1
|
Millington DS. How mass spectrometry revolutionized newborn screening. J Mass Spectrom Adv Clin Lab 2024; 32:1-10. [PMID: 38333514 PMCID: PMC10847993 DOI: 10.1016/j.jmsacl.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
This article offers a personal account of a remarkable journey spanning over 30 years of applied mass spectrometry in a clinical setting. It begins with the author's inspiration from a clinician's story of rescuing a child from near death with a revolutionary therapeutic intervention. Motivated by this experience, the author delved into the field of chemistry and mass spectrometry to solve an analytical challenge. The breakthrough came with the development of the first front-line diagnostic test performed by MS/MS, which focused on analyzing acylcarnitines to detect and diagnose inherited disorders related to fatty acid and branched-chain amino acid catabolism. Building upon this success, the author expanded the application of the method to dried blood spots, incorporating additional analytical components such as essential amino acids. The result was a groundbreaking multiplex assay capable of screening newborns for more than 30 inherited metabolic conditions with just one test. This novel approach laid the foundation for a targeted metabolomics platform that facilitated the identification of new animal models of metabolic disease through screening the offspring of genetically modified adults. The development and utilization of MS/MS with UPLC has led to the creation of new assays for biomarkers of metabolic disease, benefiting both the diagnosis and therapeutic monitoring of these conditions. The article provides compelling examples from the author's laboratory, highlighting the value and vast applications of these methods in the field of metabolic disease research.
Collapse
Affiliation(s)
- David S Millington
- Duke University Medical Center, Department of Pediatrics, Durham, NC, USA
| |
Collapse
|
2
|
Xu A, Tang LC, Jovanovic M, Regev O. Uncovering Distinct Peptide Charging Behaviors in Electrospray Ionization Mass Spectrometry Using a Large-Scale Dataset. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:90-99. [PMID: 38095561 PMCID: PMC10767741 DOI: 10.1021/jasms.3c00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Electrospray ionization is a powerful and prevalent technique used to ionize analytes in mass spectrometry. The distribution of charges that an analyte receives (charge state distribution, CSD) is an important consideration for interpreting mass spectra. However, due to an incomplete understanding of the ionization mechanism, the analyte properties that influence CSDs are not fully understood. Here, we employ a machine learning-based approach and analyze CSDs of hundreds of thousands of peptides. Interestingly, half of the peptides exhibit charges that differ from what one would naively expect (the number of basic sites). We find that these peptides can be classified into two regimes (undercharging and overcharging) and that these two regimes display markedly different charging characteristics. Notably, peptides in the overcharging regime show minimal dependence on basic site count, and more generally, the two regimes exhibit distinct sequence determinants. These findings highlight the rich ionization behavior of peptides and the potential of CSDs for enhancing peptide identification.
Collapse
Affiliation(s)
- Allyn
M. Xu
- Department
of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
| | - Lauren C. Tang
- Department
of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Marko Jovanovic
- Department
of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Oded Regev
- Computer
Science Department, Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
| |
Collapse
|
3
|
Zhang J, Sun M, Elmaidomy AH, Youssif KA, Zaki AMM, Hassan Kamal H, Sayed AM, Abdelmohsen UR. Emerging trends and applications of metabolomics in food science and nutrition. Food Funct 2023; 14:9050-9082. [PMID: 37740352 DOI: 10.1039/d3fo01770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The study of all chemical processes involving metabolites is known as metabolomics. It has been developed into an essential tool in several disciplines, such as the study of plant physiology, drug development, human diseases, and nutrition. The field of food science, diagnostic biomarker research, etiological analysis in the field of medical therapy, and raw material quality, processing, and safety have all benefited from the use of metabolomics recently. Food metabolomics includes the use of metabolomics in food production, processing, and human diets. As a result of changing consumer habits and the rising of food industries all over the world, there is a remarkable increase in interest in food quality and safety. It requires the employment of various technologies for the food supply chain, processing of food, and even plant breeding. This can be achieved by understanding the metabolome of food, including its biochemistry and composition. Additionally, Food metabolomics can be used to determine the similarities and differences across crop kinds, as an indicator for tracking the process of ripening to increase crops' shelf life and attractiveness, and identifying metabolites linked to pathways responsible for postharvest disorders. Moreover, nutritional metabolomics is used to investigate the connection between diet and human health through detection of certain biomarkers. This review assessed and compiled literature on food metabolomics research with an emphasis on metabolite extraction, detection, and data processing as well as its applications to the study of food nutrition, food-based illness, and phytochemical analysis. Several studies have been published on the applications of metabolomics in food but further research concerning the use of standard reproducible procedures must be done. The results published showed promising uses in the food industry in many areas such as food production, processing, and human diets. Finally, metabolome-wide association studies (MWASs) could also be a useful predictor to detect the connection between certain diseases and low molecular weight biomarkers.
Collapse
Affiliation(s)
- Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Khayrya A Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, El-Saleheya El Gadida University, Cairo, Egypt
| | - Adham M M Zaki
- Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hossam Hassan Kamal
- Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Almaaqal University, 61014 Basra, Iraq
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
4
|
Xu AM, Tang LC, Jovanovic M, Regev O. A high-throughput approach reveals distinct peptide charging behaviors in electrospray ionization mass spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535171. [PMID: 37066236 PMCID: PMC10103939 DOI: 10.1101/2023.03.31.535171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Electrospray ionization is a powerful and prevalent technique used to ionize analytes in mass spectrometry. The distribution of charges that an analyte receives (charge state distribution, CSD) is an important consideration for interpreting mass spectra. However, due to an incomplete understanding of the ionization mechanism, the analyte properties that influence CSDs are not fully understood. Here, we employ a machine learning-based high-throughput approach and analyze CSDs of hundreds of thousands of peptides. Interestingly, half of the peptides exhibit charges that differ from what one would naively expect (number of basic sites). We find that these peptides can be classified into two regimes-undercharging and overcharging-and that these two regimes display markedly different charging characteristics. Strikingly, peptides in the overcharging regime show minimal dependence on basic site count, and more generally, the two regimes exhibit distinct sequence determinants. These findings highlight the rich ionization behavior of peptides and the potential of CSDs for enhancing peptide identification.
Collapse
Affiliation(s)
- Allyn M. Xu
- Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, NY, USA
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Oded Regev
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, NY, USA
| |
Collapse
|
5
|
Zhang C, Dha D, Cheng Y, Ma Y, Meng Y, Tse D, Ngawang D, Dekyi P, Jiang T, Shu Y, Cui J, Li J, Tian Y. A preliminary investigation of amino acid and acylcarnitine levels in neonates from the Tibet autonomous. Front Genet 2022; 13:941938. [PMID: 36299584 PMCID: PMC9589887 DOI: 10.3389/fgene.2022.941938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The purpose of the study was to investigate the levels of amino acids and acylcarnitines in newborns of the Tibet Autonomous Region for the first time and to provide an experimental basis for the diagnosis of genetic metabolic diseases. Methods: We detected concentrations of 43 kinds of amino acids, acylcarnitines and succinylacetone in the dried blood spots of 18482 newborns using liquid chromatography tandem mass spectrometry and diagnose the case by gene sequencing. We compared the indexes between Tibet and our lab, where most data come from an inland area and Han Chinese people. Then we compared amino acid and acylcarnitine levels of seven regions in Tibet and explored their impact factors. Results: We described the levels of amino acids and acylcarnitines in Tibet newborns using 95% confidence intervals. The distribution of amino acid and acylcarnitines were different in Tibet. Conclusion: This study has contributed to filling in the blanks of Tibet newborn screening, which should be considered in the newborn metabolic disease screening in this area.
Collapse
Affiliation(s)
- Chunyan Zhang
- Birth defect prevention and Control Technology Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Drun Dha
- Department of Pediatrics, Maternity and children’s Hospital of Tibet Autonomous Region, Tibet, China
| | - Yuxuan Cheng
- Birth defect prevention and Control Technology Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Ya Ma
- Department of pediatrics, The second people’s hospital of Tibet Autonomous Region, Tibet, China
| | - Yan Meng
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
| | - Drun Tse
- Department of Pediatrics, Maternity and children’s Hospital of Tibet Autonomous Region, Tibet, China
| | - Dolma Ngawang
- Department of Women and children, Health commission of Tibet autonomous region, Tibet, China
| | - Pedrun Dekyi
- Department of Women and children, Health commission of Tibet autonomous region, Tibet, China
| | - Tao Jiang
- Birth defect prevention and Control Technology Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Yang Shu
- Birth defect prevention and Control Technology Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Jiayi Cui
- Birth defect prevention and Control Technology Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Jing Li
- Department of cardiology, Beijing hospital, Beijing, China
| | - Yaping Tian
- Birth defect prevention and Control Technology Research Center, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China,*Correspondence: Yaping Tian,
| |
Collapse
|
6
|
Fátima Lopes F, Sitta A, de Moura Coelho D, Schmitt Ribas G, Lamberty Faverzani J, Gomes Dos Reis B, Wajner M, Vargas CR. Clinical findings of patients with hyperammonemia affected by urea cycle disorders with hepatic encephalopathy. Int J Dev Neurosci 2022; 82:772-788. [PMID: 36129623 DOI: 10.1002/jdn.10229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/21/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
Urea Cycle Disorders (UCD) are a group of genetic diseases caused by deficiencies in the enzymes and transporters involved in the urea cycle. The impairment of the cycle results in ammonia accumulation, leading to neurological dysfunctions and poor outcomes to affected patients. The aim of this study is to investigate and describe UCD patients principal clinical and biochemical presentations to support professionals on urgent diagnosis and quick management, aiming better outcomes for patients. We explored medical records of thirty patients diagnosed in a referral center from Brazil to delineate UCD clinical and biochemical profile. Patients demonstrated a range of signs and symptoms, such as altered levels of consciousness, acute encephalopathy, seizures, progressive loss of appetite, vomiting, coma, and respiratory distress, in most cases combined with high levels of ammonia, which is an immediate biomarker, leading to an UCD suspicion. The most prevalent UCD detected were ornithine transcarbamylase deficiency (11), followed by citrullinemia type I (10), hyperargininemia (5), carbamoyl phosphate synthase 1 deficiency (2) and argininosuccinic aciduria (2). Clinical symptoms were highly severe, being the majority developmental and neurological disabilities, with 20% of death rate. Laboratory analysis revealed high levels of ammonia (mean ± SD: 860 ± 470 μmol/L; reference value: ≤ 80 μmol/L), hypoglycemia, metabolic acidosis, and high excretion of orotic acid in the urine (except in CPS1 deficiency). We emphasize the need of urgent identification of UCD clinical and biochemical conditions, and immediate measurement of ammonia, to enable the correct diagnosis and increase the chances of patients survival, minimizing neurological and psychomotor damage caused by hepatic encephalopathy.
Collapse
Affiliation(s)
- Franciele Fátima Lopes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Angela Sitta
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | - Jéssica Lamberty Faverzani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bianca Gomes Dos Reis
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
7
|
Allaway D, Alexander JE, Carvell-Miller LJ, Reynolds RM, Winder CL, Weber RJM, Lloyd GR, Southam AD, Dunn WB. Suitability of Dried Blood Spots for Accelerating Veterinary Biobank Collections and Identifying Metabolomics Biomarkers With Minimal Resources. Front Vet Sci 2022; 9:887163. [PMID: 35812865 PMCID: PMC9258959 DOI: 10.3389/fvets.2022.887163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Biomarker discovery using biobank samples collected from veterinary clinics would deliver insights into the diverse population of pets and accelerate diagnostic development. The acquisition, preparation, processing, and storage of biofluid samples in sufficient volumes and at a quality suitable for later analysis with most suitable discovery methods remain challenging. Metabolomics analysis is a valuable approach to detect health/disease phenotypes. Pre-processing changes during preparation of plasma/serum samples may induce variability that may be overcome using dried blood spots (DBSs). We report a proof of principle study by metabolite fingerprinting applying UHPLC-MS of plasma and DBSs acquired from healthy adult dogs and cats (age range 1–9 years), representing each of 4 dog breeds (Labrador retriever, Beagle, Petit Basset Griffon Vendeen, and Norfolk terrier) and the British domestic shorthair cat (n = 10 per group). Blood samples (20 and 40 μL) for DBSs were loaded onto filter paper, air-dried at room temperature (3 h), and sealed and stored (4°C for ~72 h) prior to storage at −80°C. Plasma from the same blood draw (250 μL) was prepared and stored at −80°C within 1 h of sampling. Metabolite fingerprinting of the DBSs and plasma produced similar numbers of metabolite features that had similar abilities to discriminate between biological classes and correctly assign blinded samples. These provide evidence that DBSs, sampled in a manner amenable to application in in-clinic/in-field processing, are a suitable sample for biomarker discovery using UHPLC-MS metabolomics. Further, given appropriate owner consent, the volumes tested (20–40 μL) make the acquisition of remnant blood from blood samples drawn for other reasons available for biobanking and other research activities. Together, this makes possible large-scale biobanking of veterinary samples, gaining sufficient material sooner and enabling quicker identification of biomarkers of interest.
Collapse
Affiliation(s)
- David Allaway
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, United Kingdom
- *Correspondence: David Allaway
| | - Janet E. Alexander
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, United Kingdom
| | - Laura J. Carvell-Miller
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, United Kingdom
| | - Rhiannon M. Reynolds
- WALTHAM Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, United Kingdom
| | - Catherine L. Winder
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ralf J. M. Weber
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
| | - Gavin R. Lloyd
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
| | - Andrew D. Southam
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
| | - Warwick B. Dunn
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Medium-chain acyl-CoA dehydrogenase deficiency: prevalence of ACADM pathogenic variants c.985A>G and c.199T>C in a healthy population in Rio Grande do Sul, Brazil. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Clinical experience with hepatorenal tyrosinemia from a single Egyptian center. PLoS One 2022; 17:e0268017. [PMID: 35536841 PMCID: PMC9089876 DOI: 10.1371/journal.pone.0268017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
Although very recently, in Egypt, sick newborn screening has included screening for hepatorenal tyrosinemia, yet, it is not yet included in nationwide neonatal screening and hence diagnosis may be delayed. The aim of this study was to analyze data of all cases presenting with hepatorenal tyrosinemia to the Pediatric Hepatology Unit, Cairo University, Egypt from 2006 to 2019. Data were retrieved from patients’ files including age of onset of symptoms, clinical signs, blood counts, liver functions, serum phosphorous, alpha-fetoprotein, succinylacetone and abdominal ultrasound. During this period, 76 patients were diagnosed with hepatorenal tyrosinemia if succinylacetone in dry blood spot was elevated above 1 μmol/L. These 76 cases came from 70 families; consanguinity was reported in 61 families. In our cohort we reported 30 affected siblings with a similar clinical presentation, who died undiagnosed. Presentation was acute in 26%, subacute in 30% and chronic in 43%. Abdominal distention was the commonest presenting symptom (52.6%). Coagulopathy was the commonest derangement in liver functions; hyperbilirubinemia and raised transaminases were less common. Ultrasound findings included hepatic focal lesions in 47% and enlarged echogenic kidneys in 39% and 45.3% respectively. Only 20 children were treated with Nitisinone because of unavailability and high costs; seven out of them underwent liver transplantation. In conclusion, although hepatorenal tyrosinemia is a rare inborn error of metabolism, in a large population country with high rate of consanguinity; this disease is not uncommonly diagnosed. The current treatment is not readily available because of the costs in a resource-limited country. Neonatal screening and subsidization of the costly medication need to be considered.
Collapse
|
10
|
Abdelsattar S, Obada M, El-Hawy MA, Abd El Naby SA, Zaki OK, Elsaid H. Inherited metabolic disorders in a cohort of Egyptian children. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Inborn errors of metabolism (IEMs) represent a special challenge in pediatric practice. Despite the unquestionable clinical significance of newborn screening, it just offers a snapshot of an extremely minor subgroup of metabolic disorders. So, it is crucial to use multiple techniques for accurate diagnosis of a wider spectrum of IEMs early in infancy to prevent overwhelming irreversible neurological complications in a cohort of high-risk Egyptian pediatrics. This study included four thousand and eighty suspected IEMs patients. They were referred to the Chromatography Unit, Clinical Biochemistry and Molecular Diagnostics Laboratories, National Liver Institute (NLI) for laboratory assessment in the period from March 2016 to November 2020. Separation of amino acids and acylcarnitines using tandem mass spectrometry (LC/MS) and organic acids using gas chromatography mass spectrometry (GC/MS) was done.
Results
Three hundred and twenty (320/4080, 7.8%) patients were diagnosed with IEMs. The following disorders were identified: organic acidopathies—200 (62.5%) including methylmalonic acidemia (MMA) (48/320, 15%), glutaric academia (GA) (40/320, 12, 5%), propionic acidemia (PA), (32/320, 10%), isovaleric acidemia (IVA) (40/320, 12.5%), methylcrotonyl glyceinuria (16/320, 5%), and orotic acidemia (24/320, 7.5%); amino acidopathies—80 (25%) including maple syrup urine disease (MSUD) (32/320, 10%), phenylketonuria (24/320, 7.5%), homocystinuria (16/320, 5%), and nonketotic hyperglycinemia (8/320, 2.5%) in addition to fatty acid disorders (FAO): 24 (7.5%) and lactic academia (LA), 16 (5%).
Conclusion
Early detection of IEMs by rapid non-invasive techniques. LC/MS and GC/MS. is a crucial process for early diagnosis of different types of IEMs to install therapeutic clue in a group of high-risk Egyptian pediatrics for proper treatment and better outcome
Collapse
|
11
|
Martín‐Rivada Á, Palomino Pérez L, Ruiz‐Sala P, Navarrete R, Cambra Conejero A, Quijada Fraile P, Moráis López A, Belanger‐Quintana A, Martín‐Hernández E, Bellusci M, Cañedo Villaroya E, Chumillas Calzada S, García Silva MT, Bergua Martínez A, Stanescu S, Martínez‐Pardo Casanova M, Ruano MLF, Ugarte M, Pérez B, Pedrón‐Giner C. Diagnosis of inborn errors of metabolism within the expanded newborn screening in the Madrid region. JIMD Rep 2022; 63:146-161. [PMID: 35281663 PMCID: PMC8898721 DOI: 10.1002/jmd2.12265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
We present the results of our experience in the diagnosis of inborn errors of metabolism (IEM) since the Expanded Newborn Screening was implemented in our Region. Dried blood samples were collected 48 h after birth. Amino acids and acylcarnitines were quantitated by mass spectrometry (MS)/MS. Newborns with alterations were referred to the clinical centers for follow-up. Biochemical and molecular genetic studies for confirmation of a disease were performed. In the period 2011 to 2019, 592 822 children were screened: 902 of them were referred for abnormal results. An IEM was confirmed in 222 (1/2670): aminoacidopathies: 89 hyperphenylalaninemia (HPA) (51 benign HPA, 32 phenylketonuria, 4 DNAJC12 defect, and 2 primapterinuria), 6 hypermethioninemia, 3 tyrosinemia type 1 (TYR-1), 1 TYR-3, 4 maple syrup urine disease (MSUD), 2 branched-chain amino acid transferase 2 deficiency, 2 homocystinuria, 1 cystinuria, 2 ornithine transcarbamylase (OTC) deficiency, 2 citrullinemia type I (CTLN1); FAO defects: 43 medium-chain acyl-CoA dehydrogenase deficiency (MCADD), 13 very long-chain acyl-CoA dehydrogenase deficiency, 2 long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), 1 multiple acyl-coA dehydrogenation deficiency, 11 systemic primary carnitine deficiency, 2 carnitine palmitoyltransferase type 2 (CPT-II) deficiency, 1 CPT-I deficiency; organic acidurias: 12 glutaric aciduria type 1 (GA-1), 4 methylmalonic acidemia (MMA), 7 MMA including combined cases with homocystinuria (MMAHC), 6 propionic acidemia (PA), 7 3-methylcrotonyl-CoA carboxylase, 1 3-hydroxy-3-methylglutaryl-CoA lyase deficiency lyase deficiency. Only 19 infants (8.5%) were symptomatic at newborn screening result (1 LCHADD, 5 PA, 1 CPT-II deficiency, 1 MMA, 3 MMAHC, 2 MSUD, 2 OTC deficiency, 1 CTLN1, 1 MCADD, 2 TYR-1). No false negative cases were identified. Genetic diagnosis was conclusive in all biochemically confirmed cases, except for two infants with HPA, identifying pathogenic variants in 32 different genes. The conditions with the highest incidence were HPA (1/6661) and MCAD deficiencies (1/13 787).
Collapse
Affiliation(s)
- Álvaro Martín‐Rivada
- Sección de Gastroenterología y NutriciónHospital Infantil Universitario Niño JesúsMadridSpain
| | - Laura Palomino Pérez
- Sección de Gastroenterología y NutriciónHospital Infantil Universitario Niño JesúsMadridSpain
| | - Pedro Ruiz‐Sala
- Centro de Diagnóstico de Enfermedades MolecularesUniversidad Autónoma de Madrid, IdiPAZ, CIBERERMadridSpain
| | - Rosa Navarrete
- Centro de Diagnóstico de Enfermedades MolecularesUniversidad Autónoma de Madrid, IdiPAZ, CIBERERMadridSpain
| | - Ana Cambra Conejero
- Laboratorio de Cribado Neonatal de la Comunidad de MadridServicio de Bioquímica Clínica, Hospital General Universitario Gregorio MarañónMadridSpain
| | - Pilar Quijada Fraile
- Unidad de Enfermedades Mitocondriales‐Metabólicas HereditariasCentro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de OctubreMadridSpain
| | - Ana Moráis López
- Unidad de Nutrición Infantil y Enfermedades MetabólicasHospital Universitario La PazMadridSpain
| | - Amaya Belanger‐Quintana
- Centro de Referencia Nacional (CSUR) en Enfermedades MetabólicasHospital Universitario Ramón y CajalMadridSpain
| | - Elena Martín‐Hernández
- Unidad de Enfermedades Mitocondriales‐Metabólicas HereditariasCentro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de OctubreMadridSpain
| | - Marcello Bellusci
- Unidad de Enfermedades Mitocondriales‐Metabólicas HereditariasCentro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de OctubreMadridSpain
| | - Elvira Cañedo Villaroya
- Sección de Gastroenterología y NutriciónHospital Infantil Universitario Niño JesúsMadridSpain
| | - Silvia Chumillas Calzada
- Unidad de Enfermedades Mitocondriales‐Metabólicas HereditariasCentro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de OctubreMadridSpain
| | - María Teresa García Silva
- Unidad de Enfermedades Mitocondriales‐Metabólicas HereditariasCentro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Hospital Universitario 12 de OctubreMadridSpain
| | - Ana Bergua Martínez
- Unidad de Nutrición Infantil y Enfermedades MetabólicasHospital Universitario La PazMadridSpain
| | - Sinziana Stanescu
- Centro de Referencia Nacional (CSUR) en Enfermedades MetabólicasHospital Universitario Ramón y CajalMadridSpain
| | | | - Miguel L. F. Ruano
- Laboratorio de Cribado Neonatal de la Comunidad de MadridServicio de Bioquímica Clínica, Hospital General Universitario Gregorio MarañónMadridSpain
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades MolecularesUniversidad Autónoma de Madrid, IdiPAZ, CIBERERMadridSpain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades MolecularesUniversidad Autónoma de Madrid, IdiPAZ, CIBERERMadridSpain
| | - Consuelo Pedrón‐Giner
- Sección de Gastroenterología y NutriciónHospital Infantil Universitario Niño JesúsMadridSpain
| |
Collapse
|
12
|
Chen R, Zheng J, Li L, Li C, Chao K, Zeng Z, Chen M, Zhang S. Metabolomics facilitate the personalized management in inflammatory bowel disease. Therap Adv Gastroenterol 2021; 14:17562848211064489. [PMID: 34987610 PMCID: PMC8721420 DOI: 10.1177/17562848211064489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/15/2021] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a gastrointestinal disorder characterized by chronic relapsing inflammation and mucosal lesions. Reliable biomarkers for monitoring disease activity, predicting therapeutic response, and disease relapse are needed in the personalized management of IBD. Given the alterations in metabolomic profiles observed in patients with IBD, metabolomics, a new and developing technique for the qualitative and quantitative study of small metabolite molecules, offers another possibility for identifying candidate markers and promising predictive models. With increasing research on metabolomics, it is gradually considered that metabolomics will play a significant role in the management of IBD. In this review, we summarize the role of metabolomics in the assessment of disease activity, including endoscopic activity and histological activity, prediction of therapeutic response, prediction of relapse, and other aspects concerning disease management in IBD. Furthermore, we describe the limitations of metabolomics and highlight some solutions.
Collapse
Affiliation(s)
- Rirong Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jieqi Zheng
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, P.R. China
| | - Chao Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Kang Chao
- Division of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhirong Zeng
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Minhu Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, P.R. China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, P.R. China
| |
Collapse
|
13
|
State-of-the-art in analytical methods for metabolic profiling of Saccharomyces cerevisiae. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Elmonem MA, van den Heuvel LP. Editorial: Newborn Screening for Inborn Errors of Metabolism: Is It Time for a Globalized Perspective Based on Genetic Screening? Front Genet 2021; 12:758142. [PMID: 34589119 PMCID: PMC8473867 DOI: 10.3389/fgene.2021.758142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Mohamed A Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology & Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
15
|
Vidarsdottir H, Halldorsson TI, Geirsson RT, Bjarnason R, Franzson L, Valdimarsdottir UA, Thorkelsson T. Mode of delivery was associated with transient changes in the metabolomic profile of neonates. Acta Paediatr 2021; 110:2110-2118. [PMID: 33636029 DOI: 10.1111/apa.15822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/28/2022]
Abstract
AIMS To estimate potential differences in neonatal metabolomic profiles at birth and at the time of newborn screening by delivery mode. METHODS A prospective study at Women's Clinic at Landspitali-The National University Hospital of Iceland. Women having normal vaginal birth or elective caesarean section from November 2013 to April 2014 were offered participation. Blood samples from mothers before birth and umbilical cord at birth were collected and amino acids and acylcarnitines measured by tandem mass spectrometry. Results from the Newborn screening programme in Iceland were collected. Amino acids and acylcarnitines from different samples were compared by delivery mode. RESULTS Eighty three normal vaginal births and 32 elective caesarean sections were included. Mean differences at birth were higher for numerous amino acids, and some acylcarnitines in neonates born vaginally compared to elective caesarean section. Maternal blood samples and newborn screening results showed small differences that lost significance after correction for multiple testing. Many amino acids and some acylcarnitines were numerically higher in cord blood compared to maternal. Many amino acids and most acylcarnitines were numerically higher in newborn screening results compared to cord blood. CONCLUSION We observed transient yet distinct differences in metabolomic profiles between neonates by delivery mode.
Collapse
Affiliation(s)
- Harpa Vidarsdottir
- Faculty of Medicine School of Health Sciences University of Iceland Reykjavik Iceland
- Department of Neonatology Astrid Lindgren Children's Hospital Karolinska University Hospital Stockholm Sweden
| | | | - Reynir Tomas Geirsson
- Faculty of Medicine School of Health Sciences University of Iceland Reykjavik Iceland
- Women's Clinic Landspitali – The National University Hospital of Iceland Reykjavik Iceland
| | - Ragnar Bjarnason
- Faculty of Medicine School of Health Sciences University of Iceland Reykjavik Iceland
- Children's Hospital Iceland Landspitali – The National University Hospital of Iceland Reykjavik Iceland
| | - Leifur Franzson
- Faculty of Pharmaceutical Sciences School of Health Science University of Iceland Reykjavik Iceland
- Department of Genetics and Molecular Medicine Landspitali – The National University Hospital of Iceland Reykjavik Iceland
| | - Unnur Anna Valdimarsdottir
- Center for Public Health Science School of Health Science University of Iceland Reykjavik Iceland
- Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden
- Department of Epidemiology Harvard T H Chan School of Public Health Boston MA USA
| | - Thordur Thorkelsson
- Faculty of Medicine School of Health Sciences University of Iceland Reykjavik Iceland
- Children's Hospital Iceland Landspitali – The National University Hospital of Iceland Reykjavik Iceland
| |
Collapse
|
16
|
Cheillan D. [Main biological tools applied to newborn screening: Landscape and future perspectives]. Med Sci (Paris) 2021; 37:461-467. [PMID: 34003091 DOI: 10.1051/medsci/2021062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over the past fifty years, neonatal screening has become essential in the public health programs of a large number of countries. During all these years, the number of detectable diseases has continued to grow, following the possibilities offered by technical advances in clinical biology. The Guthrie test has enabled the miniaturization of blood sampling, opening up the possibilities of biological screening in the newborn population. Fluorimetry, immunoassay and more recently tandem mass spectrometry have subsequently allowed to detect many treatable disorders. The new developments of next generation sequencing and artificial intelligence may open a new era despite many ethical questions that will arise. This review provides an overview of the biological techniques currently used for neonatal screening and opens up perspectives on the place of new technological developments.
Collapse
Affiliation(s)
- David Cheillan
- Service de biochimie et biologie moléculaire - Centre de biologie Est, Hospices Civils de Lyon, 69500 Bron, France - Commission de biologie - Centre national de coordination du dépistage néonatal, 69500 Bron, France
| |
Collapse
|
17
|
Coene KLM, Timmer C, Goorden SMI, ten Hoedt AE, Kluijtmans LAJ, Janssen MCH, Rennings AJM, Prinsen HCMT, Wamelink MMC, Ruijter GJG, Körver‐Keularts IMLW, Heiner‐Fokkema MR, van Spronsen FJ, Hollak CE, Vaz FM, Bosch AM, Huigen MCDG. Monitoring phenylalanine concentrations in the follow-up of phenylketonuria patients: An inventory of pre-analytical and analytical variation. JIMD Rep 2021; 58:70-79. [PMID: 33728249 PMCID: PMC7932865 DOI: 10.1002/jmd2.12186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Reliable measurement of phenylalanine (Phe) is a prerequisite for adequate follow-up of phenylketonuria (PKU) patients. However, previous studies have raised concerns on the intercomparability of plasma and dried blood spot (DBS) Phe results. In this study, we made an inventory of differences in (pre-)analytical methodology used for Phe determination across Dutch laboratories, and compared DBS and plasma results. METHODS Through an online questionnaire, we assessed (pre-)analytical Phe measurement procedures of seven Dutch metabolic laboratories. To investigate the difference between plasma and DBS Phe, participating laboratories received simultaneously collected plasma-DBS sets from 23 PKU patients. In parallel, 40 sample sets of DBS spotted from either venous blood or capillary fingerprick were analyzed. RESULTS Our data show that there is no consistency on standard operating procedures for Phe measurement. The association of DBS to plasma Phe concentration exhibits substantial inter-laboratory variation, ranging from a mean difference of -15.5% to +30.6% between plasma and DBS Phe concentrations. In addition, we found a mean difference of +5.8% in Phe concentration between capillary DBS and DBS prepared from venous blood. CONCLUSIONS The results of our study point to substantial (pre-)analytical variation in Phe measurements, implicating that bloodspot Phe results should be interpreted with caution, especially when no correction factor is applied. To minimize variation, we advocate pre-analytical standardization and analytical harmonization of Phe measurements, including consensus on application of a correction factor to adjust DBS Phe to plasma concentrations.
Collapse
Affiliation(s)
- Karlien L. M. Coene
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CentreNijmegenThe Netherlands
| | - Corrie Timmer
- Department Endocrinology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Susan M. I. Goorden
- Laboratory Genetic Metabolic Diseases, Department of Clinical ChemistryAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Amber E. ten Hoedt
- Department of Paediatrics, Division of Metabolic DisordersAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Leo A. J. Kluijtmans
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CentreNijmegenThe Netherlands
| | - Mirian C. H. Janssen
- Department of Internal MedicineRadboud University Medical CentreNijmegenThe Netherlands
| | | | | | - Mirjam M. C. Wamelink
- Metabolic Laboratory, Department of Clinical ChemistryAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - George J. G. Ruijter
- Center for Lysosomal and Metabolic Diseases, Department of Clinical GeneticsErasmus MCRotterdamThe Netherlands
| | - Irene M. L. W. Körver‐Keularts
- Laboratory of Biochemical Genetics, Department of Clinical GeneticsMaastricht University Medical CentreMaastrichtThe Netherlands
| | - M. Rebecca Heiner‐Fokkema
- Laboratory of Metabolic DiseasesUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Francjan J. van Spronsen
- Division of Metabolic DiseasesBeatrix Children's Hospital, University Medical Centre GroningenGroningenThe Netherlands
| | - Carla E. Hollak
- Department Endocrinology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Frédéric M. Vaz
- Laboratory Genetic Metabolic Diseases, Department of Clinical ChemistryAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Annet M. Bosch
- Department of Paediatrics, Division of Metabolic DisordersAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Marleen C. D. G. Huigen
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CentreNijmegenThe Netherlands
| |
Collapse
|
18
|
Sitta A, Guerreiro G, de Moura Coelho D, da Rocha VV, Dos Reis BG, Sousa C, Vilarinho L, Wajner M, Vargas CR. Clinical, biochemical and molecular findings of 24 Brazilian patients with glutaric acidemia type 1: 4 novel mutations in the GCDH gene. Metab Brain Dis 2021; 36:205-212. [PMID: 33064266 DOI: 10.1007/s11011-020-00632-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/11/2020] [Indexed: 11/25/2022]
Abstract
Glutaric aciduria type 1 (GA-1) is a rare but treatable inherited disease caused by deficiency of glutaryl-CoA dehydrogenase activity due to GCDH gene mutations. In this study, we report 24 symptomatic GA-1 Brazilian patients, and present their clinical, biochemical, and molecular findings. Patients were diagnosed by high levels of glutaric and/or 3-hydroxyglutaric and glutarylcarnitine. Diagnosis was confirmed by genetic analysis. Most patients had the early-onset severe form of the disease and the main features were neurological deterioration, seizures and dystonia, usually following an episode of metabolic decompensation. Despite the early symptomatology, diagnosis took a long time for most patients. We identified 13 variants in the GCDH gene, four of them were novel: c.91 + 5G > A, c.167T > G, c.257C > T, and c.10A > T. The most common mutation was c.1204C > T (p.R402W). Surprisingly, the second most frequent mutation was the new mutation c.91 + 5G > A (IVS1 ds G-A + 5). Our results allowed a complete characterization of the GA-1 Brazilian patients. Besides, they expand the mutational spectrum of GA-1, with the description of four new mutations. This work reinforces the importance of awareness of GA-1 among doctors in order to allow early diagnosis and treatment in countries like Brazil where the disease has not been included in newborn screening programs.
Collapse
Affiliation(s)
- Angela Sitta
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-003, Porto Alegre, RS, Brazil.
| | - Gilian Guerreiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Daniella de Moura Coelho
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-003, Porto Alegre, RS, Brazil
| | - Vitoria Volfart da Rocha
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-003, Porto Alegre, RS, Brazil
| | - Bianca Gomes Dos Reis
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-003, Porto Alegre, RS, Brazil
| | - Carmen Sousa
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Dr Ricardo Jorge, Alexandre Herculano, 321, 4000-055, Porto, Portugal
| | - Laura Vilarinho
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Dr Ricardo Jorge, Alexandre Herculano, 321, 4000-055, Porto, Portugal
| | - Moacir Wajner
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-003, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Carmen Regla Vargas
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-003, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Ipiranga, 2752, 90610-000, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
19
|
Fraga-Corral M, Carpena M, Garcia-Oliveira P, Pereira AG, Prieto MA, Simal-Gandara J. Analytical Metabolomics and Applications in Health, Environmental and Food Science. Crit Rev Anal Chem 2020; 52:712-734. [DOI: 10.1080/10408347.2020.1823811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- M. Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - A. G. Pereira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| |
Collapse
|
20
|
Randon DN, Sperb-Ludwig F, Vianna FSL, Becker APP, Vargas CR, Sitta A, Sant'Ana AN, Schwartz IVD, Bitencourt FHD. Prevalence of the most common pathogenic variants in three genes for inborn errors of metabolism associated with sudden unexpected death in infancy: a population-based study in south Brazil. Genet Mol Biol 2020; 43:20190298. [PMID: 32706845 PMCID: PMC7380325 DOI: 10.1590/1678-4685-gmb-2019-0298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
Citrullinemia type 1 (CTLNI), long-chain 3-hydroxyacyl-CoA dehydrogenase
deficiency (LCHADD), and mut0 methylmalonic acidemia (mut0
MMA) are inborn errors of metabolism (IEMs) associated with sudden unexpected
death in infancy (SUDI). Its most common pathogenic variants are:
c.1168G>A (CTLNI, ASS1 gene), c.1528G>C (LCHADD,
HADHA gene), c.655A>T and c.1106G>A
(mut0 MMA, MUT gene). Considering the absence of
estimates regarding the incidence of these diseases in Brazil, this study sought
to investigate the prevalence of its main pathogenic variants in a healthy
population in the southern region of the country. A total of 1,000 healthy
subjects from Rio Grande do Sul were included. Genotyping was performed by
real-time PCR. Individuals found to be heterozygous for c.1528G>C
underwent further acylcarnitine profile analysis by tandem mass
spectrophotometry. Allele and genotype frequencies were calculated considering
Hardy-Weinberg equilibrium. The c.1528G>C variant was detected in
heterozygosity in two subjects (carrier frequency = 1:500; allele frequency =
0.001; minimum prevalence of LCHADD = 1: 1,000,000), whose acylcarnitine
profiles were normal. Variants c.1168G>A, c.655A>T, and
c.1106G>A were not identified. These results denote the rarity of these
IEMs in Southern Brazil, highlighting the need to expand the investigation of
IEMs in relation to infant morbidity and mortality within the country.
Collapse
Affiliation(s)
- Dévora N Randon
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Basic Research and Advanced Investigations in Neurosciences (BRAIN), Porto Alegre, RS, Brazil
| | - Fernanda Sperb-Ludwig
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Basic Research and Advanced Investigations in Neurosciences (BRAIN), Porto Alegre, RS, Brazil
| | - Fernanda S L Vianna
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, RS, Brazil
| | - Ana P P Becker
- Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Medicina, Porto Alegre, RS, Brazil
| | - Carmen R Vargas
- Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Farmácia, Porto Alegre, RS, Brazil
| | - Angela Sitta
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Porto Alegre, RS, Brazil
| | - Alexia N Sant'Ana
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Biociências, Porto Alegre, RS, Brazil
| | - Ida V D Schwartz
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Basic Research and Advanced Investigations in Neurosciences (BRAIN), Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Porto Alegre, RS, Brazil
| | - Fernanda H de Bitencourt
- Hospital de Clínicas de Porto Alegre (HCPA), Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Novel biomarkers for lysosomal storage disorders: Metabolomic and proteomic approaches. Clin Chim Acta 2020; 509:195-209. [PMID: 32561345 DOI: 10.1016/j.cca.2020.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) are characterized by the accumulation of specific disease substrates inside the lysosomes of various cells, eventually leading to the deterioration of cellular function and multisystem organ damage. With the continuous discovery and validation of novel and advanced therapies for most LSDs, there is an urgent need to discover more versatile and clinically relevant biomarkers. The utility of these biomarkers should ideally extend beyond the screening and diagnosis of LSDs to the evaluation of disease severity and monitoring of therapy. Metabolomic and proteomic approaches provide the means to the discovery and validation of such novel biomarkers. This is achieved mainly through the application of various mass spectrometric techniques to common and easily accessible biological samples, such as plasma, urine and dried blood spots. In this review, we tried to summarize the complexity of the lysosomal disorders phenotypes, their current diagnostic and therapeutic approaches, the various techniques supporting metabolomic and proteomic studies and finally we tried to explore the newly discovered biomarkers for most LSDs and their reported clinical values.
Collapse
|
22
|
Demirelce Ö, Aksungar FB, Saral NY, Kilercik M, Serteser M, Unsal I. Institutional experience of newborn screening for inborn metabolism disorders by tandem MS in the Turkish population. J Pediatr Endocrinol Metab 2020; 33:703-711. [PMID: 32469332 DOI: 10.1515/jpem-2019-0571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/07/2020] [Indexed: 12/26/2022]
Abstract
Background The tandem mass spectrometry method in the screening of congenital metabolic disorders is not included in routine national newborn screening programmes in Turkey. To evaluate the distribution of acylcarnitines and amino acid levels in normal newborns, establish acylcarnitine and amino acid cut-off levels and further preliminary results of inherited metabolic disorders inferentially in the Turkish population. Methods Newborn screening tests performed by tandem MS from 2016 to 2018 were retrospectively reviewed. The study group included 17,066 newborns born in our hospitals located in various regions of Turkey. Blood samples were obtained from infants older than 24 h of age. Among the 17,066 newborns, the metabolic screening data of 9,994 full-term newborns (>37 weeks) were employed to obtain the percentile distribution of the normal population. The study group (17,066) was screened for 26 types of inborn error of metabolism. Results Our established cut-offs, were compared with the cut-offs determined by Region for Stork Study and Centers for Disease Control. Among the 26 screened disorders, a total of 12 cases (8 amino acid metabolism disorders, 1 urea cycle defect, 2 organic acidaemias and 1 fatty acid oxidation disorder) were identified. Conclusions Because of the high rate of consanguineous marriages in Turkey, the development of a nationwide screening panel is necessary for early detection and management of potentially treatable inherited metabolic disorders.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/blood
- Amino Acid Metabolism, Inborn Errors/diagnosis
- Amino Acid Metabolism, Inborn Errors/epidemiology
- Consanguinity
- Early Diagnosis
- Female
- Humans
- Infant
- Infant, Newborn
- Lipid Metabolism, Inborn Errors/blood
- Lipid Metabolism, Inborn Errors/diagnosis
- Lipid Metabolism, Inborn Errors/epidemiology
- Male
- Metabolism, Inborn Errors/blood
- Metabolism, Inborn Errors/diagnosis
- Metabolism, Inborn Errors/epidemiology
- Neonatal Screening/methods
- Retrospective Studies
- Tandem Mass Spectrometry
- Turkey/epidemiology
Collapse
Affiliation(s)
- Özlem Demirelce
- Clinical Biochemistry Specialist, Acibadem Labmed Clinical Laboratories, Acibadem University, İçerenköy Mah. Kayışdağı Cad. N0:32-36/B, 34752, Ataşehir, İstanbul, Turkey
| | - Fehime Benli Aksungar
- Department of Metabolism, Acibadem Labmed Clinical Laboratories, İstanbul, Turkey
- Department of Biochemistry, School of Medicine, Acibadem University, İstanbul, Turkey
| | | | - Meltem Kilercik
- Department of Biochemistry, School of Medicine, Acibadem University, İstanbul, Turkey
- Department of Biochemistry, Acibadem Universitesi, İstanbul, Turkey
| | - Mustafa Serteser
- Department of Biochemistry, School of Medicine, Acibadem University, İstanbul, Turkey
- Medical Biochemistry, School of Medicine, Acibadem University, İstanbul, Turkey
| | - Ibrahim Unsal
- Medical Biochemistry, School of Medicine, Acibadem University, İstanbul, Turkey
| |
Collapse
|
23
|
Bhattacharya K, Matar W, Tolun AA, Devanapalli B, Thompson S, Dalkeith T, Lichkus K, Tchan M. The use of sodium DL-3-Hydroxybutyrate in severe acute neuro-metabolic compromise in patients with inherited ketone body synthetic disorders. Orphanet J Rare Dis 2020; 15:53. [PMID: 32070364 PMCID: PMC7029565 DOI: 10.1186/s13023-020-1316-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background Ketone bodies form a vital energy source for end organs in a variety of physiological circumstances. At different times, the heart, brain and skeletal muscle in particular can use ketones as a primary substrate. Failure to generate ketones in such circumstances leads to compromised energy delivery, critical end-organ dysfunction and potentially death. There are a range of inborn errors of metabolism (IEM) affecting ketone body production that can present in this way, including disorders of carnitine transport into the mitochondrion, mitochondrial fatty acid oxidation deficiencies (MFAOD) and ketone body synthesis. In situations of acute energy deficit, management of IEM typically entails circumventing the enzyme deficiency with replenishment of energy requirements. Due to profound multi-organ failure it is often difficult to provide optimal enteral therapy in such situations and rescue with sodium DL-3-hydroxybutyrate (S DL-3-OHB) has been attempted in these conditions as documented in this paper. Results We present 3 cases of metabolic decompensation, one with carnitine-acyl-carnitine translocase deficiency (CACTD) another with 3-hydroxyl, 3-methyl, glutaryl CoA lyase deficiency (HMGCLD) and a third with carnitine palmitoyl transferase II deficiency (CPT2D). All of these disorders are frequently associated with death in circumstance where catastrophic acute metabolic deterioration occurs. Intensive therapy with adjunctive S DL-3OHB led to rapid and sustained recovery in all. Alternative therapies are scarce in these situations. Conclusion S DL-3-OHB has been utilised in multiple acyl co A dehydrogenase deficiency (MADD) in cases with acute neurological and cardiac compromise with long-term data awaiting publication. The use of S DL-3-OHB is novel in non-MADD fat oxidation disorders and contribute to the argument for more widespread use.
Collapse
Affiliation(s)
- Kaustuv Bhattacharya
- Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, Australia. .,Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia.
| | - Walid Matar
- Department of Neurology, St George Hospital, Kogarah, NSW, Australia
| | | | | | - Sue Thompson
- Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, Australia.,Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Troy Dalkeith
- Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, Australia.,Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Kate Lichkus
- Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, Australia.,Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Michel Tchan
- Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, Australia.,Westmead Hospital, University of Sydney, Westmead, Australia
| |
Collapse
|
24
|
Yamada K, Osawa Y, Kobayashi H, Hasegawa Y, Fukuda S, Yamaguchi S, Taketani T. Serum C14:1/C12:1 ratio is a useful marker for differentiating affected patients with very long-chain acyl-CoA dehydrogenase deficiency from heterozygous carriers. Mol Genet Metab Rep 2019; 21:100535. [PMID: 31844625 PMCID: PMC6895747 DOI: 10.1016/j.ymgmr.2019.100535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/20/2019] [Indexed: 10/28/2022] Open
Abstract
Introduction Various markers, such as C14:1 and the C14:1/C2 ratio, are used as diagnostic markers of very long-chain acyl-CoA dehydrogenase deficiency (VLCADD). However, the levels of these markers in patients with VLCADD overlap with those in heterozygous carriers and even healthy subjects. Materials and methods In twenty-three affected patients and 15 heterozygous carriers with VLCADD, the accuracies of C14:1, C14:1/C12:1, C14:1/C2, and C14:1/C16 in dried blood spots (DBS) and serum were statistically estimated. Results Among the serum markers, the sensitivity, specificity, positive predictive value, negative predictive value, false-positive rate, false-negative rate, and validity of C14:1/C12:1 were superior to those of C14:1, C14:1/C2, and C14:1/C16, but C14:1/C2 demonstrated a statistical advantage compared with only C14:1 and C14:1/C16. Elevation in serum C14:1/C12:1 was observed in only one heterozygous carrier, whereas almost half of the carriers displayed false positive results for the other markers. Among the DBS markers, although the accuracy of C14:1/C2 was ostensibly the best, no statistical significance was observed. Discussion Serum C14:1/C12:1 might be useful for differentiating patients with VLCADD from heterozygous carriers. Although serum C14:1/C2 was significantly useful for the detection of VLCADD, this marker could not distinguish the affected patients from carriers. C14:1/C12:1 might be optimal compared with the other markers.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Yoshimitsu Osawa
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan.,Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hironori Kobayashi
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Yuki Hasegawa
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Seiji Fukuda
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
25
|
Wang Y, Sun Y, Jiang T. Clinical Application of LC-MS/MS in the Follow-Up for Treatment of Children with Methylmalonic Aciduria. Adv Ther 2019; 36:1304-1313. [PMID: 31049874 DOI: 10.1007/s12325-019-00955-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION To explore the value of high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the follow-up for treatment of children with methylmalonic aciduria (MMA). METHODS Methylmalonic acid (MMA), 2-methylcitric acid (MCA) and homocysteine (Hcy) were detected by LC-MS/MS in a total of 1016 samples whose estimated 0.5th and 99.5th percentiles was taken as the reference value. The samples of children with MMA and propionic aciduria (PA) who were followed up in our hospital from January 2017 to August 2018 were collected. Samples of dried blood spots, serum, and urine were taken from each patient on the same day. The concentration of the C3 indicator in the dried blood spots was tested by MS/MS. MMA, MCA, and Hcy in the dried blood spots were quantitatively determined by LC-MS/MS, the concentrations of MMA and MCA in urine filter papers were determined by gas chromatography-mass spectrometry (GC/MS), and the concentration of homocysteine in serum was determined by enzymatic cycling assay. RESULTS Reference values of MMA, MCA and HCY by LC-MS/MS in the newborn population were determined. The samples from a total of 50 patients were collected, 48 were from children with MMA, and 2 were from children with PA. The first-order equation regression coefficient of MMA in the blood spots and MMA in urine was significant (P < 0.05), r2 = 0.736; the first-order equation regression coefficient of MCA in bthe lood spots and MCA in urine was significant (P < 0.05), r2 = 0.946; the first-order equation regression coefficient of tHcy in bthe lood spots and Hcy in serum was significant (P < 0.05), r2 = 0.771. CONCLUSION LC-MS/MS can be used for the follow-up of children with MMA after treatment, but it is necessary to establish a reference interval suitable for the local population.
Collapse
Affiliation(s)
- Yanyun Wang
- Center of Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Jiangsu, Nanjing, People's Republic of China
| | - Yun Sun
- Center of Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Jiangsu, Nanjing, People's Republic of China
| | - Tao Jiang
- Center of Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Jiangsu, Nanjing, People's Republic of China.
| |
Collapse
|
26
|
Jacob M, Lopata AL, Dasouki M, Abdel Rahman AM. Metabolomics toward personalized medicine. MASS SPECTROMETRY REVIEWS 2019; 38:221-238. [PMID: 29073341 DOI: 10.1002/mas.21548] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/14/2017] [Indexed: 05/21/2023]
Abstract
Metabolomics, which is the metabolites profiling in biological matrices, is a key tool for biomarker discovery and personalized medicine and has great potential to elucidate the ultimate product of the genomic processes. Over the last decade, metabolomics studies have identified several relevant biomarkers involved in complex clinical phenotypes using diverse biological systems. Most diseases result in signature metabolic profiles that reflect the sums of external and internal cellular activities. Metabolomics has a major role in clinical practice as it represents >95% of the workload in clinical laboratories worldwide. Many of these metabolites require different analytical platforms, such as Nuclear Magnetic Resonance (NMR), Mass Spectrometry (MS), and Ultra Performance Liquid Chromatography (UPLC), while many clinically relevant metabolites are still not routinely amenable to detection using currently available assays. Combining metabolomics with genomics, transcriptomics, and proteomics studies will result in a significantly improved understanding of the disease mechanisms and the pathophysiology of the target clinical phenotype. This comprehensive approach will represent a major step forward toward providing precision medical care, in which individual is accounted for variability in genes, environment, and personal lifestyle. In this review, we compare and evaluate the metabolomics strategies and studies that focus on the discovery of biomarkers that have "personalized" diagnostic, prognostic, and therapeutic value, validated for monitoring disease progression and responses to various management regimens.
Collapse
Affiliation(s)
- Minnie Jacob
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSH-RC), Riyadh, Saudi Arabia
- Department of Molecular and Cell Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Andreas L Lopata
- Department of Molecular and Cell Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSH-RC), Riyadh, Saudi Arabia
| | - Anas M Abdel Rahman
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSH-RC), Riyadh, Saudi Arabia
- College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
27
|
Wajner M, Sitta A, Kayser A, Deon M, Groehs AC, Coelho DM, Vargas CR. Screening for organic acidurias and aminoacidopathies in high-risk Brazilian patients: Eleven-year experience of a reference center. Genet Mol Biol 2019; 42:178-185. [PMID: 30985856 PMCID: PMC6687352 DOI: 10.1590/1678-4685-gmb-2018-0105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 11/15/2018] [Indexed: 02/12/2023] Open
Abstract
Organic acidurias and aminoacidopathies are groups of frequent inborn errors of
metabolism (IEMs), which are caused by mutations in specific genes that lead to
loss of protein/enzyme or transport function with important deleterious effects
to cell metabolism. Since a considerable number of such disorders are
potentially treatable when diagnosed at an early stage of life, diagnosis is
crucial for the patients. In the present report, we describe symptomatic
individuals referred to our service that were diagnosed with these disorders
from 2006 to 2016. We used blood and urine samples from 21,800 patients
suspected of aminoacidopathies or organic acidemias that were processed by the
analytical techniques reverse phase high-performance liquid chromatography for
amino acid quantification and gas chromatography coupled to mass spectrometry
for organic acid detection. Analysis of dried blood spots by liquid
chromatography-tandem mass spectrometry was used in some cases. We detected 258
cases of organic acidurias, and 117 patients with aminoacidopathies were
diagnosed. Once diagnosis was performed, patients were promptly submitted to the
available treatments with clear reduction of mortality and morbidity. The
obtained data may help pediatricians and metabolic geneticists to become aware
of these diseases and possibly expand newborn screening programs in the
future.
Collapse
Affiliation(s)
- Moacir Wajner
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Departmento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Sitta
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Aline Kayser
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marion Deon
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana C Groehs
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Daniella M Coelho
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carmen R Vargas
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Programas de Pós-Graduação em Ciências Biológicas, Bioquímica e em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
28
|
Gibson EJ, Bucknall MP, Golebiowski B, Stapleton F. Comparative limitations and benefits of liquid chromatography – mass spectrometry techniques for analysis of sex steroids in tears. Exp Eye Res 2019; 179:168-178. [DOI: 10.1016/j.exer.2018.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
|
29
|
Collins CJ, Chang IJ, Jung S, Dayuha R, Whiteaker JR, Segundo GRS, Torgerson TR, Ochs HD, Paulovich AG, Hahn SH. Rapid Multiplexed Proteomic Screening for Primary Immunodeficiency Disorders From Dried Blood Spots. Front Immunol 2018; 9:2756. [PMID: 30564228 PMCID: PMC6288356 DOI: 10.3389/fimmu.2018.02756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/08/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Primary immunodeficiency disorders (PIDD) comprise a group of life-threatening congenital diseases characterized by absent or impaired immune responses. Despite the fact that effective, curative treatments are available with optimal clinical outcomes when diagnosed early, newborn screening does not exist for the majority of these diseases due to the lack of detectable, specific biomarkers or validated methods for population-based screening. Peptide immunoaffinity enrichment coupled with selected reaction monitoring mass spectrometry (immuno-SRM) is a sensitive proteomic assay, involving antibody-mediated peptide capture, that allows for concurrent quantification of multiple analytes. This assay has promise for use in potential newborn screening of PIDDs that lead to diminished or absent target proteins in the majority of cases. Objective: To determine and evaluate if a multiplex assay based on immuno-SRM is able to reliably and precisely distinguish affected patients with X-linked agammaglobulinemia (XLA), Wiskott-Aldrich Syndrome (WAS), and CD3ϵ-associated severe combined immunodeficiency (SCID) from one another and from unaffected normal control dried blood spot (DBS) samples. Methods: We performed a blinded, multiplexed analysis of proteolytically-generated peptides from WASp, BTK, and CD3ϵ (for WAS, XLA, and SCID, respectively) in DBS samples from 42 PIDD patients, 40 normal adult controls, and 62 normal newborns. The peptide ATPase copper transporting protein (ATP7B) 1056 was simultaneously monitored for quality assurance purposes. Results: The immuno-SRM assays reliably quantified the target peptides in DBS and accurately distinguished affected patients from normal controls. Analysis of signature peptides found statistically significant reduction or absence of peptide levels in affected patients compared to control groups in each case (WASp and BTK: p = 0.0001, SCID: p = 0.05). Intra and inter-assay precision ranged from 11 to 22% and 11 to 43% respectively; linearity (1.39-2000 fmol peptide), and stability (≤ 0.09% difference in 72 h) showed high precision for the multiplexed assay. Inter-laboratory assay comparison showed high concordance for measured peptide concentrations, with R2 linearity ≥ 0.97 for the WASp 274, CD3ϵ 197, BTK 407, and ATP7B 1056 peptides. Conclusion: Immuno-SRM-based quantification of proteotypic peptides from WASp, BTK, and CD3ϵ in DBS distinguishes relevant PIDD cases from one another and from controls, raising the possibility of employing this approach for large-scale multiplexed newborn screening of selective PIDDs.
Collapse
Affiliation(s)
| | - Irene J Chang
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Sunhee Jung
- Seattle Children's Research Institute, Seattle, WA, United States
| | - Remwilyn Dayuha
- Seattle Children's Research Institute, Seattle, WA, United States
| | | | - Gesmar R S Segundo
- Setor de Alergia e Imunologia Pediátrica, Ambulatório de Pediatria, Departamento de Pediatria, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Troy R Torgerson
- Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Hans D Ochs
- Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | | | - Si Houn Hahn
- Seattle Children's Research Institute, Seattle, WA, United States.,Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
30
|
Current State of the Art of Newborn Screening for Lysosomal Storage Disorders. Int J Neonatal Screen 2018; 4:24. [PMID: 33072946 PMCID: PMC7548896 DOI: 10.3390/ijns4030024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/12/2018] [Indexed: 01/01/2023] Open
Abstract
Prospective full-population newborn screening for multiple lysosomal storage disorders (LSDs) is currently practiced in a few NBS programs, and several others are actively pursuing this course of action. Two platforms suitable for multiple LSD screening-tandem mass spectrometry (MS/MS) and digital microfluidic fluorometry (DMF)-are now commercially available with reagent kits. In this article, we review the methods currently used for prospective NBS for LSDs and objectively compare their workflows and the results from two programs in the United States that screen for the same four LSDs, one using MS/MS and the other DMF. The results show that the DMF platform workflow is simpler and generates results faster than MS/MS, enabling results reporting on the same day as specimen analysis. Furthermore, the performance metrics for both platforms while not identical, are broadly similar and do not indicate the superior performance of one method over the other. Results show a preponderance of inconclusive results for Pompe and Fabry diseases and for Hurler syndrome, due to genetic heterogeneity and other factors that can lead to low enzyme activities, regardless of the screening method. We conclude that either platform is a good choice but caution that post-analytical tools will need to be applied to improve the positive predictive value for these conditions.
Collapse
|
31
|
Vargas CR, Ribas GS, da Silva JM, Sitta A, Deon M, de Moura Coelho D, Wajner M. Selective Screening of Fatty Acids Oxidation Defects and Organic Acidemias by Liquid Chromatography/tandem Mass Spectrometry Acylcarnitine Analysis in Brazilian Patients. Arch Med Res 2018; 49:205-212. [PMID: 30119976 DOI: 10.1016/j.arcmed.2018.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Inborn errors of metabolism (IEM) are diseases which can lead to accumulation of toxic metabolites in the organism. AIM OF THE STUDY To investigate, by selective screening, mitochondrial fatty acid oxidation defects (FAOD) and organic acidemias in Brazilian individuals with clinical suspicion of IEM. METHODS A total of 7,268 individuals, from different regions of Brazil, had whole blood samples impregnated on filter paper which were submitted to the acylcarnitines analysis by liquid chromatography/tandem mass spectrometry (LC/MS/MS) at the Medical Genetics Service of Hospital de Clínicas de Porto Alegre, Brazil, during July 2008-July 2016. RESULTS Our results showed that 68 patients (0.93%) were diagnosed with FAOD (19 cases) and organic acidemias (49 cases). The most prevalent FAOD was multiple acyl CoA dehydrogenase deficiency (MADD), whereas glutaric type I and 3-OH-3-methylglutaric acidemias were the most frequent disorders of organic acid metabolism. Neurologic symptoms and metabolic acidosis were the most common clinical and laboratory features, whereas the average age of the patients at diagnosis was 2.3 years. CONCLUSIONS Results demonstrated a high incidence of glutaric acidemia type I and 3-OH-3- methylglutaric acidemia in Brazil and an unexpectedly low incidence of FAOD, particularly medium-chain acyl-CoA dehydrogenase deficiency (MCADD).
Collapse
Affiliation(s)
- Carmen Regla Vargas
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Bioquímica, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil.
| | - Graziela Schmitt Ribas
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Janine Machado da Silva
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Angela Sitta
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marion Deon
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Moacir Wajner
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Bioquímica, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Millington D, Norton S, Singh R, Sista R, Srinivasan V, Pamula V. Digital microfluidics comes of age: high-throughput screening to bedside diagnostic testing for genetic disorders in newborns. Expert Rev Mol Diagn 2018; 18:701-712. [PMID: 30004274 PMCID: PMC6481615 DOI: 10.1080/14737159.2018.1495076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Digital microfluidics (DMF) is an emerging technology with the appropriate metrics for application to newborn and high-risk screening for inherited metabolic disease and other conditions that benefit from early treatment. Areas covered: This review traces the development of electrowetting-based DMF technology toward the fulfillment of its promise to provide an inexpensive platform to conduct enzymatic assays and targeted biomarker assays at the bedside. The high-throughput DMF platform, referred to as SEEKER®, was recently authorized by the United States Food and Drug Administration to screen newborns for four lysosomal storage disorders (LSDs) and is deployed in newborn screening programs in the United States. The development of reagents and methods for LSD screening and results from screening centers are reviewed. Preliminary results from a more compact DMF device, to perform disease-specific test panels from small volumes of blood, are also reviewed. Literature for this review was sourced using principal author and subject searches in PubMed. Expert commentary: Newborn screening is a vital and highly successful public health program. DMF technology adds value to the current testing platforms that will benefit apparently healthy newborns with underlying genetic disorders and infants at-risk for conditions that present with symptoms in the newborn period.
Collapse
Affiliation(s)
- David Millington
- Department of Pediatrics, Duke University Medical Center, Durham, NC
| | | | | | | | | | | |
Collapse
|
33
|
Leibing T, Géraud C, Augustin I, Boutros M, Augustin HG, Okun JG, Langhans C, Zierow J, Wohlfeil SA, Olsavszky V, Schledzewski K, Goerdt S, Koch P. Angiocrine Wnt signaling controls liver growth and metabolic maturation in mice. Hepatology 2018; 68:707-722. [PMID: 29059455 PMCID: PMC6099291 DOI: 10.1002/hep.29613] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/08/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022]
Abstract
UNLABELLED Postnatal liver development is characterized by hepatocyte growth, proliferation, and functional maturation. Notably, canonical Wnt signaling in hepatocytes has been identified as an important regulator of final adult liver size and metabolic liver zonation. The cellular origin of Wnt ligands responsible for homeostatic liver/body weight ratio (LW/BW) remained unclear, which was also attributable to a lack of suitable endothelial Cre driver mice. To comprehensively analyze the effects of hepatic angiocrine Wnt signaling on liver development and metabolic functions, we used endothelial subtype-specific Stab2-Cre driver mice to delete Wls from hepatic endothelial cells (HECs). The resultant Stab2-Cretg/wt ;Wlsfl/fl (Wls-HECKO) mice were viable, but showed a significantly reduced LW/BW. Specifically, ablation of angiocrine Wnt signaling impaired metabolic zonation in the liver, as shown by loss of pericentral, β-catenin-dependent target genes such as glutamine synthase (Glul), RhBg, Axin2, and cytochrome P450 2E1, as well as by extended expression of periportal genes such as arginase 1. Furthermore, endothelial subtype-specific expression of a c-terminally YFP-tagged Wls fusion protein in Wls-HECKO mice (Stab2-Cretg/wt ;Wlsfl/fl ;Rosa26:Wls-YFPfl/wt [Wls-rescue]) restored metabolic liver zonation. Interestingly, lipid metabolism was altered in Wls-HECKO mice exhibiting significantly reduced plasma cholesterol levels, while maintaining normal plasma triglyceride and blood glucose concentrations. On the contrary, zonal expression of Endomucin, LYVE1, and other markers of HEC heterogeneity were not altered in Wls-HECKO livers. CONCLUSION Angiocrine Wnt signaling controls liver growth as well as development of metabolic liver zonation in mice, whereas intrahepatic HEC zonation is not affected. (Hepatology 2017).
Collapse
Affiliation(s)
- Thomas Leibing
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany
| | - Iris Augustin
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, Faculty of Medicine Mannheim, Department of Cell and Molecular BiologyHeidelbergGermany,Molecular Cell Biology and Plant Cell TechnologyUniversity of Applied Sciences Weihenstephan‐TriesdorfFreisingGermany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and Heidelberg University, Faculty of Medicine Mannheim, Department of Cell and Molecular BiologyHeidelbergGermany
| | - Hellmut G. Augustin
- Division of Vascular Oncology and Metastasis (DKFZ‐ZMBH Alliance)DKFZHeidelbergGermany,Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Jürgen G. Okun
- Department of General Pediatrics, Division of Inherited Metabolic DiseasesUniversity Children's HospitalHeidelbergGermany
| | - Claus‐Dieter Langhans
- Department of General Pediatrics, Division of Inherited Metabolic DiseasesUniversity Children's HospitalHeidelbergGermany
| | - Johanna Zierow
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany
| | - Sebastian A. Wohlfeil
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany
| | - Victor Olsavszky
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany
| | - Kai Schledzewski
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany
| | - Sergij Goerdt
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany,European Center for AngioscienceMedical Faculty Mannheim, University of HeidelbergMannheimGermany
| | - Philipp‐Sebastian Koch
- Department of Dermatology, Venereology, and AllergologyUniversity Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in DermatologyMannheimGermany
| |
Collapse
|
34
|
Jacob M, Malkawi A, Albast N, Al Bougha S, Lopata A, Dasouki M, Abdel Rahman AM. A targeted metabolomics approach for clinical diagnosis of inborn errors of metabolism. Anal Chim Acta 2018; 1025:141-153. [PMID: 29801603 DOI: 10.1016/j.aca.2018.03.058] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/27/2018] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
Abstract
Metabolome, the ultimate functional product of the genome, can be studied through identification and quantification of small molecules. The global metabolome influences the individual phenotype through clinical and environmental interventions. Metabolomics has become an integral part of clinical research and allowed for another dimension of better understanding of disease pathophysiology and mechanism. More than 95% of the clinical biochemistry laboratory routine workload is based on small molecular identification, which can potentially be analyzed through metabolomics. However, multiple challenges in clinical metabolomics impact the entire workflow and data quality, thus the biological interpretation needs to be standardized for a reproducible outcome. Herein, we introduce the establishment of a comprehensive targeted metabolomics method for a panel of 220 clinically relevant metabolites using Liquid chromatography-tandem mass spectrometry (LC-MS/MS) standardized for clinical research. The sensitivity, reproducibility and molecular stability of each targeted metabolite (amino acids, organic acids, acylcarnitines, sugars, bile acids, neurotransmitters, polyamines, and hormones) were assessed under multiple experimental conditions. The metabolic tissue distribution was determined in various rat organs. Furthermore, the method was validated in dry blood spot (DBS) samples collected from patients known to have various inborn errors of metabolism (IEMs). Using this approach, our panel appears to be sensitive and robust as it demonstrated differential and unique metabolic profiles in various rat tissues. Also, as a prospective screening method, this panel of diverse metabolites has the ability to identify patients with a wide range of IEMs who otherwise may need multiple, time-consuming and expensive biochemical assays causing a delay in clinical management.
Collapse
Affiliation(s)
- Minnie Jacob
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia; Department of Molecular & Cell Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Abeer Malkawi
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Nour Albast
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Salam Al Bougha
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Andreas Lopata
- Department of Molecular & Cell Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Anas M Abdel Rahman
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
35
|
MacDonald A, Webster R, Whitlock M, Gerrard A, Daly A, Preece MA, Evans S, Ashmore C, Chakrapani A, Vijay S, Santra S. The safety of Lipistart, a medium-chain triglyceride based formula, in the dietary treatment of long-chain fatty acid disorders: a phase I study. J Pediatr Endocrinol Metab 2018; 31:297-304. [PMID: 29425111 DOI: 10.1515/jpem-2017-0426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Children with long-chain fatty acid β-oxidation disorders (LCFAOD) presenting with clinical symptoms are treated with a specialist infant formula, with medium chain triglyceride (MCT) mainly replacing long chain triglyceride (LCT). It is essential that the safety and efficacy of any new specialist formula designed for LCFAOD be tested in infants and children. METHODS In an open-label, 21-day, phase I trial, we studied the safety of a new MCT-based formula (feed 1) in six well-controlled children (three male), aged 7-13 years (median 9 years) with LCFAOD (very long chain acyl CoA dehydrogenase deficiency [VLCADD], n=2; long chain 3-hydroxyacyl CoA dehydrogenase deficiency [LCHADD], n=2; carnitine acyl carnitine translocase deficiency [CACTD], n=2). Feed 1 (Lipistart; Vitaflo) contained 30% energy from MCT, 7.5% LCT and 3% linoleic acid and it was compared with a conventional MCT feed (Monogen; Nutricia) (feed 2) containing 17% energy from MCT, 3% LCT and 1.1% linoleic acid. Subjects consumed feed 2 for 7 days then feed 1 for 7 days and finally resumed feed 2 for 7 days. Vital signs, blood biochemistry, ECG, weight, height, food/feed intake and symptoms were monitored. RESULTS Five subjects completed the study. Their median daily volume of both feeds was 720 mL (range 500-1900 mL/day). Feed 1 was associated with minimal changes in tolerance, free fatty acids (FFA), acylcarnitines, 3-hydroxybutyrate (3-HB), creatine kinase (CK), blood glucose, liver enzymes and no change in an electrocardiogram (ECG). No child complained of muscle pain or symptoms associated with LCFAOD on either feed. CONCLUSIONS This is the first safety trial reported of an MCT formula specifically designed for infants and children with LCFAOD. In this short-term study, it appeared safe and well tolerated in this challenging group.
Collapse
Affiliation(s)
- Anita MacDonald
- Consultant Dietitian in Inherited Metabolic Disorders, Dietetic Department, Birmingham Women's and Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Rachel Webster
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Matthew Whitlock
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Adam Gerrard
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Anne Daly
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Mary Anne Preece
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Sharon Evans
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Catherine Ashmore
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Anupam Chakrapani
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Suresh Vijay
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Saikat Santra
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
36
|
Metabolomics profiling reveals different patterns in an animal model of asphyxial and dysrhythmic cardiac arrest. Sci Rep 2017; 7:16575. [PMID: 29185486 PMCID: PMC5707403 DOI: 10.1038/s41598-017-16857-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/19/2017] [Indexed: 12/29/2022] Open
Abstract
Cardiac arrest (CA) is not a uniform condition and its pathophysiology strongly depends on its cause. In this work we have used a metabolomics approach to study the dynamic metabolic changes occurring in the plasma samples of a swine model following two different causes of CA, namely asphyxia (ACA) and ventricular fibrillation (VFCA). Plasma samples were collected at baseline and every minute during the experimental phases. In order to identify the metabolomics profiles characterizing the two pathological entities, all samples were analysed by 1H NMR spectroscopy and LC-MS/MS spectrometry.The metabolomics fingerprints of ACA and VFCA significantly differed during the peri-arrest period and the resuscitation phase. Major alterations were observed in plasma concentrations of metabolites related to tricarboxylic acid (TCA) cycle, urea cycle, and anaplerotic replenishing of TCA. ACA animals showed significant metabolic disturbances during the asphyxial and CA phases, while for VFCA animals this phenomenon resulted shifted at the resuscitation phase. Interestingly, starting from the asphyxial phase, the ACA animals were stratified in two groups based on their metabolomics profiles that resulted to be correlated with the clinical outcome. Succinate overproduction was observed in the animals with the worse outcome, suggesting a potential prognostic role for this metabolite.
Collapse
|
37
|
Postmortem genetic analysis of sudden unexpected death in infancy: neonatal genetic screening may enable the prevention of sudden infant death. J Hum Genet 2017; 62:989-995. [DOI: 10.1038/jhg.2017.79] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 11/08/2022]
|
38
|
Bergwerff CE, Luman M, Blom HJ, Oosterlaan J. Paediatric reference values for total homocysteine, tryptophan, tyrosine and phenylalanine in blood spots. Scandinavian Journal of Clinical and Laboratory Investigation 2017; 77:410-414. [PMID: 28678543 DOI: 10.1080/00365513.2017.1334167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Determining blood concentrations of the amino acids homocysteine, tryptophan, tyrosine and phenylalanine in children is of value in the clinical practice. Over the past decades, the use of blood spot samples to examine amino acid concentrations is increasing rapidly. In children, the use of blood spot samples is especially of relevance, as this method is much less invasive than venous blood sampling. Currently, no paediatric reference values for amino acids in blood spots are available. The aim of the current study was to establish reference values for blood spot concentrations of total homocysteine, tryptophan, tyrosine and phenylalanine in school-age children. Dried blood spots were obtained in a community sample of 104 healthy children, aged 6-12 years old (52% males). Blood spot concentrations of total homocysteine, tryptophan, tyrosine and phenylalanine were determined by positive electrospray liquid chromatography-tandem mass spectrometry. Parents of participants completed questions regarding demographic characteristics. Our sample consisted of healthy children from various ethnic backgrounds, with varying levels of socioeconomic status, in line with the composition of the Dutch society. Blood spot concentrations of total homocysteine, tryptophan, tyrosine and phenylalanine were similar in males and females, and independent of age. In conclusion, paediatric reference values for blood spot concentrations of total homocysteine, tryptophan, tyrosine and phenylalanine were established, which could be of use in the clinical practice.
Collapse
Affiliation(s)
- Catharina E Bergwerff
- a Clinical Neuropsychology section , Vrije Universiteit Amsterdam , Amsterdam , the Netherlands
| | - Marjolein Luman
- a Clinical Neuropsychology section , Vrije Universiteit Amsterdam , Amsterdam , the Netherlands
| | - Henk J Blom
- b Center for Pediatrics and Adolescent Medicine , Medical Center - University of Freiburg , Freiburg , Germany.,c Department of Clinical Chemistry , VU University Medical Center Amsterdam , Amsterdam , the Netherlands
| | - Jaap Oosterlaan
- a Clinical Neuropsychology section , Vrije Universiteit Amsterdam , Amsterdam , the Netherlands
| |
Collapse
|
39
|
Alfadhel M, Al Othaim A, Al Saif S, Al Mutairi F, Alsayed M, Rahbeeni Z, Alzaidan H, Alowain M, Al-Hassnan Z, Saeedi M, Aljohery S, Alasmari A, Faqeih E, Alwakeel M, AlMashary M, Almohameed S, Alzahrani M, Migdad A, Al-Dirbashi OY, Rashed M, Alamoudi M, Jacob M, Alahaidib L, El-Badaoui F, Saadallah A, Alsulaiman A, Eyaid W, Al-Odaib A. Expanded Newborn Screening Program in Saudi Arabia: Incidence of screened disorders. J Paediatr Child Health 2017; 53:585-591. [PMID: 28337809 DOI: 10.1111/jpc.13469] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/01/2016] [Accepted: 11/13/2016] [Indexed: 11/29/2022]
Abstract
AIM To address the implementation of the National Newborn Screening Program (NBS) in Saudi Arabia and stratify the incidence of the screened disorders. METHODS A retrospective study conducted between 1 August 2005 and 31 December 2012, total of 775 000 newborns were screened from 139 hospitals distributed among all regions of Saudi Arabia. The NBS Program screens for 16 disorders from a selective list of inborn errors of metabolism (IEM) and endocrine disorders. Heel prick dry blood spot samples were obtained from all newborns for biochemical and immunoassay testing. Recall screening testing was performed for Initial positive results and confirmed by specific biochemical assays. RESULTS A total of 743 cases were identified giving an overall incidence of 1:1043. Frequently detected disorders nationwide were congenital hypothyroidism and congenital adrenal hyperplasia with an incidence of 1:7175 and 1:7908 correspondingly. The highest incidence among the IEM was propionic acidaemia with an incidence rate of 1:14 000. CONCLUSION The article highlights the experience of the NBS Program in Saudi Arabia and providing data on specific regional incidences of all the screened disorders included in the programme; and showed that the incidence of these disorders is one of the highest reported so far world-wide.
Collapse
Affiliation(s)
- Majid Alfadhel
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Ali Al Othaim
- King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Pathology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Saif Al Saif
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Moeenaldeen Alsayed
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Alowain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zuhair Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,The National Newborn Screening Program, Ministry of Health, Riyadh, Saudi Arabia
| | - Mohamad Saeedi
- Noncommunicable Disease, Ministry of Health, Riyadh, Saudi Arabia
| | - Saeed Aljohery
- Noncommunicable Disease, Ministry of Health, Riyadh, Saudi Arabia
| | - Ali Alasmari
- Medical Genetic Section, King Fahad Medical City, Children's Hospital, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Medical Genetic Section, King Fahad Medical City, Children's Hospital, Riyadh, Saudi Arabia
| | | | - Maher AlMashary
- Armed Forces Medical Services Directorate, Riyadh, Saudi Arabia
| | | | - Mohammed Alzahrani
- Department of Pediatrics, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Abeer Migdad
- Department of Pediatrics, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Osama Y Al-Dirbashi
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE.,Children Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | | | | | - Minnie Jacob
- Research Center, Ministry of Health, Riyadh, Saudi Arabia
| | | | | | - Amal Saadallah
- Research Center, Ministry of Health, Riyadh, Saudi Arabia
| | | | - Wafaa Eyaid
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Ali Al-Odaib
- Research Center, Ministry of Health, Riyadh, Saudi Arabia.,King Salman Center for Disability Research, Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Li LH, Hsieh HY, Hsu CC. Clinical Application of Ambient Ionization Mass Spectrometry. Mass Spectrom (Tokyo) 2017; 6:S0060. [PMID: 28337399 PMCID: PMC5359754 DOI: 10.5702/massspectrometry.s0060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/07/2017] [Indexed: 11/23/2022] Open
Abstract
Ambient ionization allows mass spectrometry analysis directly on the sample surface under atmospheric pressure with almost zero sample pretreatment. Since the development of desorption electrospray ionization (DESI) in 2004, many other ambient ionization techniques were developed. Due to their simplicity and low operation cost, rapid and on-site clinical mass spectrometry analysis becomes real. In this review, we will highlight some of the most widely used ambient ionization mass spectrometry approaches and their applications in clinical study.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital
| | - Hua-Yi Hsieh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital
| | | |
Collapse
|
41
|
Borrajo GJC. Newborn Screening for Phenylketonuria. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2016. [DOI: 10.1177/2326409816682764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Gustavo J. C. Borrajo
- Detección de Errores Congénitos, Fundación Bioquímica Argentina, La Plata, Argentina
| |
Collapse
|
42
|
Popko J, Herrfurth C, Feussner K, Ischebeck T, Iven T, Haslam R, Hamilton M, Sayanova O, Napier J, Khozin-Goldberg I, Feussner I. Metabolome Analysis Reveals Betaine Lipids as Major Source for Triglyceride Formation, and the Accumulation of Sedoheptulose during Nitrogen-Starvation of Phaeodactylum tricornutum. PLoS One 2016; 11:e0164673. [PMID: 27736949 PMCID: PMC5063337 DOI: 10.1371/journal.pone.0164673] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/28/2016] [Indexed: 11/18/2022] Open
Abstract
Oleaginous microalgae are considered as a promising resource for the production of biofuels. Especially diatoms arouse interest as biofuel producers since they are most productive in carbon fixation and very flexible to environmental changes in the nature. Naturally, triacylglycerol (TAG) accumulation in algae only occurs under stress conditions like nitrogen-limitation. We focused on Phaeodactylum strain Pt4 (UTEX 646), because of its ability to grow in medium with low salinity and therefore being suited when saline water is less available or for wastewater cultivation strategies. Our data show an increase in neutral lipids during nitrogen-depletion and predominantly 16:0 and 16:1(n-7) accumulated in the TAG fraction. The molecular species composition of TAG suggests a remodeling primarily from the betaine lipid diacylglyceroltrimethylhomoserine (DGTS), but a contribution of the chloroplast galactolipid monogalactosyldiacylglycerol (MGDG) cannot be excluded. Interestingly, the acyl-CoA pool is rich in 20:5(n-3) and 22:6(n-3) in all analyzed conditions, but these fatty acids are almost excluded from TAG. Other metabolites most obviously depleted under nitrogen-starvation were amino acids, lyso-phospholipids and tricarboxylic acid (TCA) cycle intermediates, whereas sulfur-containing metabolites as dimethylsulfoniopropionate, dimethylsulfoniobutyrate and methylsulfate as well as short acyl chain carnitines, propanoyl-carnitine and butanoyl-carnitine increased upon nitrogen-starvation. Moreover, the Calvin cycle may be de-regulated since sedoheptulose accumulated after nitrogen-depletion. Together the data provide now the basis for new strategies to improve lipid production and storage in Phaeodactylum strain Pt4.
Collapse
Affiliation(s)
- Jennifer Popko
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Cornelia Herrfurth
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Kirstin Feussner
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Till Ischebeck
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Tim Iven
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Richard Haslam
- Rothamsted Research, Biological Chemistry, Harpenden, AL5 2JQ, United Kingdom
| | - Mary Hamilton
- Rothamsted Research, Biological Chemistry, Harpenden, AL5 2JQ, United Kingdom
| | - Olga Sayanova
- Rothamsted Research, Biological Chemistry, Harpenden, AL5 2JQ, United Kingdom
| | - Jonathan Napier
- Rothamsted Research, Biological Chemistry, Harpenden, AL5 2JQ, United Kingdom
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Midreshet Ben-Gurion, Israel
| | - Ivo Feussner
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
- Georg-August-University, Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
- Georg-August-University, International Center for Advanced Studies of Energy Conversion (ICASEC), Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
- * E-mail:
| |
Collapse
|
43
|
Yunus ZM, Rahman SA, Choy YS, Keng WT, Ngu LH. Pilot study of newborn screening of inborn error of metabolism using tandem mass spectrometry in Malaysia: outcome and challenges. J Pediatr Endocrinol Metab 2016; 29:1031-9. [PMID: 27544719 DOI: 10.1515/jpem-2016-0028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND The aim of this study was to determine the feasibility of performing newborn screening (NBS) of inborn errors of metabolism (IEMs) using tandem mass spectrometry (TMS) and the impact on its detection rate in Malaysia. METHODS During the study period between June 2006 and December 2008, 30,247 newborns from 11 major public hospitals in Malaysia were screened for 27 inborn errors of amino acid, organic acid and fatty acid metabolism by TMS. Dried blood spot (DBS) samples were collected between 24 h and 7 days with parental consent. Samples with abnormal results were repeated and the babies were recalled to confirm the diagnosis with follow-up testing. RESULTS Cut-off values for amino acids and acylcarnitines were established. Eight newborns were confirmed to have IEM: two newborns with Maple syrup urine disease (MSUD), two with methylmalonic aciduria (MMA) one with ethylmalonic aciduria, two with argininosuccinic aciduria and one with isovaleric aciduria. Diagnosis was missed in two newborns. The detection rate of IEMs in this study was one in 2916 newborns. The sensitivity and specificity of TMS were 80% and 99%, respectively. CONCLUSIONS IEMs are common in Malaysia. NBS of IEMs by TMS is a valuable preventive strategy by enabling the diagnosis and early treatment of IEM before the onset of symptoms aiming at prevention of mental retardation and physical handicap. A number of shortcomings warrant further solution so that in near future NBS for IEMs will become a standard of care for all babies in Malaysia in tandem with the developed world.
Collapse
|
44
|
Two transgenic mouse models for β-subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations. Biochem J 2016; 473:3463-3485. [PMID: 27496549 PMCID: PMC5126846 DOI: 10.1042/bcj20160594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022]
Abstract
Succinate-CoA ligase (SUCL) is a heterodimer enzyme composed of Suclg1 α-subunit and a substrate-specific Sucla2 or Suclg2 β-subunit yielding ATP or GTP, respectively. In humans, the deficiency of this enzyme leads to encephalomyopathy with or without methylmalonyl aciduria, in addition to resulting in mitochondrial DNA depletion. We generated mice lacking either one Sucla2 or Suclg2 allele. Sucla2 heterozygote mice exhibited tissue- and age-dependent decreases in Sucla2 expression associated with decreases in ATP-forming activity, but rebound increases in cardiac Suclg2 expression and GTP-forming activity. Bioenergetic parameters including substrate-level phosphorylation (SLP) were not different between wild-type and Sucla2 heterozygote mice unless a submaximal pharmacological inhibition of SUCL was concomitantly present. mtDNA contents were moderately decreased, but blood carnitine esters were significantly elevated. Suclg2 heterozygote mice exhibited decreases in Suclg2 expression but no rebound increases in Sucla2 expression or changes in bioenergetic parameters. Surprisingly, deletion of one Suclg2 allele in Sucla2 heterozygote mice still led to a rebound but protracted increase in Suclg2 expression, yielding double heterozygote mice with no alterations in GTP-forming activity or SLP, but more pronounced changes in mtDNA content and blood carnitine esters, and an increase in succinate dehydrogenase activity. We conclude that a partial reduction in Sucla2 elicits rebound increases in Suclg2 expression, which is sufficiently dominant to overcome even a concomitant deletion of one Suclg2 allele, pleiotropically affecting metabolic pathways associated with SUCL. These results as well as the availability of the transgenic mouse colonies will be of value in understanding SUCL deficiency.
Collapse
|
45
|
Singh RJ, Kaur P. Thyroid hormone testing in the 21st century. Clin Biochem 2016; 49:843-5. [PMID: 27329994 DOI: 10.1016/j.clinbiochem.2016.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
Thyroid dysfunction and treatment follow up require accurate measurement of thyroid hormones. Most thyroid disease is treated on an outpatient basis; thus, assays have to be rapid and cost effective for optimal patient care. There are no rapid or point-of-care thyroid tests yet available, which could replace centralized automated thyroid testing. With the high population of thyroid dysfunction, it is important for thyroid assays to be available widely and locally. Immunoassays are most commonly used due to their ease and availability, but are limited in their accuracy. MS assays are much more specific, but are laborious with a high machine cost. Many hospitals may not be able to afford the machines and lack technical expertise. Sensitivity, specificity and standardization issues still result in substantial differences between various tests currently used for this population. To address these issues, new performance standards are being established by the professional organizations and technological advancements are being undertaken by instrument manufacturers. Automation solution is provided by various manufacturers and offers a choice for the hospital labs to select a platform which helps in their workflow and other chemistry testing. This has also resulted in decentralization and easy access to the thyroid testing. Even with these advancements, it is understandably confusing for clinicians to choose an assay for various clinical scenarios (20). As it becomes more available and standardized, LC-MS will continue to demonstrate its superiority to immunoassay.
Collapse
Affiliation(s)
| | - Parmpreet Kaur
- Children's Hospital at Montefiore 3415 Brainbridge Avenue Bronx, NY 10467, USA
| |
Collapse
|
46
|
Hassan FA, El-Mougy F, Sharaf SA, Mandour I, Morgan MF, Selim LA, Hassan SA, Salem F, Oraby A, Girgis MY, Mahmoud IG, El-Badawy A, El-Nekhely I, Moharam N, Mehaney DA, Elmonem MA. Inborn errors of metabolism detectable by tandem mass spectrometry in Egypt: The first newborn screening pilot study. J Med Screen 2016; 23:124-9. [DOI: 10.1177/0969141315618229] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/29/2015] [Indexed: 12/11/2022]
Abstract
Objectives To estimate the burden of metabolic disorders detectable by tandem mass spectrometry in Egypt, through a pilot expanded newborn screening programme at Cairo University Children's Hospital in 2008, and examining the results of 3,900 clinically at-risk children, investigated at Cairo University Children’s Hospital for the same disorders over the past 7 years using the same technology. Methods Dried blood spots of 25,276 healthy newborns from three governorates in Upper, Middle, and Lower Egypt were screened, to give a representative sample of the Egyptian newborn population. Based on the pilot study outcomes and the results of clinically suspected children, we estimated the total birth prevalence of tandem mass spectrometry detectable metabolic disorders, and the relative frequency of several individual disorders. Results Among the healthy newborns, 13 metabolic disorder cases (five phenylketonuria [1:5,000], two methylmalonic acidemia, and isovaleric acidemia [1:12,500], one each of maple syrup urine disease, propionic acidemia, β-ketothiolase deficiency, and primary carnitine deficiency [1:25,000]) were confirmed, giving a total birth prevalence of 1:1944 live births. Among the clinically suspected children, 235 cases were diagnosed, representing a much wider disease spectrum. Conclusions Egypt has one of the highest reported birth prevalence rates for metabolic disorders detectable by tandem mass spectrometry. Early diagnosis and management are crucial for the survival and well-being of affected children. A nationwide NBS programme by tandem mass spectrometry is recommended.
Collapse
Affiliation(s)
- Fayza A Hassan
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Inherited Metabolic Disease Unit, Center of Social and Preventive Medicine, Cairo University, Cairo, Egypt
| | - Fatma El-Mougy
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Inherited Metabolic Disease Unit, Center of Social and Preventive Medicine, Cairo University, Cairo, Egypt
| | - Sahar A Sharaf
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Inherited Metabolic Disease Unit, Center of Social and Preventive Medicine, Cairo University, Cairo, Egypt
| | - Iman Mandour
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Inherited Metabolic Disease Unit, Center of Social and Preventive Medicine, Cairo University, Cairo, Egypt
| | - Marian F Morgan
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Inherited Metabolic Disease Unit, Center of Social and Preventive Medicine, Cairo University, Cairo, Egypt
| | - Laila A Selim
- Inherited Metabolic Disease Unit, Center of Social and Preventive Medicine, Cairo University, Cairo, Egypt
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sawsan A Hassan
- Inherited Metabolic Disease Unit, Center of Social and Preventive Medicine, Cairo University, Cairo, Egypt
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fadia Salem
- Inherited Metabolic Disease Unit, Center of Social and Preventive Medicine, Cairo University, Cairo, Egypt
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Azza Oraby
- Inherited Metabolic Disease Unit, Center of Social and Preventive Medicine, Cairo University, Cairo, Egypt
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marian Y Girgis
- Inherited Metabolic Disease Unit, Center of Social and Preventive Medicine, Cairo University, Cairo, Egypt
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Iman G Mahmoud
- Inherited Metabolic Disease Unit, Center of Social and Preventive Medicine, Cairo University, Cairo, Egypt
| | - Amira El-Badawy
- Inherited Metabolic Disease Unit, Center of Social and Preventive Medicine, Cairo University, Cairo, Egypt
| | | | | | - Dina A Mehaney
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Inherited Metabolic Disease Unit, Center of Social and Preventive Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Elmonem
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Inherited Metabolic Disease Unit, Center of Social and Preventive Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
47
|
Kadjo AF, Stamos BN, Shelor CP, Berg JM, Blount BC, Dasgupta PK. Evaluation of Amount of Blood in Dry Blood Spots: Ring-Disk Electrode Conductometry. Anal Chem 2016; 88:6531-7. [PMID: 27226021 DOI: 10.1021/acs.analchem.6b01280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A fixed area punch in dried blood spot (DBS) analysis is assumed to contain a fixed amount of blood, but the amount actually depends on a number of factors. The presently preferred approach is to normalize the measurement with respect to the sodium level, measured by atomic spectrometry. Instead of sodium levels, we propose electrical conductivity of the extract as an equivalent nondestructive measure. A dip-type small diameter ring-disk electrode (RDE) is ideal for very small volumes. However, the conductance (G) measured by an RDE depends on the depth (D) of the liquid below the probe. There is no established way of computing the specific conductance (σ) of the solution from G. Using a COMSOL Multiphysics model, we were able to obtain excellent agreement between the measured and the model predicted conductance as a function of D. Using simulations over a large range of dimensions, we provide a spreadsheet-based calculator where the RDE dimensions are the input parameters and the procedure determines the 99% of the infinite depth conductance (G99) and the depth D99 at which this is reached. For typical small diameter probes (outer electrode diameter ∼ <2 mm), D99 is small enough for dip-type measurements in extract volumes of ∼100 μL. We demonstrate the use of such probes with DBS extracts. In a small group of 12 volunteers (age 20-66), the specific conductance of 100 μL aqueous extracts of 2 μL of spotted blood showed a variance of 17.9%. For a given subject, methanol extracts of DBS spots nominally containing 8 and 4 μL of blood differed by a factor of 1.8-1.9 in the chromatographically determined values of sulfate and chloride (a minor and major constituent, respectively). The values normalized with respect to the conductance of the extracts differed by ∼1%. For serum associated analytes, normalization of the analyte value by the extract conductance can thus greatly reduce errors from variations in the spotted blood volume/unit area.
Collapse
Affiliation(s)
- Akinde F Kadjo
- Department of Chemistry and Biochemistry, University of Texas , Arlington, Texas 76019, United States
| | - Brian N Stamos
- Department of Chemistry and Biochemistry, University of Texas , Arlington, Texas 76019, United States
| | - C Phillip Shelor
- Department of Chemistry and Biochemistry, University of Texas , Arlington, Texas 76019, United States
| | - Jordan M Berg
- Department of Mechanical Engineering, Texas Tech University , Lubbock, Texas 79409, United States
| | - Benjamin C Blount
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta, Georgia 30341, United States
| | - Purnendu K Dasgupta
- Department of Chemistry and Biochemistry, University of Texas , Arlington, Texas 76019, United States
| |
Collapse
|
48
|
Al-Dirbashi OY, McIntosh N, Chakraborty P. Quantification of 2-methylcitric acid in dried blood spots improves newborn screening for propionic and methylmalonic acidemias. J Med Screen 2016; 24:58-61. [PMID: 27216769 DOI: 10.1177/0969141316645824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Newborn screening for propionic acidemia and methylmalonic acidurias using the marker propionylcarnitine (C3) is neither sensitive nor specific. Using C3 to acetylcarnitine (C3/C2) ratio, together with conservative C3 cut-offs, can improve screening sensitivity, but the false positive rate remains high. Incorporating the marker 2-methylcitric acid has been suggested, to improve the positive predictive value for these disorders without compromising the sensitivity. Methods Between July 2011 and December 2012 at the Newborn Screening Ontario laboratory, all neonatal dried blood spot samples that were reported as screen positive for propionic acidemia or methylmalonic acidurias based on elevated C3 and C3/C2 ratio were analyzed for 2-methylcitric acid, using liquid chromatography tandem mass spectrometry. Results Of 222,420 samples screened, 103 were positive for methylmalonic acidurias or propionic acidemia using C3 and C3/C2 ratio as markers. There were nine true positives: propionic acidemia (n = 3), Cobalamin (Cbl) A (n=1), and Cbl C (n = 5). Among false positives there were 72 neonates not affected, 20 with maternal B12 deficiency, and two incidental finding (transcobalamin II and unclassified Cbl defect). 2-Methylcitric acid was analyzed in all 103 samples and ranged between 0.1 and 89.4 µmol/l (reference range 0.04-0.36). Only 14 samples exceeded the set 2-methylcitric acid cut-off of 1.0 µmol/l, including the samples from all nine true positives. Conclusion By including 2-methylcitric acid in the screening algorithm, the positive predictive value of our primary and secondary screening targets improved from 8.7 to 64.3%. This would have eliminated 89 unnecessary referrals while maintaining 100% sensitivity.
Collapse
Affiliation(s)
- Osama Y Al-Dirbashi
- 1 Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Canada.,2 Department of Pediatrics, University of Ottawa, Ottawa, Canada.,3 Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Nathan McIntosh
- 1 Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Pranesh Chakraborty
- 1 Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Canada.,2 Department of Pediatrics, University of Ottawa, Ottawa, Canada.,3 Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| |
Collapse
|
49
|
Wagner M, Tonoli D, Varesio E, Hopfgartner G. The use of mass spectrometry to analyze dried blood spots. MASS SPECTROMETRY REVIEWS 2016; 35:361-438. [PMID: 25252132 DOI: 10.1002/mas.21441] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dried blood spots (DBS) typically consist in the deposition of small volumes of capillary blood onto dedicated paper cards. Comparatively to whole blood or plasma samples, their benefits rely in the fact that sample collection is easier and that logistic aspects related to sample storage and shipment can be relatively limited, respectively, without the need of a refrigerator or dry ice. Originally, this approach has been developed in the sixties to support the analysis of phenylalanine for the detection of phenylketonuria in newborns using bacterial inhibition test. In the nineties tandem mass spectrometry was established as the detection technique for phenylalanine and tyrosine. DBS became rapidly recognized for their clinical value: they were widely implemented in pediatric settings with mass spectrometric detection, and were closely associated to the debut of newborn screening (NBS) programs, as a part of public health policies. Since then, sample collection on paper cards has been explored with various analytical techniques in other areas more or less successfully regarding large-scale applications. Moreover, in the last 5 years a regain of interest for DBS was observed and originated from the bioanalytical community to support drug development (e.g., PK studies) or therapeutic drug monitoring mainly. Those recent applications were essentially driven by improved sensitivity of triple quadrupole mass spectrometers. This review presents an overall view of all instrumental and methodological developments for DBS analysis with mass spectrometric detection, with and without separation techniques. A general introduction to DBS will describe their advantages and historical aspects of their emergence. A second section will focus on blood collection, with a strong emphasis on specific parameters that can impact quantitative analysis, including chromatographic effects, hematocrit effects, blood effects, and analyte stability. A third part of the review is dedicated to sample preparation and will consider off-line and on-line extractions; in particular, instrumental designs that have been developed so far for DBS extraction will be detailed. Flow injection analysis and applications will be discussed in section IV. The application of surface analysis mass spectrometry (DESI, paper spray, DART, APTDCI, MALDI, LDTD-APCI, and ICP) to DBS is described in section V, while applications based on separation techniques (e.g., liquid or gas chromatography) are presented in section VI. To conclude this review, the current status of DBS analysis is summarized, and future perspectives are provided.
Collapse
Affiliation(s)
- Michel Wagner
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Life Sciences Mass Spectrometry, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - David Tonoli
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Life Sciences Mass Spectrometry, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Emmanuel Varesio
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Life Sciences Mass Spectrometry, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Gérard Hopfgartner
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Life Sciences Mass Spectrometry, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| |
Collapse
|
50
|
Bergwerff CE, Luman M, Blom HJ, Oosterlaan J. No Tryptophan, Tyrosine and Phenylalanine Abnormalities in Children with Attention-Deficit/Hyperactivity Disorder. PLoS One 2016; 11:e0151100. [PMID: 26938936 PMCID: PMC4777504 DOI: 10.1371/journal.pone.0151100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/23/2016] [Indexed: 01/18/2023] Open
Abstract
Background The aim of the current study was to explore the role of aromatic amino acids (AAAs) in blood in relation to attention-deficit/hyperactivity disorder (ADHD). Given their impact on the synthesis of serotonin and dopamine, decreased concentrations of the AAAs tryptophan, tyrosine and phenylalanine in blood may contribute to the expression of ADHD symptoms. Decreased AAA blood concentrations, in turn, may be related to lowered dietary protein intake or to abnormal AAA catabolism, as evidenced by increased urinary AAA concentrations. Methods Eighty-three children with ADHD (75% males) and 72 typically developing (TD) children (51% males), aged 6 to 13 years, participated in the study. AAA concentrations were assessed in blood spots and an 18-hour urinary sample. A nutritional diary was filled out by parents to calculate dietary protein intake. Parent and teacher questionnaires assessed symptoms of ADHD, oppositional defiant disorder, conduct disorder, and autism spectrum disorder. Results Children with ADHD showed normal AAA concentrations in blood spots and urine, as well as normal protein intake compared to controls. No associations between AAA concentrations and symptoms of ADHD or comorbid psychiatric disorders were found. Conclusions This study is the first to explore AAA metabolism in children with ADHD using a well-defined and relatively large sample. We found that AAA deficiencies are not related to ADHD. The results do not support treatment with AAA supplements in children with ADHD. Future studies regarding the cause of serotonin and dopamine alterations in ADHD should focus on other explanations, such as effects of altered transport of AAAs.
Collapse
Affiliation(s)
| | - Marjolein Luman
- Clinical Neuropsychology section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henk J. Blom
- Center for Pediatrics and Adolescent Medicine, Medical Center–University of Freiburg, Freiburg, Germany
- Department of Clinical Chemistry, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Jaap Oosterlaan
- Clinical Neuropsychology section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|