon light exposure, and is combined with gelatin methacryloyl (GelMA) to produce a photopolymer used in bioprinting. The free radicals produced under bioprinting conditions are potentially cytotoxic and mutagenic. Since these photo-generated free radicals are highly-reactive but short-lived, toxicity assessments should be conducted with light exposure. In this study, photorheology determined that 10 min exposure to 9.6 mW/cm2 405 nm light from an LED light source fully crosslinked 10 wt % GelMA with >3.4 mmol/L LAP, conditions that were used for subsequent cytotoxicity and mutagenicity assessments. These conditions were cytotoxic to M-1 mouse kidney collecting duct cells, a cell type susceptible to lithium toxicity. Exposure to ≤17 mmol/L (0.5 wt %) LAP without light was not cytotoxic; however, concurrent exposure to ≥3.4 mmol/L LAP and light was cytotoxic. No condition of LAP and/or light exposure evaluated was mutagenic in bacterial reverse mutation assays using S. typhimurium strains TA98, TA100 and E. coli WP2 uvrA. These data indicate that the combination of LAP and free radicals generated from photo-excited LAP is cytotoxic, but mutagenicity was not observed in bacteria under typical bioprinting conditions.
Collapse
Affiliation(s)
- Alexander K. Nguyen
- Joint UNC/NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA;
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (P.L.G.); (R.K.E.); (S.S.D.)
| | - Peter L. Goering
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (P.L.G.); (R.K.E.); (S.S.D.)
| | - Rosalie K. Elespuru
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (P.L.G.); (R.K.E.); (S.S.D.)
| | - Srilekha Sarkar Das
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (P.L.G.); (R.K.E.); (S.S.D.)
| | - Roger J. Narayan
- Joint UNC/NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
5
|
Medić B, Stojanović M, Stimec BV, Divac N, Vujović KS, Stojanović R, Čolović M, Krstić D, Prostran M. Lithium - Pharmacological and Toxicological Aspects: The Current State of the Art. Curr Med Chem 2020; 27:337-351. [DOI: 10.2174/0929867325666180904124733] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
Abstract
:
Lithium is the smallest monovalent cation with many different biological effects.
Although lithium is present in the pharmacotherapy of psychiatric illnesses for decades, its
precise mechanism of action is still not clarified. Today lithium represents first-line therapy
for bipolar disorders (because it possesses both antimanic and antidepressant properties) and
the adjunctive treatment for major depression (due to its antisuicidal effects). Beside, lithium
showed some protective effects in neurological diseases including acute neural injury, chronic
degenerative conditions, Alzheimer's disease as well as in treating leucopenia, hepatitis and
some renal diseases. Recent evidence suggested that lithium also possesses some anticancer
properties due to its inhibition of Glycogen Synthase Kinase 3 beta (GSK3β) which is included
in the regulation of a lot of important cellular processes such as: glycogen metabolism,
inflammation, immunomodulation, apoptosis, tissue injury, regeneration etc.
:
Although recent evidence suggested a potential utility of lithium in different conditions, its
broader use in clinical practice still trails. The reason for this is a narrow therapeutic index of
lithium, numerous toxic effects in various organ systems and some clinically relevant interactions
with other drugs. Additionally, it is necessary to perform more preclinical as well as
clinical studies in order to a precise therapeutic range of lithium, as well as its detailed
mechanism of action. The aim of this review is to summarize the current knowledge concerning
the pharmacological and toxicological effects of lithium.
Collapse
Affiliation(s)
- Branislava Medić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bojan V. Stimec
- Anatomy Sector, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nevena Divac
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Savić Vujović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Radan Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mirjana Čolović
- Department of Physical Chemistry, “Vinca“ Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Danijela Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Morlet E, Costemale-Lacoste JF, Poulet E, McMahon K, Hoertel N, Limosin F, Alezrah C, Amado I, Amar G, Andréi O, Arbault D, Archambault G, Aurifeuille G, Barrière S, Béra-Potelle C, Blumenstock Y, Bardou H, Bareil-Guérin M, Barrau P, Barrouillet C, Baup E, Bazin N, Beaufils B, Ben Ayed J, Benoit M, Benyacoub K, Bichet T, Blanadet F, Blanc O, Blanc-Comiti J, Boussiron D, Bouysse AM, Brochard A, Brochart O, Bucheron B, Cabot M, Camus V, Chabannes JM, Charlot V, Charpeaud T, Clad-Mor C, Combes C, Comisu M, Cordier B, Costi F, Courcelles JP, Creixell M, Cuche H, Cuervo-Lombard C, Dammak A, Da Rin D, Denis JB, Denizot H, Deperthuis A, Diers E, Dirami S, Donneau D, Dreano P, Dubertret C, Duprat E, Duthoit D, Fernandez C, Fonfrede P, Freitas N, Gasnier P, Gauillard J, Getten F, Gierski F, Godart F, Gourevitch R, Grassin Delyle A, Gremion J, Gres H, Griner V, Guerin-Langlois C, Guggiari C, Guillin O, Hadaoui H, Haffen E, Hanon C, Haouzir S, Hazif-Thomas C, Heron A, Hubsch B, Jalenques I, Januel D, Kaladjian A, Karnycheff JF, Kebir O, Krebs MO, Lajugie C, Leboyer M, Legrand P, Lejoyeux M, Lemaire V, Leroy E, Levy-Chavagnat D, Leydier A, Liling C, Llorca PM, Loeffel P, Louville P, Lucas Navarro S, Mages N, Mahi M, Maillet O, Manetti A, Martelli C, Martin P, Masson M, Maurs-Ferrer I, Mauvieux J, Mazmanian S, Mechin E, Mekaoui L, Meniai M, Metton A, Mihoubi A, Miron M, Mora G, Niro Adès V, Nubukpo P, Omnes C, Papin S, Paris P, Passerieux C, Pellerin J, Perlbarg J, Perron S, Petit A, Petitjean F, Portefaix C, Pringuey D, Radtchenko A, Rahiou H, Raucher-Chéné D, Rauzy A, Reinheimer L, Renard M, René M, Rengade CE, Reynaud P, Robin D, Rodrigues C, Rollet A, Rondepierre F, Rousselot B, Rubingher S, Saba G, Salvarelli JP, Samuelian JC, Scemama-Ammar C, Schurhoff F, Schuster JP, Sechter D, Segalas B, Seguret T, Seigneurie AS, Semmak A, Slama F, Taisne S, Taleb M, Terra JL, Thefenne D, Tran E, Tourtauchaux R, Vacheron MN, Vandel P, Vanhoucke V, Venet E, Verdoux H, Viala A, Vidon G, Vitre M, Vurpas JL, Wagermez C, Walter M, Yon L, Zendjidjian X. Psychiatric and physical outcomes of long-term use of lithium in older adults with bipolar disorder and major depressive disorder: A cross-sectional multicenter study. J Affect Disord 2019; 259:210-217. [PMID: 31446382 DOI: 10.1016/j.jad.2019.08.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/11/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Although lithium is widely used in current practice to treat bipolar disorder (BD) and treatment-resistant major depressive disorder (MDD) among older adults, little is known about its efficacy and tolerability in this population, which is generally excluded from randomized clinical trials. The objective of this study was to evaluate the efficacy and tolerability of long-term use of lithium among older adults with BD and MDD. METHOD Data from the Cohort of individuals with Schizophrenia and mood disorders Aged 55 years or more (CSA) were used. Two groups of patients with BD and MDD were compared: those who were currently receiving lithium versus those who were not. The effects of lithium on psychiatric (i.e., depressive symptoms severity, perceived clinical severity, rates of psychiatric admissions in the past-year), geriatric (overall and cognitive functioning) and physical outcomes (i.e., rates of non-psychiatric medical comorbidities and general hospital admissions in the past-year) were evaluated. All analyses were adjusted for age, sex, duration of disorder, diagnosis, smoking status, alcohol use, and use of antipsychotics, antiepileptics or antidepressants. RESULTS Among the 281 older participants with BD or MDD, 15.7% were taking lithium for a mean duration of 12.5(SD = 11.6) years. Lithium use was associated with lower intensity of depressive symptoms, reduced perceived clinical global severity and lower benzodiazepine use (all p < 0.05), without being linked to greater rates of medical comorbidities, except for hypothyroidism. LIMITATIONS Data were cross-sectional and data on lifetime history of psychotropic medications was not assessed. CONCLUSION Our results suggest that long-term lithium use may be efficient and relatively well-tolerated in older adults with BD or treatment-resistant MDD.
Collapse
Affiliation(s)
- Elise Morlet
- Department of Psychiatry, Corentin Celton Hospital, 4 Parvis Corentin Celton, 92130 Issy-les-Moulineaux, France
| | - Jean-François Costemale-Lacoste
- Department of Psychiatry, Corentin Celton Hospital, 4 Parvis Corentin Celton, 92130 Issy-les-Moulineaux, France; INSERM UMRS 1178, CESP, Le Kremlin Bicêtre, France.
| | - Emmanuel Poulet
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, PSY-R2 Team, Lyon F-69000, France
| | - Kibby McMahon
- Department of Psychology & Neuroscience, Duke University, 2213 Elba Street, Durham, NC 27710, United States
| | - Nicolas Hoertel
- Department of Psychiatry, Corentin Celton Hospital, 4 Parvis Corentin Celton, 92130 Issy-les-Moulineaux, France; INSERM UMR 894, Psychiatry and Neurosciences Center, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Frédéric Limosin
- Department of Psychiatry, Corentin Celton Hospital, 4 Parvis Corentin Celton, 92130 Issy-les-Moulineaux, France; INSERM UMR 894, Psychiatry and Neurosciences Center, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ge W, Jakobsson E. Systems Biology Understanding of the Effects of Lithium on Cancer. Front Oncol 2019; 9:296. [PMID: 31114752 PMCID: PMC6503094 DOI: 10.3389/fonc.2019.00296] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022] Open
Abstract
Lithium has many widely varying biochemical and phenomenological effects, suggesting that a systems biology approach is required to understand its action. Multiple lines of evidence point to lithium as a significant factor in development of cancer, showing that understanding lithium action is of high importance. In this paper we undertake first steps toward a systems approach by analyzing mutual enrichment between the interactomes of lithium-sensitive enzymes and the pathways associated with cancer. This work integrates information from two important databases, STRING, and KEGG pathways. We find that for the majority of cancer pathways the mutual enrichment is statistically highly significant, reinforcing previous lines of evidence that lithium is an important influence on cancer.
Collapse
Affiliation(s)
- Weihao Ge
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Eric Jakobsson
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
8
|
Davis J, Desmond M, Berk M. Lithium and nephrotoxicity: Unravelling the complex pathophysiological threads of the lightest metal. Nephrology (Carlton) 2018; 23:897-903. [DOI: 10.1111/nep.13263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Justin Davis
- Department of Renal MedicineUniversity Hospital Geelong Geelong Victoria Australia
| | - Michael Desmond
- Department of Renal MedicineUniversity Hospital Geelong Geelong Victoria Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research CentreSchool of Medicine, Barwon Health Geelong Victoria Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental HealthUniversity of Melbourne Parkville Victoria Australia
| |
Collapse
|
9
|
Bonsib SM. Urologic Diseases Germane to the Medical Renal Biopsy: Review of a Large Diagnostic Experience in the Context of the Renal Architecture and Its Environs. Adv Anat Pathol 2018; 25:333-352. [PMID: 30036201 PMCID: PMC6086223 DOI: 10.1097/pap.0000000000000199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The kidney is one of the most complicated organs in development and is susceptible to more types of diseases than other organs. The disease spectrum includes developmental and cystic diseases, involvement by systemic diseases, iatrogenic complications, ascending infections and urinary tract obstruction, and neoplastic diseases. The diagnosis of kidney disease is unique involving 2 subspecialties, urologic pathology and renal pathology. Both renal and urologic pathologists employ the renal biopsy as a diagnostic modality. However, urologic pathologists commonly have a generous specimen in the form of a nephrectomy or partial nephrectomy while a renal pathologist requires ancillary modalities of immunofluorescence and electron microscopy. The 2 subspecialties differ in the disease spectrum they diagnose. This separation is not absolute as diseases of one subspecialty not infrequently appear in the diagnostic materials of the other. The presence of medical renal diseases in a nephrectomy specimen is well described and recommendations for reporting these findings have been formalized. However, urologic diseases appearing in a medical renal biopsy have received less attention. This review attempts to fill that gap by first reviewing the perirenal anatomy to illustrate why inadvertent biopsy of adjacent organs occurs and determine its incidence in renal biopsies followed by a discussion of gross anatomic features relevant to the microscopic domain of the medical renal biopsy. Unsuspected neoplasms and renal cysts and cystic kidney diseases will then be discussed as they create a diagnostic challenge for the renal pathologist who often has limited training and experience in these diseases.
Collapse
|
10
|
Ambrosiani L, Pisanu C, Deidda A, Chillotti C, Stochino ME, Bocchetta A. Thyroid and renal tumors in patients treated with long-term lithium: case series from a lithium clinic, review of the literature and international pharmacovigilance reports. Int J Bipolar Disord 2018; 6:17. [PMID: 30079440 PMCID: PMC6161981 DOI: 10.1186/s40345-018-0125-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cancer had never been considered as a relevant problem in patients treated with lithium until 2015, when a document published by the European Medicine Agency concluded that long-term use of lithium might induce renal tumors. A few months later, we observed the case of a woman treated with lithium for 18 years who was diagnosed with both thyroid and renal tumors. METHODS This study aimed to investigate the correlation between lithium treatment and thyroid or renal tumors. We analyzed clinical records in our lithium clinic database, causes of death of patients who had been visited at least once at the lithium clinic, reports of lithium adverse reactions in the European and WHO pharmacovigilance databases, and published cases of thyroid and renal tumors in long-term lithium-treated patients. RESULTS Of the 1871 lithium patients who had been visited at least once between 1980 and 2013, eight had been diagnosed with thyroid papillary carcinoma and two with clear-cell renal-cell carcinoma. No cases of thyroid cancer and only one case of renal tumor were the cause of death according to the 375 available death certificates. VigiAccess database contained a total of 29 and 14 cases of renal and thyroid tumors, respectively. EudraVigilance database contained 21 cases of renal and 8 of thyroid neoplasms. Literature search yielded 6 published cases of thyroid papillary carcinoma and 25 cases of various renal tumors. However, two population-based studies did not find any increased risks of cancer in patients exposed to lithium, whereas two nationwide studies did not find any excess of renal tumors. CONCLUSION So far it has not been possible epidemiologically to confirm an increased risk of thyroid or renal cancers associated with lithium. Such a conclusion is supported by the findings of low rates and mortalities of thyroid or renal cancers from the present lithium clinic data.
Collapse
Affiliation(s)
- Luca Ambrosiani
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, S.S. 554, km 4,500, Monserrato, Italy
| | - Claudia Pisanu
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, S.S. 554, km 4,500, Monserrato, Italy
| | - Arianna Deidda
- Sardinian Regional Centre of Pharmacovigilance, Azienda Ospedaliero-Universitaria, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, “San Giovanni di Dio Hospital”, Azienda Ospedaliero-Universitaria, Cagliari, Italy
| | - Maria Erminia Stochino
- Sardinian Regional Centre of Pharmacovigilance, Azienda Ospedaliero-Universitaria, Cagliari, Italy
| | - Alberto Bocchetta
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, S.S. 554, km 4,500, Monserrato, Italy
- Unit of Clinical Pharmacology, “San Giovanni di Dio Hospital”, Azienda Ospedaliero-Universitaria, Cagliari, Italy
| |
Collapse
|
11
|
Jakobsson E, Argüello-Miranda O, Chiu SW, Fazal Z, Kruczek J, Nunez-Corrales S, Pandit S, Pritchet L. Towards a Unified Understanding of Lithium Action in Basic Biology and its Significance for Applied Biology. J Membr Biol 2017; 250:587-604. [PMID: 29127487 PMCID: PMC5696506 DOI: 10.1007/s00232-017-9998-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/21/2017] [Indexed: 01/14/2023]
Abstract
Lithium has literally been everywhere forever, since it is one of the three elements created in the Big Bang. Lithium concentration in rocks, soil, and fresh water is highly variable from place to place, and has varied widely in specific regions over evolutionary and geologic time. The biological effects of lithium are many and varied. Based on experiments in which animals are deprived of lithium, lithium is an essential nutrient. At the other extreme, at lithium ingestion sufficient to raise blood concentration significantly over 1 mM/, lithium is acutely toxic. There is no consensus regarding optimum levels of lithium intake for populations or individuals-with the single exception that lithium is a generally accepted first-line therapy for bipolar disorder, and specific dosage guidelines for sufferers of that condition are generally agreed on. Epidemiological evidence correlating various markers of social dysfunction and disease vs. lithium level in drinking water suggest benefits of moderately elevated lithium compared to average levels of lithium intake. In contrast to other biologically significant ions, lithium is unusual in not having its concentration in fluids of multicellular animals closely regulated. For hydrogen ions, sodium ions, potassium ions, calcium ions, chloride ions, and magnesium ions, blood and extracellular fluid concentrations are closely and necessarily regulated by systems of highly selective channels, and primary and secondary active transporters. Lithium, while having strong biological activity, is tolerated over body fluid concentrations ranging over many orders of magnitude. The lack of biological regulation of lithium appears due to lack of lithium-specific binding sites and selectivity filters. Rather lithium exerts its myriad physiological and biochemical effects by competing for macromolecular sites that are relatively specific for other cations, most especially for sodium and magnesium. This review will consider what is known about the nature of this competition and suggest using and extending this knowledge towards the goal of a unified understanding of lithium in biology and the application of that understanding in medicine and nutrition.
Collapse
Affiliation(s)
- Eric Jakobsson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | | - See-Wing Chiu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zeeshan Fazal
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - James Kruczek
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - Santiago Nunez-Corrales
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sagar Pandit
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - Laura Pritchet
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
12
|
Veldhuijzen N, Rookmaaker M, van Zuilen AD, Goldschmeding R, Nguyen T, Boer W. BK virus nephropathy, collecting duct cell proliferation and malignancy in a renal allograft: Case history and review of the literature. HUMAN PATHOLOGY: CASE REPORTS 2017. [DOI: 10.1016/j.ehpc.2016.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
13
|
Abstract
Cancer is a major health issue worldwide, and the global burden of cancer is expected to increase in the coming years. Whereas the limited success with current therapies has driven huge investments into drug development, the average number of FDA approvals per year has declined since the 1990s. This unmet need for more effective anti-cancer drugs has sparked a growing interest for drug repurposing, i.e. using drugs already approved for other indications to treat cancer. As such, data both from pre-clinical experiments, clinical trials and observational studies have demonstrated anti-tumor efficacy for compounds within a wide range of drug classes other than cancer. Whereas some of them induce cancer cell death or suppress various aspects of cancer cell behavior in established tumors, others may prevent cancer development. Here, we provide an overview of promising candidates for drug repurposing in cancer, as well as studies describing the biological mechanisms underlying their anti-neoplastic effects.
Collapse
Affiliation(s)
- Linda Sleire
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway
| | - Hilde Elise Førde
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway
| | - Inger Anne Netland
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway
| | - Lina Leiss
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway
| | - Bente Sandvei Skeie
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway; Department of Neurosurgery, Haukeland University Hospital, Jonas Lies vei, 71, 5021 Bergen, Norway
| | - Per Øyvind Enger
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway; Department of Neurosurgery, Haukeland University Hospital, Jonas Lies vei, 71, 5021 Bergen, Norway.
| |
Collapse
|
14
|
[Is there an increased risk for renal tumors during long-term treatment with lithium?]. DER NERVENARZT 2016; 86:1157-61. [PMID: 26341836 DOI: 10.1007/s00115-015-4413-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lithium salts are the recommended first-line treatment (gold standard) in national and international treatment guidelines for acute and maintenance treatment of affective disorders, such as bipolar disorders. Lithium has also been shown to have a unique protective effect against suicide in patients suffering from affective disorders. Despite the well-known acute and long-term adverse effects lithium therapy can be safely administered if patients are properly educated and carefully monitored. A recent study from France now shows that patients with severely impaired renal function who had been treated with lithium salts for more than 10 years could have an increased risk for kidney tumors (benign and malignant). This resulted in an adjustment concerning information within the package leaflet by European authorities. The authors of this article reflect the currently available data in order to better understand and handle this new finding and to warn about uncritical reactions including withdrawal of lithium in successfully treated patients. This article provides clinical recommendations to provide further insight relating to the risk of kidney cancer in long-term lithium therapy.
Collapse
|
15
|
Jung JH. Renal Cell Carcinoma Recognized Incidentally during Long-term Lithium Treatment. Chonnam Med J 2016; 52:143-4. [PMID: 27231681 PMCID: PMC4880581 DOI: 10.4068/cmj.2016.52.2.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jong Hwan Jung
- Division of Nephrology, Department of Internal Medicine, Wonkwang University College of Medicine, Iksan, Korea
| |
Collapse
|
16
|
Alsady M, Baumgarten R, Deen PMT, de Groot T. Lithium in the Kidney: Friend and Foe? J Am Soc Nephrol 2015; 27:1587-95. [PMID: 26577775 DOI: 10.1681/asn.2015080907] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Trace amounts of lithium are essential for our physical and mental health, and administration of lithium has improved the quality of life of millions of patients with bipolar disorder for >60 years. However, in a substantial number of patients with bipolar disorder, long-term lithium therapy comes at the cost of severe renal side effects, including nephrogenic diabetes insipidus and rarely, ESRD. Although the mechanisms underlying the lithium-induced renal pathologies are becoming clearer, several recent animal studies revealed that short-term administration of lower amounts of lithium prevents different forms of experimental AKI. In this review, we discuss the knowledge of the pathologic and therapeutic effects of lithium in the kidney. Furthermore, we discuss the underlying mechanisms of these seemingly paradoxical effects of lithium, in which fine-tuned regulation of glycogen synthase kinase type 3, a prime target for lithium, seems to be key. The new discoveries regarding the protective effect of lithium against AKI in rodents call for follow-up studies in humans and suggest that long-term therapy with low lithium concentrations could be beneficial in CKD.
Collapse
Affiliation(s)
- Mohammad Alsady
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | | | - Peter M T Deen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | - Theun de Groot
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| |
Collapse
|
17
|
Pottegård A, Hallas J, Jensen BL, Madsen K, Friis S. Long-Term Lithium Use and Risk of Renal and Upper Urinary Tract Cancers. J Am Soc Nephrol 2015; 27:249-55. [PMID: 25941353 DOI: 10.1681/asn.2015010061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/09/2015] [Indexed: 01/20/2023] Open
Abstract
Lithium induces proliferation in the epithelium of renal collecting ducts. A recent small-scale cohort study reported a strong association between use of lithium and increased risk of renal neoplasia. We therefore conducted a large-scale pharmacoepidemiologic study of the association between long-term use of lithium and risk of upper urinary tract cancer, including renal cell cancer and cancers of the renal pelvis or ureter. We identified all histologically verified upper urinary tract cancer cases in Denmark between 2000 and 2012 from the Danish Cancer Registry. A total of 6477 cases were matched by age and sex to 259,080 cancer-free controls. Data on lithium use from 1995 to 2012 were obtained from the Danish Prescription Registry. We estimated the association between long-term use of lithium (≥5 years) and risk of upper urinary tract cancer using conditional logistic regression with adjustment for potential confounders. Long-term use of lithium was observed among 0.22% of cases and 0.17% of controls. This yielded an overall nonsignificant adjusted odds ratio (OR) of 1.3 (95% confidence interval [95% CI], 0.8-2.2) for upper urinary tract cancer associated with long-term use of lithium. Analyses stratified by stage and subtype of upper urinary tract cancer revealed slight but nonsignificant increases in the ORs for localized disease (OR, 1.6; 95% CI, 0.8-3.0) and for renal pelvis/ureter cancers (OR, 1.7; 95% CI, 0.5-5.4). In conclusion, in our nationwide case-control study, use of lithium was not associated with an increased risk of upper urinary tract cancer.
Collapse
Affiliation(s)
- Anton Pottegård
- Clinical Pharmacology, Institute of Public Health, University of Southern Denmark, Odense, Denmark;
| | - Jesper Hallas
- Clinical Pharmacology, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Kirsten Madsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark; Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Søren Friis
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
18
|
McCartney Y, Browne C, Little DM, Gulmann C. Lithium-induced Nephrotoxicity: A Case Report of Renal Cystic Disease Presenting as a Mass Lesion. Urol Case Rep 2014; 2:186-8. [PMID: 26958484 PMCID: PMC4782127 DOI: 10.1016/j.eucr.2014.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 11/23/2022] Open
Abstract
Lithium is an effective therapeutic agent used in the management of bipolar disorder. However, lithium is also associated with several side effects, including renal toxicity. We present a case of a symptomatic cystic mass lesion in the kidney of a patient who had a history of lithium therapy for the management of bipolar disorder.
Collapse
Affiliation(s)
| | - Cliodhna Browne
- Histopathology Department, Beaumont Hospital, Dublin, Ireland
| | - Dilly M Little
- Histopathology Department, Beaumont Hospital, Dublin, Ireland
| | | |
Collapse
|
19
|
Increased risk of solid renal tumors in lithium-treated patients. Kidney Int 2014; 86:184-90. [DOI: 10.1038/ki.2014.2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/14/2013] [Accepted: 12/12/2013] [Indexed: 02/06/2023]
|
20
|
Luijten MNH, Basten SG, Claessens T, Vernooij M, Scott CL, Janssen R, Easton JA, Kamps MAF, Vreeburg M, Broers JLV, van Geel M, Menko FH, Harbottle RP, Nookala RK, Tee AR, Land SC, Giles RH, Coull BJ, van Steensel MAM. Birt-Hogg-Dube syndrome is a novel ciliopathy. Hum Mol Genet 2013; 22:4383-97. [PMID: 23784378 DOI: 10.1093/hmg/ddt288] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant disorder where patients are predisposed to kidney cancer, lung and kidney cysts and benign skin tumors. BHD is caused by heterozygous mutations affecting folliculin (FLCN), a conserved protein that is considered a tumor suppressor. Previous research has uncovered multiple roles for FLCN in cellular physiology, yet it remains unclear how these translate to BHD lesions. Since BHD manifests hallmark characteristics of ciliopathies, we speculated that FLCN might also have a ciliary role. Our data indicate that FLCN localizes to motile and non-motile cilia, centrosomes and the mitotic spindle. Alteration of FLCN levels can cause changes to the onset of ciliogenesis, without abrogating it. In three-dimensional culture, abnormal expression of FLCN disrupts polarized growth of kidney cells and deregulates canonical Wnt signalling. Our findings further suggest that BHD-causing FLCN mutants may retain partial functionality. Thus, several BHD symptoms may be due to abnormal levels of FLCN rather than its complete loss and accordingly, we show expression of mutant FLCN in a BHD-associated renal carcinoma. We propose that BHD is a novel ciliopathy, its symptoms at least partly due to abnormal ciliogenesis and canonical Wnt signalling.
Collapse
Affiliation(s)
- Monique N H Luijten
- Department of Dermatology and GROW School for Oncology and Developmental Biology
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Basten SG, Giles RH. Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2013; 2:6. [PMID: 23628112 PMCID: PMC3662159 DOI: 10.1186/2046-2530-2-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/25/2013] [Indexed: 01/09/2023] Open
Abstract
Dysfunctional cilia underlie a broad range of cellular and tissue phenotypes and can eventually result in the development of ciliopathies: pathologically diverse diseases that range from clinically mild to highly complex and severe multi-organ failure syndromes incompatible with neonatal life. Given that virtually all cells of the human body have the capacity to generate cilia, it is likely that clinical manifestations attributed to ciliary dysfunction will increase in the years to come. Disputed but nevertheless enigmatic is the notion that at least a subset of tumor phenotypes fit within the ciliopathy disease spectrum and that cilia loss may be required for tumor progression. Contending for the centrosome renders ciliation and cell division mutually exclusive; a regulated tipping of balance promotes either process. The mechanisms involved, however, are complex. If the hypothesis that tumorigenesis results from dysfunctional cilia is true, then why do the classic ciliopathies only show limited hyperplasia at best? Although disassembly of the cilium is a prerequisite for cell proliferation, it does not intrinsically drive tumorigenesis per se. Alternatively, we will explore the emerging evidence suggesting that some tumors depend on ciliary signaling. After reviewing the structure, genesis and signaling of cilia, the various ciliopathy syndromes and their genetics, we discuss the current debate of tumorigenesis as a ciliopathy spectrum defect, and describe recent advances in this fascinating field.
Collapse
Affiliation(s)
- Sander G Basten
- Department of Medical Oncology, UMC Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, F03.223, 3584 CX, The Netherlands
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, F03.223, 3584 CX, The Netherlands
| |
Collapse
|