1
|
Loh YH, Lv J, Goh Y, Sun X, Zhu X, Muheyati M, Luan Y. Remodeling of T-Tubules and Associated Calcium Handling Dysfunction in Heart Failure: Mechanisms and Therapeutic Insights. Can J Cardiol 2024:S0828-282X(24)01035-3. [PMID: 39455023 DOI: 10.1016/j.cjca.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
In cardiomyocytes, transverse tubules (T-tubules) are sarcolemmal invaginations that facilitate excitation-contraction coupling (ECC) and diastolic function. The clinical significance of T-tubules has become evident as their remodeling is recognized as a hallmark feature of heart failure (HF) and a key contributor to disrupted Ca2+ homeostasis, compromised cardiac function, and arrhythmogenesis. Further investigations have revealed that T-tubule remodeling is particularly pronounced in HF with reduced ejection fraction (HFrEF), but not in HF with preserved ejection fraction (HFpEF), implying that T-tubule remodeling may play a crucial pathophysiological role in HFrEF. While research on the functional importance of T-tubules is ongoing due to their complexity, T-tubule remodeling has been found to be reversible. Such finding has triggered a surge in studies aimed at identifying specific therapeutic approaches for HFrEF. This review discusses the functional importance of T-tubules and their microdomains, the pathophysiology of T-tubule remodeling, and the potential mechanisms of current HFrEF therapeutic approaches in reversing T-tubule alterations. We also highlight discrepancies regarding the roles of T-tubule proteins in the recovery process across studies to offer valuable insights for future research.
Collapse
Affiliation(s)
- Yi Hao Loh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Jingyi Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yenfang Goh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xiangjie Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xianfeng Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; Department of Critical Care Medicine, Hangzhou Ninth People's Hospital, China
| | - Muergen Muheyati
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yi Luan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; School of Medicine, Shaoxing University, China.
| |
Collapse
|
2
|
Lang D, Ni H, Medvedev RY, Liu F, Alvarez-Baron CP, Tyan L, Turner DG, Warden A, Morotti S, Schrauth TA, Chanda B, Kamp TJ, Robertson GA, Grandi E, Glukhov AV. Caveolar Compartmentalization of Pacemaker Signaling is Required for Stable Rhythmicity of Sinus Nodal Cells and is Disrupted in Heart Failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.14.589457. [PMID: 38659841 PMCID: PMC11042225 DOI: 10.1101/2024.04.14.589457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Heart rhythm relies on complex interactions between electrogenic membrane proteins and intracellular Ca2+ signaling in sinoatrial node (SAN) myocytes; however, mechanisms underlying the functional organization of proteins involved in SAN pacemaking and its structural foundation remain elusive. Caveolae are nanoscale, plasma membrane pits that compartmentalize various ion channels and transporters, including those involved in SAN pacemaking, via binding with the caveolin-3 scaffolding protein, but the precise role of caveolae in cardiac pacemaker function is unknown. Our objective was to determine the role of caveolae in SAN pacemaking and dysfunction (SND). Methods Biochemical co-purification, in vivo electrocardiogram monitoring, ex vivo optical mapping, in vitro confocal Ca2+ imaging, and immunofluorescent and electron microscopy analyses were performed in wild type, cardiac-specific caveolin-3 knockout, and 8-weeks post-myocardial infarction heart failure (HF) mice. SAN tissue samples from donor human hearts were used for biochemical studies. We utilized a novel 3-dimensional single SAN cell mathematical model to determine the functional outcomes of protein nanodomain-specific localization and redistribution in SAN pacemaking. Results In both mouse and human SANs, caveolae compartmentalized HCN4, Cav1.2, Cav1.3, Cav3.1 and NCX1 proteins within discrete pacemaker signalosomes via direct association with caveolin-3. This compartmentalization positioned electrogenic sarcolemmal proteins near the subsarcolemmal sarcoplasmic reticulum (SR) membrane and ensured fast and robust activation of NCX1 by subsarcolemmal local SR Ca2+ release events (LCRs), which diffuse across ~15-nm subsarcolemmal cleft. Disruption of caveolae led to the development of SND via suppression of pacemaker automaticity through a 50% decrease of the L-type Ca2+ current, a negative shift of the HCN current (I f) activation curve, and a 40% reduction of Na+/Ca2+-exchanger function, along with ~2.3-times widening of the sarcolemma-SR distance. These changes significantly decreased the SAN depolarizing force, both during diastolic depolarization and upstroke phase, leading to bradycardia, sinus pauses, recurrent development of SAN quiescence, and significant increase in heart rate lability. Computational modeling, supported by biochemical studies, identified NCX1 redistribution to extra-caveolar membrane as the primary mechanism of SAN pauses and quiescence due to the impaired ability of NCX1 to be effectively activated by LCRs and trigger action potentials. HF remodeling mirrored caveolae disruption leading to NCX1-LCR uncoupling and SND. Conclusions SAN pacemaking is driven by complex protein interactions within a nanoscale caveolar pacemaker signalosome. Disruption of caveolae leads to SND, potentially demonstrating a new dimension of SAN remodeling and providing a newly recognized target for therapy.
Collapse
Affiliation(s)
- Di Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Roman Y. Medvedev
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Fang Liu
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Leonid Tyan
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel G.P. Turner
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Aleah Warden
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Thomas A. Schrauth
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Baron Chanda
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Timothy J. Kamp
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Gail A. Robertson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Alexey V. Glukhov
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Lahiri SK, Jin F, Zhou Y, Quick AP, Kramm CF, Wang MC, Wehrens XH. Altered myocardial lipid regulation in junctophilin-2-associated familial cardiomyopathies. Life Sci Alliance 2024; 7:e202302330. [PMID: 38438248 PMCID: PMC10912815 DOI: 10.26508/lsa.202302330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Myocardial lipid metabolism is critical to normal heart function, whereas altered lipid regulation has been linked to cardiac diseases including cardiomyopathies. Genetic variants in the JPH2 gene can cause hypertrophic cardiomyopathy (HCM) and, in some cases, dilated cardiomyopathy (DCM). In this study, we tested the hypothesis that JPH2 variants identified in patients with HCM and DCM, respectively, cause distinct alterations in myocardial lipid profiles. Echocardiography revealed clinically significant cardiac dysfunction in both knock-in mouse models of cardiomyopathy. Unbiased myocardial lipidomic analysis demonstrated significantly reduced levels of total unsaturated fatty acids, ceramides, and various phospholipids in both mice with HCM and DCM, suggesting a common metabolic alteration in both models. On the contrary, significantly increased di- and triglycerides, and decreased co-enzyme were only found in mice with HCM. Moreover, mice with DCM uniquely exhibited elevated levels of cholesterol ester. Further in-depth analysis revealed significantly altered metabolites from all the lipid classes with either similar or opposing trends in JPH2 mutant mice with HCM or DCM. Together, these studies revealed, for the first time, unique alterations in the cardiac lipid composition-including distinct increases in neutral lipids and decreases in polar membrane lipids-in mice with HCM and DCM were caused by distinct JPH2 variants. These studies may aid the development of novel biomarkers or therapeutics for these inherited disorders.
Collapse
Affiliation(s)
- Satadru K Lahiri
- https://ror.org/02pttbw34 Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/02pttbw34 Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Feng Jin
- https://ror.org/02pttbw34 Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yue Zhou
- https://ror.org/02pttbw34 Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Ann P Quick
- https://ror.org/02pttbw34 Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/02pttbw34 Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Carlos F Kramm
- https://ror.org/02pttbw34 Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/02pttbw34 Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Meng C Wang
- https://ror.org/02pttbw34 Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/02pttbw34 Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/02pttbw34 Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xander Ht Wehrens
- https://ror.org/02pttbw34 Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/02pttbw34 Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/02pttbw34 Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/02pttbw34 Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/02pttbw34 Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- https://ror.org/02pttbw34 Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Wang D, Cao Y, Meng M, Qiu J, Ni C, Guo X, Li Y, Liu S, Yu J, Guo M, Wang J, Du B, Qiu W, Xie C, Zhao B, Ma X, Cheng X, Xu L. FOXA3 regulates cholesterol metabolism to compensate for low uptake during the progression of lung adenocarcinoma. PLoS Biol 2024; 22:e3002621. [PMID: 38805565 PMCID: PMC11161053 DOI: 10.1371/journal.pbio.3002621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/07/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
Cholesterol metabolism is vital for multiple cancer progression, while how cholesterol affects lung, a low-cholesterol tissue, for cancer metastasis and the underlying mechanism remain unclear. In this study, we found that metastatic lung adenocarcinoma cells acquire cellular dehydrocholesterol and cholesterol by endogenous cholesterol biosynthesis, instead of uptake upon cholesterol treatment. Besides, we demonstrated that exogenous cholesterol functions as signaling molecule to induce FOXA3, a key transcription factor for lipid metabolism via GLI2. Subsequently, ChIP-seq analysis and molecular studies revealed that FOXA3 transcriptionally activated Hmgcs1, an essential enzyme of cholesterol biosynthesis, to induce endogenous dehydrocholesterol and cholesterol level for membrane composition change and cell migration. Conversely, FOXA3 knockdown or knockout blocked cholesterol biosynthesis and lung adenocarcinoma metastasis in mice. In addition, the potent FOXA3 inhibitor magnolol suppressed metastatic gene programs in lung adenocarcinoma patient-derived organoids (PDOs). Altogether, our findings shed light onto unique cholesterol metabolism and FOXA3 contribution to lung adenocarcinoma metastasis.
Collapse
Affiliation(s)
- Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Department of Gastrointestinal Surgery, the Affiliated Changzhou, No. 2 People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yuxiang Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chao Ni
- Institute of Organoid Technology, BioGenous Biotechnology, Inc., Suzhou, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenwei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhao
- Institute of Organoid Technology, BioGenous Biotechnology, Inc., Suzhou, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China
| | - Xinghua Cheng
- Department of Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
5
|
Hall DD, Takeshima H, Song LS. Structure, Function, and Regulation of the Junctophilin Family. Annu Rev Physiol 2024; 86:123-147. [PMID: 37931168 PMCID: PMC10922073 DOI: 10.1146/annurev-physiol-042022-014926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In both excitable and nonexcitable cells, diverse physiological processes are linked to different calcium microdomains within nanoscale junctions that form between the plasma membrane and endo-sarcoplasmic reticula. It is now appreciated that the junctophilin protein family is responsible for establishing, maintaining, and modulating the structure and function of these junctions. We review foundational findings from more than two decades of research that have uncovered how junctophilin-organized ultrastructural domains regulate evolutionarily conserved biological processes. We discuss what is known about the junctophilin family of proteins. Our goal is to summarize the current knowledge of junctophilin domain structure, function, and regulation and to highlight emerging avenues of research that help our understanding of the transcriptional, translational, and post-translational regulation of this gene family and its roles in health and during disease.
Collapse
Affiliation(s)
- Duane D Hall
- Department of Internal Medicine, Division of Cardiovascular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; ,
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Long-Sheng Song
- Department of Internal Medicine, Division of Cardiovascular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; ,
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Lee CS, Jung SY, Yee RSZ, Agha NH, Hong J, Chang T, Babcock LW, Fleischman JD, Clayton B, Hanna AD, Ward CS, Lanza D, Hurley AE, Zhang P, Wehrens XHT, Lagor WR, Rodney GG, Hamilton SL. Speg interactions that regulate the stability of excitation-contraction coupling protein complexes in triads and dyads. Commun Biol 2023; 6:942. [PMID: 37709832 PMCID: PMC10502019 DOI: 10.1038/s42003-023-05330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
Here we show that striated muscle preferentially expressed protein kinase α (Spegα) maintains cardiac function in hearts with Spegβ deficiency. Speg is required for stability of excitation-contraction coupling (ECC) complexes and interacts with esterase D (Esd), Cardiomyopathy-Associated Protein 5 (Cmya5), and Fibronectin Type III and SPRY Domain Containing 2 (Fsd2) in cardiac and skeletal muscle. Mice with a sequence encoding a V5/HA tag inserted into the first exon of the Speg gene (HA-Speg mice) display a >90% decrease in Spegβ but Spegα is expressed at ~50% of normal levels. Mice deficient in both Spegα and Speg β (Speg KO mice) develop a severe dilated cardiomyopathy and muscle weakness and atrophy, but HA-Speg mice display mild muscle weakness with no cardiac involvement. Spegα in HA-Speg mice suppresses Ca2+ leak, proteolytic cleavage of Jph2, and disruption of transverse tubules. Despite it's low levels, HA-Spegβ immunoprecipitation identified Esd, Cmya5 and Fsd2 as Spegβ binding partners that localize to triads and dyads to stabilize ECC complexes. This study suggests that Spegα and Spegβ display functional redundancy, identifies Esd, Cmya5 and Fsd2 as components of both cardiac dyads and skeletal muscle triads and lays the groundwork for the identification of new therapeutic targets for centronuclear myopathy.
Collapse
Affiliation(s)
- Chang Seok Lee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Rachel Sue Zhen Yee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Nadia H Agha
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Jin Hong
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Ting Chang
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Lyle W Babcock
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Jorie D Fleischman
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Benjamin Clayton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Amy D Hanna
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Christopher S Ward
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Ayrea E Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Pumin Zhang
- The First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Xander H T Wehrens
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - George G Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Susan L Hamilton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA.
| |
Collapse
|
7
|
Kermani F, Mosqueira M, Peters K, Lemma ED, Rapti K, Grimm D, Bastmeyer M, Laugsch M, Hecker M, Ullrich ND. Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes. Basic Res Cardiol 2023; 118:13. [PMID: 36988697 PMCID: PMC10060306 DOI: 10.1007/s00395-023-00984-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca2+-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca2+ channels critical for EC coupling in close proximity, the L-type Ca2+ channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca2+-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca2+ transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.
Collapse
Affiliation(s)
- Fatemeh Kermani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Matias Mosqueira
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Kyra Peters
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Enrico D Lemma
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kleopatra Rapti
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Biological information processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Research Bridge (Synthetic Biology), Heidelberg-Karlsruhe Research Partnership (HEiKA), Heidelberg University and Karlsruhe Institute of Technology, Heidelberg, Germany
| | - Magdalena Laugsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Nina D Ullrich
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
- Research Bridge (Synthetic Biology), Heidelberg-Karlsruhe Research Partnership (HEiKA), Heidelberg University and Karlsruhe Institute of Technology, Heidelberg, Germany.
| |
Collapse
|
8
|
Xu X, Elkenani M, Tan X, Hain JK, Cui B, Schnelle M, Hasenfuss G, Toischer K, Mohamed BA. DNA Methylation Analysis Identifies Novel Epigenetic Loci in Dilated Murine Heart upon Exposure to Volume Overload. Int J Mol Sci 2023; 24:ijms24065885. [PMID: 36982963 PMCID: PMC10059258 DOI: 10.3390/ijms24065885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Left ventricular (LV) dilatation, a prominent risk factor for heart failure (HF), precedes functional deterioration and is used to stratify patients at risk for arrhythmias and cardiac mortality. Aberrant DNA methylation contributes to maladaptive cardiac remodeling and HF progression following pressure overload and ischemic cardiac insults. However, no study has examined cardiac DNA methylation upon exposure to volume overload (VO) despite being relatively common among HF patients. We carried out global methylome analysis of LV harvested at a decompensated HF stage following exposure to VO induced by aortocaval shunt. VO resulted in pathological cardiac remodeling, characterized by massive LV dilatation and contractile dysfunction at 16 weeks after shunt. Although methylated DNA was not markedly altered globally, 25 differentially methylated promoter regions (DMRs) were identified in shunt vs. sham hearts (20 hypermethylated and 5 hypomethylated regions). The validated hypermethylated loci in Junctophilin-2 (Jph2), Signal peptidase complex subunit 3 (Spcs3), Vesicle-associated membrane protein-associated protein B (Vapb), and Inositol polyphosphate multikinase (Ipmk) were associated with the respective downregulated expression and were consistently observed in dilated LV early after shunt at 1 week after shunt, before functional deterioration starts to manifest. These hypermethylated loci were also detected peripherally in the blood of the shunt mice. Altogether, we have identified conserved DMRs that could be novel epigenetic biomarkers in dilated LV upon VO exposure.
Collapse
Affiliation(s)
- Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Manar Elkenani
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xiaoying Tan
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, 37075 Göttingen, Germany
| | - Jara Katharina Hain
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Baolong Cui
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Moritz Schnelle
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| |
Collapse
|
9
|
Dixon RE, Trimmer JS. Endoplasmic Reticulum-Plasma Membrane Junctions as Sites of Depolarization-Induced Ca 2+ Signaling in Excitable Cells. Annu Rev Physiol 2023; 85:217-243. [PMID: 36202100 PMCID: PMC9918718 DOI: 10.1146/annurev-physiol-032122-104610] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane contact sites between endoplasmic reticulum (ER) and plasma membrane (PM), or ER-PM junctions, are found in all eukaryotic cells. In excitable cells they play unique roles in organizing diverse forms of Ca2+ signaling as triggered by membrane depolarization. ER-PM junctions underlie crucial physiological processes such as excitation-contraction coupling, smooth muscle contraction and relaxation, and various forms of activity-dependent signaling and plasticity in neurons. In many cases the structure and molecular composition of ER-PM junctions in excitable cells comprise important regulatory feedback loops linking depolarization-induced Ca2+ signaling at these sites to the regulation of membrane potential. Here, we describe recent findings on physiological roles and molecular composition of native ER-PM junctions in excitable cells. We focus on recent studies that provide new insights into canonical forms of depolarization-induced Ca2+ signaling occurring at junctional triads and dyads of striated muscle, as well as the diversity of ER-PM junctions in these cells and in smooth muscle and neurons.
Collapse
Affiliation(s)
- Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California, USA;
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California, USA;
| |
Collapse
|
10
|
Ahmed RE, Tokuyama T, Anzai T, Chanthra N, Uosaki H. Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210325. [PMID: 36189811 PMCID: PMC9527934 DOI: 10.1098/rstb.2021.0325] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Razan E. Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
11
|
Dong T, Zhao Y, Jin HF, Shen L, Lin Y, Si LL, Chen L, Liu JC. SNTA1-deficient human cardiomyocytes demonstrate hypertrophic phenotype and calcium handling disorder. Stem Cell Res Ther 2022; 13:288. [PMID: 35773684 PMCID: PMC9248201 DOI: 10.1186/s13287-022-02955-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background α-1-syntrophin (SNTA1), a protein encoded by SNTA1, is highly expressed in human cardiomyocytes. Mutations in SNTA1 are associated with arrhythmia and cardiomyopathy. Previous research on SNTA1 has been based on non-human cardiomyocytes. This study was designed to identify the phenotype of SNTA1-deficiency using human cardiomyocytes. Methods SNTA1 was knocked out in the H9 embryonic stem cell line using the CRISPR-Cas9 system. H9SNTA1KO cells were then induced to differentiate into cardiomyocytes using small molecule inhibitors. The phenotypic discrepancies associated with SNTA1-deficient cardiomyocytes were investigated. Results SNTA1 was truncated at the 149th amino acid position of PH1 domain by a stop codon (TGA) using the CRISPR-Cas9 system. SNTA1-deficiency did not affect the pluripotency of H9SNTA1KO, and they retain their in vitro ability to differentiate into cardiomyocytes. However, H9SNTA1KO derived cardiomyocytes exhibited hypertrophic phenotype, lower cardiac contractility, weak calcium transient intensity, and lower level of calcium in the sarcoplasmic reticulum. Early treatment of SNTA1-deficient cardiomyocytes with ranolazine improved the calcium transient intensity and cardiac contractility. Conclusion SNTA1-deficient cardiomyocytes can be used to research the etiology, pathogenesis, and potential therapies for myocardial diseases. The SNTA1-deficient cardiomyocyte model suggests that the maintenance of cardiac calcium homeostasis is a key target in the treatment of myocardial-related diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02955-4.
Collapse
Affiliation(s)
- Tao Dong
- Basic Medicine School, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China.
| | - Yan Zhao
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
| | - Hai-Feng Jin
- Basic Medicine School, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China
| | - Lei Shen
- Basic Medicine School, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China
| | - Yan Lin
- Basic Medicine School, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China
| | - Long-Long Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Li Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ji-Cheng Liu
- Qiqihar Institute of Medical and Pharmaceutical Sciences, Qiqihar Medical University, 333 Bukui Street, Qiqihar, 161006, Heilongjiang, China.
| |
Collapse
|
12
|
Arina P, Sorge M, Gallo A, Di Mauro V, Vitale N, Cappello P, Brazzi L, Barandalla-Sobrados M, Cimino J, Ranieri VM, Altruda F, Singer M, Catalucci D, Brancaccio M, Fanelli V. Modulation of LTCC Pathways by a Melusin Mimetic Increases Ventricular Contractility During LPS-Induced Cardiomyopathy. Shock 2022; 57:318-325. [PMID: 35271535 DOI: 10.1097/shk.0000000000001926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM Sepsis-induced cardiomyopathy is commonplace and carries an increased risk of death. Melusin, a cardiac muscle-specific chaperone, exerts cardioprotective function under varied stressful conditions through activation of the AKT pathway. The objective of this study was to determine the role of melusin in the pathogenesis of lipopolysaccharide (LPS)-induced cardiac dysfunction and to explore its signaling pathway for the identification of putative therapeutic targets. METHODS AND RESULTS Prospective, randomized, controlled experimental study in a research laboratory. Melusin overexpressing (MelOV) and wild-type (MelWT) mice were used. MelOV and MelWT mice were injected intraperitoneally with LPS. Cardiac function was assessed using trans-thoracic echocardiography. Myocardial expression of L-type calcium channel (LTCC), phospho-Akt and phospho-Gsk3-b were also measured. In separate experiments, wild-type mice were treated post-LPS challenge with the allosteric Akt inhibitor Arq092 and a mimetic peptide (R7W-MP) targeting the LTCC. The impact of these therapies on protein-protein interactions, cardiac function, and survival was assessed. MelOV mice had limited derangement in cardiac function after LPS challenge. Protection was associated with higher Akt and Gsk3-b phosphorylation and restored LTCC density. Pharmacological inhibition of Akt activity reversed melusin-dependent cardiac protection. Treatment with R7W-MP preserved cardiac function in wild-type mice after LPS challenge and significantly improved survival. CONCLUSIONS This study identifies AKT / Melusin as a key pathway for preserving cardiac function following LPS challenge. The cell-permeable mimetic peptide (R7W-MP) represents a putative therapeutic for sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Pietro Arina
- Department of Anesthesia and Critical Care, AOU Città Della Salute e della Scienza di Torino, University of Turin, Turin, Italy
- UCL, Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Andrea Gallo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Vittoria Di Mauro
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- National Research Council (CNR), Institute of Genetic and Biomedical Research (IRGB), UOS Milan, Milan, Italy
| | - Nicoletta Vitale
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- CeRMS-Lab di Immunologia dei Tumori, University of Turin, Turin, Italy
| | - Luca Brazzi
- Department of Anesthesia and Critical Care, AOU Città Della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Maria Barandalla-Sobrados
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- National Research Council (CNR), Institute of Genetic and Biomedical Research (IRGB), UOS Milan, Milan, Italy
| | - James Cimino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - V Marco Ranieri
- Department of Medical Sciences and Surgery, University of Bologna, Bologna, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Mervyn Singer
- UCL, Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Daniele Catalucci
- IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- National Research Council (CNR), Institute of Genetic and Biomedical Research (IRGB), UOS Milan, Milan, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Vito Fanelli
- Department of Anesthesia and Critical Care, AOU Città Della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Wright P, Gorelik J. Junctophillin-2: Coupling Hopes for Cardiac Gene Therapy to Gene Transcription. Circ Res 2022; 130:1318-1320. [PMID: 35482830 DOI: 10.1161/circresaha.122.321066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Peter Wright
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom (P.W.)
- National Heart, and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, United Kingdom (P.W., J.G.)
| | - Julia Gorelik
- National Heart, and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, United Kingdom (P.W., J.G.)
| |
Collapse
|
14
|
Wang J, Shi Q, Wang Y, Dawson LW, Ciampa G, Zhao W, Zhang G, Chen B, Weiss RM, Grueter CE, Hall DD, Song LS. Gene Therapy With the N-Terminus of Junctophilin-2 Improves Heart Failure in Mice. Circ Res 2022; 130:1306-1317. [PMID: 35317607 PMCID: PMC9050933 DOI: 10.1161/circresaha.121.320680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transcriptional remodeling is known to contribute to heart failure (HF). Targeting stress-dependent gene expression mechanisms may represent a clinically relevant gene therapy option. We recently uncovered a salutary mechanism in the heart whereby JP2 (junctophilin-2), an essential component of the excitation-contraction coupling apparatus, is site-specifically cleaved and releases an N-terminal fragment (JP2NT [N-terminal fragment of JP2]) that translocates into the nucleus and functions as a transcriptional repressor of HF-related genes. This study aims to determine whether JP2NT can be leveraged by gene therapy techniques for attenuating HF progression in a preclinical pressure overload model. METHODS We intraventricularly injected adeno-associated virus (AAV) (2/9) vectors expressing eGFP (enhanced green fluorescent protein), JP2NT, or DNA-binding deficient JP2NT (JP2NTΔbNLS/ARR) into neonatal mice and induced cardiac stress by transaortic constriction (TAC) 9 weeks later. We also treated mice with established moderate HF from TAC stress with either AAV-JP2NT or AAV-eGFP. RNA-sequencing analysis was used to reveal changes in hypertrophic and HF-related gene transcription by JP2NT gene therapy after TAC. Echocardiography, confocal imaging, and histology were performed to evaluate heart function and pathological myocardial remodeling following stress. RESULTS Mice preinjected with AAV-JP2NT exhibited ameliorated cardiac remodeling following TAC. The JP2NT DNA-binding domain is required for cardioprotection as its deletion within the AAV-JP2NT vector prevented improvement in TAC-induced cardiac dysfunction. Functional and histological data suggest that JP2NT gene therapy after the onset of cardiac dysfunction is effective at slowing the progression of HF. RNA-sequencing analysis further revealed a broad reversal of hypertrophic and HF-related gene transcription by JP2NT overexpression after TAC. CONCLUSIONS Our prevention- and intervention-based approaches here demonstrated that AAV-mediated delivery of JP2NT into the myocardium can attenuate stress-induced transcriptional remodeling and the development of HF when administered either before or after cardiac stress initiation. Our data indicate that JP2NT gene therapy holds great potential as a novel therapeutic for treating hypertrophy and HF.
Collapse
Affiliation(s)
- Jinxi Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Qian Shi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Yihui Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Logan W. Dawson
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
| | - Grace Ciampa
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
| | - Weiyang Zhao
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Guangqin Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Robert M. Weiss
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Chad E. Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Duane D. Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Veterans Affairs, Iowa City Medical Center, IA 52242
| |
Collapse
|
15
|
A bridge from the endoplasmic reticulum to the plasma membrane comes into view. Proc Natl Acad Sci U S A 2022; 119:e2202254119. [PMID: 35353604 PMCID: PMC9169776 DOI: 10.1073/pnas.2202254119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Rossi D, Pierantozzi E, Amadsun DO, Buonocore S, Rubino EM, Sorrentino V. The Sarcoplasmic Reticulum of Skeletal Muscle Cells: A Labyrinth of Membrane Contact Sites. Biomolecules 2022; 12:488. [PMID: 35454077 PMCID: PMC9026860 DOI: 10.3390/biom12040488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
The sarcoplasmic reticulum of skeletal muscle cells is a highly ordered structure consisting of an intricate network of tubules and cisternae specialized for regulating Ca2+ homeostasis in the context of muscle contraction. The sarcoplasmic reticulum contains several proteins, some of which support Ca2+ storage and release, while others regulate the formation and maintenance of this highly convoluted organelle and mediate the interaction with other components of the muscle fiber. In this review, some of the main issues concerning the biology of the sarcoplasmic reticulum will be described and discussed; particular attention will be addressed to the structure and function of the two domains of the sarcoplasmic reticulum supporting the excitation-contraction coupling and Ca2+-uptake mechanisms.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.P.); (D.O.A.); (S.B.); (E.M.R.); (V.S.)
| | | | | | | | | | | |
Collapse
|
17
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
18
|
Nusier M, Shah AK, Dhalla NS. Structure-Function Relationships and Modifications of Cardiac Sarcoplasmic Reticulum Ca2+-Transport. Physiol Res 2022; 70:S443-S470. [DOI: 10.33549/physiolres.934805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sarcoplasmic reticulum (SR) is a specialized tubular network, which not only maintains the intracellular concentration of Ca2+ at a low level but is also known to release and accumulate Ca2+ for the occurrence of cardiac contraction and relaxation, respectively. This subcellular organelle is composed of several phospholipids and different Ca2+-cycling, Ca2+-binding and regulatory proteins, which work in a coordinated manner to determine its function in cardiomyocytes. Some of the major proteins in the cardiac SR membrane include Ca2+-pump ATPase (SERCA2), Ca2+-release protein (ryanodine receptor), calsequestrin (Ca2+-binding protein) and phospholamban (regulatory protein). The phosphorylation of SR Ca2+-cycling proteins by protein kinase A or Ca2+-calmodulin kinase (directly or indirectly) has been demonstrated to augment SR Ca2+-release and Ca2+-uptake activities and promote cardiac contraction and relaxation functions. The activation of phospholipases and proteases as well as changes in different gene expressions under different pathological conditions have been shown to alter the SR composition and produce Ca2+-handling abnormalities in cardiomyocytes for the development of cardiac dysfunction. The post-translational modifications of SR Ca2+ cycling proteins by processes such as oxidation, nitrosylation, glycosylation, lipidation, acetylation, sumoylation, and O GlcNacylation have also been reported to affect the SR Ca2+ release and uptake activities as well as cardiac contractile activity. The SR function in the heart is also influenced in association with changes in cardiac performance by several hormones including thyroid hormones and adiponectin as well as by exercise-training. On the basis of such observations, it is suggested that both Ca2+-cycling and regulatory proteins in the SR membranes are intimately involved in determining the status of cardiac function and are thus excellent targets for drug development for the treatment of heart disease.
Collapse
Affiliation(s)
| | | | - NS Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen, Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6 Canada.
| |
Collapse
|
19
|
van Wijk SW, Su W, Wijdeveld LFJM, Ramos KS, Brundel BJJM. Cytoskeletal Protein Variants Driving Atrial Fibrillation: Potential Mechanisms of Action. Cells 2022; 11:416. [PMID: 35159226 PMCID: PMC8834312 DOI: 10.3390/cells11030416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
The most common clinical tachyarrhythmia, atrial fibrillation (AF), is present in 1-2% of the population. Although common risk factors, including hypertension, diabetes, and obesity, frequently underlie AF onset, it has been recognized that in 15% of the AF population, AF is familial. In these families, genome and exome sequencing techniques identified variants in the non-coding genome (i.e., variant regulatory elements), genes encoding ion channels, as well as genes encoding cytoskeletal (-associated) proteins. Cytoskeletal protein variants include variants in desmin, lamin A/C, titin, myosin heavy and light chain, junctophilin, nucleoporin, nesprin, and filamin C. These cytoskeletal protein variants have a strong association with the development of cardiomyopathy. Interestingly, AF onset is often represented as the initial manifestation of cardiac disease, sometimes even preceding cardiomyopathy by several years. Although emerging research findings reveal cytoskeletal protein variants to disrupt the cardiomyocyte structure and trigger DNA damage, exploration of the pathophysiological mechanisms of genetic AF is still in its infancy. In this review, we provide an overview of cytoskeletal (-associated) gene variants that relate to genetic AF and highlight potential pathophysiological pathways that drive this arrhythmia.
Collapse
Affiliation(s)
| | | | | | | | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (S.W.v.W.); (W.S.); (L.F.J.M.W.); (K.S.R.)
| |
Collapse
|
20
|
Dixon RE. Nanoscale Organization, Regulation, and Dynamic Reorganization of Cardiac Calcium Channels. Front Physiol 2022; 12:810408. [PMID: 35069264 PMCID: PMC8769284 DOI: 10.3389/fphys.2021.810408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
The architectural specializations and targeted delivery pathways of cardiomyocytes ensure that L-type Ca2+ channels (CaV1.2) are concentrated on the t-tubule sarcolemma within nanometers of their intracellular partners the type 2 ryanodine receptors (RyR2) which cluster on the junctional sarcoplasmic reticulum (jSR). The organization and distribution of these two groups of cardiac calcium channel clusters critically underlies the uniform contraction of the myocardium. Ca2+ signaling between these two sets of adjacent clusters produces Ca2+ sparks that in health, cannot escalate into Ca2+ waves because there is sufficient separation of adjacent clusters so that the release of Ca2+ from one RyR2 cluster or supercluster, cannot activate and sustain the release of Ca2+ from neighboring clusters. Instead, thousands of these Ca2+ release units (CRUs) generate near simultaneous Ca2+ sparks across every cardiomyocyte during the action potential when calcium induced calcium release from RyR2 is stimulated by depolarization induced Ca2+ influx through voltage dependent CaV1.2 channel clusters. These sparks summate to generate a global Ca2+ transient that activates the myofilaments and thus the electrical signal of the action potential is transduced into a functional output, myocardial contraction. To generate more, or less contractile force to match the hemodynamic and metabolic demands of the body, the heart responds to β-adrenergic signaling by altering activity of calcium channels to tune excitation-contraction coupling accordingly. Recent accumulating evidence suggests that this tuning process also involves altered expression, and dynamic reorganization of CaV1.2 and RyR2 channels on their respective membranes to control the amplitude of Ca2+ entry, SR Ca2+ release and myocardial function. In heart failure and aging, altered distribution and reorganization of these key Ca2+ signaling proteins occurs alongside architectural remodeling and is thought to contribute to impaired contractile function. In the present review we discuss these latest developments, their implications, and future questions to be addressed.
Collapse
Affiliation(s)
- Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
21
|
Abstract
Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States; Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
22
|
Calpain-2 specifically cleaves Junctophilin-2 at the same site as Calpain-1 but with less efficacy. Biochem J 2021; 478:3539-3553. [PMID: 34524407 PMCID: PMC8589432 DOI: 10.1042/bcj20210629] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
Calpain proteolysis contributes to the pathogenesis of heart failure but the calpain isoforms responsible and their substrate specificities have not been rigorously defined. One substrate, Junctophilin-2 (JP2), is essential for maintaining junctional cardiac dyads and excitation-contraction coupling. We previously demonstrated that mouse JP2 is cleaved by calpain-1 (CAPN1) between Arginine 565 (R565) and Threonine 566 (T566). Recently, calpain-2 (CAPN2) was reported to cleave JP2 at a novel site between Glycine 482 (G482) and Threonine 483 (T483). We aimed to directly compare the contributions of each calpain isoform, their Ca2+ sensitivity, and their cleavage site selection for JP2. We find CAPN1, CAPN2 and their requisite CAPNS1 regulatory subunit are induced by pressure overload stress that is concurrent with JP2 cleavage. Using in vitro calpain cleavage assays, we demonstrate that CAPN1 and CAPN2 cleave JP2 into similar 75 kD N-terminal (JP2NT) and 25 kD C-terminal fragments (JP2CT) with CAPNS1 co-expression enhancing proteolysis. Deletion mutagenesis shows both CAPN1 and CAPN2 require R565/T566 but not G482/T483. When heterologously expressed, the JP2CT peptide corresponding to R565/T566 cleavage approximates the 25 kD species found during cardiac stress while the C-terminal peptide from potential cleavage at G482/T483 produces a 35 kD product. Similar results were obtained for human JP2. Finally, we show that CAPN1 has higher Ca2+ sensitivity and cleavage efficacy than CAPN2 on JP2 and other cardiac substrates including cTnT, cTnI and β2-spectrin. We conclude that CAPN2 cleaves JP2 at the same functionally conserved R565/T566 site as CAPN1 but with less efficacy and suggest heart failure may be targeted through specific inhibition of CAPN1.
Collapse
|
23
|
Wright PT, Gorelik J, Harding SE. Electrophysiological Remodeling: Cardiac T-Tubules and ß-Adrenoceptors. Cells 2021; 10:cells10092456. [PMID: 34572106 PMCID: PMC8468945 DOI: 10.3390/cells10092456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/09/2023] Open
Abstract
Beta-adrenoceptors (βAR) are often viewed as archetypal G-protein coupled receptors. Over the past fifteen years, investigations in cardiovascular biology have provided remarkable insights into this receptor family. These studies have shifted pharmacological dogma, from one which centralized the receptor to a new focus on structural micro-domains such as caveolae and t-tubules. Important studies have examined, separately, the structural compartmentation of ion channels and βAR. Despite links being assumed, relatively few studies have specifically examined the direct link between structural remodeling and electrical remodeling with a focus on βAR. In this review, we will examine the nature of receptor and ion channel dysfunction on a substrate of cardiomyocyte microdomain remodeling, as well as the likely ramifications for cardiac electrophysiology. We will then discuss the advances in methodologies in this area with a specific focus on super-resolution microscopy, fluorescent imaging, and new approaches involving microdomain specific, polymer-based agonists. The advent of powerful computational modelling approaches has allowed the science to shift from purely empirical work, and may allow future investigations based on prediction. Issues such as the cross-reactivity of receptors and cellular heterogeneity will also be discussed. Finally, we will speculate as to the potential developments within this field over the next ten years.
Collapse
Affiliation(s)
- Peter T. Wright
- School of Life & Health Sciences, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK;
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Sian E. Harding
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
- Correspondence:
| |
Collapse
|
24
|
Di Fonso A, Pietrangelo L, D’Onofrio L, Michelucci A, Boncompagni S, Protasi F. Ageing Causes Ultrastructural Modification to Calcium Release Units and Mitochondria in Cardiomyocytes. Int J Mol Sci 2021; 22:8364. [PMID: 34445071 PMCID: PMC8395047 DOI: 10.3390/ijms22168364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ageing is associated with an increase in the incidence of heart failure, even if the existence of a real age-related cardiomyopathy remains controversial. Effective contraction and relaxation of cardiomyocytes depend on efficient production of ATP (handled by mitochondria) and on proper Ca2+ supply to myofibrils during excitation-contraction (EC) coupling (handled by Ca2+ release units, CRUs). Here, we analyzed mitochondria and CRUs in hearts of adult (4 months old) and aged (≥24 months old) mice. Analysis by confocal and electron microscopy (CM and EM, respectively) revealed an age-related loss of proper organization and disposition of both mitochondria and EC coupling units: (a) mitochondria are improperly disposed and often damaged (percentage of severely damaged mitochondria: adults 3.5 ± 1.1%; aged 16.5 ± 3.5%); (b) CRUs that are often misoriented (longitudinal) and/or misplaced from the correct position at the Z line. Immunolabeling with antibodies that mark either the SR or T-tubules indicates that in aged cardiomyocytes the sarcotubular system displays an extensive disarray. This disarray could be in part caused by the decreased expression of Cav-3 and JP-2 detected by western blot (WB), two proteins involved in formation of T-tubules and in docking SR to T-tubules in dyads. By WB analysis, we also detected increased levels of 3-NT in whole hearts homogenates of aged mice, a product of nitration of protein tyrosine residues, recognized as marker of oxidative stress. Finally, a detailed EM analysis of CRUs (formed by association of SR with T-tubules) points to ultrastructural modifications, i.e., a decrease in their frequency (adult: 5.1 ± 0.5; aged: 3.9 ± 0.4 n./50 μm2) and size (adult: 362 ± 40 nm; aged: 254 ± 60 nm). The changes in morphology and disposition of mitochondria and CRUs highlighted by our results may underlie an inefficient supply of Ca2+ ions and ATP to the contractile elements, and possibly contribute to cardiac dysfunction in ageing.
Collapse
Affiliation(s)
- Alessia Di Fonso
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (A.M.); (S.B.); (F.P.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (A.M.); (S.B.); (F.P.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura D’Onofrio
- IZSAM, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale of Teramo, 64100 Teramo, Italy;
| | - Antonio Michelucci
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (A.M.); (S.B.); (F.P.)
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (A.M.); (S.B.); (F.P.)
- DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (A.M.); (S.B.); (F.P.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
25
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Val‐Blasco A, Gil‐Fernández M, Rueda A, Pereira L, Delgado C, Smani T, Ruiz Hurtado G, Fernández‐Velasco M. Ca 2+ mishandling in heart failure: Potential targets. Acta Physiol (Oxf) 2021; 232:e13691. [PMID: 34022101 DOI: 10.1111/apha.13691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Ca2+ mishandling is a common feature in several cardiovascular diseases such as heart failure (HF). In many cases, impairment of key players in intracellular Ca2+ homeostasis has been identified as the underlying mechanism of cardiac dysfunction and cardiac arrhythmias associated with HF. In this review, we summarize primary novel findings related to Ca2+ mishandling in HF progression. HF research has increasingly focused on the identification of new targets and the contribution of their role in Ca2+ handling to the progression of the disease. Recent research studies have identified potential targets in three major emerging areas implicated in regulation of Ca2+ handling: the innate immune system, bone metabolism factors and post-translational modification of key proteins involved in regulation of Ca2+ handling. Here, we describe their possible contributions to the progression of HF.
Collapse
Affiliation(s)
| | | | - Angélica Rueda
- Department of Biochemistry Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV‐IPN) México City Mexico
| | - Laetitia Pereira
- INSERM UMR‐S 1180 Laboratory of Ca Signaling and Cardiovascular Physiopathology University Paris‐Saclay Châtenay‐Malabry France
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols Madrid Spain
- Department of Metabolism and Cell Signalling Biomedical Research Institute "Alberto Sols" CSIC‐UAM Madrid Spain
| | - Tarik Smani
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
- Department of Medical Physiology and Biophysics University of Seville Seville Spain
- Group of Cardiovascular Pathophysiology Institute of Biomedicine of Seville University Hospital of Virgen del Rocío, University of Seville, CSIC Seville Spain
| | - Gema Ruiz Hurtado
- Cardiorenal Translational Laboratory Institute of Research i+12 University Hospital 12 de Octubre Madrid Spain
- CIBER‐CV University Hospita1 12 de Octubre Madrid Spain
| | - Maria Fernández‐Velasco
- La Paz University Hospital Health Research Institute IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
| |
Collapse
|
27
|
Douard M, Brette F. Transverse tubules strike back: may the junctophilin-2 be with you. Cardiovasc Res 2021; 117:7-8. [PMID: 32346727 DOI: 10.1093/cvr/cvaa115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Matthieu Douard
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université de Bordeaux, Centre de Recherche Cardio-Thoracique, U1045, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Fabien Brette
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université de Bordeaux, Centre de Recherche Cardio-Thoracique, U1045, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| |
Collapse
|
28
|
Mechanisms and Regulation of Cardiac Ca V1.2 Trafficking. Int J Mol Sci 2021; 22:ijms22115927. [PMID: 34072954 PMCID: PMC8197997 DOI: 10.3390/ijms22115927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/05/2023] Open
Abstract
During cardiac excitation contraction coupling, the arrival of an action potential at the ventricular myocardium triggers voltage-dependent L-type Ca2+ (CaV1.2) channels in individual myocytes to open briefly. The level of this Ca2+ influx tunes the amplitude of Ca2+-induced Ca2+ release from ryanodine receptors (RyR2) on the junctional sarcoplasmic reticulum and thus the magnitude of the elevation in intracellular Ca2+ concentration and ultimately the downstream contraction. The number and activity of functional CaV1.2 channels at the t-tubule dyads dictates the amplitude of the Ca2+ influx. Trafficking of these channels and their auxiliary subunits to the cell surface is thus tightly controlled and regulated to ensure adequate sarcolemmal expression to sustain this critical process. To that end, recent discoveries have revealed the existence of internal reservoirs of preformed CaV1.2 channels that can be rapidly mobilized to enhance sarcolemmal expression in times of acute stress when hemodynamic and metabolic demand increases. In this review, we provide an overview of the current thinking on CaV1.2 channel trafficking dynamics in the heart. We highlight the numerous points of control including the biosynthetic pathway, the endosomal recycling pathway, ubiquitination, and lysosomal and proteasomal degradation pathways, and discuss the effects of β-adrenergic and angiotensin receptor signaling cascades on this process.
Collapse
|
29
|
Remodeling of t-system and proteins underlying excitation-contraction coupling in aging versus failing human heart. NPJ Aging Mech Dis 2021; 7:16. [PMID: 34050186 PMCID: PMC8163749 DOI: 10.1038/s41514-021-00066-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/26/2021] [Indexed: 11/14/2022] Open
Abstract
It is well established that the aging heart progressively remodels towards a senescent phenotype, but alterations of cellular microstructure and their differences to chronic heart failure (HF) associated remodeling remain ill-defined. Here, we show that the transverse tubular system (t-system) and proteins underlying excitation-contraction coupling in cardiomyocytes are characteristically remodeled with age. We shed light on mechanisms of this remodeling and identified similarities and differences to chronic HF. Using left ventricular myocardium from donors and HF patients with ages between 19 and 75 years, we established a library of 3D reconstructions of the t-system as well as ryanodine receptor (RyR) and junctophilin 2 (JPH2) clusters. Aging was characterized by t-system alterations and sarcolemmal dissociation of RyR clusters. This remodeling was less pronounced than in HF and accompanied by major alterations of JPH2 arrangement. Our study indicates that targeting sarcolemmal association of JPH2 might ameliorate age-associated deficiencies of heart function.
Collapse
|
30
|
Affiliation(s)
- Jennifer E Van Eyk
- Departments of Cardiology and Pathology, Smidt Heart Institute, Advanced Clinical BioSystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
31
|
Gross P, Johnson J, Romero CM, Eaton DM, Poulet C, Sanchez-Alonso J, Lucarelli C, Ross J, Gibb AA, Garbincius JF, Lambert J, Varol E, Yang Y, Wallner M, Feldsott EA, Kubo H, Berretta RM, Yu D, Rizzo V, Elrod J, Sabri A, Gorelik J, Chen X, Houser SR. Interaction of the Joining Region in Junctophilin-2 With the L-Type Ca 2+ Channel Is Pivotal for Cardiac Dyad Assembly and Intracellular Ca 2+ Dynamics. Circ Res 2021; 128:92-114. [PMID: 33092464 PMCID: PMC7790862 DOI: 10.1161/circresaha.119.315715] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Ca2+-induced Ca2+ release (CICR) in normal hearts requires close approximation of L-type calcium channels (LTCCs) within the transverse tubules (T-tubules) and RyR (ryanodine receptors) within the junctional sarcoplasmic reticulum. CICR is disrupted in cardiac hypertrophy and heart failure, which is associated with loss of T-tubules and disruption of cardiac dyads. In these conditions, LTCCs are redistributed from the T-tubules to disrupt CICR. The molecular mechanism responsible for LTCCs recruitment to and from the T-tubules is not well known. JPH (junctophilin) 2 enables close association between T-tubules and the junctional sarcoplasmic reticulum to ensure efficient CICR. JPH2 has a so-called joining region that is located near domains that interact with T-tubular plasma membrane, where LTCCs are housed. The idea that this joining region directly interacts with LTCCs and contributes to LTCC recruitment to T-tubules is unknown. OBJECTIVE To determine if the joining region in JPH2 recruits LTCCs to T-tubules through direct molecular interaction in cardiomyocytes to enable efficient CICR. METHODS AND RESULTS Modified abundance of JPH2 and redistribution of LTCC were studied in left ventricular hypertrophy in vivo and in cultured adult feline and rat ventricular myocytes. Protein-protein interaction studies showed that the joining region in JPH2 interacts with LTCC-α1C subunit and causes LTCCs distribution to the dyads, where they colocalize with RyRs. A JPH2 with induced mutations in the joining region (mutPG1JPH2) caused T-tubule remodeling and dyad loss, showing that an interaction between LTCC and JPH2 is crucial for T-tubule stabilization. mutPG1JPH2 caused asynchronous Ca2+-release with impaired excitation-contraction coupling after β-adrenergic stimulation. The disturbed Ca2+ regulation in mutPG1JPH2 overexpressing myocytes caused calcium/calmodulin-dependent kinase II activation and altered myocyte bioenergetics. CONCLUSIONS The interaction between LTCC and the joining region in JPH2 facilitates dyad assembly and maintains normal CICR in cardiomyocytes.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cats
- Cells, Cultured
- Disease Models, Animal
- Excitation Contraction Coupling
- Humans
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Kinetics
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Mutation
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Organelle Biogenesis
- Protein Binding
- Protein Interaction Domains and Motifs
- Rats, Sprague-Dawley
- Ryanodine Receptor Calcium Release Channel
- Rats
Collapse
Affiliation(s)
- Polina Gross
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Jaslyn Johnson
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Carlos M. Romero
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Deborah M. Eaton
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Claire Poulet
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Jose Sanchez-Alonso
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Carla Lucarelli
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Jean Ross
- Bioimaging Center Research, Delaware Biotechnology Institute, Newark
| | - Andrew A. Gibb
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Joanne F. Garbincius
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Jonathan Lambert
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Erdem Varol
- Columbia University, Center for Theoretical Neuroscience, Department of Statistics, New York, NY
| | - Yijun Yang
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Markus Wallner
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
- Medical University of Graz, Division of Cardiology, Graz, Austria
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, Austria
| | - Eric A. Feldsott
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Hajime Kubo
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Remus M. Berretta
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Daohai Yu
- Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia
| | - Victor Rizzo
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - John Elrod
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Abdelkarim Sabri
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Julia Gorelik
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Xiongwen Chen
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Steven R. Houser
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| |
Collapse
|
32
|
Medvedev R, Sanchez-Alonso JL, Alvarez-Laviada A, Rossi S, Dries E, Schorn T, Abdul-Salam VB, Trayanova N, Wojciak-Stothard B, Miragoli M, Faggian G, Gorelik J. Nanoscale Study of Calcium Handling Remodeling in Right Ventricular Cardiomyocytes Following Pulmonary Hypertension. Hypertension 2020; 77:605-616. [PMID: 33356404 DOI: 10.1161/hypertensionaha.120.14858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary hypertension is a complex disorder characterized by pulmonary vascular remodeling and right ventricular hypertrophy, leading to right heart failure. The mechanisms underlying this process are not well understood. We hypothesize that the structural remodeling occurring in the cardiomyocytes of the right ventricle affects the cytosolic Ca2+ handling leading to arrhythmias. After 12 days of monocrotaline-induced pulmonary hypertension in rats, epicardial mapping showed electrical remodeling in both ventricles. In myocytes isolated from the hypertensive rats, a combination of high-speed camera and confocal line-scan documented a prolongation of Ca2+ transients along with a higher local Ca2+-release activity. These Ca2+ transients were less synchronous than in controls, likely due to disorganized transverse-axial tubular system. In fact, following pulmonary hypertension, hypertrophied right ventricular myocytes showed significantly reduced number of transverse tubules and increased number of axial tubules; however, Stimulation Emission Depletion microscopy demonstrated that the colocalization of L-type Ca2+ channels and RyR2 (ryanodine receptor 2) remained unchanged. Finally, Stimulation Emission Depletion microscopy and super-resolution scanning patch-clamp analysis uncovered a decrease in the density of active L-type Ca2+ channels in right ventricular myocytes with an elevated open probability of the T-tubule anchored channels. This may represent a general mechanism of how nanoscale structural changes at the early stage of pulmonary hypertension impact on the development of the end stage failing phenotype in the right ventricle.
Collapse
Affiliation(s)
- Roman Medvedev
- From the Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, Italy (R.M., G.F.).,National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.).,Humanitas Clinical and Research Center, Rozzano, Italy (R.M., T.S., M.M.)
| | - Jose L Sanchez-Alonso
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Anita Alvarez-Laviada
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Stefano Rossi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Italy (S.R., M.M.)
| | - Eef Dries
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.).,Lab of Experimental Cardiology, University of Leuven, Belgium (E.D.)
| | - Tilo Schorn
- Humanitas Clinical and Research Center, Rozzano, Italy (R.M., T.S., M.M.)
| | - Vahitha B Abdul-Salam
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Natalia Trayanova
- Department of Biomedical Engineering and Alliance for Cardiovascular Diagnostic and Treatment Innovation; Johns Hopkins University; Baltimore, MD (N.T.)
| | - Beata Wojciak-Stothard
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| | - Michele Miragoli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Italy (S.R., M.M.)
| | | | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom (R.M., J.L.S.-A., A.A.-L., E.D., V.B.A.S., B.W.-S., J.G.)
| |
Collapse
|
33
|
Sarcoplasmic reticulum calcium mishandling: central tenet in heart failure? Biophys Rev 2020; 12:865-878. [PMID: 32696300 DOI: 10.1007/s12551-020-00736-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Excitation-contraction coupling links excitation of the sarcolemmal surface membrane to mechanical contraction. In the heart this link is established via a Ca2+-induced Ca2+ release process, which, following sarcolemmal depolarisation, prompts Ca2+ release from the sarcoplasmic reticulum (SR) though the ryanodine receptor (RyR2). This substantially raises the cytoplasmic Ca2+ concentration to trigger systole. In diastole, Ca2+ is removed from the cytoplasm, primarily via the sarcoplasmic-endoplasmic reticulum Ca2+-dependent ATPase (SERCA) pump on the SR membrane, returning Ca2+ to the SR store. Ca2+ movement across the SR is thus fundamental to the systole/diastole cycle and plays an essential role in maintaining cardiac contractile function. Altered SR Ca2+ homeostasis (due to disrupted Ca2+ release, storage, and reuptake pathways) is a central tenet of heart failure and contributes to depressed contractility, impaired relaxation, and propensity to arrhythmia. This review will focus on the molecular mechanisms that underlie asynchronous Ca2+ cycling around the SR in the failing heart. Further, this review will illustrate that the combined effects of expression changes and disruptions to RyR2 and SERCA2a regulatory pathways are critical to the pathogenesis of heart failure.
Collapse
|