1
|
Zhang Y, Wernly B, Cao X, Mustafa SJ, Tang Y, Zhou Z. Adenosine and adenosine receptor-mediated action in coronary microcirculation. Basic Res Cardiol 2021; 116:22. [PMID: 33755785 PMCID: PMC7987637 DOI: 10.1007/s00395-021-00859-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Adenosine is an ubiquitous extracellular signaling molecule and plays a fundamental role in the regulation of coronary microcirculation through activation of adenosine receptors (ARs). Adenosine is regulated by various enzymes and nucleoside transporters for its balance between intra- and extracellular compartments. Adenosine-mediated coronary microvascular tone and reactive hyperemia are through receptors mainly involving A2AR activation on both endothelial and smooth muscle cells, but also involving interaction among other ARs. Activation of ARs further stimulates downstream targets of H2O2, KATP, KV and KCa2+ channels leading to coronary vasodilation. An altered adenosine-ARs signaling in coronary microcirculation has been observed in several cardiovascular diseases including hypertension, diabetes, atherosclerosis and ischemic heart disease. Adenosine as a metabolite and its receptors have been studied for its both therapeutic and diagnostic abilities. The present review summarizes important aspects of adenosine metabolism and AR-mediated actions in the coronary microcirculation.
Collapse
Affiliation(s)
- Ying Zhang
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bernhard Wernly
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Xin Cao
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, USA
| | - Yong Tang
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
2
|
Burnstock G. Purinergic Signaling in the Cardiovascular System. Circ Res 2017; 120:207-228. [PMID: 28057794 DOI: 10.1161/circresaha.116.309726] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023]
Abstract
There is nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory-motor nerves, as well as in intracardiac neurons. Centers in the brain control heart activities and vagal cardiovascular reflexes involve purines. Adenine nucleotides and nucleosides act on purinoceptors on cardiomyocytes, AV and SA nodes, cardiac fibroblasts, and coronary blood vessels. Vascular tone is controlled by a dual mechanism. ATP, released from perivascular sympathetic nerves, causes vasoconstriction largely via P2X1 receptors. Endothelial cells release ATP in response to changes in blood flow (via shear stress) or hypoxia, to act on P2 receptors on endothelial cells to produce nitric oxide, endothelium-derived hyperpolarizing factor, or prostaglandins to cause vasodilation. ATP is also released from sensory-motor nerves during antidromic reflex activity, to produce relaxation of some blood vessels. Purinergic signaling is involved in the physiology of erythrocytes, platelets, and leukocytes. ATP is released from erythrocytes and platelets, and purinoceptors and ectonucleotidases are expressed by these cells. P1, P2Y1, P2Y12, and P2X1 receptors are expressed on platelets, which mediate platelet aggregation and shape change. Long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides promote migration and proliferation of vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis, vessel remodeling during restenosis after angioplasty and atherosclerosis. The involvement of purinergic signaling in cardiovascular pathophysiology and its therapeutic potential are discussed, including heart failure, infarction, arrhythmias, syncope, cardiomyopathy, angina, heart transplantation and coronary bypass grafts, coronary artery disease, diabetic cardiomyopathy, hypertension, ischemia, thrombosis, diabetes mellitus, and migraine.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- From the Autonomic Neuroscience Institute, Royal Free and University College Medical School, London, United Kingdom.
| |
Collapse
|
3
|
Burnstock G, Pelleg A. Cardiac purinergic signalling in health and disease. Purinergic Signal 2015; 11:1-46. [PMID: 25527177 PMCID: PMC4336308 DOI: 10.1007/s11302-014-9436-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 01/09/2023] Open
Abstract
This review is a historical account about purinergic signalling in the heart, for readers to see how ideas and understanding have changed as new experimental results were published. Initially, the focus is on the nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory nerves, as well as in intracardiac neurons. Control of the heart by centers in the brain and vagal cardiovascular reflexes involving purines are also discussed. The actions of adenine nucleotides and nucleosides on cardiomyocytes, atrioventricular and sinoatrial nodes, cardiac fibroblasts, and coronary blood vessels are described. Cardiac release and degradation of ATP are also described. Finally, the involvement of purinergic signalling and its therapeutic potential in cardiac pathophysiology is reviewed, including acute and chronic heart failure, ischemia, infarction, arrhythmias, cardiomyopathy, syncope, hypertrophy, coronary artery disease, angina, diabetic cardiomyopathy, as well as heart transplantation and coronary bypass grafts.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
4
|
Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 2013; 66:102-92. [PMID: 24335194 DOI: 10.1124/pr.113.008029] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
5
|
Picchi A, Limbruno U, Focardi M, Cortese B, Micheli A, Boschi L, Severi S, De Caterina R. Increased basal coronary blood flow as a cause of reduced coronary flow reserve in diabetic patients. Am J Physiol Heart Circ Physiol 2011; 301:H2279-84. [DOI: 10.1152/ajpheart.00615.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A reduced coronary flow reserve (CFR) has been demonstrated in diabetes, but the underlying mechanisms are unknown. We assessed thermodilution-derived CFR after 5-min intravenous adenosine infusion through a pressure-temperature sensor-tipped wire in 30 coronary arteries without significant lumen reduction in 30 patients: 13 with and 17 without a history of diabetes. We determined CFR as the ratio of basal and hyperemic mean transit times (Tmn); fractional flow reserve (FFR) as the ratio of distal and proximal pressures at maximal hyperemia to exclude local macrovascular disease; and an index of microvascular resistance (IMR) as the distal coronary pressure at maximal hyperemia divided by the inverse of the hyperemic Tmn. We also assessed insulin resistance by the homeostasis model assessment (HOMA) index. FFR was normal in all investigated arteries. CFR was significantly lower in diabetic vs. nondiabetic patients [median (interquartile range): 2.2 (1.4–3.2) vs. 4.1 (2.7–4.4); P = 0.02]. Basal Tmn was lower in diabetic vs. nondiabetic subjects [median (interquartile range): 0.53 (0.25–0.71) vs. 0.64 (0.50–1.17); P = 0.04], while hyperemic Tmn and IMR were similar. We found significant correlations at linear regression analysis between logCFR and the HOMA index ( r2 = 0.35; P = 0.0005) and between basal Tmn and the HOMA index ( r2 = 0.44; P < 0.0001). In conclusion, compared with nondiabetic subjects, CFR is lower in patients with diabetes and epicardial coronary arteries free of severe stenosis, because of increased basal coronary flow, while hyperemic coronary flow is similar. Basal coronary flow relates to insulin resistance, suggesting a key role of cellular metabolism in the regulation of coronary blood flow.
Collapse
Affiliation(s)
- Andrea Picchi
- Department of Cardiology, Misericordia Hospital, Grosseto
| | - Ugo Limbruno
- Department of Cardiology, Misericordia Hospital, Grosseto
| | - Marta Focardi
- Department of Cardiology, Misericordia Hospital, Grosseto
| | | | - Andrea Micheli
- Department of Cardiology, Misericordia Hospital, Grosseto
| | - Letizia Boschi
- Department of Physiology, University of Siena, Siena; and
| | - Silva Severi
- Department of Cardiology, Misericordia Hospital, Grosseto
| | - Raffaele De Caterina
- Institute of Cardiology and Center of Excellence on Aging, “G. d'Annunzio” University-Chieti, Chieti, Italy
| |
Collapse
|
6
|
Walker JP, Barbato JC, Koch LG. Cardiac adenosine production in rat genetic models of low and high exercise capacity. Am J Physiol Regul Integr Comp Physiol 2002; 283:R168-73. [PMID: 12069942 DOI: 10.1152/ajpregu.00621.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that Copenhagen (COP) and DA inbred rat strains show a wide difference in a test for aerobic treadmill running that correlated positively with isolated cardiac function. The purpose of this study was to test adenosine production as a candidate intermediate phenotype that may explain part of the difference in running and cardiac performance in these genetic models for low and high aerobic capacity. Adenosine production was measured as the activity of soluble 5'-nucleotidase and membrane-bound ecto-5'-nucleotidase in the membrane pellet and supernatant fractions of left and right ventricular muscle and gracilis muscle taken from 10 DA and 10 COP rats. Ecto-5'-nucleotidase activity in the membrane pellet of hearts from both DA and COP accounted for the vast majority of the total tissue adenosine production (>90% in the left ventricle and >80% in the right ventricle). Ecto-5'-nucleotidase activity in the pellet fraction was significantly higher in the left (22.4%) and right (46.1%) ventricles of DA rats compared with COP rats, with no differences in total protein content. There were no significant differences between the strains for 5'-nucleotidase activity in the cardiac supernatant, the gracilis pellet, or the gracilis supernatant. These data support the hypothesis that an increase in cardiac adenosine production may contribute to the greater aerobic running capacity of the DA rats.
Collapse
Affiliation(s)
- Jon P Walker
- Functional Genomics Laboratory, Medical College of Ohio, 3035 Arlington Avenue, Toledo, OH 43614-5804, USA
| | | | | |
Collapse
|
7
|
Kamekura I, Okumura K, Matsui H, Murase K, Mokuno S, Toki Y, Nakashima Y, Ito T. Mechanisms of hypoxic coronary vasodilatation in isolated perfused rat hearts. J Cardiovasc Pharmacol 1999; 33:836-42. [PMID: 10367585 DOI: 10.1097/00005344-199906000-00002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We pharmacologically investigated the potential involvement of nitric oxide (NO), prostacyclin, adenosine, adenosine triphosphate (ATP)-sensitive K (K(ATP)) channel opening and Ca2+-activated K (K(Ca)) channel opening in coronary vasodilatation during 15 min of hypoxia in isolated rat hearts perfused at a constant pressure of 70 mm Hg. The coronary flow suppressed by 10(-4) M Nomega-nitro-L-arginine methyl ester (L-NAME), which corresponds to the NO-dependent flow, decreased to almost zero during hypoxia. In contrast, the NO-dependent coronary flow amounted to approximately 40% of the total coronary flow during normoxia. The suppression of coronary flow by 10(-5) M 8-phenyltheophylline (8-PT), which corresponds to the adenosine-dependent flow, was remarkable in the middle and the late phases of a 15-min hypoxia. The coronary flow suppressed by 2 x 10(-6) M glibenclamide, which corresponds to the K(ATP) channel opening-dependent flow, depended on the agents added to the perfusate. However, there was a marked increase in coronary flow in the early phase of hypoxia in the heart perfused with the combination of 8-PT, 10(-2) M tetraethylammonium (TEA) and L-NAME. During hypoxia, the coronary flow suppressed by TEA, which corresponds mainly to the K(Ca) channel opening-dependent flow, also depended on the agents added to the perfusate. However, during reoxygenation, there was a transient significant increase in any combination of the agents. Our study suggests that hypoxia almost completely inhibits NO production, and that K(ATP) channel opening immediately after hypoxia and subsequent enhanced adenosine production cause a marked hypoxic coronary vasodilatation. It also suggests that K(Ca) channel opening causes vasodilatation during reoxygenation.
Collapse
Affiliation(s)
- I Kamekura
- Internal Medicine II, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Edlund A, Conradsson T, Sollevi A. A role for adenosine in coronary vasoregulation in man. Effects of theophylline and enprofylline. CLINICAL PHYSIOLOGY (OXFORD, ENGLAND) 1995; 15:623-36. [PMID: 8590556 DOI: 10.1111/j.1475-097x.1995.tb00549.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adenosine has been suggested to have a role in regulation of the tone of the cardiac resistance vessels. To elucidate the coronary vasoregulatory role of endogenous adenosine in man, we studied the effects of adenosine receptor antagonism by theophylline on coronary blood flow at rest and during light exercise. However, theophylline may also exert pharmacological effects not related to adenosine antagonism. To clarify the contribution of endogenous adenosine in coronary hyperaemia, the effect of theophylline was compared to that of enprofylline, a xanthine which exerts similar pharmacological effects as theophylline while lacking antagonistic action at adenosine receptors. Twenty healthy subjects (10 males) aged 22-39 years were examined. Coronary sinus (CS) blood flow and blood oxygen content were determined at rest and during supine bicycle exercise, at a load of 50 watts, for 10 min. Thereafter, stepwise infusion of adenosine (30 to 60 micrograms/kg/min into the subclavian vein) was performed. Theophylline or enprofylline treatment was instituted randomly and double-blind (10 in each group), and the procedures (i.e. determinations at rest, during exercise and during infusion of adenosine) were repeated. In all 20 subjects, basal CS flow was 70 +/- 6 ml/min and the cardiac oxygen extraction ((A-CS)O2D) was 123 +/- 3 ml/l. During exercise, CS flow and (A-CS)O2D increased to 135 +/- 17 ml/min and 132 +/- 3 ml/l, respectively. Adenosine increased CS flow dose dependently to 161 +/- 27 ml/min, while (A-CS)O2D decreased to 66 +/- 7 ml/l. The vasodilatory effect of adenosine was readily counteracted by theophylline, the increase in CS flow being 33% vs. 133% in the control situation. Enprofylline, on the other hand, enhanced the response to exogenous adenosine. Theophylline, at a dose lacking effect on heart rate and blood pressure, decreased CS flow at rest by 14% (P < 0.05) and during exercise by 18% (P < 0.05). ((A-CS)O2D increased by 14% at rest and during exercise (P < 0.001). Enprofylline, on the other hand, was without effect. The differences in responses between theophylline and enprofylline with respect to coronary flow and oxygen extraction were significant both at rest and during exercise. It is concluded that theophylline increases coronary vascular resistance, while enprofylline, lacking adenosine antagonistic properties, was without such effect. This indicates a physiological role of adenosine in regulation of coronary flow.
Collapse
Affiliation(s)
- A Edlund
- Department of Clinical Physiology, Karolinska Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
9
|
Edlund A, Sollevi A. Theophylline increases coronary vascular tone in humans: evidence for a role of endogenous adenosine in flow regulation. ACTA PHYSIOLOGICA SCANDINAVICA 1995; 155:303-11. [PMID: 8619329 DOI: 10.1111/j.1748-1716.1995.tb09978.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To elucidate the role of adenosine in coronary vasoregulation, we studied the effects of adenosine antagonism (by theophylline) on coronary blood flow at different levels of adenosine formation (stimulated by hypoxia and exercise). Six healthy subjects were studied. Coronary sinus (CS) blood flow (thermodilution) and cardiac oxygen extraction [(A-CS)O2D] were determined while breathing room air at rest, and 12% oxygen, both at rest and during light exercise, on two occasions. One of the experiments was performed during infusion of theophylline. The basal CS flow was 118 (67-168) mL min-1 (mean and 95% confidence interval), and the (A-CS)O2D was 125 (111-142) mL L-1. Inhalation of 12% O2 decreased the arterial haemoglobin oxygen saturation to 83 (80-86)% at rest and to 77 (73-81)% during exercise. CS flow increased to 167 (93-214) and 261 (179-343) mL min-1, respectively, and (A-CS)O2D decreased to 102 (85-119) and 94 (77-111) mL L-1, respectively. Theophylline, at a dose lacking effects on myocardial work, markedly attenuated the coronary flow response to exogenous adenosine, and decreased CS flow to 89 (58-119), 120 (79-161) and 190 (162-218) mL min-1 at normoxic rest, hypoxic rest and hypoxic exercise, respectively. The overall decrease amounted to 23% (P < 0.05). The calculated coronary vascular conductance also decreased by 23% (P < 0.05) and (A-CS)O2D increased by 15% (P < 0.001). In conclusion, the data support the hypothesis that endogenous adenosine is involved in regulation of human coronary tone.
Collapse
Affiliation(s)
- A Edlund
- Department of Clinical Physiology, Karolinska Hospital, Stockholm, Sweden
| | | |
Collapse
|
10
|
|
11
|
Ronca-Testoni S, Zucchi R, Limbruno U, Galbani P, Ronca G, Mariani M. Effect of ischaemia on cardiac adenosine binding sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 309A:447-50. [PMID: 1789264 DOI: 10.1007/978-1-4899-2638-8_103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- S Ronca-Testoni
- Institute of Biological Chemistry, Scuola Superiore S. Anna Institute of Cardiology, University of Pisa, Italy
| | | | | | | | | | | |
Collapse
|