1
|
Berillo O, Schiffrin EL. Advances in Understanding of the Role of Immune Cell Phenotypes in Hypertension and Associated Vascular Disease. Can J Cardiol 2024; 40:2321-2339. [PMID: 39154911 DOI: 10.1016/j.cjca.2024.08.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Many studies in the past 20 years have identified a contribution of inflammation and immune mechanisms to the pathophysiology of hypertension. Innate and adaptive immunity participate in this process. Among innate immune cells, macrophages and monocytes as well as dendritic cells, myeloid-derived suppressor cells, and neutrophils directly or via formation of neutrophil extracellular traps, play roles in the modulation of the inflammatory response in hypertension. Among adaptive immune cells, T and B cells have been implicated to varying degrees, particularly interleukin (IL)-17- and interferon γ-producing T lymphocytes, antagonized by T regulatory lymphocytes that are anti-inflammatory via production of IL-10. Among T cells that produce abundant IL-17, γδ T cells are unconventional T lymphocytes that are infrequent in the circulation in contrast to the much more abundant circulating αβ T lymphocytes, but are found mostly in tissues, and appear to play a role in triggering and sustaining inflammation in hypertension leading to vascular and renal injury. This review will provide an overview of these different immune cell phenotypes involved in the immune pathophysiology of hypertension and associated vascular disease.
Collapse
Affiliation(s)
- Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada; Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Zimbru EL, Zimbru RI, Ordodi VL, Bojin FM, Crîsnic D, Andor M, Mirica SN, Huțu I, Tănasie G, Haidar L, Nistor D, Velcean L, Păunescu V, Panaitescu C. Rosuvastatin Attenuates Vascular Dysfunction Induced by High-Fructose Diets and Allergic Asthma in Rats. Nutrients 2024; 16:4104. [PMID: 39683498 DOI: 10.3390/nu16234104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND A growing body of evidence links a high-fructose diet (HFrD) to metabolic disturbances, including inflammation, dyslipidemia, insulin resistance and also endothelial dysfunction, yet its role in allergic asthma remains underexplored. Considering that obesity and hypercholesterolemia exacerbate asthma by promoting systemic inflammation, investigating interventions with dual metabolic and anti-inflammatory effects is essential. This study aimed to evaluate the potential modulatory effects of rosuvastatin in ameliorating the effects of HFrD-induced metabolic and vascular dysfunction in the context of allergic asthma. METHODS Forty-eight Sprague-Dawley rats were assigned to eight groups, receiving either a standard or HFrD for 12 weeks. Allergic asthma was induced using an ovalbumin sensitization and challenge protocol, while controls were administered saline. Selected groups were treated with rosuvastatin throughout the entire duration of the experiment. Body weight, abdominal circumference and serum biomarkers were assessed at baseline, 6 and 12 weeks. Endothelial function was assessed by evaluating vascular reactivity in an isolated organ bath. Additionally, histopathological analyses of aortic and pulmonary tissues were conducted to investigate inflammatory responses and morphological changes. RESULTS Rats on HFrDs exhibited significant increases in body weight, abdominal circumference, lipid profiles and blood glucose, which were further aggravated by allergic asthma. Rosuvastatin treatment notably reduced lipid levels, C-reactive protein and immunoglobulin E, while also enhancing vascular reactivity and attenuating aortic and bronchial wall thickening. CONCLUSIONS Our findings suggest that rosuvastatin may serve as an effective therapeutic agent for addressing vascular and inflammatory complications associated with a high fructose intake and allergic asthma.
Collapse
Affiliation(s)
- Elena-Larisa Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Răzvan-Ionuț Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Valentin-Laurențiu Ordodi
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
- Chemistry and Engineering of Organic and Natural Compounds Department, University Politehnica Timisoara, 300006 Timisoara, Romania
| | - Florina-Maria Bojin
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Daniela Crîsnic
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Minodora Andor
- Discipline of Medical Semiotics II, Department V-Internal Medicine-1, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Multidisciplinary Heart Research Center, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Silvia-Nicoleta Mirica
- Faculty of Sport and Physical Education, West University of Timisoara, 4 Vasile Parvan Bd., 300223 Timisoara, Romania
| | - Ioan Huțu
- Horia Cernescu Research Unit, Faculty of Veterinary Medicine, University of Life Sciences "King Michael I of Romania", 300645 Timisoara, Romania
| | - Gabriela Tănasie
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Laura Haidar
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Daciana Nistor
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Luminița Velcean
- Cardiology Clinic of the Timisoara Municipal Clinical Emergency Hospital, 12 Revolution of 1989 Bd., 300040 Timisoara, Romania
| | - Virgil Păunescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| |
Collapse
|
3
|
Xu ZZ, Zhou J, Duan K, Li XT, Chang S, Huang W, Lu Q, Tao J, Xie WB. Blocking Sigmar1 exacerbates methamphetamine-induced hypertension. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167284. [PMID: 38851304 DOI: 10.1016/j.bbadis.2024.167284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
AIM Methamphetamine (METH) chronic exposure is an important risk factor for hypertension development. However, the mechanisms behind METH-induced hypertension remain unclear. Therefore, we aimed to reveal the potential mechanisms underlying METH-induced hypertension. METHODS AND RESULTS We structured the mouse hypertension model by METH, and observed that METH-treated mice have presented vascular remodeling (large-and small-size arteries) with collagen deposit around the vessel and increasing blood pressure (BP) and Sigma1 receptor (Sigmar1) in vascular tissue. We hypothesized that Sigmar1 is crucial in METH-induced hypertension and vascular remodeling. Sigmar1 knockout (KO) mice and antagonist (BD1047) pretreated mice exposed to METH for six-week showed higher BP and more collagen deposited around vessels than wild-type (WT) mice exposed to METH for six-week, in contrast, mice pretreated with Sigmar1 agonist (PRE-084) had unchanged BP and perivascular collagen despite the six-week METH exposure. Furthermore, we found that METH exposure induced vascular smooth muscle cells (VSMCs) and mesenchymal stem cells to differentiate into the myofibroblast-like cell and secrete collagen into surrounding vessels. Mechanically, Sigmar1 can suppress the COL1A1 expression by blocking the classical fibrotic TGF-β/Smad2/3 signaling pathway in METH-exposed VSMCs and mesenchymal stem cells. CONCLUSION Our results suggest that Sigmar1 is involved in METH-induced hypertension and vascular fibrosis by blocking the activation of the TGF-β/Smad2/3 signaling pathway. Accordingly, Sigmar1 may be a novel therapeutic target for METH-induced hypertension and vascular fibrosis.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Blood Pressure/drug effects
- Collagen/metabolism
- Disease Models, Animal
- Hypertension/chemically induced
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/genetics
- Mesenchymal Stem Cells/metabolism
- Methamphetamine/adverse effects
- Methamphetamine/toxicity
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Receptors, sigma/metabolism
- Receptors, sigma/genetics
- Sigma-1 Receptor
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Zhen-Zhen Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Jie Zhou
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Ke Duan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Xiao-Ting Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Sheng Chang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Wanshan Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Qiujun Lu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Jing Tao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Wei-Bing Xie
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
4
|
Nguyen BA, Alexander MR, Harrison DG. Immune mechanisms in the pathophysiology of hypertension. Nat Rev Nephrol 2024; 20:530-540. [PMID: 38658669 DOI: 10.1038/s41581-024-00838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Hypertension is a leading risk factor for morbidity and mortality worldwide. Despite current anti-hypertensive therapies, most individuals with hypertension fail to achieve adequate blood pressure control. Moreover, even with adequate control, a residual risk of cardiovascular events and associated organ damage remains. These findings suggest that current treatment modalities are not addressing a key element of the underlying pathology. Emerging evidence implicates immune cells as key mediators in the development and progression of hypertension. In this Review, we discuss our current understanding of the diverse roles of innate and adaptive immune cells in hypertension, highlighting key findings from human and rodent studies. We explore mechanisms by which these immune cells promote hypertensive pathophysiology, shedding light on their multifaceted involvement. In addition, we highlight advances in our understanding of autoimmunity, HIV and immune checkpoints that provide valuable insight into mechanisms of chronic and dysregulated inflammation in hypertension.
Collapse
Affiliation(s)
- Bianca A Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Matthew R Alexander
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| | - David G Harrison
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Totoń-Żurańska J, Mikolajczyk TP, Saju B, Guzik TJ. Vascular remodelling in cardiovascular diseases: hypertension, oxidation, and inflammation. Clin Sci (Lond) 2024; 138:817-850. [PMID: 38920058 DOI: 10.1042/cs20220797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Optimal vascular structure and function are essential for maintaining the physiological functions of the cardiovascular system. Vascular remodelling involves changes in vessel structure, including its size, shape, cellular and molecular composition. These changes result from multiple risk factors and may be compensatory adaptations to sustain blood vessel function. They occur in diverse cardiovascular pathologies, from hypertension to heart failure and atherosclerosis. Dynamic changes in the endothelium, fibroblasts, smooth muscle cells, pericytes or other vascular wall cells underlie remodelling. In addition, immune cells, including macrophages and lymphocytes, may infiltrate vessels and initiate inflammatory signalling. They contribute to a dynamic interplay between cell proliferation, apoptosis, migration, inflammation, and extracellular matrix reorganisation, all critical mechanisms of vascular remodelling. Molecular pathways underlying these processes include growth factors (e.g., vascular endothelial growth factor and platelet-derived growth factor), inflammatory cytokines (e.g., interleukin-1β and tumour necrosis factor-α), reactive oxygen species, and signalling pathways, such as Rho/ROCK, MAPK, and TGF-β/Smad, related to nitric oxide and superoxide biology. MicroRNAs and long noncoding RNAs are crucial epigenetic regulators of gene expression in vascular remodelling. We evaluate these pathways for potential therapeutic targeting from a clinical translational perspective. In summary, vascular remodelling, a coordinated modification of vascular structure and function, is crucial in cardiovascular disease pathology.
Collapse
Affiliation(s)
- Justyna Totoń-Żurańska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz P Mikolajczyk
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Blessy Saju
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| | - Tomasz J Guzik
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
6
|
Poto R, Marone G, Galli SJ, Varricchi G. Mast cells: a novel therapeutic avenue for cardiovascular diseases? Cardiovasc Res 2024; 120:681-698. [PMID: 38630620 PMCID: PMC11135650 DOI: 10.1093/cvr/cvae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| |
Collapse
|
7
|
Luo Y, Qi X, Zhang Z, Zhang J, Li B, Shu T, Li X, Hu H, Li J, Tang Q, Zhou Y, Wang M, Fan T, Guo W, Liu Y, Zhang J, Pang J, Yang P, Gao R, Chen W, Yan C, Xing Y, Du W, Wang J, Wang C. Inactivation of Malic Enzyme 1 in Endothelial Cells Alleviates Pulmonary Hypertension. Circulation 2024; 149:1354-1371. [PMID: 38314588 DOI: 10.1161/circulationaha.123.067579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive cardiopulmonary disease with a high mortality rate. Although growing evidence has revealed the importance of dysregulated energetic metabolism in the pathogenesis of PH, the underlying cellular and molecular mechanisms are not fully understood. In this study, we focused on ME1 (malic enzyme 1), a key enzyme linking glycolysis to the tricarboxylic acid cycle. We aimed to determine the role and mechanistic action of ME1 in PH. METHODS Global and endothelial-specific ME1 knockout mice were used to investigate the role of ME1 in hypoxia- and SU5416/hypoxia (SuHx)-induced PH. Small hairpin RNA and ME1 enzymatic inhibitor (ME1*) were used to study the mechanism of ME1 in pulmonary artery endothelial cells. Downstream key metabolic pathways and mediators of ME1 were identified by metabolomics analysis in vivo and ME1-mediated energetic alterations were examined by Seahorse metabolic analysis in vitro. The pharmacological effect of ME1* on PH treatment was evaluated in PH animal models induced by SuHx. RESULTS We found that ME1 protein level and enzymatic activity were highly elevated in lung tissues of patients and mice with PH, primarily in vascular endothelial cells. Global knockout of ME1 protected mice from developing hypoxia- or SuHx-induced PH. Endothelial-specific ME1 deletion similarly attenuated pulmonary vascular remodeling and PH development in mice, suggesting a critical role of endothelial ME1 in PH. Mechanistic studies revealed that ME1 inhibition promoted downstream adenosine production and activated A2AR-mediated adenosine signaling, which leads to an increase in nitric oxide generation and a decrease in proinflammatory molecule expression in endothelial cells. ME1 inhibition activated adenosine production in an ATP-dependent manner through regulating malate-aspartate NADH (nicotinamide adenine dinucleotide plus hydrogen) shuttle and thereby balancing oxidative phosphorylation and glycolysis. Pharmacological inactivation of ME1 attenuated the progression of PH in both preventive and therapeutic settings by promoting adenosine production in vivo. CONCLUSIONS Our findings indicate that ME1 upregulation in endothelial cells plays a causative role in PH development by negatively regulating adenosine production and subsequently dysregulating endothelial functions. Our findings also suggest that ME1 may represent as a novel pharmacological target for upregulating protective adenosine signaling in PH therapy.
Collapse
Affiliation(s)
- Ya Luo
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
- Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.L.)
| | - Xianmei Qi
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Zhenxi Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases (Z.Z., W.D.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Jiawei Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Bolun Li
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Ting Shu
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Xiaona Li
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Huiyuan Hu
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Jinqiu Li
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Qihao Tang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Yitian Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Mingyao Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China (M.W., C.W.)
| | - Tianfei Fan
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Wenjun Guo
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Ying Liu
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Jin Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China (J.Z.)
| | - Junling Pang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Ran Gao
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Wenhui Chen
- Department of Lung Transplantation, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China (W.C.)
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY (C.Y.)
| | - Yanjiang Xing
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Wenjing Du
- State Key Laboratory of Common Mechanism Research for Major Diseases (Z.Z., W.D.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Jing Wang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
| | - Chen Wang
- State Key Laboratory of Respiratory Health and Multimorbidity (Y.L., X.Q., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., J.P., P.Y., Y.X., J.W., C.W.)
- Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China (Y.L., X.Q., Z.Z., J.Z., B.L., T.S., X.L., H.H., J.L., Q.T., Y.Z., T.F., W.G., Y.L., J.P., P.Y., R.G., Y.X., W.D., J.W., C.W.)
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China (M.W., C.W.)
- Chinese Academy of Engineering, Beijing, China (C.W.)
| |
Collapse
|
8
|
Doulberis M, Papaefthymiou A, Polyzos SA, Boziki M, Kazakos E, Tzitiridou-Chatzopoulou M, Vardaka E, Hammrich C, Kulaksiz H, Riva D, Kiosses C, Linas I, Touloumtzi M, Stogianni A, Kountouras J. Impact of Helicobacter pylori and metabolic syndrome-related mast cell activation on cardiovascular diseases. FRONTIERS IN GASTROENTEROLOGY 2024; 3. [DOI: 10.3389/fgstr.2024.1331330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Helicobacter pylori, a widely renowned bacterium, has recently gained attention owing to its potential impact on extragastric health. The emergence of research linking H. pylori infection with metabolic syndrome (MetS)-related cardiovascular diseases (CVDs) has raised intriguing questions about the pathogenic linkage and its translational implications for clinicians. MetS encompasses a collection of metabolic abnormalities that considerably elevate the risk of CVDs and cerebrovascular diseases. Emerging evidence supports a potential pathogenetic role of H. pylori for MetS-related disorders through mechanisms implicating chronic smoldering inflammation, insulin resistance (IR), and modulation of immune responses. One intriguing aspect of this possible connection is the role of mast cells (MCs), a subset of immune cells representing innate immune system effector cells. They play a fundamental role in innate immune responses and the modulation of adaptive immunity. Activated MCs are commonly found in patients with MetS-related CVD. Recent studies have also suggested that H. pylori infection may activate MCs, triggering the release of pro-inflammatory mediators that contribute to IR and atherosclerosis. Understanding these intricate interactions at the cellular level provides new insights into the development of therapeutic strategies targeting both H. pylori infection and MetS-related MCs activation. This review investigates the current state of research regarding the potential impact of H. pylori infection and MetS-related MCs activation on the pathophysiology of CVD, thereby opening up new avenues for related research and paving the way for innovative approaches to prevention and treatment in clinical practice
Collapse
|
9
|
Keet C, McGowan EC, Jacobs D, Post WS, Richards NE, Workman LJ, Platts-Mills TAE, Manichaikul A, Wilson JM. IgE to common food allergens is associated with cardiovascular mortality in the National Health and Examination Survey and the Multi-Ethnic Study of Atherosclerosis. J Allergy Clin Immunol 2024; 153:471-478.e3. [PMID: 37943208 PMCID: PMC10922097 DOI: 10.1016/j.jaci.2023.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND In individuals without symptomatic food allergy, food-specific IgE is considered clinically irrelevant. However, recent studies have suggested that galactose-α-1,3-galactose (alpha-gal) IgE is associated with cardiovascular (CV) disease. OBJECTIVE We sought to determine whether sensitization to common food allergens is associated with CV mortality. METHODS The association between IgE sensitization to foods and CV mortality ascertained to 2019 was examined in the National Health and Examination Survey (NHANES) 2005-2006 and the Wake Forest site of the Multi-Ethnic Study of Atherosclerosis (MESA) cohort; MESA enrolled adults without baseline clinical CV diseases between 2000 and 2002. Total and specific IgE was measured to cow's milk, egg, peanut, shrimp, and a panel of aeroallergens (NHANES), and to cow's milk, alpha-gal, peanut, dust mite, and timothy grass (MESA). Cox proportional hazard models were constructed, adjusting for sex, age, race/ethnicity, smoking, education, and asthma. RESULTS A total of 4414 adults from NHANES (229 CV deaths) and 960 from MESA (56 CV deaths) were included. In NHANES, sensitization to at least 1 food was associated with higher CV mortality (hazard ratio [HR], 1.7 [95% confidence interval (CI), 1.2-2.4], P = .005). Milk sensitization was particularly associated (HR, 2.0 [95% CI, 1.1-3.8], P = .026), a finding replicated in MESA (HR, 3.8 [95% CI, 1.6-9.1], P = .003). Restricting analyses in NHANES to consumers of the relevant allergen strengthened food sensitization relationships, unmasking shrimp and peanut sensitization as additional risk factors for CV mortality. CONCLUSIONS The finding that food sensitization is associated with increased risk of CV mortality challenges the current paradigm that sensitization without overt allergy is benign. Further research is needed to clarify mechanisms of this association.
Collapse
Affiliation(s)
- Corinne Keet
- Department of Pediatrics, University of North Carolina, Chapel Hill School of Medicine, Chapel Hill, NC.
| | - Emily C McGowan
- Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Va
| | - David Jacobs
- University of Minnesota School of Public Health, Minneapolis, Minn
| | - Wendy S Post
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Md
| | - Nathan E Richards
- Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Va
| | - Lisa J Workman
- Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Va
| | - Thomas A E Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Va
| | - Ani Manichaikul
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville
| | - Jeffrey M Wilson
- Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Va
| |
Collapse
|
10
|
Jeong A, Lim Y, Kook T, Kwon DH, Cho YK, Ryu J, Lee YG, Shin S, Choe N, Kim YS, Cho HJ, Kim JC, Choi Y, Lee SJ, Kim HS, Kee HJ, Nam KI, Ahn Y, Jeong MH, Park WJ, Kim YK, Kook H. Circular RNA circSMAD4 regulates cardiac fibrosis by targeting miR-671-5p and FGFR2 in cardiac fibroblasts. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102071. [PMID: 38046397 PMCID: PMC10690640 DOI: 10.1016/j.omtn.2023.102071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Heart failure is a leading cause of death and is often accompanied by activation of quiescent cardiac myofibroblasts, which results in cardiac fibrosis. In this study, we aimed to identify novel circular RNAs that regulate cardiac fibrosis. We applied transverse aortic constriction (TAC) for 1, 4, and 8 weeks in mice. RNA sequencing datasets were obtained from cardiac fibroblasts isolated by use of a Langendorff apparatus and then further processed by use of selection criteria such as differential expression and conservation in species. CircSMAD4 was upregulated by TAC in mice or by transforming growth factor (TGF)-β1 in primarily cultured human cardiac fibroblasts. Delivery of si-circSMAD4 attenuated myofibroblast activation and cardiac fibrosis in mice treated with isoproterenol (ISP). si-circSmad4 significantly reduced cardiac fibrosis and remodeling at 8 weeks. Mechanistically, circSMAD4 acted as a sponge against the microRNA miR-671-5p in a sequence-specific manner. miR-671-5p was downregulated during myofibroblast activation and its mimic form attenuated cardiac fibrosis. miR-671-5p mimic destabilized fibroblast growth factor receptor 2 (FGFR2) mRNA in a sequence-specific manner and interfered with the fibrotic action of FGFR2. The circSMAD4-miR-671-5p-FGFR2 pathway is involved in the differentiation of cardiac myofibroblasts and thereby the development of cardiac fibrosis.
Collapse
Affiliation(s)
- Anna Jeong
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Yongwoon Lim
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Taewon Kook
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Duk-Hwa Kwon
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Young Kuk Cho
- Department of Pediatrics, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Juhee Ryu
- Collage of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yun-Gyeong Lee
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Sera Shin
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Nakwon Choe
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Yong Sook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hye Jung Cho
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Jeong Chul Kim
- Department of Surgery, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Su-Jin Lee
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyung-Seok Kim
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Forensic Medicine, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Hae Jin Kee
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Kwang-Il Nam
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Youngkeun Ahn
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Myung Ho Jeong
- Department of Cardiology, Heart Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Woo Jin Park
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Young-Kook Kim
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| | - Hyun Kook
- Chonnam University Research Institute of Medical Sciences, Hwasun, Jeollanamdo 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, Jeollanamdo 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo 58128, Republic of Korea
| |
Collapse
|
11
|
Takano M, Kondo H, Harada T, Takahashi M, Ishii Y, Yamasaki H, Shan T, Akiyoshi K, Shuto T, Teshima Y, Wada T, Yufu K, Sako H, Anai H, Miyamoto S, Takahashi N. Empagliflozin Suppresses the Differentiation/Maturation of Human Epicardial Preadipocytes and Improves Paracrine Secretome Profile. JACC Basic Transl Sci 2023; 8:1081-1097. [PMID: 37791312 PMCID: PMC10544075 DOI: 10.1016/j.jacbts.2023.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 10/05/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce epicardial adipose tissue (EAT) in humans, enhancing cardioprotective effects on heart failure and atrial fibrillation. We investigated the direct effect of the SGLT2 inhibitor empagliflozin on human primary epicardial adipocytes and preadipocytes. SGLT2 is primarily expressed in human preadipocytes in the EAT. The expression levels of SGLT2 significantly diminished when the preadipocytes were terminally differentiated. Adipogenesis of preadipocytes was attenuated by empagliflozin treatment without affecting cell proliferation. The messenger RNA levels and secreted protein levels of interleukin 6 and monocyte chemoattractant protein 1 were significantly decreased in empagliflozin-treated adipocytes. Coculture of human induced pluripotent stem cell-derived atrial cardiomyocytes and adipocytes pretreated with or without empagliflozin revealed that empagliflozin significantly suppressed reactive oxygen species. IL6 messenger RNA expression in human EAT showed significant clinically relevant associations. Empagliflozin suppresses human epicardial preadipocyte differentiation/maturation, likely inhibiting epicardial adipogenesis and improving the paracrine secretome profile of EAT, particularly by regulating IL6 expression.
Collapse
Affiliation(s)
- Masayuki Takano
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu-city, Oita, Japan
| | - Hidekazu Kondo
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu-city, Oita, Japan
| | - Taisuke Harada
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu-city, Oita, Japan
| | - Masaki Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu-city, Oita, Japan
| | - Yumi Ishii
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu-city, Oita, Japan
| | - Hirochika Yamasaki
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu-city, Oita, Japan
| | - Tong Shan
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu-city, Oita, Japan
| | - Kumiko Akiyoshi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu-city, Oita, Japan
| | - Takashi Shuto
- Department of Cardiovascular Surgery, Faculty of Medicine Oita University, Yufu-city, Oita, Japan
| | - Yasushi Teshima
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu-city, Oita, Japan
| | - Tomoyuki Wada
- Department of Cardiovascular Surgery, Faculty of Medicine Oita University, Yufu-city, Oita, Japan
| | - Kunio Yufu
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu-city, Oita, Japan
| | - Hidenori Sako
- Department of Cardiovascular Surgery, Oka Hospital, Oita-city, Oita, Japan
| | - Hirofumi Anai
- Department of Cardiovascular Surgery, Faculty of Medicine Oita University, Yufu-city, Oita, Japan
| | - Shinji Miyamoto
- Department of Cardiovascular Surgery, Faculty of Medicine Oita University, Yufu-city, Oita, Japan
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu-city, Oita, Japan
| |
Collapse
|
12
|
Figueiredo Galvao HB, Dinh QN, Thomas JM, Wassef F, Diep H, Bobik A, Sobey CG, Drummond GR, Vinh A. Proteasome inhibition reduces plasma cell and antibody secretion, but not angiotensin II-induced hypertension. Front Cardiovasc Med 2023; 10:1184982. [PMID: 37332591 PMCID: PMC10272792 DOI: 10.3389/fcvm.2023.1184982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Depletion of mature B cells affords protection against experimental hypertension. However, whether B cell-mediated hypertension is dependent on differentiation into antibody-secreting cells (ASCs) remains unclear. Using the proteasome inhibitor, bortezomib, the present study tested the effect of ASC reduction on angiotensin II-induced hypertension. Methods Male C57BL6/J mice were infused with angiotensin II (0.7 mg/kg/day; s.c.) for 28 days via osmotic minipump to induce hypertension. Normotensive control mice received saline infusion. Bortezomib (750 μg/kg) or vehicle (0.1% DMSO) was administered (i.v.) 3 days prior to minipump implantation, and twice weekly thereafter. Systolic blood pressure was measured weekly using tail-cuff plethysmography. Spleen and bone marrow B1 (CD19+B220-), B2 (B220+CD19+) and ASCs (CD138hiSca-1+Blimp-1+) were enumerated by flow cytometry. Serum immunoglobulins were quantified using a bead-based immunoassay. Results Bortezomib treatment reduced splenic ASCs by ∼68% and ∼64% compared to vehicle treatment in normotensive (2.00 ± 0.30 vs. 0.64 ± 0.15 × 105 cells; n = 10-11) and hypertensive mice (0.52 ± 0.11 vs. 0.14 ± 0.02 × 105 cells; n = 9-11), respectively. Bone marrow ASCs were also reduced by bortezomib in both normotensive (4.75 ± 1.53 vs. 1.71 ± 0.41 × 103 cells; n = 9-11) and hypertensive mice (4.12 ± 0.82 vs. 0.89 ± 0.18 × 103 cells; n = 9-11). Consistent with ASC reductions, bortezomib reduced serum IgM and IgG2a in all mice. Despite these reductions in ASCs and antibody levels, bortezomib did not affect angiotensin II-induced hypertension over 28 days (vehicle: 182 ± 4 mmHg vs. bortezomib: 177 ± 7 mmHg; n = 9-11). Conclusion Reductions in ASCs and circulating IgG2a and IgM did not ameliorate experimental hypertension, suggesting other immunoglobulin isotypes or B cell effector functions may promote angiotensin II-induced hypertension.
Collapse
Affiliation(s)
- Hericka Bruna Figueiredo Galvao
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Quynh Nhu Dinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Jordyn M. Thomas
- Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Flavia Wassef
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Henry Diep
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Alex Bobik
- Baker Heart and Diabetes Institute, Prahran, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Christopher G. Sobey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Prahran, Australia
| | - Grant R. Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Prahran, Australia
| | - Antony Vinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Luteolin Attenuates Hypertension via Inhibiting NF-κB-Mediated Inflammation and PI3K/Akt Signaling Pathway in the Hypothalamic Paraventricular Nucleus. Nutrients 2023; 15:nu15030502. [PMID: 36771206 PMCID: PMC9921115 DOI: 10.3390/nu15030502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Luteolin is widely distributed among a number of vegetal species worldwide. The pharmacological effects of luteolin are diverse and amongst antioxidant, free radical scavenging, and anti-inflammatory activities. Preliminary study showed that luteolin can ameliorate hypertension. However, the precise mechanism needs further investigation. There is no evidence that luteolin affects the paraventricular nucleus of the hypothalamus (PVN), a brain nucleus associated with a critical neural regulator of blood pressure. Our main aim was to explore the effect of luteolin on the PI3K/Akt/NF-κB signaling pathway within the PVN of hypertensive rats. METHODS spontaneously hypertensive rats (SHRs) and corresponding normotensive control rats, the Wistar Kyoto (WKY) rats were divided into four groups and subsequently treated for 4 weeks with bilateral PVN injections of either luteolin (20 µg/0.11 µL, volume: 0.11 µL/h) or vehicle (artificial cerebrospinal fluid). RESULTS luteolin infusion to the PVN significantly decreased some hemodynamic parameters including the mean arterial pressure (MAP), heart rate (HR), circulating plasma norepinephrine (NE) and epinephrine (EPI). Additionally, there was a decrease in the expressions of the phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT), levels of reactive oxygen species (ROS), NAD(P)H oxidase subunit (NOX2, NOX4) in the PVN of SHRs. Meanwhile, the expression of inflammatory cytokines and the activity of nuclear factor κB (NF-κB) p65 in the PVN of SHRs were lowered. Furthermore, immunofluorescence results showed that injection of luteolin in the PVN reduced the expression of tyrosine hydroxylase (TH), and increased that of superoxide dismutase (SOD1) and the 67-kDa isoform of glutamate decarboxylase (GAD67) in the PVN of SHRs. CONCLUSION Our novel findings revealed that luteolin lowered hypertension via inhibiting NF-κB-mediated inflammation and PI3K/Akt signaling pathway in the PVN.
Collapse
|
14
|
Li C, Xia J, Yiminniyaze R, Dong L, Li S. Hub Genes and Immune Cell Infiltration in Hypoxia-Induced Pulmonary Hypertension: Bioinformatics Analysis and In Vivo Validation. Comb Chem High Throughput Screen 2023; 26:2085-2097. [PMID: 36718060 DOI: 10.2174/1386207326666230130093325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hypoxia-induced pulmonary hypertension (HPH) represents a severe pulmonary disorder with high morbidity and mortality, which necessitates identifying the critical molecular mechanisms underlying HPH pathogenesis. METHODS The mRNA expression microarray GSE15197 (containing 8 pulmonary tissues from HPH and 13 normal controls) was downloaded from Gene Expression Omnibus (GEO). Gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were executed by RStudio software. The Protein-Protein Interaction (PPI) network was visualized and established using Cytoscape, and the cytoHubba app from Cytoscape was used to pick out the hub modules. The infiltration of immune cells in HPH was analyzed using the CIBERSORTx. To confirm the potential hub genes, real-time quantitative reverse transcription PCR (qRT-PCR) was conducted using lung tissues of rat HPH models and controls. RESULTS A total of 852 upregulated and 547 downregulated genes were identified. The top terms in biological processes were apoptosis, proliferation, and regulation of the MAPK cascade, including ERK1/2. Cytoplasm, cytosol, and membrane were enriched in cellular component groups. Molecular functions mainly focus on protein binding, protein serine/threonine kinase activity and identical protein binding. KEGG analysis identified pathways in cancer, regulation of actin cytoskeleton and rap1 signaling pathway. There was significantly different immune cell infiltration between HPH and normal control samples. High proportions of the memory subsets of B cells and CD4 cells, Macrophages M2 subtype, and resting Dendritic cells were found in HPH samples, while high proportions of naive CD4 cells and resting mast cells were found in normal control samples. The qRT-PCR results showed that among the ten identified hub modules, FBXL3, FBXL13 and XCL1 mRNA levels were upregulated, while NEDD4L, NPFFR2 and EDN3 were downregulated in HPH rats compared with control rats. CONCLUSION Our study revealed the key genes and the involvement of immune cell infiltration in HPH, thus providing new insight into the pathogenesis of HPH and potential treatment targets for patients with HPH.
Collapse
Affiliation(s)
- Chengwei Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jingwen Xia
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ruzetuoheti Yiminniyaze
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
15
|
Chen Y, Song M, Li Z, Hou L, Zhang H, Zhang Z, Hu H, Jiang X, Yang J, Zou X, Pang J, Zhang T, Yang P, Wang J, Wang C. FcεRI deficiency alleviates silica-induced pulmonary inflammation and fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114043. [PMID: 36087468 DOI: 10.1016/j.ecoenv.2022.114043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Silicosis is one of the most important occupational diseases worldwide, caused by inhalation of silica particles or free crystalline silicon dioxide. As a disease with high mortality, it has no effective treatment and new therapeutic targets are urgently needed. Recent studies have identified FCER1A, encoding α-subunit of the immunoglobulin E (IgE) receptor FcεRI, as a candidate gene involved in the biological pathways leading to respiratory symptoms. FcεRI is known to be important in allergic asthma, but its role in silicosis remains unclear. In this study, serum IgE concentrations and FcεRI expression were assessed in pneumoconiosis patients and silica-exposed mice. The role of FcεRI was explored in a silica-induced mouse model using wild-type and FcεRI-deficient mice. The results showed that serum IgE concentrations were significantly elevated in both pneumoconiosis patients and mice exposed to silica compared with controls. The mRNA and protein expression of FcεRI were also significantly increased in the lung tissue of patients and silica-exposed mice. FcεRI deficiency significantly attenuated the changes in lung function caused by silica exposure. Silica-induced elevations of IL-1β, IL-6, and TNF-α were significantly attenuated in the lung tissue and bronchoalveolar lavage fluid (BALF) of FcεRI-deficient mice compared with wild-type controls. Additionally, FcεRI-deficient mice showed a significantly lower score of pulmonary fibrosis than wild-type mice following exposure to silica, with significantly lower hydroxyproline content and expression of fibrotic genes Col1a1 and Fn1. Immunofluorescent staining suggested FcεRI mainly on mast cells. Mast cell degranulation took place after silica exposure, as shown by increased serum histamine levels and β-hexosaminidase activity, which were significantly reduced in FcεRI-deficient mice compared with wild-type controls. Together, these data showed that FcεRI deficiency had a significant protective effect against silica-induced pulmonary inflammation and fibrosis. Our findings provide new insights into the pathophysiological mechanisms of silica-induced pulmonary fibrosis and a potential target for the treatment of silicosis.
Collapse
Affiliation(s)
- Yiling Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Meiyue Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Zhaoguo Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Lin Hou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Hong Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Zhe Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan 030001, China
| | - Huiyuan Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xuehan Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jie Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xuan Zou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Junling Pang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tiantian Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Peiran Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
16
|
Shu T, Liu Y, Zhou Y, Zhou Z, Li B, Xing Y, Yang P, Pang J, Li J, Song X, Ning X, Qi X, Xiong C, Yang H, Chen Q, Chen J, Yu Y, Wang J, Wang C. Inhibition of immunoglobulin E attenuates pulmonary hypertension. NATURE CARDIOVASCULAR RESEARCH 2022; 1:665-678. [PMID: 39196237 DOI: 10.1038/s44161-022-00095-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 06/06/2022] [Indexed: 08/29/2024]
Abstract
Pulmonary hypertension (PH) is a severe cardiopulmonary disease characterized by pulmonary vascular remodeling. Immunoglobulin E (IgE) is known to participate in aortic vascular remodeling, but whether IgE mediates pulmonary vascular disease is unknown. In the present study, we found serum IgE elevation in pulmonary arterial hypertension (PAH) patients, hypoxia-induced PH mice and monocrotaline-induced PH rats. Neutralizing IgE with an anti-IgE antibody was effective in preventing PH development in mice and rat models. The IgE receptor FcεRIα was also upregulated in PH lung tissues and Fcer1a deficiency prevented the development of PH. Single-cell RNA-sequencing revealed that FcεRIα was mostly expressed in mast cells (MCs) and MC-specific Fcer1a knockout protected against PH in mice. IgE-activated MCs produced interleukin (IL)-6 and IL-13, which subsequently promoted vascular muscularization. Clinically approved IgE antibody omalizumab alleviated the progression of established PH in rats. Using genetic and pharmacological approaches, we have demonstrated that blocking IgE-FcεRIα signaling may hold potential for PAH treatment.
Collapse
Affiliation(s)
- Ting Shu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yitian Zhou
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Peking Union Medical College, MD Program, Beijing, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanjiang Xing
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junling Pang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jinqiu Li
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xin Ning
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xianmei Qi
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Changming Xiong
- Department of Cardiology, Pulmonary Vascular Disease Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianlong Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyu Chen
- Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Ying Yu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Chen Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Immunological Pathomechanisms of Spongiotic Dermatitis in Skin Lesions of Atopic Dermatitis. Int J Mol Sci 2022; 23:ijms23126682. [PMID: 35743125 PMCID: PMC9223609 DOI: 10.3390/ijms23126682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic pruritic skin disease with a complex pathogenesis underlying its heterogeneous clinical phenotypes and endotypes. The skin manifestation of AD reflects the cytokine milieu of a type-2-dominant immunity axis induced by genetic predisposition, innate immunity dysregulation, epidermal barrier defects, and allergic inflammation. However, the detailed pathomechanism of eczematous dermatitis, which is the principal characteristic of AD, remains unclear. This review examines previous studies demonstrating research progress in this area and considers the immunological pathomechanism of “spongiotic dermatitis”, which is the histopathological hallmark of eczematous dermatitis. Studies in this field have revealed the importance of IgE-mediated delayed-type hypersensitivity, the Fas/Fas-ligand system, and cell-mediated cytotoxicity in inducing the apoptosis of keratinocytes in spongiotic dermatitis. Recent studies have demonstrated that, together with infiltrating CD4 T cells, IgE-expressing dendritic cells (i.e., inflammatory dendritic epidermal cells and Langerhans cells) that capture specific allergens (i.e., house dust mites) are present in the spongiotic epidermis of lichenified eczema in patients with IgE-allergic AD. These findings suggest that IgE-mediated delayed-type hypersensitivity plays a pivotal role in the pathogenesis of spongiotic dermatitis in the skin lesions of AD.
Collapse
|
18
|
Ertuglu LA, Kirabo A. OUP accepted manuscript. Cardiovasc Res 2022; 118:2877-2879. [PMID: 35417016 PMCID: PMC9648816 DOI: 10.1093/cvr/cvac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lale A Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Annet Kirabo
- Corresponding author. Tel: +1 615 343 0933, E-mail:
| |
Collapse
|