1
|
Soussi S, Maione AS, Lefèvre L, Pizzinat N, Iacovoni J, Gonzalez-Fuentes I, Cussac D, Iengo L, Santin Y, Tundo F, Tondo C, Pompilio G, Parini A, Douin-Echinard V, Sommariva E. Analysis of effector/memory regulatory T cells from arrhythmogenic cardiomyopathy patients identified IL-32 as a novel player in ACM pathogenesis. Cell Death Dis 2025; 16:87. [PMID: 39934117 DOI: 10.1038/s41419-025-07364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/23/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disorder that causes sudden cardiac death and progressive heart failure. Besides fibro-fatty replacement and myocyte degenerative changes, inflammatory patchy infiltrates are found in myocardial histological analysis of ACM patients. Inflammatory cells could actively participate in ACM pathogenesis, contributing to the alteration of cardiac microenvironment homeostasis, thus triggering disease evolution. In order to characterize the immune-derived mediators involved in ACM pathogenesis, peripheral blood mononuclear cells from ACM patients were characterized and compared to healthy controls' ones. Flow cytometry analysis revealed a lower frequency of CD4+ T helper type 1 cells, NK cells, and terminally differentiated CD8+ EMRA+ T cells in ACM patients compared to age-matched controls. In contrast, a higher proportion of effector/memory FOXP3+ CCR4+ CD45RO+ regulatory CD4+ T cells (Treg) were found in ACM patients. Single-cell RNA-seq performed on isolated memory Treg cells (mTreg) from ACM patients and healthy controls identified 6 clusters characterized by specific gene signatures related to tissue repair and immunosuppressive pathways. Notably, interleukin 32 (IL-32) was the most differentially expressed gene in ACM patients mTreg with respect to healthy controls. Treatment of human cardiac mesenchymal stromal cells with recombinant IL-32 in vitro promoted lipid droplet accumulation and collagen deposition, thus identifying IL-32 as a new potential player in the immune-mediated trigger of cardiac fibro-fatty replacement in ACM. Overall, we here provide the first complete characterization of circulating ACM immune cells, revealing an abundance of Treg. The high expression of IL-32 in ACM Treg may contribute to accelerated cardiac remodeling in ACM patients' hearts.
Collapse
Affiliation(s)
| | - Angela Serena Maione
- Unit of Inherited Cardiomyopathies, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Lise Lefèvre
- I2MC, INSERM, UMR-1297, Toulouse, France
- RESTORE Research Center, UMR-1301, Paul Sabatier University, Toulouse, France
| | | | | | | | | | - Lara Iengo
- Unit of Inherited Cardiomyopathies, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Yohan Santin
- Unit of Inherited Cardiomyopathies, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Fabrizio Tundo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giulio Pompilio
- Unit of Inherited Cardiomyopathies, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Victorine Douin-Echinard
- I2MC, INSERM, UMR-1297, Toulouse, France
- RESTORE Research Center, UMR-1301, Paul Sabatier University, Toulouse, France
| | - Elena Sommariva
- Unit of Inherited Cardiomyopathies, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| |
Collapse
|
2
|
Hunter B, Li M, Parker BL, Koay YC, Harney DJ, Pearson E, Cao J, Chen GT, Guneratne O, Smyth GK, Larance M, O'Sullivan JF, Lal S. Proteomic and metabolomic analyses of the human adult myocardium reveal ventricle-specific regulation in end-stage cardiomyopathies. Commun Biol 2024; 7:1666. [PMID: 39702518 DOI: 10.1038/s42003-024-07306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
The left and right ventricles of the human heart are functionally and developmentally distinct such that genetic or acquired insults can cause dysfunction in one or both ventricles resulting in heart failure. To better understand ventricle-specific molecular changes influencing heart failure development, we first performed unbiased quantitative mass spectrometry on pre-mortem non-diseased human myocardium to compare the metabolome and proteome between the normal left and right ventricles. Constituents of gluconeogenesis, glycolysis, lipogenesis, lipolysis, fatty acid catabolism, the citrate cycle and oxidative phosphorylation were down-regulated in the left ventricle, while glycogenesis, pyruvate and ketone metabolism were up-regulated. Inter-ventricular significance of these metabolic pathways was then found to be diminished within end-stage dilated cardiomyopathy and ischaemic cardiomyopathy, while heart failure-associated pathways were increased in the left ventricle relative to the right within ischaemic cardiomyopathy, such as fluid sheer-stress, increased glutamine-glutamate ratio, and down-regulation of contractile proteins, indicating a left ventricular pathological bias.
Collapse
Affiliation(s)
- Benjamin Hunter
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mengbo Li
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Yen Chin Koay
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Heart Research Institute, Newtown, NSW, Australia
| | - Dylan J Harney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Evangeline Pearson
- Paediatric Oncology and Haematology, Oxford Children's Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England
| | - Jacob Cao
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gavin T Chen
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Oneka Guneratne
- Kolling Institute, Royal North Shore Hospital, and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - John F O'Sullivan
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Heart Research Institute, Newtown, NSW, Australia.
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Sean Lal
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Zhang B, Xie X, Yu J, Wu Y, Zhou J, Li X, Yang B. A new prediction model for sustained ventricular tachycardia in arrhythmogenic cardiomyopathy. Front Cardiovasc Med 2024; 11:1477931. [PMID: 39736878 PMCID: PMC11683097 DOI: 10.3389/fcvm.2024.1477931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Background Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterized by high risks of sustained ventricular tachycardia (sVT) and sudden cardiac death. Identifying patients with high risk of sVT is crucial for the management of ACM. Methods A total of 147 ACM patients were retrospectively enrolled in the observational study and divided into training and validation groups. The least absolute shrinkage and selection operator (LASSO) regression model was employed to identify factors associated with sVT. Subsequently, a nomogram was constructed based on multivariable logistic regression analysis. The performance of the nomogram was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve and calibration curve. Decision curve analysis was conducted to assess the clinical utility of the nomogram. Results Seven parameters were incorporated into the nomogram: age, male sex, syncope, heart failure, T wave inversion in precordial leads, left ventricular ejection fraction (LVEF), SDNN level. The AUC of the nomogram to predict the probability of sVT was 0.867 (95% CI, 0.797-0.938) in the training group and 0.815 (95% CI, 0.673-0.958) in the validation group. The calibration curve demonstrated a good consistency between the actual clinical results and the predicted outcomes. Decision curve analysis indicated that the nomogram had higher overall net benefits in predicting sVT. Conclusion We have developed and internally validated a new prediction model for sVT in ACM. This model could serve as a valuable tool to accurately identify ACM patients with high risk of sVT.
Collapse
Affiliation(s)
- Baowei Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Xie
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinbo Yu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yizhang Wu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaorong Li
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Cardiology, Ji'an Center People’s Hospital, Ji'an, China
| | - Bing Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Schopp EM, Okwara L, Tichnell C, Turriff A, Murray B, Barth AS, Calkins H, Jamal L, James CA. Patient Perceptions of Emerging Gene Therapies for Arrhythmogenic Right Ventricular Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004759. [PMID: 39611272 DOI: 10.1161/circgen.124.004759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND No disease-specific therapy currently exists for arrhythmogenic right ventricular cardiomyopathy (ARVC), a progressive cardiogenetic condition conferring elevated risk for ventricular arrhythmias, heart failure, and sudden cardiac death. Emerging gene therapies have the potential to fill this gap. However, little is known about how adults with ARVC, or any other inherited cardiomyopathy or arrhythmia syndrome, appraise the risks and benefits of gene therapy research and which considerations may influence their decisions about clinical trial participation. METHODS Twenty adults with clinically diagnosed and gene-positive ARVC participated in semi-structured interviews that explored perceptions of gene therapy and hypothetical decision-making for gene therapy clinical trial participation. Interview transcripts were qualitatively coded and analyzed. RESULTS Participants expressed enthusiasm for gene therapy with varied levels of personal interest in trial participation. Although clinical severity appeared to be associated with an elevated interest in early trial participation, participants anticipated weighing both personal and trial-specific factors including life stage, trial stage, risks, benefits, participation burden, study leadership, and anticipated cost of future gene therapy. Adaptation to living with ARVC and involvement in the ARVC patient community were also relevant to decision-making about trial participation. Potential ethical concerns included unquestioning trust in clinical teams collaborating on industry-led trials and vulnerability of those recently diagnosed or with high perceived severity of ARVC symptoms. CONCLUSIONS Several characteristics of the individual and trial warrant consideration during the informed consent process. Insights from this study may affect trial planning and communication with participants who have inherited cardiac conditions.
Collapse
Affiliation(s)
- Emma M Schopp
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD (E.M.S., A.T.)
- Department of Health, Behavior, and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (E.M.S.)
- Military Cardiovascular Outcomes Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD (E.M.S.)
| | - Leonore Okwara
- Division of Cardiology, Johns Hopkins University, Baltimore, MD (L.O., C.T., B.M., A.S.B., H.C., C.A.J.)
| | - Crystal Tichnell
- Division of Cardiology, Johns Hopkins University, Baltimore, MD (L.O., C.T., B.M., A.S.B., H.C., C.A.J.)
| | - Amy Turriff
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD (E.M.S., A.T.)
| | - Brittney Murray
- Division of Cardiology, Johns Hopkins University, Baltimore, MD (L.O., C.T., B.M., A.S.B., H.C., C.A.J.)
| | - Andreas S Barth
- Division of Cardiology, Johns Hopkins University, Baltimore, MD (L.O., C.T., B.M., A.S.B., H.C., C.A.J.)
| | - Hugh Calkins
- Division of Cardiology, Johns Hopkins University, Baltimore, MD (L.O., C.T., B.M., A.S.B., H.C., C.A.J.)
| | - Leila Jamal
- Genetics Branch, Center for Cancer Research, National Cancer Institute (L.J.)
- Department of Bioethics, NIH, Bethesda, MD (L.J.)
| | - Cynthia A James
- Division of Cardiology, Johns Hopkins University, Baltimore, MD (L.O., C.T., B.M., A.S.B., H.C., C.A.J.)
| |
Collapse
|
5
|
Maione AS, Iengo L, Sala L, Massaiu I, Chiesa M, Lippi M, Ghilardi S, Florindi C, Lodola F, Zaza A, Tondo C, Schiavone M, Banfi C, Pompilio G, Poggio P, Sommariva E. Cardiomyocyte and stromal cell cross-talk influences the pathogenesis of arrhythmogenic cardiomyopathy: a multi-level analysis uncovers DLK1-NOTCH pathway role in fibro-adipose remodelling. Cell Death Discov 2024; 10:484. [PMID: 39609399 PMCID: PMC11604953 DOI: 10.1038/s41420-024-02232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Arrhythmogenic Cardiomyopathy (ACM) is a life-threatening, genetically determined disease primarily caused by mutations in desmosomal genes, such as PKP2. Currently, there is no etiological therapy for ACM due to its complex and not fully elucidated pathogenesis. Various cardiac cell types affected by the genetic mutation, such as cardiomyocytes (CM) and cardiac mesenchymal stromal cells (cMSC), individually contribute to the ACM phenotype, driving functional abnormalities and fibro-fatty substitution, respectively. However, the relative importance of the CM and cMSC alterations, as well as their reciprocal influence in disease progression remain poorly understood. We hypothesised that ACM-dependent phenotypes are driven not only by alterations in individual cell types but also by the reciprocal interactions between CM and cMSC, which may further impact disease pathogenesis. We utilized a patient-specific, multicellular cardiac system composed of either control or PKP2-mutated CM and cMSC to assess the mutation's role in fibro-fatty phenotype by immunofluorescence, and contractile behaviour of co-cultures using cell motion detection software. Additionally, we investigated reciprocal interactions both in silico and via multi-targeted proteomics. We demonstrated that ACM CM can promote fibro-adipose differentiation of cMSC. Conversely, ACM cMSC contribute to increasing the rate of abnormal contractile events with likely arrhythmic significance. Furthermore, we showed that an ACM-causative mutation alters the CM-cMSC interaction pattern. We identified the CM-sourced DLK1 as a novel regulator of fibro-adipose remodelling in ACM. Our study challenges the paradigm of exclusive cell-specific mechanisms in ACM. A deeper understanding of the cell-cell influence is crucial for identifying novel therapeutic targets for ACM, and this concept is exploitable for other cardiomyopathies.
Collapse
Affiliation(s)
- Angela Serena Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Lara Iengo
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Luca Sala
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, 20095, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, 20126, Italy
| | - Ilaria Massaiu
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133, Milan, Italy
| | - Melania Lippi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Stefania Ghilardi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Chiara Florindi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, 20126, Italy
| | - Francesco Lodola
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, 20126, Italy
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, 20126, Italy
| | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122, Milan, Italy
| | - Marco Schiavone
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122, Milan, Italy
| | - Paolo Poggio
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| |
Collapse
|
6
|
Chelko SP. Prognostic Value of Circulating Biomarkers of Fibrotic Remodeling in Arrhythmogenic Cardiomyopathy. Biomedicines 2024; 12:2623. [PMID: 39595186 PMCID: PMC11592167 DOI: 10.3390/biomedicines12112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a nonischemic, familial heart disease with a high risk of sudden cardiac death (SCD) in the pediatric population and accounts for >20% of SCDs worldwide [...].
Collapse
Affiliation(s)
- Stephen P Chelko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
7
|
Isbister JC, Tadros R, Raju H, Semsarian C. Concealed cardiomyopathy as an emerging cause of sudden cardiac arrest and sudden cardiac death. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1274-1283. [PMID: 39487366 DOI: 10.1038/s44161-024-00558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/01/2024] [Indexed: 11/04/2024]
Abstract
The inherited cardiomyopathies exhibit a broad spectrum of disease, with some patients remaining asymptomatic throughout life, while, for others, the first symptom of disease is sudden cardiac death at a young age. The risk of malignant ventricular arrhythmia in these conditions has traditionally been linked to the degree of structural myocardial abnormalities and functional impairment. However, recent advances in genetic testing and knowledge of the genetic basis of the diseases have led to the identification of concealed cardiomyopathy, in which sudden cardiac arrest or sudden cardiac death occurs in the absence of observable clinical features of cardiomyopathy, with a diagnosis being made only after the identification of a causative genetic variant. Increased awareness of concealed cardiomyopathy, a better understanding of mechanisms of arrhythmia and identification of risk modulators will be vital to improve care for families with concealed cardiomyopathy.
Collapse
Affiliation(s)
- Julia C Isbister
- Faculty of Medicine and Heath, the University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Montreal, Québec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Hariharan Raju
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Christopher Semsarian
- Faculty of Medicine and Heath, the University of Sydney, Sydney, New South Wales, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
- Agnes Ginges Centre for Molecular Cardiology at the Centenary Institute, the University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Zhang B, Wu Y, Zhou C, Xie J, Zhang Y, Yang X, Xiao J, Wang DW, Shan C, Zhou X, Xiang Y, Yang B. Hyperactivation of ATF4/TGF-β1 signaling contributes to the progressive cardiac fibrosis in Arrhythmogenic cardiomyopathy caused by DSG2 Variant. BMC Med 2024; 22:361. [PMID: 39227800 PMCID: PMC11373413 DOI: 10.1186/s12916-024-03593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterized with progressive cardiac fibrosis and heart failure. However, the exact mechanism driving the progression of cardiac fibrosis and heart failure in ACM remains elusive. This study aims to investigate the underlying mechanisms of progressive cardiac fibrosis in ACM caused by newly identified Desmoglein-2 (DSG2) variation. METHODS We identified homozygous DSG2F531C variant in a family with 8 ACM patients using whole-exome sequencing and generated Dsg2F536C knock-in mice. Neonatal and adult mouse ventricular myocytes isolated from Dsg2F536C knock-in mice were used. We performed functional, transcriptomic and mass spectrometry analyses to evaluate the mechanisms of ACM caused by DSG2F531C variant. RESULTS All eight patients with ACM were homozygous for DSG2F531C variant. Dsg2F536C/F536C mice displayed cardiac enlargement, dysfunction, and progressive cardiac fibrosis in both ventricles. Mechanistic investigations revealed that the variant DSG2-F536C protein underwent misfolding, leading to its recognition by BiP within the endoplasmic reticulum, which triggered endoplasmic reticulum stress, activated the PERK-ATF4 signaling pathway and increased ATF4 levels in cardiomyocytes. Increased ATF4 facilitated the expression of TGF-β1 in cardiomyocytes, thereby activating cardiac fibroblasts through paracrine signaling and ultimately promoting cardiac fibrosis in Dsg2F536C/F536C mice. Notably, inhibition of the PERK-ATF4 signaling attenuated progressive cardiac fibrosis and cardiac systolic dysfunction in Dsg2F536C/F536C mice. CONCLUSIONS Hyperactivation of the ATF4/TGF-β1 signaling in cardiomyocytes emerges as a novel mechanism underlying progressive cardiac fibrosis in ACM. Targeting the ATF4/TGF-β1 signaling may be a novel therapeutic target for managing ACM.
Collapse
Affiliation(s)
- Baowei Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Yizhang Wu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Chunjiang Zhou
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Jiaxi Xie
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, P.R. China
| | - Youming Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Xingbo Yang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Jing Xiao
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China
| | - Dao Wu Wang
- State Key Laboratory of Reproductive Medicine, the Centre for Clinical Reproductive Medicine, Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, P.R. China
| | - Congjia Shan
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiujuan Zhou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, P.R. China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China.
| | - Bing Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, 200120, P.R. China.
| |
Collapse
|
9
|
Svensson A, Jensen HK, Boonstra MJ, Tétreault-Langlois M, Dahlberg P, Bundgaard H, Christensen AH, Rylance RT, Svendsen JH, Cadrin-Tourigny J, Te Riele ASJM, Platonov PG. Natural Course of Electrocardiographic Features in Arrhythmogenic Right Ventricular Cardiomyopathy and Their Relation to Ventricular Arrhythmic Events. J Am Heart Assoc 2024; 13:e031893. [PMID: 39158567 DOI: 10.1161/jaha.123.031893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/02/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Electrocardiographic abnormalities are common in arrhythmogenic right ventricular cardiomyopathy and are included in the 2010 Task Force Criteria. Their time course, however, remains uncertain. In this retrospective observational study, we aimed to assess the long-term evolution of electrocardiographic characteristics and their relation to ventricular arrhythmias. METHODS AND RESULTS Three hundred fifty-three patients with arrhythmogenic right ventricular cardiomyopathy as per the 2010 Task Force Criteria with 6871 automatically processed 12-lead digital ECGs were included. The relationship between the electrocardiographic parameters and the risk of ventricular arrhythmias was assessed at 10 years from the first ECG. Electrocardiographic parameters were compared between the first contact ECG, the ECG at diagnosis, and the most recent ECG. Median time between the first and the latest ECG was 6 [interquartile range, 1-14] years. Reductions of QRS voltage, R- and T-wave amplitudes between the first, diagnostic, and the latest ECGs were observed across precordial and extremity leads. Mean QRS duration increased from 96 to 102 ms (P<0.001), terminal activation duration (V1) from 47 to 52 ms (P<0.001), and QTc from 419 to 432 ms (P<0.001). T-wave inversions in leads V3 to V6 and aVF at first ECG were associated with ventricular arrhythmias (adjusted hazard ratio [HRadj][V3], 2.03 [95% CI, 1.23-3.34] and HRadj[aVF], 1.87 [95% CI, 1.13-3.08]). CONCLUSIONS Depolarization and repolarization parameters evolved over time in patients with arrhythmogenic right ventricular cardiomyopathy, supporting the progressive nature of arrhythmogenic right ventricular cardiomyopathy. Electrocardiographic abnormalities may be detected before diagnosis and might, although not fulfilling the 2010 Task Force Criteria, be markers of early disease. T-wave inversion in leads V3 or aVF before diagnosis was associated with ventricular arrhythmias during follow-up.
Collapse
Affiliation(s)
- Anneli Svensson
- Department of Cardiology Linköping University Hospital Linköping Sweden
- Department of Health, Medicine and Caring Sciences Linköping University Linköping Sweden
| | - Henrik Kjaerulf Jensen
- Department of Cardiology Aarhus University Hospital Aarhus Denmark
- Department of Clinical Medicine Aarhus University Aarhus Denmark
| | - Machteld J Boonstra
- Division of Heart and Lungs, Department of Cardiology University Medical Center Utrecht, Utrecht University, Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart' (ERN GUARDHEART; Utrecht the Netherlands
| | | | - Pia Dahlberg
- Department of Cardiology, Department of Molecular and Clinical Medicine Institute of Medicine, Sahlgrenska Academy Gothenburg Sweden
| | - Henning Bundgaard
- Unit for Inherited Cardiac Diseases, the Heart Center The National University Hospital, Rigshospitalet Copenhagen Denmark
| | - Alex Hørby Christensen
- Department of Cardiology Copenhagen University Hospital Herlev-Gentofte Herlev Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science University of Copenhagen Denmark
| | - Rebecca T Rylance
- Department of Cardiology, Clinical Sciences Lund University Lund Sweden
| | - Jesper H Svendsen
- Department of Clinical Medicine, Faculty of Health and Medical Science University of Copenhagen Denmark
- Department of Cardiology, the Heart Centre Copenhagen University Hospital, Rigshospitalet Copenhagen Denmark
| | | | - Anneline S J M Te Riele
- Division of Heart and Lungs, Department of Cardiology University Medical Center Utrecht, Utrecht University, Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart' (ERN GUARDHEART; Utrecht the Netherlands
| | - Pyotr G Platonov
- Department of Cardiology, Clinical Sciences Lund University Lund Sweden
| |
Collapse
|
10
|
Vanaja IP, Scalco A, Ronfini M, Bona AD, Olianti C, Rizzo S, Chelko SP, Corrado D, Sacconi L, Basso C, Mongillo M, Zaglia T. Cardiac sympathetic neurons are additional cells affected in genetically determined arrhythmogenic cardiomyopathy. J Physiol 2024. [PMID: 39141822 DOI: 10.1113/jp286845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a familial cardiac disease, mainly caused by mutations in desmosomal genes, which accounts for most cases of stress-related arrhythmic sudden death, in young and athletes. AC hearts display fibro-fatty lesions that generate the arrhythmic substrate and cause contractile dysfunction. A correlation between physical/emotional stresses and arrhythmias supports the involvement of sympathetic neurons (SNs) in the disease, but this has not been confirmed previously. Here, we combined molecular, in vitro and ex vivo analyses to determine the role of AC-linked DSG2 downregulation on SN biology and assess cardiac sympathetic innervation in desmoglein-2 mutant (Dsg2mut/mut) mice. Molecular assays showed that SNs express DSG2, implying that DSG2-mutation carriers would harbour the mutant protein in SNs. Confocal immunofluorescence of heart sections and 3-D reconstruction of SN network in clarified heart blocks revealed significant changes in the physiologialc SN topology, with massive hyperinnervation of the intact subepicardial layers and heterogeneous distribution of neurons in fibrotic areas. Cardiac SNs isolated from Dsg2mut/mut neonatal mice, prior to the establishment of cardiac innervation, show alterations in axonal sprouting, process development and distribution of varicosities. Consistently, virus-assisted DSG2 downregulation replicated, in PC12-derived SNs, the phenotypic alterations displayed by Dsg2mut/mut primary neurons, corroborating that AC-linked Dsg2 variants may affect SNs. Our results reveal that altered sympathetic innervation is an unrecognized feature of AC hearts, which may result from the combination of cell-autonomous and context-dependent factors implicated in myocardial remodelling. Our results favour the concept that AC is a disease of multiple cell types also hitting cardiac SNs. KEY POINTS: Arrhythmogenic cardiomyopathy is a genetically determined cardiac disease, which accounts for most cases of stress-related arrhythmic sudden death. Arrhythmogenic cardiomyopathy linked to mutations in desmoglein-2 (DSG2) is frequent and leads to a left-dominant form of the disease. Arrhythmogenic cardiomyopathy has been approached thus far as a disease of cardiomyocytes, but we here unveil that DSG2 is expressed, in addition to cardiomyocytes, by cardiac and extracardiac sympathetic neurons, although not organized into desmosomes. AC-linked DSG2 downregulation primarily affect sympathetic neurons, resulting in the significant increase in cardiac innervation density, accompanied by alterations in sympathetic neuron distribution. Our data supports the notion that AC develops with the contribution of several 'desmosomal protein-carrying' cell types and systems.
Collapse
Affiliation(s)
- Induja Perumal Vanaja
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Arianna Scalco
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Ronfini
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Camilla Olianti
- Institute of Clinical Physiology (IFC), National Research Council, Florence, Florence, Italy
| | - Stefania Rizzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Stephen P Chelko
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL, USA
| | - Domenico Corrado
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Leonardo Sacconi
- Institute of Clinical Physiology (IFC), National Research Council, Florence, Florence, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Marco Mongillo
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tania Zaglia
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Musigk N, Suwalski P, Golpour A, Fairweather D, Klingel K, Martin P, Frustaci A, Cooper LT, Lüscher TF, Landmesser U, Heidecker B. The inflammatory spectrum of cardiomyopathies. Front Cardiovasc Med 2024; 11:1251780. [PMID: 38464847 PMCID: PMC10921946 DOI: 10.3389/fcvm.2024.1251780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Infiltration of the myocardium with various cell types, cytokines and chemokines plays a crucial role in the pathogenesis of cardiomyopathies including inflammatory cardiomyopathies and myocarditis. A more comprehensive understanding of the precise immune mechanisms involved in acute and chronic myocarditis is essential to develop novel therapeutic approaches. This review offers a comprehensive overview of the current knowledge of the immune landscape in cardiomyopathies based on etiology. It identifies gaps in our knowledge about cardiac inflammation and emphasizes the need for new translational approaches to improve our understanding thus enabling development of novel early detection methods and more effective treatments.
Collapse
Affiliation(s)
- Nicolas Musigk
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Phillip Suwalski
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Ainoosh Golpour
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Karin Klingel
- Cardiopathology Institute for Pathology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Thomas F. Lüscher
- GZO-Zurich Regional Health Centre, Wetzikon & Cardioimmunology, Centre for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Royal Brompton & Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
12
|
Huang H, Verma J, Mok V, Bharadwaj HR, Alrawashdeh MM, Aratikatla A, Sudan S, Talukder S, Habaka M, Tse G, Bardhan M. Exploring Health Care Disparities in Genetic Testing and Research for Hereditary Cardiomyopathy: Current State and Future Perspectives. Glob Med Genet 2024; 11:36-47. [PMID: 38304308 PMCID: PMC10834107 DOI: 10.1055/s-0044-1779469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Background Hereditary cardiomyopathies are commonly occurring myocardial conditions affecting heart structure and function with a genetic or familial association, but the etiology is often unknown. Cardiomyopathies are linked to significant mortality, requiring robust risk stratification with genetic testing and early diagnosis. Hypothesis We hypothesized that health care disparities exist in genetic testing for hereditary cardiomyopathies within clinical practice and research studies. Methods In a narrative fashion, we conducted a literature search with online databases such as PubMed/MEDLINE, Google Scholar, EMBASE, and Science Direct on papers related to hereditary cardiomyopathies. A comprehensive analysis of findings from articles in English on disparities in diagnostics and treatment was grouped into four categories. Results Racial and ethnic disparities in research study enrollment and health care delivery favor White populations and higher socioeconomic status, resulting in differences in the development and implementation of effective genetic screening. Such disparities have shown to be detrimental, as minorities often suffer from disease progression to heart failure and sudden cardiac death. Barriers related to clinical genetic testing included insurance-related issues and health illiteracy. The underrepresentation of minority populations extends to research methodologies, as testing in ethnic minorities resulted in a significantly lower detection rate and diagnostic yield, as well as a higher likelihood of misclassification of variants. Conclusions Prioritizing minority-based participatory research programs and screening protocols can address systemic disparities. Diversifying research studies can improve risk stratification strategies and impact clinical practice.
Collapse
Affiliation(s)
- Helen Huang
- Department of Medicine, School of Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Science, Dublin, Ireland
| | - Jay Verma
- Department of Medicine, Maulana Azad Medical College, University of Delhi, Delhi, India
| | - Valerie Mok
- Department of Medicine Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hareesha R. Bharadwaj
- Division of Medical Education, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Maen M. Alrawashdeh
- Department of Medicine, School of Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Science, Dublin, Ireland
| | - Adarsh Aratikatla
- Department of Medicine, School of Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Science, Dublin, Ireland
| | - Sourav Sudan
- Department of Medicine, Government Medical College, Jammu, Jammu and Kashmir, India
| | - Suprateeka Talukder
- Department of Medicine, Norfolk and Norwich University Hospital, Colney Lane, Norwich, United Kingdom
| | - Minatoullah Habaka
- Department of Medicine, School of Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Science, Dublin, Ireland
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
- Department of Medicine, Kent and Medway Medical School, Canterbury, Kent, United Kingdom
- Department of Medicine, School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, People's Republic of China
| | - Mainak Bardhan
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, United States
| |
Collapse
|
13
|
Zhang B, Wu Y, Yang X, Xiang Y, Yang B. Molecular insight into arrhythmogenic cardiomyopathy caused by DSG2 mutations. Biomed Pharmacother 2023; 167:115448. [PMID: 37696084 DOI: 10.1016/j.biopha.2023.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
Mutant desmoglein 2 (DSG2) is the second most common pathogenic gene in arrhythmogenic cardiomyopathy (ACM), accounting for approximately 10% of ACM cases. In addition to common clinical and pathological features, ACM caused by mutant DSG2 has specific characteristics, manifesting as left ventricle involvement and a high risk of heart failure. Pathological studies have shown extensive cardiomyocyte necrosis, infiltration of immune cells, and fibrofatty replacement in both ventricles, as well as abnormal desmosome structures in the hearts of humans and mice with mutant DSG2-related ACM. Although desmosome dysfunction is a common pathway in the pathogenesis of mutant DSG2-related ACM, the mechanisms underlying this dysfunction vary among mutations. Desmosome dysfunction induces cardiomyocyte injury, plakoglobin dislocation, and gap junction dysfunction, all of which contribute to the initiation and progression of ACM. Additionally, dysregulated inflammation, overactivation of transforming growth factor-beta-1 signaling and endoplasmic reticulum stress, and cardiac metabolic dysfunction contribute to the pathogenesis of ACM caused by mutant DSG2. These features demonstrate that patients with mutant DSG2-related ACM should be managed individually and precisely based on the genotype and phenotype. Further studies are needed to investigate the underlying mechanisms and to identify novel therapies to reverse or attenuate the progression of ACM caused by mutant DSG2.
Collapse
Affiliation(s)
- Baowei Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai 200120, PR China
| | - Yizhang Wu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai 200120, PR China
| | - Xingbo Yang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 150 Jimo Road, Pudong, Shanghai 200120, PR China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 150 Jimo Road, Pudong, Shanghai 200120, PR China.
| | - Bing Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai 200120, PR China.
| |
Collapse
|
14
|
Vidal-Perez R, Brandão M, Zaher W, Casado-Arroyo R, Bouzas-Mosquera A, Fontes-Carvalho R, Vazquez-Rodriguez JM. Value of cardiac magnetic resonance on the risk stratification of cardiomyopathies. World J Cardiol 2023; 15:487-499. [PMID: 37900906 PMCID: PMC10600791 DOI: 10.4330/wjc.v15.i10.487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Cardiomyopathies represent a diverse group of heart muscle diseases with varying etiologies, presenting a diagnostic challenge due to their heterogeneous manifestations. Regular evaluation using cardiac imaging techniques is imperative as symptoms can evolve over time. These imaging approaches are pivotal for accurate diagnosis, treatment planning, and optimizing prognostic outcomes. Among these, cardiovascular magnetic resonance (CMR) stands out for its ability to provide precise anatomical and functional assessments. This manuscript explores the significant contributions of CMR in the diagnosis and management of patients with cardiomyopathies, with special attention to risk stratification. CMR's high spatial resolution and tissue characterization capabilities enable early detection and differentiation of various cardiomyopathy subtypes. Additionally, it offers valuable insights into myocardial fibrosis, tissue viability, and left ventricular function, crucial parameters for risk stratification and predicting adverse cardiac events. By integrating CMR into clinical practice, clinicians can tailor patient-specific treatment plans, implement timely interventions, and optimize long-term prognosis. The non-invasive nature of CMR reduces the need for invasive procedures, minimizing patient discomfort. This review highlights the vital role of CMR in monitoring disease progression, guiding treatment decisions, and identifying potential complications in patients with cardiomyopathies. The utilization of CMR has significantly advanced our understanding and management of these complex cardiac conditions, leading to improved patient outcomes and a more personalized approach to care.
Collapse
Affiliation(s)
- Rafael Vidal-Perez
- Servicio de Cardiología, Unidad de Imagen y Función Cardíaca, Complexo Hospitalario Universitario A Coruña Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), A Coruña 15006, Galicia, Spain.
| | - Mariana Brandão
- Department of Cardiology, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia 4434-502, Portugal
| | - Wael Zaher
- Department of Cardiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels 1070, Brussels, Belgium
| | - Ruben Casado-Arroyo
- Department of Cardiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels 1070, Brussels, Belgium
| | - Alberto Bouzas-Mosquera
- Servicio de Cardiología, Unidad de Imagen y Función Cardíaca, Complexo Hospitalario Universitario A Coruña Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), A Coruña 15006, Galicia, Spain
| | - Ricardo Fontes-Carvalho
- Department of Cardiology, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia 4434-502, Portugal
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto 4200-319, Portugal
| | | |
Collapse
|
15
|
Remme CA, Heijman J, Gomez AM, Zaza A, Odening KE. 25 years of basic and translational science in EP Europace: novel insights into arrhythmia mechanisms and therapeutic strategies. Europace 2023; 25:euad210. [PMID: 37622575 PMCID: PMC10450791 DOI: 10.1093/europace/euad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 08/26/2023] Open
Abstract
In the last 25 years, EP Europace has published more than 300 basic and translational science articles covering different arrhythmia types (ranging from atrial fibrillation to ventricular tachyarrhythmias), different diseases predisposing to arrhythmia formation (such as genetic arrhythmia disorders and heart failure), and different interventional and pharmacological anti-arrhythmic treatment strategies (ranging from pacing and defibrillation to different ablation approaches and novel drug-therapies). These studies have been conducted in cellular models, small and large animal models, and in the last couple of years increasingly in silico using computational approaches. In sum, these articles have contributed substantially to our pathophysiological understanding of arrhythmia mechanisms and treatment options; many of which have made their way into clinical applications. This review discusses a representative selection of EP Europace manuscripts covering the topics of pacing and ablation, atrial fibrillation, heart failure and pro-arrhythmic ventricular remodelling, ion channel (dys)function and pharmacology, inherited arrhythmia syndromes, and arrhythmogenic cardiomyopathies, highlighting some of the advances of the past 25 years. Given the increasingly recognized complexity and multidisciplinary nature of arrhythmogenesis and continued technological developments, basic and translational electrophysiological research is key advancing the field. EP Europace aims to further increase its contribution to the discovery of arrhythmia mechanisms and the implementation of mechanism-based precision therapy approaches in arrhythmia management.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC location University of Amsterdam, Heart Centre, Academic Medical Center, Room K2-104.2, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ana M Gomez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, 91400 Orsay, France
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, Inselspital University Hospital Bern, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
16
|
van Ham WB, Meijboom EEM, Ligtermoet ML, Nikkels PGJ, van Veen TAB. Maturation and Function of the Intercalated Disc: Report of Two Pediatric Cases Focusing on Cardiac Development and Myocardial Hyperplasia. J Cardiovasc Dev Dis 2023; 10:354. [PMID: 37623366 PMCID: PMC10455643 DOI: 10.3390/jcdd10080354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
The development of the normal human heart, ranging from gestational age to the mature adult heart, relies on a very delicate and timely orchestrated order of processes. One of the most striking alterations in time is the gradual extinction of the ability for cardiomyocytes to proliferate. Once passing this event, cardiomyocytes grow and increase in contractile strength by means of physiological hypertrophy. This process, importantly, seems to depend on an adequate development of electromechanical coupling that is achieved by the appropriate formation of the intercellular junction named the intercalated disc (ICD). In this report, we describe two sudden death cases of young and apparently healthy-born individuals without external abnormalities compared to an age-matched control. Histological examination, including the comparison with the age-matched and histology-matched controls, showed a disturbed formation of the protein machinery composing the electromechanical junctions at the ICD and an increased nuclei count for both patients. As a cause or consequence, cardiomyocytes in both sudden death cases showed signs of a delayed developmental stage, presumably resulting in an exaggerated degree of hyperplasia.
Collapse
Affiliation(s)
- Willem B. van Ham
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Esmeralda E. M. Meijboom
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Merel L. Ligtermoet
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Peter G. J. Nikkels
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Toon A. B. van Veen
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
17
|
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220164. [PMID: 37122208 PMCID: PMC10150216 DOI: 10.1098/rstb.2022.0164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023] Open
Abstract
Influx of sodium ions through voltage-gated sodium channels in cardiomyocytes is essential for proper electrical conduction within the heart. Both acquired conditions associated with sodium channel dysfunction (myocardial ischaemia, heart failure) as well as inherited disorders secondary to mutations in the gene SCN5A encoding for the cardiac sodium channel Nav1.5 are associated with life-threatening arrhythmias. Research in the last decade has uncovered the complex nature of Nav1.5 distribution, function, in particular within distinct subcellular subdomains of cardiomyocytes. Nav1.5-based channels furthermore display previously unrecognized non-electrogenic actions and may impact on cardiac structural integrity, leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed in cell types other than cardiomyocytes as well as various extracardiac tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility, cancer and the innate immune response is increasingly investigated and recognized. This review provides an overview of these novel insights and how they deepen our mechanistic knowledge on SCN5A channelopathies and Nav1.5 (dys)function. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
van der Voorn SM, Bourfiss M, Muller SA, Çimen T, Saguner AM, Duru F, te Riele ASJM, Remme CA, van Veen TAB. Circulating Biomarkers of Fibrosis Formation in Patients with Arrhythmogenic Cardiomyopathy. Biomedicines 2023; 11:biomedicines11030813. [PMID: 36979791 PMCID: PMC10045011 DOI: 10.3390/biomedicines11030813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a progressive inheritable disease which is characterized by a gradual fibro-(fatty) replacement of the myocardium. Visualization of diffuse and patchy fibrosis patterns is challenging using clinically applied cardiac imaging modalities (e.g., late gadolinium enhancement, LGE). During collagen synthesis and breakdown, carboxy–peptides are released into the bloodstream, specifically procollagen type-I carboxy-terminal propeptides (PICP) and collagen type-I carboxy-terminal telopeptides (ICTP). We collected the serum and EDTA blood samples and clinical data of 45 ACM patients (age 50.11 ± 15.53 years, 44% female), divided into 35 diagnosed ACM patients with a 2010 ARVC Task Force Criteria score (TFC) ≥ 4, and 10 preclinical variant carriers with a TFC < 4. PICP levels were measured using an enzyme-linked immune sorbent assay and ICTP levels with a radio immunoassay. Increased PICP/ICTP ratios suggest a higher collagen deposition. We found significantly higher PICP and PICP/ICTP levels in diagnosed patients compared to preclinical variant carriers (p < 0.036 and p < 0.027). A moderate negative correlation existed between right ventricular ejection fractions (RVEF) and the PICP/ICTP ratio (r = −0.46, p = 0.06). In addition, significant correlations with left ventricular function (LVEF r = −0.53, p = 0.03 and end-systolic volume r = 0.63, p = 0.02) were found. These findings indicate impaired contractile performance due to pro-fibrotic remodeling. Follow-up studies including a larger number of patients should be performed to substantiate our findings and the validity of those levels as potential promising biomarkers in ACM.
Collapse
Affiliation(s)
- Stephanie M. van der Voorn
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands
| | - Mimount Bourfiss
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Steven A. Muller
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Tolga Çimen
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Ardan M. Saguner
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Firat Duru
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, CH-8091 Zurich, Switzerland
- Center for Integrative Human Physiology (ZIHP), University of Zurich, CH-8091 Zurich, Switzerland
| | - Anneline S. J. M. te Riele
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Toon A. B. van Veen
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, 3584 CM Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-(0)88-75-589-08
| |
Collapse
|
19
|
Marchal GA, Remme CA. Subcellular diversity of Nav1.5 in cardiomyocytes: distinct functions, mechanisms and targets. J Physiol 2023; 601:941-960. [PMID: 36469003 DOI: 10.1113/jp283086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
In cardiomyocytes, the rapid depolarisation of the membrane potential is mediated by the α-subunit of the cardiac voltage-gated Na+ channel (NaV 1.5), encoded by the gene SCN5A. This ion channel allows positively charged Na+ ions to enter the cardiomyocyte, resulting in the fast upstroke of the action potential and is therefore crucial for cardiac excitability and electrical propagation. This essential role is underscored by the fact that dysfunctional NaV 1.5 is associated with high risk for arrhythmias and sudden cardiac death. However, development of therapeutic interventions regulating NaV 1.5 has been limited due to the complexity of NaV 1.5 structure and function and its diverse roles within the cardiomyocyte. In particular, research from the last decade has provided us with increased knowledge on the subcellular distribution of NaV 1.5 as well as the proteins which it interacts with in distinct cardiomyocyte microdomains. We here review these insights, detailing the potential role of NaV 1.5 within subcellular domains as well as its dysfunction in the setting of arrhythmia disorders. We furthermore provide an overview of current knowledge on the pathways involved in (microdomain-specific) trafficking of NaV 1.5, and their potential as novel targets. Unravelling the complexity of NaV 1.5 (dys)function may ultimately facilitate the development of therapeutic strategies aimed at preventing lethal arrhythmias. This is not only of importance for pathophysiological conditions where sodium current is specifically decreased within certain subcellular regions, such as in arrhythmogenic cardiomyopathy and Duchenne muscular dystrophy, but also for other acquired and inherited disorders associated with NaV 1.5.
Collapse
Affiliation(s)
- Gerard A Marchal
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,National Institute of Optics, National Research Council (CNR-INO), Sesto Fiorentino, Florence, Italy
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Shoykhet M, Waschke J, Yeruva S. Cardiomyocyte cohesion is increased after ADAM17 inhibition. Front Cell Dev Biol 2023; 11:1021595. [PMID: 36733457 PMCID: PMC9887658 DOI: 10.3389/fcell.2023.1021595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
A Disintegrin And Metalloprotease (ADAM) family proteins are involved in several cardiac diseases, and some ADAMs have been associated with cardiomyopathies. ADAM17 is known to cleave desmoglein 2 (DSG2), one of the proteins involved in the pathogenesis of arrhythmogenic cardiomyopathy (AC). Desmosomal stability is impaired in AC, an inheritable genetic disease, the underlying causes of which can be mutations in genes coding for proteins of the desmosome, such as DSG2, desmoplakin (DP), plakoglobin (PG), plakophilin 2 or desmocollin 2. Stabilizing desmosomal contacts can therefore be a treatment option. In the heart of the murine Jup -/- AC model, (Jup being the gene coding for PG) mice, elevated levels of p38MAPK, an activator of ADAM17, were found. However, ADAM17 levels were unaltered in Jup -/- mice hearts. Nonetheless, inhibition of ADAM17 led to enhanced cardiomyocyte cohesion in both Jup +/+ and Jup -/- mice, and in HL-1 cardiomyocytes. Further, enhanced cohesion in HL-1 cardiomyocytes after acute inhibition of ADAM17 was paralleled by enhanced localization of DSG2 and DP at the membrane, whereas no changes in desmosomal assembly or the desmosomal complex were observed. In conclusion, acute inhibition of ADAM17 might lead to reduced cleavage of DSG2, thereby stabilizing the desmosomal adhesion, evidenced by increased DSG2 and DP localization at cell borders and eventually cardiomyocyte cohesion. We believe that similar mechanisms exist in AC.
Collapse
Affiliation(s)
| | | | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University (LMU), Munich, Germany
| |
Collapse
|
21
|
Maione AS, Faris P, Iengo L, Catto V, Bisonni L, Lodola F, Negri S, Casella M, Guarino A, Polvani G, Cerrone M, Tondo C, Pompilio G, Sommariva E, Moccia F. Ca 2+ dysregulation in cardiac stromal cells sustains fibro-adipose remodeling in Arrhythmogenic Cardiomyopathy and can be modulated by flecainide. J Transl Med 2022; 20:522. [PMID: 36371290 PMCID: PMC9652790 DOI: 10.1186/s12967-022-03742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/30/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Cardiac mesenchymal stromal cells (C-MSC) were recently shown to differentiate into adipocytes and myofibroblasts to promote the aberrant remodeling of cardiac tissue that characterizes arrhythmogenic cardiomyopathy (ACM). A calcium (Ca2+) signaling dysfunction, mainly demonstrated in mouse models, is recognized as a mechanism impacting arrhythmic risk in ACM cardiomyocytes. Whether similar mechanisms influence ACM C-MSC fate is still unknown. Thus, we aim to ascertain whether intracellular Ca2+ oscillations and the Ca2+ toolkit are altered in human C-MSC obtained from ACM patients, and to assess their link with C-MSC-specific ACM phenotypes. METHODS AND RESULTS ACM C-MSC show enhanced spontaneous Ca2+ oscillations and concomitant increased Ca2+/Calmodulin dependent kinase II (CaMKII) activation compared to control cells. This is manly linked to a constitutive activation of Store-Operated Ca2+ Entry (SOCE), which leads to enhanced Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate receptors. By targeting the Ca2+ handling machinery or CaMKII activity, we demonstrated a causative link between Ca2+ oscillations and fibro-adipogenic differentiation of ACM C-MSC. Genetic silencing of the desmosomal gene PKP2 mimics the remodelling of the Ca2+ signalling machinery occurring in ACM C-MSC. The anti-arrhythmic drug flecainide inhibits intracellular Ca2+ oscillations and fibro-adipogenic differentiation by selectively targeting SOCE. CONCLUSIONS Altogether, our results extend the knowledge of Ca2+ dysregulation in ACM to the stromal compartment, as an etiologic mechanism of C-MSC-related ACM phenotypes. A new mode of action of flecainide on a novel mechanistic target is unveiled against the fibro-adipose accumulation in ACM.
Collapse
Affiliation(s)
- Angela S Maione
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy.
| | - Pawan Faris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Lara Iengo
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Valentina Catto
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Bisonni
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Francesco Lodola
- Laboratory of Cardiac Cellular Physiology, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Michela Casella
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Cardiology and Arrhythmology Clinic, University Hospital "Umberto I-Salesi-Lancisi", Ancona, Italy
| | - Anna Guarino
- Cardiovascular Tissue Bank of Lombardy, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Polvani
- Cardiovascular Tissue Bank of Lombardy, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Marina Cerrone
- Medicine, Leon H. Charney Division of Cardiology, Heart Rhythm Center and Cardiovascular Genetics Program, New York University School of Medicine, New York, USA
| | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dentist Sciences, University of Milano, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy
- Department of Biomedical, Surgical and Dentist Sciences, University of Milano, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
22
|
Bacova BS, Andelova K, Sykora M, Egan Benova T, Barancik M, Kurahara LH, Tribulova N. Does Myocardial Atrophy Represent Anti-Arrhythmic Phenotype? Biomedicines 2022; 10:2819. [PMID: 36359339 PMCID: PMC9687767 DOI: 10.3390/biomedicines10112819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2023] Open
Abstract
This review focuses on cardiac atrophy resulting from mechanical or metabolic unloading due to various conditions, describing some mechanisms and discussing possible strategies or interventions to prevent, attenuate or reverse myocardial atrophy. An improved awareness of these conditions and an increased focus on the identification of mechanisms and therapeutic targets may facilitate the development of the effective treatment or reversion for cardiac atrophy. It appears that a decrement in the left ventricular mass itself may be the central component in cardiac deconditioning, which avoids the occurrence of life-threatening arrhythmias. The depressed myocardial contractility of atrophied myocardium along with the upregulation of electrical coupling protein, connexin43, the maintenance of its topology, and enhanced PKCƐ signalling may be involved in the anti-arrhythmic phenotype. Meanwhile, persistent myocardial atrophy accompanied by oxidative stress and inflammation, as well as extracellular matrix fibrosis, may lead to severe cardiac dysfunction, and heart failure. Data in the literature suggest that the prevention of heart failure via the attenuation or reversion of myocardial atrophy is possible, although this requires further research.
Collapse
Affiliation(s)
| | - Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Japan
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| |
Collapse
|
23
|
Cheng WH, Chung FP, Lin YJ, Lo LW, Chang SL, Hu YF, Tuan TC, Chao TF, Liao JN, Lin CY, Chang TY, Kuo L, Wu CI, Liu CM, Liu SH, Chen SA. Catheter Ablation in Arrhythmic Cardiac Diseases: Endocardial and Epicardial Ablation. Rev Cardiovasc Med 2022; 23:324. [PMID: 39077706 PMCID: PMC11262352 DOI: 10.31083/j.rcm2309324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 07/31/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a group of arrhythmogenic disorders of the myocardium that are not caused by ischemic, hypertensive, or valvular heart disease. The clinical manifestations of ACMs may overlap those of dilated cardiomyopathy, complicating the differential diagnosis. In several ACMs, ventricular tachycardia (VT) has been observed at an early stage, regardless of the severity of the disease. Therefore, preventing recurrences of VT can be a clinical challenge. There is a wide range of efficacy and side effects associated with the use of antiarrhythmic drugs (AADs) in the treatment of VT. In addition to AADs, patients with ACM and ventricular tachyarrhythmias may benefit from catheter ablation, especially if they are drug-refractory. The differences in pathogenesis between the various types of ACMs can lead to heterogeneous distributions of arrhythmogenic substrates, non-uniform ablation strategies, and distinct ablation outcomes. Ablation has been documented to be effective in eliminating ventricular tachyarrhythmias in arrhythmogenic right ventricular dysplasia (ARVC), sarcoidosis, Chagas cardiomyopathy, and Brugada syndrome (BrS). As an entity that is rare in nature, ablation for ventricular tachycardia in certain forms of ACM may only be reported through case reports, such as amyloidosis and left ventricular noncompaction. Several types of ACMs, including ARVC, sarcoidosis, Chagas cardiomyopathy, BrS, and left ventricular noncompaction, may exhibit diseased substrates within or adjacent to the epicardium that may be accountable for ventricular arrhythmogenesis. As a result, combining endocardial and epicardial ablation is of clinical importance for successful ablation. The purpose of this article is to provide a comprehensive overview of the substrate characteristics, ablation strategies, and ablation outcomes of various types of ACMs using endocardial and epicardial approaches.
Collapse
Affiliation(s)
- Wen-Han Cheng
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
- Department of Medicine, Taipei Veterans General Hospital Taitung Branch, 95050 Taitung, Taiwan
| | - Fa-Po Chung
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Yenn-Jiang Lin
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Li-Wei Lo
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Yu-Feng Hu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Ta-Chuan Tuan
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Tze-Fan Chao
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Jo-Nan Liao
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Chin-Yu Lin
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Ting-Yung Chang
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Ling Kuo
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Cheng-I Wu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Chih-Min Liu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Shin-Huei Liu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, 40705 Taichung, Taiwan
| |
Collapse
|
24
|
Coscarella IL, Landim-Vieira M, Pinto JR, Chelko SP. Arrhythmogenic Cardiomyopathy: Exercise Pitfalls, Role of Connexin-43, and Moving beyond Antiarrhythmics. Int J Mol Sci 2022; 23:ijms23158753. [PMID: 35955883 PMCID: PMC9369094 DOI: 10.3390/ijms23158753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/11/2022] Open
Abstract
Arrhythmogenic Cardiomyopathy (ACM), a Mendelian disorder that can affect both left and right ventricles, is most often associated with pathogenic desmosomal variants that can lead to fibrofatty replacement of the myocardium, a pathological hallmark of this disease. Current therapies are aimed to prevent the worsening of disease phenotypes and sudden cardiac death (SCD). Despite the use of implantable cardioverter defibrillators (ICDs) there is no present therapy that would mitigate the loss in electrical signal and propagation by these fibrofatty barriers. Recent studies have shown the influence of forced vs. voluntary exercise in a variety of healthy and diseased mice; more specifically, that exercised mice show increased Connexin-43 (Cx43) expression levels. Fascinatingly, increased Cx43 expression ameliorated the abnormal electrical signal conduction in the myocardium of diseased mice. These findings point to a major translational pitfall in current therapeutics for ACM patients, who are advised to completely cease exercising and already demonstrate reduced Cx43 levels at the myocyte intercalated disc. Considering cardiac dysfunction in ACM arises from the loss of cardiomyocytes and electrical signal conduction abnormalities, an increase in Cx43 expression-promoted by low to moderate intensity exercise and/or gene therapy-could very well improve cardiac function in ACM patients.
Collapse
Affiliation(s)
- Isabella Leite Coscarella
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32303, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32303, USA
| | - José Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32303, USA
| | - Stephen P. Chelko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32303, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21215, USA
- Correspondence: ; Tel.: +1-850-644-2215
| |
Collapse
|
25
|
A novel mRNA decay inhibitor abolishes pathophysiological cellular transition. Cell Death Dis 2022; 8:278. [PMID: 35672286 PMCID: PMC9174231 DOI: 10.1038/s41420-022-01076-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
In cells, mRNA synthesis and decay are influenced by each other, and their balance is altered by either external or internal cues, resulting in changes in cell dynamics. We previously reported that it is important that an array of mRNAs that shape a phenotype are degraded before cellular transitions, such as cellular reprogramming and differentiation. In adipogenesis, the interaction between DDX6 and 4E-T had a definitive impact on the pathway in the processing body (PB). We screened a library of α-helix analogs with an alkaloid-like backbone to identify compounds that inhibit the binding between DDX6 and 4E-T proteins, which occurs between the α-helix of structured and internally disordered proteins. IAMC-00192 was identified as a lead compound. This compound directly inhibited the interaction between DDX6 and 4E-T. IAMC-00192 inhibited the temporal increase in PB formation that occurs during adipogenesis and epithelial-mesenchymal transition (EMT) and significantly suppressed these cellular transitions. In the EMT model, the half-life of preexisting mRNAs in PBs was extended twofold by the compound. The novel inhibitor of RNA decay not only represents a potentially useful tool to analyze in detail the pathological conditions affected by RNA decay and how it regulates the pathological state. The identification of this inhibitor may lead to the discovery of a first-in-class RNA decay inhibitor drug. ![]()
Collapse
|
26
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
27
|
Manole S, Pintican R, Popa G, Rancea R, Dadarlat-Pop A, Vulturar R, Palade E. Diagnostic Challenges in Rare Causes of Arrhythmogenic Cardiomyopathy—The Role of Cardiac MRI. J Pers Med 2022; 12:jpm12020187. [PMID: 35207675 PMCID: PMC8878419 DOI: 10.3390/jpm12020187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Arrhythmogenic right ventricular dysplasia (ARVD) is a rare genetic condition of the myocardium, with a significantly high risk of sudden death. Recent genetic research and improved understanding of the pathophysiology tend to change the ARVD definition towards a larger spectrum of myocardial involvement, which includes, in various proportions, both the right (RV) and left ventricle (LV), currently referred to as ACM (arrhythmogenic cardiomyopathy). Its pathological substrate is defined by the replacement of the ventricular myocardium with fibrous adipose tissue that further leads to inadequate electrical impulses and translates into varies degrees of malignant ventricular arrythmias and dyskinetic myocardium movements. Particularly, the cardio-cutaneous syndromes of Carvajal/Naxos represent rare causes of ACM that might be suspected from early childhood. The diagnostic is sometimes challenging, even with well-established rTFC or Padua criteria, especially for pediatric patients or ACM with LV involvement. Cardiac MRI gain more and more importance in ACM diagnostic especially in non-classical forms. Furthermore, MRI is useful in highlighting myocardial fibrosis, fatty replacement or wall movement with high accuracy, thus guiding not only the depiction, but also the patient’s stratification and management.
Collapse
Affiliation(s)
- Simona Manole
- Department of Radiology and Medical Imaging, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj Napoca, 8, Victor Babes St., 400012 Cluj-Napoca, Romania;
- Department of Radiology, “Niculae Stancioiu” Heart Institute, 19-21, Calea Motilor St., 400001 Cluj-Napoca, Romania
| | - Roxana Pintican
- Department of Radiology and Medical Imaging, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj Napoca, 8, Victor Babes St., 400012 Cluj-Napoca, Romania;
- Correspondence: (R.P.); (G.P.)
| | - George Popa
- Department of Radiology, “Niculae Stancioiu” Heart Institute, 19-21, Calea Motilor St., 400001 Cluj-Napoca, Romania
- Correspondence: (R.P.); (G.P.)
| | - Raluca Rancea
- Department of Cardiology, “Niculae Stăncioiu” Heart Institute, 400001 Cluj-Napoca, Romania; (R.R.); (A.D.-P.)
| | - Alexandra Dadarlat-Pop
- Department of Cardiology, “Niculae Stăncioiu” Heart Institute, 400001 Cluj-Napoca, Romania; (R.R.); (A.D.-P.)
- Department of Cardiology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj Napoca, 8, Victor Babes, St., 400012 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Emanuel Palade
- Department of Cardiovascular and Thoracic Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj Napoca, 8, Victor Babes, St., 400012 Cluj-Napoca, Romania;
- Department of Thoracic Surgery, “Leon Daniello” Pneumophtysiology Hospital Cluj-Napoca, Bogdan Petriceicu Hasdeu Street, Nr 6, 400332 Cluj-Napoca, Romania
| |
Collapse
|
28
|
Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022; 74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Lena Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Selgin D Cakal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Francesco S Paqualini
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Sravan K Goparaju
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Johan Ulrik Lind
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| |
Collapse
|
29
|
Cardiomyopathies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Bueno-Beti C, Asimaki A. Histopathological Features and Protein Markers of Arrhythmogenic Cardiomyopathy. Front Cardiovasc Med 2021; 8:746321. [PMID: 34950711 PMCID: PMC8688541 DOI: 10.3389/fcvm.2021.746321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a heritable heart muscle disease characterized by syncope, palpitations, ventricular arrhythmias and sudden cardiac death (SCD) especially in young individuals. It is estimated to affect 1:5,000 individuals in the general population, with >60% of patients bearing one or more mutations in genes coding for desmosomal proteins. Desmosomes are intercellular adhesion junctions, which in cardiac myocytes reside within the intercalated disks (IDs), the areas of mechanical and electrical cell-cell coupling. Histologically, ACM is characterized by fibrofatty replacement of cardiac myocytes predominantly in the right ventricular free wall though left ventricular and biventricular forms have also been described. The disease is characterized by age-related progression, vast phenotypic manifestation and incomplete penetrance, making proband diagnosis and risk stratification of family members particularly challenging. Key protein redistribution at the IDs may represent a specific diagnostic marker but its applicability is still limited by the need for a myocardial sample. Specific markers of ACM in surrogate tissues, such as the blood and the buccal epithelium, may represent a non-invasive, safe and inexpensive alternative for diagnosis and cascade screening. In this review, we shall cover the most relevant biomarkers so far reported and discuss their potential impact on the diagnosis, prognosis and management of ACM.
Collapse
Affiliation(s)
| | - Angeliki Asimaki
- Molecular and Clinical Sciences Research Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
31
|
Siskin M, Cerrone M, Shokr M, Aizer A, Barbhaiya C, Dai M, Bernstein S, Holmes D, Knotts R, Park DS, Spinelli M, Chinitz LA, Jankelson L. ICD shocks and complications in patients with inherited arrhythmia syndromes. IJC HEART & VASCULATURE 2021; 37:100908. [PMID: 34765721 PMCID: PMC8569698 DOI: 10.1016/j.ijcha.2021.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND There is limited information on the long-term outcomes of ICDs in patients with inherited arrhythmia syndromes. METHODS Prospective registry study of inherited arrhythmia patients with an ICD. Incidence of therapies and complications were measured as 5-year cumulative incidence proportions and analyzed with the Kaplan-Meier method. Incidence was compared by device indication, diagnosis type and device type. Cox-regression analysis was used to identify predictors of appropriate shock and device complication. RESULTS 123 patients with a mean follow up of 6.4 ± 4.8 years were included. The incidence of first appropriate shock was 56.52% vs 24.44%, p < 0.05 for cardiomyopathy and channelopathy patients, despite similar ejection fraction (61% vs 60%, p = 0.6). The incidence of first inappropriate shock was 13.46% vs 56.25%, p < 0.01 for single vs. multi-lead devices. The incidence of first lead complication was higher for multi-lead vs. single lead devices, 43.75% vs. 17.31%, p = 0.04. Patients with an ICD for secondary prevention were more likely to receive an appropriate shock than those with primary prevention indication (HR 2.21, CI 1.07-4.56, p = 0.03). Multi-lead devices were associated with higher risk of inappropriate shock (HR 3.99, CI 1.27-12.52, p = 0.02), with similar appropriate shock risk compared to single lead devices. In 26.5% of patients with dual chamber devices, atrial sensing or pacing was not utilized. CONCLUSION The rate of appropriate therapies and ICD complications in patients with inherited arrhythmia is high, particularly in cardiomyopathies with multi-lead devices. Risk-benefit ratio should be carefully considered when assessing the indication and type of device in this population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lior Jankelson
- Corresponding author at: Leon H. Charney Division of Cardiology New York University Langone Health 516 1st Avenue, New York 10016, USA.
| |
Collapse
|
32
|
Odening KE, Gomez AM, Dobrev D, Fabritz L, Heinzel FR, Mangoni ME, Molina CE, Sacconi L, Smith G, Stengl M, Thomas D, Zaza A, Remme CA, Heijman J. ESC working group on cardiac cellular electrophysiology position paper: relevance, opportunities, and limitations of experimental models for cardiac electrophysiology research. Europace 2021; 23:1795-1814. [PMID: 34313298 PMCID: PMC11636574 DOI: 10.1093/europace/euab142] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias are a major cause of death and disability. A large number of experimental cell and animal models have been developed to study arrhythmogenic diseases. These models have provided important insights into the underlying arrhythmia mechanisms and translational options for their therapeutic management. This position paper from the ESC Working Group on Cardiac Cellular Electrophysiology provides an overview of (i) currently available in vitro, ex vivo, and in vivo electrophysiological research methodologies, (ii) the most commonly used experimental (cellular and animal) models for cardiac arrhythmias including relevant species differences, (iii) the use of human cardiac tissue, induced pluripotent stem cell (hiPSC)-derived and in silico models to study cardiac arrhythmias, and (iv) the availability, relevance, limitations, and opportunities of these cellular and animal models to recapitulate specific acquired and inherited arrhythmogenic diseases, including atrial fibrillation, heart failure, cardiomyopathy, myocarditis, sinus node, and conduction disorders and channelopathies. By promoting a better understanding of these models and their limitations, this position paper aims to improve the quality of basic research in cardiac electrophysiology, with the ultimate goal to facilitate the clinical translation and application of basic electrophysiological research findings on arrhythmia mechanisms and therapies.
Collapse
Affiliation(s)
- Katja E Odening
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
- Institute of Physiology, University of Bern, Bern, Switzerland
| | - Ana-Maria Gomez
- Signaling and cardiovascular pathophysiology—UMR-S 1180, Inserm, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Hospital Birmingham NHS Trust, Birmingham, UK
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Cristina E Molina
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Leonardo Sacconi
- National Institute of Optics and European Laboratory for Non Linear Spectroscopy, Italy
- Institute for Experimental Cardiovascular Medicine, University Freiburg, Germany
| | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Milan Stengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Dierk Thomas
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Heidelberg/Mannheim, Germany
| | - Antonio Zaza
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milano, Italy
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
33
|
Shinomiya H, Kato H, Kuramoto Y, Watanabe N, Tsuruda T, Arimura T, Miyashita Y, Miyasaka Y, Mashimo T, Takuwa A, Motooka D, Okuzaki D, Matsuoka K, Tsukamoto O, Hakui H, Yamada N, Lee JK, Kioka H, Kitakaze M, Takashima S, Sakata Y, Asano Y. Aberrant accumulation of TMEM43 accompanied by perturbed transmural gene expression in arrhythmogenic cardiomyopathy. FASEB J 2021; 35:e21994. [PMID: 34674311 DOI: 10.1096/fj.202100800r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 01/06/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) caused by TMEM43 p.S358L is a fully penetrant heart disease that results in impaired cardiac function or fatal arrhythmia. However, the molecular mechanism of ACM caused by the TMEM43 variant has not yet been fully elucidated. In this study, we generated knock-in (KI) rats harboring a Tmem43 p.S358L mutation and established induced pluripotent stem cells (iPSCs) from patients based on the identification of TMEM43 p.S358L variant from a family with ACM. The Tmem43-S358L KI rats exhibited ventricular arrhythmia and fibrotic myocardial replacement in the subepicardium, which recapitulated the human ACM phenotype. The four-transmembrane protein TMEM43 with the p.S358L variant (TMEM43S358L ) was found to be modified by N-linked glycosylation in both KI rat cardiomyocytes and patient-specific iPSC-derived cardiomyocytes. TMEM43S358L glycosylation increased under the conditions of enhanced endoplasmic reticulum (ER) stress caused by pharmacological stimulation or age-dependent decline of the ER function. Intriguingly, the specific glycosylation of TMEM43S358L resulted from the altered membrane topology of TMEM43. Moreover, unlike TMEM43WT , which is mainly localized to the ER, TMEM43S358L accumulated at the nuclear envelope of cardiomyocytes with the increase in glycosylation. Finally, our comprehensive transcriptomic analysis demonstrated that the regional differences in gene expression patterns between the inner and outer layers observed in the wild type myocardium were partially diminished in the KI myocardium prior to exhibiting histological changes indicative of ACM. Altogether, these findings suggest that the aberrant accumulation of TMEM43S358L underlies the pathogenesis of ACM caused by TMEM43 p.S358L variant by affecting the transmural gene expression within the myocardium.
Collapse
Affiliation(s)
- Haruki Shinomiya
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Nozomi Watanabe
- Division of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshihiro Tsuruda
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tadaaki Arimura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yohei Miyashita
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ayako Takuwa
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ken Matsuoka
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideyuki Hakui
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Noriaki Yamada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jong-Kook Lee
- Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
34
|
Heart Failure in Patients with Arrhythmogenic Cardiomyopathy. J Clin Med 2021; 10:jcm10204782. [PMID: 34682905 PMCID: PMC8540844 DOI: 10.3390/jcm10204782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a rare inherited cardiomyopathy characterized as fibro-fatty replacement, and a common cause for sudden cardiac death in young athletes. Development of heart failure (HF) has been an under-recognized complication of ACM for a long time. The current clinical management guidelines for HF in ACM progression have nowadays been updated. Thus, a comprehensive review for this great achievement in our understanding of HF in ACM is necessary. In this review, we aim to describe the research progress on epidemiology, clinical characteristics, risk stratification and therapeutics of HF in ACM.
Collapse
|
35
|
Lin YN, Mesquita T, Sanchez L, Chen YH, Liu W, Li C, Rogers R, Wang Y, Li X, Wu D, Zhang R, Ibrahim A, Marbán E, Cingolani E. Extracellular vesicles from immortalized cardiosphere-derived cells attenuate arrhythmogenic cardiomyopathy in desmoglein-2 mutant mice. Eur Heart J 2021; 42:3558-3571. [PMID: 34345905 PMCID: PMC8442111 DOI: 10.1093/eurheartj/ehab419] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/28/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023] Open
Abstract
AIMS Arrhythmogenic cardiomyopathy (ACM) is characterized by progressive loss of cardiomyocytes, and fibrofatty tissue replacement. Extracellular vesicles (EVs) secreted by cardiosphere-derived cells, immortalized, and engineered to express high levels of β-catenin, exert anti-inflammatory, and anti-fibrotic effects. The aim of the current study was to assess efficacy of EVs in an ACM murine model. METHODS AND RESULTS Four-week-old homozygous knock-in mutant desmoglein-2 (Dsg2mt/mt) were randomized to receive weekly EVs or vehicle for 4 weeks. After 4 weeks, DSG2mt/mt mice receiving EVs showed improved biventricular function (left, P < 0.0001; right, P = 0.0037) and less left ventricular dilation (P < 0.0179). Electrocardiography revealed abbreviated QRS duration (P = 0.0003) and QTc interval (P = 0.0006) in EV-treated DSG2mt/mt mice. Further electrophysiology testing in the EV group showed decreased burden (P = 0.0042) and inducibility of ventricular arrhythmias (P = 0.0037). Optical mapping demonstrated accelerated repolarization (P = 0.0290) and faster conduction (P = 0.0274) in Dsg2mt/mt mice receiving EVs. DSG2mt/mt hearts exhibited reduced fibrosis, less cell death, and preserved connexin 43 expression after EV treatment. Hearts of Dsg2mt/mt mice expressed markedly increased levels of inflammatory cytokines that were, in part, attenuated by EV therapy. The pan-inflammatory transcription factor nuclear factor-κB (NF-κB), the inflammasome sensor NLRP3, and the macrophage marker CD68 were all reduced in EV-treated animals. Blocking EV hsa-miR-4488 in vitro and in vivo reactivates NF-κB and blunts the beneficial effects of EVs. CONCLUSIONS Extracellular vesicle treatment improved cardiac function, reduced cardiac inflammation, and suppressed arrhythmogenesis in ACM. Further studies are needed prior to translating the present findings to human forms of this heterogenous disease.
Collapse
Affiliation(s)
- Yen-Nien Lin
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University and Hospital, 2, Yu-Der Road, North District, Taichung 40447, Taiwan; and
| | - Thassio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Lizbeth Sanchez
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Yin-Huei Chen
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University and Hospital, 2, Yu-Der Road, North District, Taichung 40447, Taiwan; and
| | - Weixin Liu
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Chang Li
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Russell Rogers
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd. Los Angeles, CA 90048, USA
| | - Xinling Li
- Genomics Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd. Los Angeles, CA 90048, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd. Los Angeles, CA 90048, USA
| | - Rui Zhang
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Ahmed Ibrahim
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| |
Collapse
|
36
|
Priori SG, Remme CA. Inherited conditions of arrhythmia: translating disease mechanisms to patient management. Cardiovasc Res 2021; 116:1539-1541. [PMID: 32449748 PMCID: PMC7341161 DOI: 10.1093/cvr/cvaa150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Silvia G Priori
- Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Pagiatakis C, Di Mauro V. The Emerging Role of Epigenetics in Therapeutic Targeting of Cardiomyopathies. Int J Mol Sci 2021; 22:ijms22168721. [PMID: 34445422 PMCID: PMC8395924 DOI: 10.3390/ijms22168721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathies (CMPs) are a heterogeneous group of myocardial diseases accountable for the majority of cases of heart failure (HF) and/or sudden cardiac death (SCD) worldwide. With the recent advances in genomics, the original classification of CMPs on the basis of morphological and functional criteria (dilated (DCM), hypertrophic (HCM), restrictive (RCM), and arrhythmogenic ventricular cardiomyopathy (AVC)) was further refined into genetic (inherited or familial) and acquired (non-inherited or secondary) forms. Despite substantial progress in the identification of novel CMP-associated genetic variations, as well as improved clinical recognition diagnoses, the functional consequences of these mutations and the exact details of the signaling pathways leading to hypertrophy, dilation, and/or contractile impairment remain elusive. To date, global research has mainly focused on the genetic factors underlying CMP pathogenesis. However, growing evidence shows that alterations in molecular mediators associated with the diagnosis of CMPs are not always correlated with genetic mutations, suggesting that additional mechanisms, such as epigenetics, may play a role in the onset or progression of CMPs. This review summarizes published findings of inherited CMPs with a specific focus on the potential role of epigenetic mechanisms in regulating these cardiac disorders.
Collapse
Affiliation(s)
- Christina Pagiatakis
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Correspondence: (C.P.); (V.D.M.)
| | - Vittoria Di Mauro
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Via Fantoli 16/15, 20138 Milan, Italy
- Correspondence: (C.P.); (V.D.M.)
| |
Collapse
|
38
|
Migliore F, Mattesi G, Zorzi A, Bauce B, Rigato I, Corrado D, Cipriani A. Arrhythmogenic Cardiomyopathy-Current Treatment and Future Options. J Clin Med 2021; 10:2750. [PMID: 34206637 PMCID: PMC8268983 DOI: 10.3390/jcm10132750] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inheritable heart muscle disease characterised pathologically by fibrofatty myocardial replacement and clinically by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). Although, in its original description, the disease was believed to predominantly involve the right ventricle, biventricular and left-dominant variants, in which the myocardial lesions affect in parallel or even mostly the left ventricle, are nowadays commonly observed. The clinical management of these patients has two main purposes: the prevention of SCD and the control of arrhythmic and heart failure (HF) events. An implantable cardioverter defibrillator (ICD) is the only proven lifesaving treatment, despite significant morbidity because of device-related complications and inappropriate shocks. Selection of patients who can benefit the most from ICD therapy is one of the most challenging issues in clinical practice. Risk stratification in ACM patients is mostly based on arrhythmic burden and ventricular dysfunction severity, although other clinical features resulting from electrocardiogram and imaging modalities such as cardiac magnetic resonance may have a role. Medical therapy is crucial for treatment of VAs and the prevention of negative ventricular remodelling. In this regard, the efficacy of novel anti-HF molecules and drugs acting on the inflammatory pathway in patients with ACM is, to date, unknown. Catheter ablation represents an effective strategy to treat ventricular tachycardia relapses and recurrent ICD shocks. The present review will address the current strategies for prevention of SCD and treatment of VAs and HF in patients with ACM.
Collapse
Affiliation(s)
- Federico Migliore
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Giulia Mattesi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
39
|
Bosman LP, Te Riele ASJM. Arrhythmogenic right ventricular cardiomyopathy: a focused update on diagnosis and risk stratification. Heart 2021; 108:90-97. [PMID: 33990412 DOI: 10.1136/heartjnl-2021-319113] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy characterised by fibrofatty replacement of predominantly the right ventricle and high risk of ventricular arrhythmias and sudden cardiac death (SCD). Early diagnosis and accurate risk assessment are challenging yet essential for SCD prevention. This manuscript summarises the current state of the art on ARVC diagnosis and risk stratification. Improving the 2010 diagnostic criteria is an ongoing discussion. Several studies suggest that early diagnosis may be facilitated by including deformation imaging ('strain') for objective assessment of wall motion abnormalities, which was shown to have high sensitivity for preclinical disease. Adding fibrofatty replacement detected by late gadolinium enhancement or T1 mapping in cardiac MRI as criterion for diagnosis is increasingly suggested but requires more supporting evidence from consecutive patient cohorts. In addition to the traditional right-dominant ARVC, standard criteria for arrhythmogenic cardiomyopathy (ACM) and arrhythmogenic left ventricular cardiomyopathy (ALVC) are on the horizon. After diagnosis confirmation, the primary management goal is SCD prevention, for which an implantable cardioverter-defibrillator is the only proven therapy. Prior studies determined that younger age, male sex, previous (non-) sustained ventricular tachycardia, syncope, extent of T-wave inversion, frequent premature ectopic beats and lower biventricular ejection fraction are risk factors for subsequent events. Previous implantable cardioverter-defibrillator indication guidelines were however limited to three expert-opinion flow charts stratifying patients in risk groups. Now, two multivariable risk prediction models (arvcrisk.com) combine the abovementioned risk factors to estimate individual risks. Of note, both the flow charts and prediction models require clinical validation studies to determine which should be recommended.
Collapse
Affiliation(s)
- Laurens P Bosman
- Cardiology, UMC Utrecht, Utrecht, The Netherlands.,ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| | - Anneline S J M Te Riele
- Cardiology, UMC Utrecht, Utrecht, The Netherlands .,ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
40
|
Ren J, Tsilafakis K, Chen L, Lekkos K, Kostavasili I, Varela A, Cokkinos DV, Davos CH, Sun X, Song J, Mavroidis M. Crosstalk between coagulation and complement activation promotes cardiac dysfunction in arrhythmogenic right ventricular cardiomyopathy. Theranostics 2021; 11:5939-5954. [PMID: 33897891 PMCID: PMC8058736 DOI: 10.7150/thno.58160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Aims: We previously found that complement components are upregulated in the myocardium of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), and inhibiting the complement receptor C5aR reduces disease severity in desmin knockout (Des-/- ) mice, a model for ARVC. Here, we examined the mechanism underlying complement activation in ARVC, revealing a potential new therapeutic target. Methods: First, immunostaining, RT-PCR and western blot were used to detect the expression levels of complement and coagulation factors. Second, we knocked out the central complement component C3 in Des-/- mice (ARVC model) by crossing Des-/- mice with C3-/- mice to explore whether complement system activation occurs independently of the conventional pathway. Then, we evaluated whether a targeted intervention to coagulation system is effective to reduce myocardium injury. Finally, the plasma sC5b9 level was assessed to investigate the role in predicting adverse cardiac events in the ARVC cohort. Results: The complement system is activated in the myocardium in ARVC. Autoantibodies against myocardial proteins provided a possible mechanism underlying. Moreover, we found increased levels of myocardial C5 and the serum C5a in Des-/-C3-/- mice compared to wild-type mice, indicating that C5 is activated independently from the conventional pathway, presumably via the coagulation system. Crosstalk between the complement and coagulation systems exacerbated the myocardial injury in ARVC mice, and this injury was reduced by using the thrombin inhibitor lepirudin. In addition, we found significantly elevated plasma levels of sC5b9 and thrombin in patients, and this increase was correlated with all-cause mortality. Conclusions: These results suggest that crosstalk between the coagulation and complement systems plays a pathogenic role in cardiac dysfunction in ARVC. Thus, understanding this crosstalk may have important clinical implications with respect to diagnosing and treating ARVC.
Collapse
Affiliation(s)
- Jie Ren
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | | | - Liang Chen
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Konstantinos Lekkos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Ioanna Kostavasili
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Aimilia Varela
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Dennis V. Cokkinos
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Constantinos H. Davos
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiaogang Sun
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Jiangping Song
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
41
|
Andelova K, Egan Benova T, Szeiffova Bacova B, Sykora M, Prado NJ, Diez ER, Hlivak P, Tribulova N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int J Mol Sci 2020; 22:ijms22010260. [PMID: 33383853 PMCID: PMC7795512 DOI: 10.3390/ijms22010260] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.
Collapse
Affiliation(s)
- Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Emiliano Raul Diez
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
- Correspondence: ; Tel.: +421-2-32295-423
| |
Collapse
|