1
|
Dicenta‐Baunach V, Laspa Z, Schaale D, Sigle M, Bayrak A, Castor T, Pillaiyar T, Laufer S, Gawaz MP, Rohlfing A. ACKR3 agonism induces heterodimerization with chemokine receptor CXCR4 and attenuates platelet function. Eur J Clin Invest 2025; 55:e14327. [PMID: 39373210 PMCID: PMC11628653 DOI: 10.1111/eci.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Platelet receptors ACKR3 and CXCR4 play a crucial role in a variety of cardiovascular diseases. Like most chemokine receptors, CXCR4 is a G protein coupled receptor that induces platelet activation. In contrast, the atypical chemokine receptor 3 (ACKR3) lacks the ability to activate heterotrimeric G proteins and its activation leads to platelet inhibition and attenuates thrombus formation. In nucleated cells, heterodimerization of ACKR3 with CXCR4 regulates CXCL12-dependent signalling. The aim of our study was to investigate the formation of ACKR3/CXCR4 heterodimers in platelets and the subsequent consequences for platelet function. METHODS AND RESULTS Using a proximity ligation assay (PLA, Duolink®) to screen for CXCR4/ACKR3 heterodimerization inducing compounds, we found that ACKR3 agonism but not conventional platelet agonists or endogen ligands lead to heterodimer formation. To further characterize the formation of ACKR3/CXCR4 heterodimers, we studied the CXCL12-dependent platelet activation via CXCR4. Both, CXCL12-dependent platelet aggregation and collagen-dependent ex vivo thrombus formation were significantly downregulated by ACKR3 agonism. Moreover, platelet intracellular calcium and Akt signalling were increased by CXCL12 and again suppressed by ACKR3-specific agonists. Previously, CXCL12 was shown to decrease platelet cAMP levels via CXCR4. Treatment with a specific ACKR3 agonist counteracted this CXCL12/CXCR4-dependent cAMP decrease. CONCLUSION Our results reveal that the formation of platelet ACKR3/CXCR4 heterodimers is dependent on ACKR3 rather than CXCR4. Furthermore, ACKR3 agonism induced heterodimerization is associated with mitigating CXCL12/CXCR4-dependent platelet activation possibly by modulating CXCR4-dependent G protein signalling. Our results indicate possible ACKR3 agonist functions and reinforce the potential therapeutic applications of ACKR3 agonists.
Collapse
Affiliation(s)
- Valerie Dicenta‐Baunach
- Department of Cardiology and AngiologyUniversity Hospital Tübingen, Eberhard Karls University TübingenTübingenGermany
| | - Zoi Laspa
- Department of Cardiology and AngiologyUniversity Hospital Tübingen, Eberhard Karls University TübingenTübingenGermany
| | - David Schaale
- Department of Cardiology and AngiologyUniversity Hospital Tübingen, Eberhard Karls University TübingenTübingenGermany
| | - Manuel Sigle
- Department of Cardiology and AngiologyUniversity Hospital Tübingen, Eberhard Karls University TübingenTübingenGermany
| | - Alp Bayrak
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal ChemistryEberhard Karls University TübingenTübingenGermany
| | - Tatsiana Castor
- Department of Cardiology and AngiologyUniversity Hospital Tübingen, Eberhard Karls University TübingenTübingenGermany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal ChemistryEberhard Karls University TübingenTübingenGermany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2)Eberhard Karls University TübingenTübingenGermany
| | - Stefan Laufer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal ChemistryEberhard Karls University TübingenTübingenGermany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2)Eberhard Karls University TübingenTübingenGermany
- iFIT Cluster of Excellence EXC 2180 ‘Image‐Guided and Functionally Instructed Tumor Therapies’Eberhard Karls University TübingenTübingenGermany
| | - Meinrad Paul Gawaz
- Department of Cardiology and AngiologyUniversity Hospital Tübingen, Eberhard Karls University TübingenTübingenGermany
| | - Anne‐Katrin Rohlfing
- Department of Cardiology and AngiologyUniversity Hospital Tübingen, Eberhard Karls University TübingenTübingenGermany
| |
Collapse
|
2
|
Momi S, Gresele P. The Role of Platelets in Atherosclerosis: A Historical Review. Semin Thromb Hemost 2024. [PMID: 39561814 DOI: 10.1055/s-0044-1795097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Atherosclerosis is a chronic, multifactorial inflammatory disorder of large and medium-size arteries, which is the leading cause of cardiovascular mortality and morbidity worldwide. Although platelets in cardiovascular disease have mainly been studied for their crucial role in the thrombotic event triggered by atherosclerotic plaque rupture, over the last two decades it has become clear that platelets participate also in the development of atherosclerosis, owing to their ability to interact with the damaged arterial wall and with leukocytes. Platelets participate in all phases of atherogenesis, from the initial functional damage to endothelial cells to plaque unstabilization. Platelets deposit at atherosclerosis predilection sites before the appearance of manifest lesions to the endothelium and contribute to induce endothelial dysfunction, thus supporting leukocyte adhesion to the vessel wall. In particular, platelets release matrix metalloproteinases, which interact with protease-activated receptor 1 on endothelial cells triggering adhesion molecule expression. Moreover, P-selectin and glycoprotein Ibα expressed on the surface of vessel wall-adhering platelets bind PSGL-1 and β2 integrins on leukocytes, favoring their arrest and transendothelial migration. Platelet-leukocyte interactions promote the formation of radical oxygen species which are strongly involved in the lipid peroxidation associated with atherosclerosis. Platelets themselves actively migrate through the endothelium toward the plaque core where they release chemokines that modify the microenvironment by modulating the function of other inflammatory cells, such as macrophages. While current antiplatelet agents seem unable to prevent the contribution of platelets to atherogenesis, the inhibition of platelet secretion, of the release of MMPs, and of some specific pathways of platelet adhesion to the vessel wall may represent promising future strategies for the prevention of atheroprogression.
Collapse
Affiliation(s)
- Stefania Momi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paolo Gresele
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Qiu J, Ma J, Dong Z, Ren Q, Shan Q, Liu J, Gao M, Liu G, Zhang S, Qu G, Jiang G, Liu S. Lung megakaryocytes engulf inhaled airborne particles to promote intrapulmonary inflammation and extrapulmonary distribution. Nat Commun 2024; 15:7396. [PMID: 39191805 DOI: 10.1038/s41467-024-51686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Many lung immune cells are known to respond to inhaled particulate matter. However, current known responses cannot explain how particles induce thrombosis in the lung and how they translocate to distant organs. Here, we demonstrate that lung megakaryocytes (MKs) in the alveolar and interstitial regions display location-determined characteristics and act as crucial responders to inhaled particles. They move rapidly to engulf particles and become activated with upregulation in inflammatory responses and thrombopoiesis. Comprehensive in vivo, in vitro and ex vivo results unraveled that MKs were involved in particle-induced lung damages and shed particle-containing platelets into blood circulation. Moreover, MK-derived platelets exhibited faster clotting, stronger adhesion than normal resting platelets, and inherited the engulfed particles from parent MKs to assist in extrapulmonary particle transportation. Our findings collectively highlight that the specific responses of MKs towards inhaled particles and their roles in facilitating the translocation of particles from the lungs to extrapulmonary organs for clearance.
Collapse
Affiliation(s)
- Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, P. R. China
| | - Qing'e Shan
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoliang Liu
- Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
- National Center for Respiratory Medicine, Beijing, 100029, P. R. China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| |
Collapse
|
4
|
Yu G, Corn PG, Mak CSL, Liang X, Zhang M, Troncoso P, Song JH, Lin SC, Song X, Liu J, Zhang J, Logothetis CJ, Melancon MP, Panaretakis T, Wang G, Lin SH. Prostate cancer-induced endothelial-cell-to-osteoblast transition drives immunosuppression in the bone-tumor microenvironment through Wnt pathway-induced M2 macrophage polarization. Proc Natl Acad Sci U S A 2024; 121:e2402903121. [PMID: 39102549 PMCID: PMC11331113 DOI: 10.1073/pnas.2402903121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Immune checkpoint therapy has limited efficacy for patients with bone-metastatic castration-resistant prostate cancer (bmCRPC). To improve immunotherapy for bmCRPC, we aimed to identify the mechanism of bmCRPC-induced changes in the immune microenvironment. Among bmCRPC patients, higher levels of a 32-gene M2-like macrophage signature in bone metastasis samples correlated with shorter overall survival. Immunohistochemistry showed that CD206-positive (CD206+) macrophages were enriched in bmCRPC bone biopsy specimens compared with primary tumors or lymph node metastases. In preclinical osteogenic prostate cancer (Pca) xenograft models, CD206+ macrophages were recruited to areas with tumor-induced bone. RNA sequencing (RNAseq) analysis showed higher expression of an M2-like gene signature, with activated canonical and noncanonical Wnt pathways, in tumor-associated macrophages isolated from osteogenic tumors (bone-TAMs) than in TAMs isolated from nonosteogenic tumors (ctrl-TAMs). Mechanistic studies showed that endothelial cells (ECs) that had undergone EC-to-osteoblast (EC-to-OSB) transition, the precursors of tumor-induced OSBs, produced paracrine factors, including Wnts, CXCL14, and lysyl oxidase, which induced M2 polarization and recruited M2-like TAMs to the bone-tumor microenvironment (bone-TME). Bone-TAMs suppressed CD8+ T cells' proliferation and cytolytic activity, and these effects were partially reversed by treating bone-TAMs with Wnt inhibitors. Genetic or pharmacological inhibition of Pca-induced EC-to-OSB transition reduced the levels of M2-like macrophages in osteogenic tumors. Our study demonstrates that Pca-induced EC-to-OSB transition drives immunosuppression in the bone-TME, suggesting that therapies that reduce Pca-induced bone formation may improve immunotherapeutic outcomes for bmCRPC.
Collapse
Affiliation(s)
- Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Celia Sze Ling Mak
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Xin Liang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Miao Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jingjing Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030
| |
Collapse
|
5
|
Urvasizoglu G, Kilic A, Capik O, Gundogdu M, Karatas OF. CXCL14 and miR-4484 serves as potential salivary biomarkers for early detection of peri-implantitis. Odontology 2024; 112:864-871. [PMID: 38087011 DOI: 10.1007/s10266-023-00876-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/16/2023] [Indexed: 07/25/2024]
Abstract
Peri-implantitis develops in 43.3% of implant patients, which affects tissues around the implant that may ultimately cause implant loss if not treated properly. Due to difficulties in detecting peri-implantitis in its early phases, implant failures are constantly on the rise. Therefore, new specific molecular markers need to be identified to prevent or limit disease progression in peri-implantitis patients. We investigated levels of CXCL9, CXCL12, and CXCL14 in saliva samples of 45 patients with commercially pure grade 4/5 Titanium-Aluminum-Vanadium implants. We analyzed the correlation of the chemokine levels using Pearson's Correlation test and investigated their power to discriminate peri-implantitis vs. non-peri-implantitis patients using receiver operating characteristic analysis. Our in silico investigation revealed CXCL9, CXCL12, and CXCL14 as predicted targets of miR-4484, which has been demonstrated as a powerful biomarker candidate for early detection of peri-implantitis in our previous study. We measured high CXCL9 and low CXCL14 levels in the saliva of peri-implantitis patients. We also reported that the CXCL14 level showed a significant positive correlation with miR-4484. Besides, CXCL14 together with miR-4484 in saliva differentiated peri-implantitis patients from non-peri-implantitis individuals with 100% success. We offer differential expressions of CXCL14 and miR-4484 in the saliva of patients with peri-implantitis as potential salivary biomarkers for early detection of this disease.
Collapse
Affiliation(s)
- Gelengul Urvasizoglu
- Department of Oral and Maxillofacial Surgery, Ataturk University, 25240, Erzurum, Turkey.
| | - Ahsen Kilic
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Mustafa Gundogdu
- Prosthodontics Department, Izmir Democracy University, Izmir, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey.
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
6
|
Bulnes JF, González L, Velásquez L, Orellana MP, Venturelli PM, Martínez G. Role of inflammation and evidence for the use of colchicine in patients with acute coronary syndrome. Front Cardiovasc Med 2024; 11:1356023. [PMID: 38993522 PMCID: PMC11236697 DOI: 10.3389/fcvm.2024.1356023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Acute Coronary Syndrome (ACS) significantly contributes to cardiovascular death worldwide. ACS may arise from the disruption of an atherosclerotic plaque, ultimately leading to acute ischemia and myocardial infarction. In the pathogenesis of atherosclerosis, inflammation assumes a pivotal role, not solely in the initiation and complications of atherosclerotic plaque formation, but also in the myocardial response to ischemic insult. Acute inflammatory processes, coupled with time to reperfusion, orchestrate ischemic and reperfusion injuries, dictating infarct magnitude and acute left ventricular (LV) remodeling. Conversely, chronic inflammation, alongside neurohumoral activation, governs persistent LV remodeling. The interplay between chronic LV remodeling and recurrent ischemic episodes delineates the progression of the disease toward heart failure and cardiovascular death. Colchicine exerts anti-inflammatory properties affecting both the myocardium and atherosclerotic plaque by modulating the activity of monocyte/macrophages, neutrophils, and platelets. This modulation can potentially result in a more favorable LV remodeling and forestalls the recurrence of ACS. This narrative review aims to delineate the role of inflammation across the different phases of ACS pathophysiology and describe the mechanistic underpinnings of colchicine, exploring its purported role in modulating each of these stages.
Collapse
Affiliation(s)
- Juan Francisco Bulnes
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leticia González
- Centro de Imágenes Biomédicas, Departamento de Radiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonardo Velásquez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Paz Orellana
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Muñoz Venturelli
- Centro de Estudios Clínicos, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Gonzalo Martínez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
- Heart Research Institute, Sydney, NSW, Australia
| |
Collapse
|
7
|
Dicenta V, Pelzer A, Laspa Z, Castor T, Gawaz MP, Rohlfing AK. The subtilisin-like protease furin regulates hemin-induced CD63 surface expression on platelets. Biochem Biophys Res Commun 2024; 701:149629. [PMID: 38330730 DOI: 10.1016/j.bbrc.2024.149629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Accumulation of free heme B in the plasma can be the result of severe hemolytic events, when the scavenger system for free hemoglobin and heme B is overwhelmed. Free heme B can be oxidized into toxic hemin, which has been proven to activate platelet degranulation and aggregation and promote thrombosis. In the present study we analyzed the effect of hemin on the activation-mediated lysosomal degranulation and CD63 surface expression on platelets using classic flow cytometry and fluorescence microscopy techniques. Classical platelet activators were used as control to distinguish the novel effects of hemin from known activation pathways. CD63 is a tetraspanin protein, also known as lysosomal-associated membrane protein 3 or LAMP-3. In resting platelets CD63 is located within the membrane of delta granules and lysosomes of platelet, from where it is integrated into the platelet outer membrane upon stimulation. We were able to show that hemin like the endogenous platelet activators ADP, collagen or thrombin does provoke CD63 re-localization. Interestingly, only hemin-induced CD63 externalization is dependent on the subtilisin-like pro-protein convertase furin as shown by inhibitor experiments. Furthermore, we were able to demonstrate that hemin induces lysosome secretion, a source of the hemin-mediated CD63 presentation. Again, only the hemin-induced lysosome degranulation is furin dependent. In summary we have shown that the pro-protein convertase furin plays an important role in hemin-mediated lysosomal degranulation and CD63 externalization.
Collapse
Affiliation(s)
- Valerie Dicenta
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Andreas Pelzer
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Zoi Laspa
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Giacobbi NS, Mullapudi S, Nabors H, Pyeon D. The Chemokine CXCL14 as a Potential Immunotherapeutic Agent for Cancer Therapy. Viruses 2024; 16:302. [PMID: 38400076 PMCID: PMC10892169 DOI: 10.3390/v16020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
There is great enthusiasm toward the development of novel immunotherapies for the treatment of cancer, and given their roles in immune system regulation, chemokines stand out as promising candidates for use in new cancer therapies. Many previous studies have shown how chemokine signaling pathways could be targeted to halt cancer progression. We and others have revealed that the chemokine CXCL14 promotes antitumor immune responses, suggesting that CXCL14 may be effective for cancer immunotherapy. However, it is still unknown what mechanism governs CXCL14-mediated antitumor activity, how to deliver CXCL14, what dose to apply, and what combinations with existing therapy may boost antitumor immune responses in cancer patients. Here, we provide updates on the role of CXCL14 in cancer progression and discuss the potential development and application of CXCL14 as an immunotherapeutic agent.
Collapse
Affiliation(s)
| | | | | | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (N.S.G.); (S.M.); (H.N.)
| |
Collapse
|
9
|
Pan D, Ladds G, Rahman KM, Pitchford SC. Exploring bias in platelet P2Y 1 signalling: Host defence versus haemostasis. Br J Pharmacol 2024; 181:580-592. [PMID: 37442808 PMCID: PMC10952580 DOI: 10.1111/bph.16191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cβ (PLCβ) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Dingxin Pan
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Graham Ladds
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - Khondaker Miraz Rahman
- Chemical Biology Group, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Simon C. Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
10
|
Yu G, Corn PG, Mak CSL, Liang X, Zhang M, Troncoso P, Song JH, Lin SC, Song X, Liu J, Zhang J, Logothetis CJ, Melancon MP, Panaretakis T, Wang G, Lin SH. Prostate cancer-induced endothelial-to-osteoblast transition generates an immunosuppressive bone tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569496. [PMID: 38076845 PMCID: PMC10705502 DOI: 10.1101/2023.11.30.569496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
Abstract
Immune checkpoint therapy has limited efficacy for patients with bone metastatic castrate-resistant prostate cancer (bmCRPC). In this study, we revealed a novel mechanism that may account for the relative resistance of bmCRPC to immune checkpoint therapy. We found that prostate cancer (PCa)-induced bone via endothelial-to-osteoblast (EC-to-OSB) transition causes an ingress of M2-like macrophages, leading to an immunosuppressive bone tumor microenvironment (bone-TME). Analysis of a bmCRPC RNA-seq dataset revealed shorter overall survival in patients with an M2-high versus M2-low signature. Immunohistochemical (IHC) analysis showed CD206 + M2-like macrophages were enriched in bmCRPC specimens compared with primary tumors or lymph node metastasis. In osteogenic PCa xenografts, CD206 + macrophages were enriched adjacent to tumor-induced bone. FACS analysis showed an increase in CD206 + cells in osteogenic tumors compared to non-osteogenic tumors. Genetic or pharmacological inhibition of the EC-to-OSB transition reduced aberrant bone and M2-like macrophages in osteogenic tumors. RNAseq analysis of tumor-associated macrophages from osteogenic (bone-TAMs) versus non-osteogenic (ctrl-TAMs) tumors showed high expression of an M2-like gene signature, canonical and non-canonical Wnt pathways, and a decrease in an M1-like gene signature. Isolated bone-TAMs suppressed T-cell proliferation while ctrl-TAMs did not. Mechanistically, EC-OSB hybrid cells produced paracrine factors, including Wnts, CXCL14 and LOX, which induced M2 polarization and recruited M2-like TAMs to bone-TME. Our study thus links the unique EC-to-OSB transition as an "upstream" event that drives "downstream" immunosuppression in the bone-TME. These studies suggest that therapeutic strategies that inhibit PCa-induced EC-to-OSB transition may reverse immunosuppression to promote immunotherapeutic outcomes in bmCRPC. Significance The insight that prostate cancer-induced bone generates an immunosuppressive bone tumor microenvironment offers a strategy to improve responses to immunotherapy approaches in patients with bone metastatic castrate-resistant prostate cancer.
Collapse
|
11
|
Nording H, Baron L, Sauter M, Lübken A, Rawish E, Szepanowski R, von Esebeck J, Sun Y, Emami H, Meusel M, Saraei R, Schanze N, Gorantla SP, von Bubnoff N, Geisler T, von Hundelshausen P, Stellos K, Marquardt J, Sadik CD, Köhl J, Duerschmied D, Kleinschnitz C, Langer HF. Platelets regulate ischemia-induced revascularization and angiogenesis by secretion of growth factor-modulating factors. Blood Adv 2023; 7:6411-6427. [PMID: 37257194 PMCID: PMC10598500 DOI: 10.1182/bloodadvances.2021006891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/02/2023] Open
Abstract
In ischemic tissue, platelets can modulate angiogenesis. The specific factors influencing this function, however, are poorly understood. Here, we characterized the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) expressed on platelets as a potent regulator of ischemia-driven revascularization. We assessed the relevance of the anaphylatoxin receptor C5aR1 on platelets in patients with coronary artery disease as well as those with peripheral artery disease and used genetic mouse models to characterize its significance for ischemia and growth factor-driven revascularization. The presence of C5aR1-expressing platelets was increased in the hindlimb ischemia model. Ischemia-driven angiogenesis was significantly improved in C5aR1-/- mice but not in C5-/- mice, suggesting a specific role of C5aR1. Experiments using the supernatant of C5a-stimulated platelets suggested a paracrine mechanism of angiogenesis inhibition by platelets by means of antiangiogenic CXC chemokine ligand 4 (CXCL4, PF4). Lineage-specific C5aR1 deletion verified that the secretion of CXCL4 depends on C5aR1 ligation on platelets. Using C5aR1-/-CXCL4-/- mice, we observed no additional effect in the revascularization response, underscoring a strong dependence of CXCL4 secretion on the C5a-C5aR1-axis. We identified a novel mechanism for inhibition of neovascularization via platelet C5aR1, which was mediated by the release of antiangiogenic CXCL4.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Antje Lübken
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Rebecca Szepanowski
- Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Jacob von Esebeck
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Ying Sun
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Hossein Emami
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Moritz Meusel
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Roza Saraei
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Nancy Schanze
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sivahari Prasad Gorantla
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Tobias Geisler
- Department of Cardiovascular Medicine, University Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Konstantinos Stellos
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Marquardt
- First Department of Medicine, University of Schleswig-Holstein, Lübeck, Germany
| | | | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Schleswig-Holstein, Lübeck, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Cardioimmunology Group, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
12
|
Leberzammer J, von Hundelshausen P. Chemokines, molecular drivers of thromboinflammation and immunothrombosis. Front Immunol 2023; 14:1276353. [PMID: 37954596 PMCID: PMC10637585 DOI: 10.3389/fimmu.2023.1276353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Blood clotting is a finely regulated process that is essential for hemostasis. However, when dysregulated or spontaneous, it promotes thrombotic disorders. The fact that these are triggered, accompanied and amplified by inflammation is reflected in the term thromboinflammation that includes chemokines. The role of chemokines in thrombosis is therefore illuminated from a cellular perspective, where endothelial cells, platelets, red blood cells, and leukocytes may be both the source and target of chemokines. Chemokine-dependent prothrombotic processes may thereby occur independently of chemokine receptors or be mediated by chemokine receptors, although the binding and activation of classical G protein-coupled receptors and their signaling pathways differ from those of atypical chemokine receptors, which do not function via cell activation and recruitment. Regardless of binding to their receptors, chemokines can induce thrombosis by forming platelet-activating immune complexes with heparin or other polyanions that are pathognomonic for HIT and VITT. In addition, chemokines can bind to NETs and alter their structure. They also change the electrical charge of the cell surface of platelets and interact with coagulation factors, thereby modulating the balance of fibrinolysis and coagulation. Moreover, CXCL12 activates CXCR4 on platelets independently of classical migratory chemokine activity and causes aggregation and thrombosis via the PI3Kβ and Btk signaling pathways. In contrast, typical chemokine-chemokine receptor interactions are involved in the processes that contribute to the adhesiveness of the endothelium in the initial phase of venous thrombosis, where neutrophils and monocytes subsequently accumulate in massive numbers. Later, the reorganization and resolution of a thrombus require coordinated cell migration and invasion of the thrombus, and, as such, indeed, chemokines recruit leukocytes to existing thrombi. Therefore, chemokines contribute in many independent ways to thrombosis.
Collapse
Affiliation(s)
- Julian Leberzammer
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- Department of Cardiology and Angiology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Philipp von Hundelshausen
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
13
|
Korbecki J, Kupnicka P, Barczak K, Bosiacki M, Ziętek P, Chlubek D, Baranowska-Bosiacka I. The Role of CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 Ligands in Molecular Cancer Processes and Clinical Aspects of Acute Myeloid Leukemia (AML). Cancers (Basel) 2023; 15:4555. [PMID: 37760523 PMCID: PMC10526350 DOI: 10.3390/cancers15184555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Acute myeloid leukemia (AML) is a type of leukemia known for its unfavorable prognoses, prompting research efforts to discover new therapeutic targets. One area of investigation involves examining extracellular factors, particularly CXC chemokines. While CXCL12 (SDF-1) and its receptor CXCR4 have been extensively studied, research on other CXC chemokine axes in AML is less developed. This study aims to bridge that gap by providing an overview of the significance of CXC chemokines other than CXCL12 (CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 ligands and CXCL14 and CXCL17) in AML's oncogenic processes. We explore the roles of all CXC chemokines other than CXCL12, in particular CXCL1 (Gro-α), CXCL8 (IL-8), CXCL10 (IP-10), and CXCL11 (I-TAC) in AML tumor processes, including their impact on AML cell proliferation, bone marrow angiogenesis, interaction with non-leukemic cells like MSCs and osteoblasts, and their clinical relevance. We delve into how they influence prognosis, association with extramedullary AML, induction of chemoresistance, effects on bone marrow microvessel density, and their connection to French-American-British (FAB) classification and FLT3 gene mutations.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Paweł Ziętek
- Department of Orthopaedics, Traumatology and Orthopaedic Oncology, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (P.K.); (M.B.); (D.C.)
| |
Collapse
|
14
|
Gawaz M, Geisler T, Borst O. Current concepts and novel targets for antiplatelet therapy. Nat Rev Cardiol 2023; 20:583-599. [PMID: 37016032 DOI: 10.1038/s41569-023-00854-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
Platelets have a crucial role in haemostasis and atherothrombosis. Pharmacological control of platelet hyper-reactivity has become a cornerstone in the prevention of thrombo-ischaemic complications in atherosclerotic diseases. Current antiplatelet therapies substantially improve clinical outcomes in patients with coronary artery disease, but at the cost of increased risk of bleeding. Beyond their role in thrombosis, platelets are known to regulate inflammatory (thrombo-inflammatory) and microcirculatory pathways. Therefore, controlling platelet hyper-reactivity might have implications for both tissue inflammation (myocardial ischaemia) and vascular inflammation (vulnerable plaque formation) to prevent atherosclerosis. In this Review, we summarize the pathophysiological role of platelets in acute myocardial ischaemia, vascular inflammation and atherosclerotic progression. Furthermore, we highlight current clinical concepts of antiplatelet therapy that have contributed to improving patient care and have facilitated more individualized therapy. Finally, we discuss novel therapeutic targets and compounds for antiplatelet therapy that are currently in preclinical development, some of which have a more favourable safety profile than currently approved drugs with regard to bleeding risk. These novel antiplatelet targets might offer new strategies to treat cardiovascular disease.
Collapse
Affiliation(s)
- Meinrad Gawaz
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Tobias Geisler
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Ding M, Wang HX, Gao SJ, Lai XF, Li AL, Bao JJ, Hosyanto FF, Xu L. Significant elevated CXCL14 and decreased IL-39 levels in patients with tuberculosis. Open Life Sci 2023; 18:20220594. [PMID: 37215496 PMCID: PMC10199325 DOI: 10.1515/biol-2022-0594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 03/12/2023] [Indexed: 05/24/2023] Open
Abstract
To explore the serum levels of IL-39, CXCL14, and IL-19 in patients with tuberculosis (TB) along with their clinical significances and their concentration changes in macrophages after Bacille Calmette-Guérin vaccine (BCG) or Mycobacterium tuberculosis (M. tb) H37Rv stimulation in vitro. The serum levels of IL-39, CXCL14, and IL-19 of 38 TB patients, and 20 healthy staff members were measured by enzyme-linked immunosorbent assay. Moreover, the levels of IL-19, CXCL14, and IL-39 in cultured THP-1 macrophages were detected at 12, 24, and 48 h after stimulation with BCG or M. tb H37Rv strains. It was found the serum level of IL-39 was significantly reduced and CXCL14 was remarkably elevated in TB patients. In vitro, at 48 h after stimulation, IL-39 level of cultured THP-1 macrophages in the H37Rv group was significantly lower than that in the BCG and control groups, and the CXCL14 level of cultured THP-1 macrophages in the H37Rv stimulation group was remarkably higher than that in the control group. Therefore, IL-39 and CXCL14 may be involved the pathogenesis of TB, and serum IL-39 and CXCL14 could potentially serve as a new biomarker of TB.
Collapse
Affiliation(s)
- Min Ding
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Hong-xu Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Si-jia Gao
- Pathogenic Biology Department, School of Basic Medicine, Chongqing Medical University, Chongqing400016, China
| | - Xiao-fei Lai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - An-long Li
- Pathogenic Biology Department, School of Basic Medicine, Chongqing Medical University, Chongqing400016, China
| | - Jia-jia Bao
- Hospital-Acquired Infection Control Department, First People’s Hospital of Jintang County, Chengdu, 610499, China
| | | | - Lei Xu
- Pathogenic Biology Department, School of Basic Medicine, Chongqing Medical University, Chongqing400016, China
| |
Collapse
|
16
|
Schories C, Martus P, Guan T, Henes JK, Witte A, Müller K, Geisler T, Chatterjee M, Gawaz M, Rath D. Platelet versus plasma CXCL14, coronary artery disease, and clinical outcomes. Res Pract Thromb Haemost 2023; 7:100165. [PMID: 37255851 PMCID: PMC10225916 DOI: 10.1016/j.rpth.2023.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023] Open
Abstract
Background Platelets express CXCL14, while platelet-derived CXCL14 induces monocyte chemotaxis and exerts an angiostatic effect on endothelial cells. Objectives This study investigated both platelet surface-associated and circulating levels of CXCL14 in patients with heart disease and associations of this chemokine with myocardial function and outcomes in patients with coronary artery disease (CAD). Methods This prospective study enrolled 450 patients with symptomatic heart disease. Platelet surface-associated and plasma CXCL14 levels were analyzed. All patients were followed up for 360 days for a primary composite outcome consisting of all-cause mortality, myocardial infarction, and/or ischemic stroke. Secondary outcomes consisted of the single events of all-cause mortality or myocardial infarction. Results Baseline platelet-associated but not circulating CXCL14 levels were significantly lower in patients with chronic coronary syndrome (mean fluorescence intensity logarithmized, 1.35 ± 0.35) when compared to those with acute coronary syndrome (1.47 ± 0.38) and without CAD (1.51 ± 0.40). Platelet CXCL14 levels were significantly lower (1.37 ± 0.37 vs 1.48 ± 0.39) and circulating CXCL14 levels were significantly higher (lg, 2.88 ± 0.20 pg/mL vs 2.82 ± 0.26 pg/mL) in patients with normal baseline left ventricular ejection fraction (LVEF) when compared to those with impaired LVEF. Low baseline circulating CXCL14 (hazard ratio, 2.33; 1.00-5.46) but not platelet CXCL14 was associated with worse outcome in patients with CAD. Conclusion Platelet-associated and circulating CXCL14 levels show differential regulation in patients with and without CAD. Although platelet-associated CXCL14 increased and circulating CXCL14 decreased with impairment of LVEF, only lower circulating CXCL14 upon admission was associated with worse prognosis in patients with CAD.
Collapse
Affiliation(s)
- Christoph Schories
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biostatistics, University Hospital Tübingen, Tübingen, Germany
| | - Tianyun Guan
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
- Department of Cardiology, the Second Hospital of Jilin University, Jilin, People’s Republic of China
| | - Jessica Kristin Henes
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Alexander Witte
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Karin Müller
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Tobias Geisler
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, University Hospital Tübingen, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Fink A, Rohlfing AK, Dicenta V, Schaale D, Kremser M, Laspa Z, Sigle M, Fu X, Pelzer A, Fischer M, Münzer P, Castor T, Müller KAL, Borst O, Lämmerhofer M, Gawaz MP. The Subtilisin-Like Protease Furin Regulates Hemin-Dependent Ectodomain Shedding of Glycoprotein VI. Thromb Haemost 2023. [PMID: 37037200 DOI: 10.1055/s-0043-1768057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
INTRODUCTION Hemolysis results in release of free hemoglobin and hemin liberation from erythrocytes. Hemin has been described to induce platelet activation and to trigger thrombosis. METHODS We evaluated the effect of hemin on platelet function and surface expression of the platelet collagen receptor glycoprotein VI (GPVI). Isolated platelets were stimulated with increasing concentrations of hemin. RESULTS We found that hemin strongly enhanced platelet activation, aggregation, and aggregate formation on immobilized collagen under flow. In contrast, we found that surface expression of GPVI was significantly reduced upon hemin stimulation with high hemin concentrations indicating that hemin-induced loss of surface GPVI does not hinder platelet aggregation. Loss of hemin-induced surface expression of GPVI was caused by shedding of the ectodomain of GPVI as verified by immunoblotting and is independent of the GPVI or CLEC-2 mediated ITAM (immunoreceptor-tyrosine-based-activation-motif) signaling pathway as inhibitor studies revealed. Hemin-induced GPVI shedding was independent of metalloproteinases such as ADAM10 or ADAM17, which were previously described to regulate GPVI degradation. Similarly, concentration-dependent shedding of CD62P was also induced by hemin. Unexpectedly, we found that the subtilisin-like proprotein convertase furin controls hemin-dependent GPVI shedding as shown by inhibitor studies using the specific furin inhibitors SSM3 and Hexa-D-arginine. In the presence of SSM3 and Hexa-D-arginine, hemin-associated GPVI degradation was substantially reduced. Further, SSM3 inhibited hemin-induced but not CRP-XL-induced platelet aggregation and thrombus formation, indicating that furin controls specifically hemin-associated platelet functions. CONCLUSION In summary, we describe a novel mechanism of hemin-dependent GPVI shedding and platelet function mediated by furin.
Collapse
Affiliation(s)
- Annalena Fink
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Valerie Dicenta
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - David Schaale
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marcel Kremser
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Zoi Laspa
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Manuel Sigle
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Xiaoqing Fu
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany
| | - Andreas Pelzer
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Melina Fischer
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Patrick Münzer
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Karin Anne Lydia Müller
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Suzuki H, Yamamoto T. CXCL14-like immunoreactivity in somatostatin-producing cells of the Japanese quail (Coturnix japonica) pancreas. Anat Histol Embryol 2023; 52:158-162. [PMID: 36148519 DOI: 10.1111/ahe.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
This study examines chemokine CXCL14-like peptide distribution in the Japanese quail (Coturnix japonica) pancreas using a specific anti-human CXCL14 antibody. CXCL14-immunoreactive cells were observed in the pancreatic islet peripheral region. The staining was abolished after pre-absorbing the antibody with recombinant human CXCL14. CXCL14-immunoreactive cells were immuno-positive for somatostatin, but not glucagon and insulin. CXCL14 secreted from somatostatin-producing cells might participate in insulin secretion modulation together with somatostatin. In addition, CXCL14 might participate in glucose homeostasis in co-operation with somatostatin and growth hormone.
Collapse
Affiliation(s)
- Hirohumi Suzuki
- Department of Biology, University of Teacher Education Fukuoka, Munakata, Japan
| | - Toshiharu Yamamoto
- Brain Functions and Neuroscience Unit, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| |
Collapse
|
19
|
Lin YT, Chen HD, Ai QD, Yang YT, Zhang Z, Chu SF, Chen NH. Characteristics and pathogenesis of chemokines in the post-stroke stage. Int Immunopharmacol 2023; 116:109781. [PMID: 36720195 DOI: 10.1016/j.intimp.2023.109781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023]
Abstract
Chemokines, as small molecular proteins, play a crucial role in the immune and inflammatory responses after stroke. A large amount of evidence showed chemokines and their receptors were increasingly recognized as potential targets for stroke treatment, which were involved in the processing of neovascularization, neurogenesis, and neural network reconstruction. In this review, we summarized the characteristics of chemokine alterations throughout the post-stroke nerve repair phase to gain insight into the pathological mechanisms of chemokines and find effective therapeutic targets for stroke.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao-Dong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qi-di Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan-Tao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
20
|
Gauer JS, Ajjan RA, Ariëns RAS. Platelet-Neutrophil Interaction and Thromboinflammation in Diabetes: Considerations for Novel Therapeutic Approaches. J Am Heart Assoc 2022; 11:e027071. [PMID: 36250653 DOI: 10.1161/jaha.122.027071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thromboinflammation has become a topic of key interest in cardiovascular disease and the prevention of diabetes complications because of the interplay between thrombosis and inflammation in diabetes. Specifically, the significant risk of vascular thrombotic disease in diabetes highlights the need for new and better therapeutic targets to help manage and prevent vascular thrombo-occlusive disease in this condition. Similarly, the prominent role of inflammation in diabetes has sparked interest in anti-inflammatory agents to better prevent and control vascular disease. Investigations on the effects of anticoagulation and antiplatelet interventions in patients with diabetes and cardiovascular disease show a potential role for these agents in decreasing morbidity and mortality. Neutrophils and platelets are key players in inflammation and wound-healing response, respectively. The interaction between neutrophils and platelets is thought to be an important driver of thromboinflammation. Therefore, this review describes the mechanisms involved in platelet-neutrophil interactions that contribute to the development or exacerbation of thromboinflammation in the context of diabetes and its associated comorbidities. The effects observed by the antithrombotic/antidiabetic treatments and physical activity/dietary interventions on attenuating thromboinflammation are discussed. These data suggest that mechanisms involved in platelet-neutrophil interaction, platelet activation/aggregation, and the recruitment of neutrophils have a promising potential to become therapeutic targets to decrease thromboinflammation in patients with diabetes.
Collapse
Affiliation(s)
- Julia S Gauer
- Discovery and Translational Science Department Institute of Cardiovascular and Metabolic Medicine, University of Leeds Leeds United Kingdom
| | - Ramzi A Ajjan
- Discovery and Translational Science Department Institute of Cardiovascular and Metabolic Medicine, University of Leeds Leeds United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department Institute of Cardiovascular and Metabolic Medicine, University of Leeds Leeds United Kingdom
| |
Collapse
|
21
|
Seifert J, Rheinlaender J, von Eysmondt H, Schäffer TE. Mechanics of migrating platelets investigated with scanning ion conductance microscopy. NANOSCALE 2022; 14:8192-8199. [PMID: 35621412 DOI: 10.1039/d2nr01187e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Platelets are small blood cells involved in hemostasis, wound healing, and immune response. After adhesion and spreading, platelets can migrate at sites of injury inducing an early immune response to inflammation or infection. Platelet migration requires fibrinogen-integrin binding and fibrinogen depletion from the substrate inducing a self-generated ligand gradient guiding the direction of migration. This type of cellular motion is referred to as haptotactic migration. The underlying mechanisms of haptotactic platelet migration have just recently been discovered, but the connection to platelet mechanics has remained unknown yet. Using scanning ion conductance microscopy (SICM), we investigated the three-dimensional morphology and mechanics of platelets during haptotactic migration for the first time. Migrating platelets showed a polarized, anisotropic shape oriented in the direction of migration. This polarization goes hand in hand with a characteristic subcellular stiffness distribution showing a region of increased stiffness at the leading edge. Moreover, the mechanical properties of the leading edge revealed a highly dynamic stiffening and softening process with rapid changes of the elastic modulus by a factor of up to 5× per minute. Inhibition of actin polymerization stopped the dynamic stiffening and softening process and halted the migration. By combining SICM with confocal fluorescence microscopy, we found that the increased stiffness and mechanical dynamics at the leading edge coincided with an increased volumetric F-actin density. Our data provide a connection between platelet mechanics and the cytoskeletal contribution to the migration process of platelets.
Collapse
Affiliation(s)
- Jan Seifert
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Johannes Rheinlaender
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Hendrik von Eysmondt
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| |
Collapse
|
22
|
Integrated analysis of 14 lymphoma datasets revealed high expression of CXCL14 promotes cell migration in mantle cell lymphoma. Aging (Albany NY) 2022; 14:3446-3463. [PMID: 35452413 PMCID: PMC9085238 DOI: 10.18632/aging.204022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
Abstract
Lymphoma is accompanied by the impairment of multiple immune functions. Cytokines play an important role in a variety of immune-related functions and affect the tumor microenvironment. However, the exact regulatory mechanisms between them remain unclear. This study aimed to explore the cytokines expression and function in Hodgkin's lymphoma (HL), diffuse large B-cell lymphoma (DLBCL), and mantle cell lymphoma (MCL). We performed a transcriptome integration analysis of 14 lymphoma datasets including 240 Hodgkin's lymphoma, 891 diffuse large B-cell lymphoma, 216 mantle cell lymphoma, and 64 health samples. The results showed that multiple immune functions and signal pathway damage were shared by all three types of lymphoma, and these functions were related to cytokines. Furthermore, through co-expression network and functional interaction network analysis, we identified CXCL14 as a key regulator and it affects cell chemotaxis and migration functions. The functional experiment showed that CXCL14 knockdown inhibited cell migration in MCL cell lines. This study suggested that high expression of CXCL14 may aggravate MCL via promoting cell migration. Our findings provide novel insights into the biology of this disease and would be helpful for the pathogenesis study and drug discovery of lymphomas.
Collapse
|
23
|
Platelets, a Key Cell in Inflammation and Atherosclerosis Progression. Cells 2022; 11:cells11061014. [PMID: 35326465 PMCID: PMC8947573 DOI: 10.3390/cells11061014] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/21/2022] Open
Abstract
Platelets play important roles in thrombosis-dependent obstructive cardiovascular diseases. In addition, it has now become evident that platelets also participate in the earliest stages of atherosclerosis, including the genesis of the atherosclerotic lesion. Moreover, while the link between platelet activity and hemostasis has been well established, the role of platelets as modulators of inflammation has only recently been recognized. Thus, through their secretory activities, platelets can chemically attract a diverse repertoire of cells to inflammatory foci. Although monocytes and lymphocytes act as key cells in the progression of an inflammatory event and play a central role in plaque formation and progression, there is also evidence that platelets can traverse the endothelium, and therefore be a direct mediator in the progression of atherosclerotic plaque. This review provides an overview of platelet interactions and regulation in atherosclerosis.
Collapse
|
24
|
Ngamsri KC, Putri RA, Jans C, Schindler K, Fuhr A, Zhang Y, Gamper-Tsigaras J, Ehnert S, Konrad FM. CXCR4 and CXCR7 Inhibition Ameliorates the Formation of Platelet-Neutrophil Complexes and Neutrophil Extracellular Traps through Adora2b Signaling. Int J Mol Sci 2021; 22:13576. [PMID: 34948374 PMCID: PMC8709064 DOI: 10.3390/ijms222413576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022] Open
Abstract
Peritonitis and peritonitis-associated sepsis are characterized by an increased formation of platelet-neutrophil complexes (PNCs), which contribute to an excessive migration of polymorphonuclear neutrophils (PMN) into the inflamed tissue. An important neutrophilic mechanism to capture and kill invading pathogens is the formation of neutrophil extracellular traps (NETs). Formation of PNCs and NETs are essential to eliminate pathogens, but also lead to aggravated tissue damage. The chemokine receptors CXCR4 and CXCR7 on platelets and PMNs have been shown to play a pivotal role in inflammation. Thereby, CXCR4 and CXCR7 were linked with functional adenosine A2B receptor (Adora2b) signaling. We evaluated the effects of selective CXCR4 and CXCR7 inhibition on PNCs and NETs in zymosan- and fecal-induced sepsis. We determined the formation of PNCs in the blood and, in addition, their infiltration into various organs in wild-type and Adora2b-/- mice by flow cytometry and histological methods. Further, we evaluated NET formation in both mouse lines and the impact of Adora2b signaling on it. We hypothesized that the protective effects of CXCR4 and CXCR7 antagonism on PNC and NET formation are linked with Adora2b signaling. We observed an elevated CXCR4 and CXCR7 expression in circulating platelets and PMNs during acute inflammation. Specific CXCR4 and CXCR7 inhibition reduced PNC formation in the blood, respectively, in the peritoneal, lung, and liver tissue in wild-type mice, while no protective anti-inflammatory effects were observed in Adora2b-/- animals. In vitro, CXCR4 and CXCR7 antagonism dampened PNC and NET formation with human platelets and PMNs, confirming our in vivo data. In conclusion, our study reveals new protective aspects of the pharmacological modulation of CXCR4 and CXCR7 on PNC and NET formation during acute inflammation.
Collapse
Affiliation(s)
- Kristian-Christos Ngamsri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| | - Rizki A. Putri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| | - Christoph Jans
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| | - Katharina Schindler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| | - Anika Fuhr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| | - Yi Zhang
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| | - Jutta Gamper-Tsigaras
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| | - Sabrina Ehnert
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany;
| | - Franziska M. Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| |
Collapse
|
25
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Díaz-Flores L, Gayoso S, Carrasco JL, Álvarez-Argüelles H. Ultrastructural Study of Platelet Behavior and Interrelationship in Sprouting and Intussusceptive Angiogenesis during Arterial Intimal Thickening Formation. Int J Mol Sci 2021; 22:ijms222313001. [PMID: 34884806 PMCID: PMC8657547 DOI: 10.3390/ijms222313001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets in atherosclerosis, bypass stenosis, and restenosis have been extensively assessed. However, a sequential ultrastructural study of platelets in angiogenesis during the early phases of these lesions has received less attention. Our objective was the study of platelets in angiogenesis and vessel regression during intimal thickening (IT) formation, a precursor process of these occlusive vascular diseases. For this purpose, we used an experimental model of rat occluded arteries and procedures for ultrastructural observation. The results show (a) the absence of platelet adhesion in the de-endothelialized occluded arterial segment isolated from the circulation, (b) that intraarterial myriad platelets contributed from neovessels originated by sprouting angiogenesis from the periarterial microvasculature, (c) the association of platelets with blood components (fibrin, neutrophils, macrophages, and eosinophils) and non-polarized endothelial cells (ECs) forming aggregates (spheroids) in the arterial lumen, (d) the establishment of peg-and-socket junctions between platelets and polarized Ecs during intussusceptive angiogenesis originated from the EC aggregates, with the initial formation of IT, and (e) the aggregation of platelets in regressing neovessels (‘transitory paracrine organoid’) and IT increases. In conclusion, in sprouting and intussusceptive angiogenesis and vessel regression during IT formation, we contribute sequential ultrastructural findings on platelet behavior and relationships, which can be the basis for further studies using other procedures.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain;
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| | - Sara Gayoso
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| | - Hugo Álvarez-Argüelles
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| |
Collapse
|
26
|
Seifert J, von Eysmondt H, Chatterjee M, Gawaz M, Schäffer TE. Effect of Oxidized LDL on Platelet Shape, Spreading, and Migration Investigated with Deep Learning Platelet Morphometry. Cells 2021; 10:2932. [PMID: 34831155 PMCID: PMC8616354 DOI: 10.3390/cells10112932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Platelets are functionally versatile blood cells involved in thrombosis, hemostasis, atherosclerosis, and immune response. Platelet interaction with the immediate microenvironment in blood, vasculature, and tissues alters platelet morphology. The quantification of platelet morphodynamics by geometrical parameters (morphometry) can provide important insights into how platelets sense and respond to stimulatory cues in their vicinity. However, the extraction of platelet shapes from phase contrast microscopy images by conventional image processing is difficult. Here, we used a convolutional neural network (CNN) to develop a deep-learning-based approach for the unbiased extraction of information on platelet morphodynamics by phase contrast microscopy. We then investigated the effect of normal and oxidized low-density lipoproteins (LDL, oxLDL) on platelet morphodynamics, spreading, and haptotactic migration. Exposure of platelets to oxLDL led to a decreased spreading area and rate on fibrinogen, accompanied by increased formation of filopodia and impaired formation of lamellipodia. Haptotactic platelet migration was affected by both LDL and oxLDL in terms of decreased migration velocity and reduced directional persistence. Our results demonstrate the use of deep learning in investigating platelet morphodynamics and reveal differential effects of LDL and oxLDL on platelet morphology and platelet-matrix interaction.
Collapse
Affiliation(s)
- Jan Seifert
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Germany; (J.S.); (H.v.E.)
| | - Hendrik von Eysmondt
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Germany; (J.S.); (H.v.E.)
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University of Tübingen, 72076 Tübingen, Germany; (M.C.); (M.G.)
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University of Tübingen, 72076 Tübingen, Germany; (M.C.); (M.G.)
| | - Tilman E. Schäffer
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Germany; (J.S.); (H.v.E.)
| |
Collapse
|
27
|
Platelet-Derived PCSK9 Is Associated with LDL Metabolism and Modulates Atherothrombotic Mechanisms in Coronary Artery Disease. Int J Mol Sci 2021; 22:ijms222011179. [PMID: 34681838 PMCID: PMC8538687 DOI: 10.3390/ijms222011179] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023] Open
Abstract
Platelets play a significant role in atherothrombosis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is critically involved in the regulation of LDL metabolism and interacts with platelet function. The effect of PCSK9 in platelet function is poorly understood. The authors of this article sought to characterize platelets as a major source of PCSK9 and PCSK9's role in atherothrombosis. In a large cohort of patients with coronary artery disease (CAD), platelet count, platelet reactivity, and platelet-derived PCSK9 release were analyzed. The role of platelet PCSK9 on platelet and monocyte function was investigated in vitro. Platelet count and hyper-reactivity correlated with plasma LDL in CAD. The circulating platelets express on their surface and release substantial amounts of PCSK9. Release of PCSK9 augmented platelet-dependent thrombosis, monocyte migration, and differentiation into macrophages/foam cells. Platelets and PCSK9 accumulated in tissue derived from atherosclerotic carotid arteries in areas of macrophages. PCSK9 inhibition reduced platelet activation and platelet-dependent thrombo-inflammation. The authors identified platelets as a source of PCSK9 in CAD, which may have an impact on LDL metabolism. Furthermore, platelet-derived PCSK9 contributes to atherothrombosis, and inhibition of PCSK9 attenuates thrombo-inflammation, which may contribute to the reported beneficial clinical effects.
Collapse
|
28
|
Tang C, Wang L, Sheng Y, Zheng Z, Xie Z, Wu F, You T, Ren L, Xia L, Ruan C, Zhu L. CLEC-2-dependent platelet subendothelial accumulation by flow disturbance contributes to atherogenesis in mice. Theranostics 2021; 11:9791-9804. [PMID: 34815786 PMCID: PMC8581433 DOI: 10.7150/thno.64601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
Rationale: Platelets play an essential role in atherosclerosis, but the underlying mechanisms remain to be addressed. This study is to investigate the role of platelets in d-flow induced vascular inflammation and the underlying mechanism. Methods: We established a disturbed blood flow (d-flow) model by partial carotid ligation (PCL) surgery using atherosclerosis-susceptible mice and wild-type mice to observe the d-flow induced platelet accumulation in the subendothelium or in the plaque by immunostaining or transmission electron microscopy. The mechanism of platelet subendothelial accumulation was further explored by specific gene knockout mice. Results: We observed presence of platelets in atherosclerotic plaques either in the atheroprone area of aortic arch or in carotid artery with d-flow using Ldlr-/- or ApoE-/- mice on high fat diet. Immunostaining showed the subendothelial accumulation of circulating platelets by d-flow in vivo. Transmission electron microscopy demonstrated the accumulation of platelets associated with monocytes in the subendothelial spaces. The subendothelial accumulation of platelet-monocyte/macrophage aggregates reached peak values at 2 days after PCL. In examining the molecules that may mediate the platelet entry, we found that deletion of platelet C-type lectin-like receptor 2 (CLEC-2) reduced the subendothelial accumulation of platelets and monocytes/macrophages by d-flow, and ameliorated plaque formation in Ldlr-/- mice on high fat diet. Supportively, CLEC-2 deficient platelets diminished their promoting effect on the migration of mouse monocyte/macrophage cell line RAW264.7. Moreover, monocyte podoplanin (PDPN), the only ligand of CLEC-2, was upregulated by d-flow, and the myeloid-specific PDPN deletion mitigated the subendothelial accumulation of platelets and monocytes/macrophages. Conclusions: Our results reveal a new CLEC-2-dependent platelet subendothelial accumulation in response to d-flow to regulate vascular inflammation.
Collapse
Affiliation(s)
- Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, China
- Suzhou Key Lab for Thrombosis and Vascular Biology, Soochow University, Suzhou, China
| | - Lei Wang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Yulan Sheng
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Zhong Zheng
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Zhanli Xie
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Fan Wu
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Tao You
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Lijie Ren
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Changgeng Ruan
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, China
| | - Li Zhu
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, China
- Suzhou Key Lab for Thrombosis and Vascular Biology, Soochow University, Suzhou, China
| |
Collapse
|
29
|
McFadyen JD, Peter K. Platelet CXCL14: introducing a new player and potential therapeutic target in thromboinflammation. Cardiovasc Res 2021; 117:645-647. [PMID: 33367481 DOI: 10.1093/cvr/cvaa351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- James D McFadyen
- Atherothrombosis & Vascular Biology Program, Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia.,Department of Clinical Haematology, Alfred Hospital, Melbourne, Australia.,Department of Medicine, Monash University, Melbourne, Australia.,Department of Cardiometabolic Health, Melbourne University, Melbourne, Australia
| | - Karlheinz Peter
- Atherothrombosis & Vascular Biology Program, Baker Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia.,Department of Medicine, Monash University, Melbourne, Australia.,Department of Cardiometabolic Health, Melbourne University, Melbourne, Australia.,Department of Cardiology, Alfred Hospital, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
30
|
Siew WS, Tang YQ, Kong CK, Goh BH, Zacchigna S, Dua K, Chellappan DK, Duangjai A, Saokaew S, Phisalprapa P, Yap WH. Harnessing the Potential of CRISPR/Cas in Atherosclerosis: Disease Modeling and Therapeutic Applications. Int J Mol Sci 2021; 22:8422. [PMID: 34445123 PMCID: PMC8395110 DOI: 10.3390/ijms22168422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis represents one of the major causes of death globally. The high mortality rates and limitations of current therapeutic modalities have urged researchers to explore potential alternative therapies. The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system is commonly deployed for investigating the genetic aspects of Atherosclerosis. Besides, advances in CRISPR/Cas system has led to extensive options for researchers to study the pathogenesis of this disease. The recent discovery of Cas9 variants, such as dCas9, Cas9n, and xCas9 have been established for various applications, including single base editing, regulation of gene expression, live-cell imaging, epigenetic modification, and genome landscaping. Meanwhile, other Cas proteins, such as Cas12 and Cas13, are gaining popularity for their applications in nucleic acid detection and single-base DNA/RNA modifications. To date, many studies have utilized the CRISPR/Cas9 system to generate disease models of atherosclerosis and identify potential molecular targets that are associated with atherosclerosis. These studies provided proof-of-concept evidence which have established the feasibility of implementing the CRISPR/Cas system in correcting disease-causing alleles. The CRISPR/Cas system holds great potential to be developed as a targeted treatment for patients who are suffering from atherosclerosis. This review highlights the advances in CRISPR/Cas systems and their applications in establishing pathogenetic and therapeutic role of specific genes in atherosclerosis.
Collapse
Affiliation(s)
- Wei Sheng Siew
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
| | - Yin Quan Tang
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences (FHMS), Taylor’s University, Subang Jaya 47500, Malaysia
| | - Chee Kei Kong
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Serena Zacchigna
- Centre for Translational Cardiology, Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, Strada di Fiume 447, 34149 Trieste, Italy;
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil 57000, Malaysia;
| | - Acharaporn Duangjai
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.D.); (S.S.)
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.D.); (S.S.)
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Department of Pharmaceutical Care, Division of Pharmacy Practice, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Pochamana Phisalprapa
- Department of Medicine, Division of Ambulatory Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wei Hsum Yap
- School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.S.S.); (Y.Q.T.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences (FHMS), Taylor’s University, Subang Jaya 47500, Malaysia
| |
Collapse
|
31
|
Harm T, Bild A, Dittrich K, Goldschmied A, Nestele J, Chatterjee M, Fu X, Kolb K, Castor T, Borst O, Geisler T, Rath D, LäMmerhofer M, Gawaz M. Acute coronary syndrome is associated with a substantial change in the platelet lipidome. Cardiovasc Res 2021; 118:1904-1916. [PMID: 34323932 DOI: 10.1093/cvr/cvab238] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Platelets play a key role in the pathophysiology of coronary artery disease (CAD) and patients with enhanced platelet activation are at increased risk to develop adverse cardiovascular events. Beyond reliable cardiovascular risk factors such as dyslipoproteinaemia, significant changes of platelet lipids occur in patients with CAD. In this study, we investigate the platelet lipidome by untargeted liquid chromatography-mass spectrometry, highlighting significant changes between acute coronary syndrome (ACS) and chronic coronary syndrome (CCS) patients. Additionally, we classify the platelet lipidome, spotlighting specific glycerophospholipids as key players in ACS patients. Furthermore, we examine the impact of significantly altered lipids in ACS on platelet-dependent thrombus formation and aggregation. METHODS AND RESULTS In this consecutive study, we characterized the platelet lipidome in a CAD cohort (n = 139) and showed significant changes of lipids between patients with ACS and CCS. We found that among 928 lipids, 7 platelet glycerophospholipids were significantly up-regulated in ACS, whereas 25 lipids were down-regulated compared to CCS. The most prominent up-regulated lipid in ACS, PC18:0 (PC 10:0-8:0), promoted platelet activation and ex vivo platelet-dependent thrombus formation. CONCLUSIONS Our results reveal that the platelet lipidome is altered in ACS and up-regulated lipids embody primarily glycerophospholipids. Alterations of the platelet lipidome, especially of medium chain lipids, may play a role in the pathophysiology of ACS.
Collapse
Affiliation(s)
- Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Alexander Bild
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Kristina Dittrich
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Andreas Goldschmied
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Jeremy Nestele
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Xiaoqing Fu
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Kyra Kolb
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Tobias Geisler
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Michael LäMmerhofer
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Platelet and Erythrocyte Extravasation across Inflamed Corneal Venules Depend on CD18, Neutrophils, and Mast Cell Degranulation. Int J Mol Sci 2021; 22:ijms22147360. [PMID: 34298979 PMCID: PMC8329926 DOI: 10.3390/ijms22147360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 01/26/2023] Open
Abstract
Platelet extravasation during inflammation is under-appreciated. In wild-type (WT) mice, a central corneal epithelial abrasion initiates neutrophil (PMN) and platelet extravasation from peripheral limbal venules. The same injury in mice expressing low levels of the β2-integrin, CD18 (CD18hypo mice) shows reduced platelet extravasation with PMN extravasation apparently unaffected. To better define the role of CD18 on platelet extravasation, we focused on two relevant cell types expressing CD18: PMNs and mast cells. Following corneal abrasion in WT mice, we observed not only extravasated PMNs and platelets but also extravasated erythrocytes (RBCs). Ultrastructural observations of engorged limbal venules showed platelets and RBCs passing through endothelial pores. In contrast, injured CD18hypo mice showed significantly less venule engorgement and markedly reduced platelet and RBC extravasation; mast cell degranulation was also reduced compared to WT mice. Corneal abrasion in mast cell-deficient (KitW-sh/W-sh) mice showed less venule engorgement, delayed PMN extravasation, reduced platelet and RBC extravasation and delayed wound healing compared to WT mice. Finally, antibody-induced depletion of circulating PMNs prior to corneal abrasion reduced mast cell degranulation, venule engorgement, and extravasation of PMNs, platelets, and RBCs. In summary, in the injured cornea, platelet and RBC extravasation depends on CD18, PMNs, and mast cell degranulation.
Collapse
|
33
|
Wang L, Tang C. Targeting Platelet in Atherosclerosis Plaque Formation: Current Knowledge and Future Perspectives. Int J Mol Sci 2020; 21:ijms21249760. [PMID: 33371312 PMCID: PMC7767086 DOI: 10.3390/ijms21249760] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
Besides their role in hemostasis and thrombosis, it has become increasingly clear that platelets are also involved in many other pathological processes of the vascular system, such as atherosclerotic plaque formation. Atherosclerosis is a chronic vascular inflammatory disease, which preferentially develops at sites under disturbed blood flow with low speeds and chaotic directions. Hyperglycemia, hyperlipidemia, and hypertension are all risk factors for atherosclerosis. When the vascular microenvironment changes, platelets can respond quickly to interact with endothelial cells and leukocytes, participating in atherosclerosis. This review discusses the important roles of platelets in the plaque formation under pro-atherogenic factors. Specifically, we discussed the platelet behaviors under disturbed flow, hyperglycemia, and hyperlipidemia conditions. We also summarized the molecular mechanisms involved in vascular inflammation during atherogenesis based on platelet receptors and secretion of inflammatory factors. Finally, we highlighted the studies of platelet migration in atherogenesis. In general, we elaborated an atherogenic role of platelets and the aspects that should be further studied in the future.
Collapse
Affiliation(s)
- Lei Wang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, China;
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, China;
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-512-6588-0899
| |
Collapse
|