1
|
Yang C, Cheng J, Zhu Q, Pan Q, Ji K, Li J. Review of the Protective Mechanism of Paeonol on Cardiovascular Disease. Drug Des Devel Ther 2023; 17:2193-2208. [PMID: 37525853 PMCID: PMC10387245 DOI: 10.2147/dddt.s414752] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/19/2023] [Indexed: 08/02/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death in the world. Paeonol(Pae) is a phenolic component extracted from peony bark, peony root and Xu Changqing. Studies have shown that Pae can protect cardiomyocytes by inhibiting oxidative stress, promoting mitochondrial fusion, regulating mitochondrial autophagy and inhibiting inflammation. In addition, Pae improves ventricular remodeling by inhibiting myocardial apoptosis, hypertrophy and fibrosis. Pae also has a good protective effect on blood vessels by inhibiting vascular inflammation, reducing the expression of adhesion molecules, inhibiting vascular proliferation, and inhibiting oxidative stress and endoplasmic reticulum stress(ERS). Pae also has the effect of anti-endothelial cell senescence, promoting thrombus recanalization and vasodilating. In conclusion, the molecular targets of Pae are very complex, and the relationship between different targets and signaling pathways cannot be clearly explained, which requires us to use systems biology methods to further study specific molecular targets of Pae. It has to be mentioned that the bioavailability of Pae is poor, and some nanotechnology-assisted drug delivery systems improve the therapeutic effect of Pae. We reviewed the protective mechanism of paeonol on the cardiovascular system, hoping to provide help for drug development in the treatment of CVD.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jiawen Cheng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Jun Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
Wang T, Zhou LY, Li XM, Liu F, Liang L, Chen XZ, Ju J, Ponnusamy M, Wang K, Liu CY, Yan KW, Wang K. ABRO1 arrests cardiomyocyte proliferation and myocardial repair by suppressing PSPH. Mol Ther 2023; 31:847-865. [PMID: 36639869 PMCID: PMC10014284 DOI: 10.1016/j.ymthe.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The role of Abraxas 2 (ABRO1 or KIAA0157), a component of the lysine63-linked deubiquitinating system, in the cardiomyocyte proliferation and myocardial regeneration is unknown. Here, we found that ABRO1 regulates cardiomyocyte proliferation and cardiac regeneration in the postnatal heart by targeting METTL3-mediated m6A methylation of Psph mRNA. The deletion of ABRO1 increased cardiomyocyte proliferation in hearts and restored the heart function after myocardial injury. On the contrary, ABRO1 overexpression significantly inhibited the neonatal cardiomyocyte proliferation and cardiac regeneration in mouse hearts. The mechanism by which ABRO1 regulates cardiomyocyte proliferation mainly involved METTL3-mediated Psph mRNA methylation and CDK2 phosphorylation. In the early postnatal period, METTL3-dependent m6A methylation promotes cardiomyocyte proliferation by hypermethylation of Psph mRNA and upregulating PSPH expression. PSPH dephosphorylates cyclin-dependent kinase 2 (CDK2), a positive regulator of cell cycle, at Thr14/Tyr15 and increases its activity. Upregulation of ABRO1 restricts METTL3 activity and halts the cardiomyocyte proliferation in the postnatal hearts. Thus, our study reveals that ABRO1 is an essential contributor in the cell cycle withdrawal and attenuation of proliferative response in the postnatal cardiomyocytes and could act as a potential target to accelerate cardiomyocyte proliferation and cardiac repair in the adult heart.
Collapse
Affiliation(s)
- Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Lu-Yu Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xin-Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Fang Liu
- Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Anatomy, Guilin Medical University, Guilin 541004, China
| | - Lin Liang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Xin-Zhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cui-Yun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Kao-Wen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| |
Collapse
|
3
|
Sikorski V, Vento A, Kankuri E. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
4
|
Chen C, Liu S, Cao G, Hu Y, Wang R, Wu M, Liu M, Yiu KH. Cardioprotective Effect of Paeonol on Chronic Heart Failure Induced by Doxorubicin via Regulating the miR-21-5p/S-Phase Kinase-Associated Protein 2 Axis. Front Cardiovasc Med 2022; 9:695004. [PMID: 35865382 PMCID: PMC9294229 DOI: 10.3389/fcvm.2022.695004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundThis study primarily explored the role of paeonol in doxorubicin (DOX)-induced chronic heart failure (CHF), considering the cardioprotective effect of paeonol on an epirubicin-induced cardiac injury.MethodsDOX-induced CHF-modeled rats were treated with paeonol. Cardiac function and myocardial damage in rats were evaluated by using the multifunction instrument, and the histopathology, apoptosis, and the expression of miR-21-5p and S-phase kinase-associated protein 2 (SKP2) in myocardium were detected. The target gene of miR-21-5p was confirmed by a dual-luciferase reporter assay. After the required transfection or paeonol treatment, the viability, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) of the DOX-induced cardiomyocytes were determined. Reverse-transcription quantitative-PCR (RT-qPCR) and Western blot were performed to quantify the expressions of miR-21-5p, SKP2, and apoptosis-related factors.ResultsPaeonol improved cardiac function and also ameliorated the cardiac damage of CHF-modeled rats, where the downregulation of abnormally elevated myocardial damage markers, including brain natriuretic peptide, lactate dehydrogenase, renin, angiotensin II, aldosterone, and endothelin 1, was observed. Paeonol alleviated the histopathological injury and suppressed the apoptosis in CHF-modeled rats, inhibited miR-21-5p expression, and upregulated SKP2 expression in vitro and in vivo. miR-21-5p targeted SKP2. Paeonol and SKP2 increased the viability and MMP, but reduced apoptosis and ROS in the DOX-induced cardiomyocytes. miR-21-5p exerted effects opposite to PAE and SKP2, and it downregulated the expression of Bcl-2 and mitochondrion-Cytochrome c (Cyt c) and upregulated the expression of Bax, C-caspase-3, and cytoplasm-Cyt c. miR-21-5p reversed the effects of paeonol, and its effects were further reversed by SKP2.ConclusionPaeonol shows a cardioprotective effect on DOX-induced CHF via regulating the miR-21-5p/SKP2 axis.
Collapse
Affiliation(s)
- Cong Chen
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Shuhong Liu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Gaozhen Cao
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Yang Hu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Shenzhen, China
| | - Run Wang
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Min Wu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Mingya Liu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Kai Hang Yiu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Shenzhen, China
- *Correspondence: Kai Hang Yiu,
| |
Collapse
|
5
|
Defining the molecular underpinnings controlling cardiomyocyte proliferation. Clin Sci (Lond) 2022; 136:911-934. [PMID: 35723259 DOI: 10.1042/cs20211180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/11/2022]
Abstract
Shortly after birth, mammalian cardiomyocytes (CM) exit the cell cycle and cease to proliferate. The inability of adult CM to replicate renders the heart particularly vulnerable to injury. Restoration of CM proliferation would be an attractive clinical target for regenerative therapies that can preserve contractile function and thus prevent the development of heart failure. Our review focuses on recent progress in understanding the tight regulation of signaling pathways and their downstream molecular mechanisms that underly the inability of CM to proliferate in vivo. In this review, we describe the temporal expression of cell cycle activators e.g., cyclin/Cdk complexes and their inhibitors including p16, p21, p27 and members of the retinoblastoma gene family during gestation and postnatal life. The differential impact of members of the E2f transcription factor family and microRNAs on the regulation of positive and negative cell cycle factors is discussed. This review also highlights seminal studies that identified the coordination of signaling mechanisms that can potently activate CM cell cycle re-entry including the Wnt/Ctnnb1, Hippo, Pi3K-Akt and Nrg1-Erbb2/4 pathways. We also present an up-to-date account of landmark studies analyzing the effect of various genes such as Argin, Dystrophin, Fstl1, Meis1, Pitx2 and Pkm2 that are responsible for either inhibition or activation of CM cell division. All these reports describe bona fide therapeutically targets that could guide future clinical studies toward cardiac repair.
Collapse
|
6
|
Hu Z, Chen P, Wang L, Zhu Y, Chen G, Chen Y, Hu Z, Mei L, You W, Cong W, Jin L, Wang X, Wang Y, Guan X. FGF6 promotes cardiac repair after myocardial infarction by inhibiting the Hippo pathway. Cell Prolif 2022; 55:e13221. [PMID: 35355356 PMCID: PMC9136516 DOI: 10.1111/cpr.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Myocardial infarction (MI) commonly occurs in patients with coronary artery disease and have high mortality. Current clinical strategies for MI still limited to reducing the death of myocardial cells but failed to replace these cells. This study aimed to investigate the role of fibroblast growth factor 6 (FGF6) in enhancing the proliferative potential of cardiomyocytes (CMs) after ischemic injury via the Hippo pathway. MATERIALS AND METHODS Expression of FGF6 protein was analysed in mice with MI induced by ligation of the left anterior descending coronary artery. Activation of the Hippo pathway and the proliferation potential were examined in ischemic CMs, treated with FGF6 protein or transfected with an adeno-virus carrying FGF6 sh-RNA. Immunofluorescence staining and western blotting were performed to assess the relationship between FGF6 and the Hippo pathway. RESULTS We found that FGF6 expression was significantly increased in the MI mouse model. Knockdown of FGF6 synthesis resulted in poorer heart function after MI. By contrast, treatment with recombinant human FGF6 protein improved heart function, reduced infarct size, and promoted cardiac repair. Additionally, FGF6 restrains the activation of the Hippo pathway and subsequently promotes nuclear accumulation of YAP. This was largely counteracted by treatment with extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126. CONCLUSION FGF6 inhibits the Hippo pathway via ERK1/2, and facilitates nuclear translocation of YAP, and thereby promotes cardiac repair after MI.
Collapse
Affiliation(s)
- Zhicheng Hu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Linlin Wang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yu Zhu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, P.R. China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China.,College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Yunjie Chen
- Department of Pharmacy, Ningbo first Hospital, Ningbo, PR China
| | - Zhenyu Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Lin Mei
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Weijing You
- School of Medical Technology, Ningbo College of Health Sciences, Ningbo, PR China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yang Wang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xueqiang Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
7
|
Identification of Upstream Transcriptional Regulators of Ischemic Cardiomyopathy Using Cardiac RNA-Seq Meta-Analysis. Int J Mol Sci 2020; 21:ijms21103472. [PMID: 32423033 PMCID: PMC7278960 DOI: 10.3390/ijms21103472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
Ischemic cardiomyopathy (ICM), characterized by pre-existing myocardial infarction or severe coronary artery disease, is the major cause of heart failure (HF). Identification of novel transcriptional regulators in ischemic HF can provide important biomarkers for developing new diagnostic and therapeutic strategies. In this study, we used four RNA-seq datasets from four different studies, including 41 ICM and 42 non-failing control (NF) samples of human left ventricle tissues, to perform the first RNA-seq meta-analysis in the field of clinical ICM, in order to identify important transcriptional regulators and their targeted genes involved in ICM. Our meta-analysis identified 911 differentially expressed genes (DEGs) with 582 downregulated and 329 upregulated. Interestingly, 54 new DEGs were detected only by meta-analysis but not in individual datasets. Upstream regulator analysis through Ingenuity Pathway Analysis (IPA) identified three key transcriptional regulators. TBX5 was identified as the only inhibited regulator (z-score = -2.89). F2R and SFRP4 were identified as the activated regulators (z-scores = 2.56 and 2.00, respectively). Multiple downstream genes regulated by TBX5, F2R, and SFRP4 were involved in ICM-related diseases such as HF and arrhythmia. Overall, our study is the first to perform an RNA-seq meta-analysis for clinical ICM and provides robust candidate genes, including three key transcriptional regulators, for future diagnostic and therapeutic applications in ischemic heart failure.
Collapse
|
8
|
Jakovljevic Uzelac J, Djukic T, Radic T, Mutavdzin S, Stankovic S, Rakocevic JK, Labudovic Borovic M, Milic N, Simic T, Savic-Radojevic A, Djuric D. Folic acid affects cardiometabolic, oxidative stress, and immunohistochemical parameters in monocrotaline-induced rat heart failure. Can J Physiol Pharmacol 2020; 98:708-716. [PMID: 32353247 DOI: 10.1139/cjpp-2020-0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is one of the major cardiovascular causes of death worldwide. In this study, we explored the effects of folic acid (FA) on cardiometabolic, oxidative stress biomarker changes, and the activity of proliferation marker Ki67 in monocrotaline-induced HF. The research was conducted during a 4 week period using five experimental groups (eight animals per group): blank solution exposed controls (C1: 1 mL/kg physiological saline, 1 day; C2: 1 mL/kg physiological saline, 28 days), monocrotaline (MCT) induced HF (50 mg/kg MCT), FA (5 mg·kg-1·day-1 FA), and MCT+FA (50 mg/kg MCT, 5 mg·kg-1·day-1 FA). Superoxide dismutase and glutathione peroxidase activities together with total glutathione and parameters of oxidative damage of proteins were determined in cardiac tissue as well as cardiometabolic parameters in plasma or serum. The total glutathionylation was determined by Western blot and proliferation marker Ki67 was assessed by immunohistochemistry. The right ventricular (RV) wall hypertrophy and Ki67 positivity, accompanied by a significant increase of troponin T, has been shown in MCT-induced HF. The antioxidant effect of FA was reflected through superoxide dismutase activity, reduced Ki67 positivity in the RV wall, and a slightly decreased total glutathionylation level.
Collapse
Affiliation(s)
- Jovana Jakovljevic Uzelac
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tatjana Djukic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tanja Radic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slavica Mutavdzin
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Stankovic
- Center for Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - Jelena Kostic Rakocevic
- Institute of Histology and Embryology "Aleksandar Dj. Kostic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Labudovic Borovic
- Institute of Histology and Embryology "Aleksandar Dj. Kostic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Natasa Milic
- Institute of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Djuric
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
10
|
Sözmen M, Devrim AK, Kabak YB, Devrim T, Sudagidan M. The Effects of Periostin in a Rat Model of Isoproterenol: Mediated Cardiotoxicity. Cardiovasc Toxicol 2019; 18:142-160. [PMID: 28895052 DOI: 10.1007/s12012-017-9426-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Periostin is an extracellular matrix protein from fasciclin family, and it plays an important role in the cell adhesion, migration, and growth of the organism. Periostin prevents apoptosis while stimulating cardiomyocytes. The present study was designed to investigate cardioprotective effects of the recombinant murine periostin peptide administration in a rat model of isoproterenol (ISO)-induced myocardial injury. The experiment was performed on 84 adult male Sprague Dawley rats in 4 groups (n = 21): control group (1), periostin-treated group (2), ISO-treated group (3), and ISO + periostin-treated group (4). The groups were further divided into three subgroups based on the duration of the experiment in which rats were killed on days 1, 7, and 28 (n = 7). Growth factors (VEGF, ANGPT, FGF-2, TGFβ), mitosis and apoptosis (Bcl-2, Bax, PCNA, Ki-67, phospho-histone H3), cell cycle activators and inhibitors (cyclin D1, D2, A2, Cdc2), the origin of regenerating cells (cKit and CD45) mRNA were detected using quantitative real-time polymerase chain reaction (PCR) and PCR array. Immunohistochemistry staining was used to directly detect protein level and distribution in the heart tissues. Administration of periostin following ISO-induced cardiotoxicity revealed that periostin alleviated deleterious effects of ISO through several pathways: (1) periostin induced mitotic activity of endothelial/fibroblastic cells, (2) periostin drives cardiomyocytes into S and M phases, thus promoting proliferation of cardiomyocytes, (3) periostin contributed to collagen degradation, tissue remodeling, and reduced cardiac fibrosis during the healing process following myocardial damage while preserving tissue matrix, (4) periostin stimulated angiogenesis by upregulating THBS1, TGFB2, and HGF genes, (5) periostin regulated cell growth and proliferation while maintaining cell shape and cellular muscle contractions (ACTB) and functioned as chemoattractant factor (CCL2) at the beginning of myocardial damage.
Collapse
Affiliation(s)
- Mahmut Sözmen
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Kurupelit, Samsun, Turkey.
| | - Alparslan K Devrim
- Department of Biochemistry, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Yonca B Kabak
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139, Kurupelit, Samsun, Turkey
| | - Tuba Devrim
- Department of Pathology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Mert Sudagidan
- Strategic Product Research and Development Center (SARGEM), Konya Food and Agriculture University, Meram, Konya, Turkey
| |
Collapse
|
11
|
Zhang C, Pan S, Aisha A, Abudoukelimu M, Tang L, Ling Y. Recombinant human brain natriuretic peptide regulates PI3K/AKT/mTOR pathway through lncRNA EGOT to attenuate hypoxia-induced injury in H9c2 cardiomyocytes. Biochem Biophys Res Commun 2018; 503:1186-1193. [PMID: 30031611 DOI: 10.1016/j.bbrc.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/06/2018] [Indexed: 02/01/2023]
Abstract
This study aimed to investigate whether recombinant human brain natriuretic peptide (rhBNP) regulated hypoxia-induced injury in H9c2 cardiomyocytes through lncRNA EGOT. H9c2 cardiomyocytes were cultured under normoxia and hypoxia (21% and 3% O2) conditions, and whether hypoxia induced injury by assessing cell viability, apoptosis and autophagy. H9c2 cells were then treated with different doses of exogenous rhBNP (200, 600 and 900 nmol/L, respectively) and the effects of rhBNP on hypoxia-induced injury in H9c2 cells as well as the expression of EGOT were studied. In addition, the regulatory relationships between rhBNP and EGOT as well as between rhBNP and PI3K/AKT/mTOR pathway in hypoxia-treated H9c2 cells were investigated. Hypoxia significantly induced injury in H9c2 cells (inhibited cell viability and promoted cell apoptosis and autophagy) and decreased the expression of EGOT. However, administration of rhBNP alleviated hypoxia-induced injury in H9c2 cells and elevated expression of EGOT. Suppression of EGOT significantly reversed the effects of rhBNP on hypoxia-induced injury in H9c2 cells. Further studies showed that the effects of EGOT on cell viability and apoptosis were by positively regulating the expression of Cyclin D1. Moreover, rhBNP alleviated hypoxia-induced cell injury by activating PI3K/AKT/mTOR pathway in H9c2 cells. Our results reveal that rhBNP may play a protective role in attenuating hypoxia-induced injury in H9c2 cardiomyocytes via regulating lncRNA EGOT/Cyclin D1/PI3K/AKT/mTOR pathway axis. The findings will provide a new strategy for the treatment of heart failure induced by hypoxia.
Collapse
Affiliation(s)
- Chengxi Zhang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510630, China.
| | - Sinian Pan
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510630, China
| | - Ayipaxa Aisha
- Department of Cardiology, The First People's Hospital of Xinjiang Kashi Area, Kashi, Xinjiang, 844000, China
| | - Minawaer Abudoukelimu
- Department of Cardiology, The First People's Hospital of Xinjiang Kashi Area, Kashi, Xinjiang, 844000, China
| | - Leile Tang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510630, China
| | - Yesheng Ling
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510630, China
| |
Collapse
|
12
|
Mohamed TMA, Ang YS, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D. Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration. Cell 2018; 173:104-116.e12. [PMID: 29502971 PMCID: PMC5973786 DOI: 10.1016/j.cell.2018.02.014] [Citation(s) in RCA: 383] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/02/2018] [Accepted: 02/06/2018] [Indexed: 01/01/2023]
Abstract
Human diseases are often caused by loss of somatic cells that are incapable of re-entering the cell cycle for regenerative repair. Here, we report a combination of cell-cycle regulators that induce stable cytokinesis in adult post-mitotic cells. We screened cell-cycle regulators expressed in proliferating fetal cardiomyocytes and found that overexpression of cyclin-dependent kinase 1 (CDK1), CDK4, cyclin B1, and cyclin D1 efficiently induced cell division in post-mitotic mouse, rat, and human cardiomyocytes. Overexpression of the cell-cycle regulators was self-limiting through proteasome-mediated degradation of the protein products. In vivo lineage tracing revealed that 15%-20% of adult cardiomyocytes expressing the four factors underwent stable cell division, with significant improvement in cardiac function after acute or subacute myocardial infarction. Chemical inhibition of Tgf-β and Wee1 made CDK1 and cyclin B dispensable. These findings reveal a discrete combination of genes that can efficiently unlock the proliferative potential in cells that have terminally exited the cell cycle.
Collapse
Affiliation(s)
- Tamer M A Mohamed
- Gladstone Institute of Cardiovascular Disease and Roddenberry Stem Cell Center, San Francisco, CA 94158, USA; Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9PT, UK; Faculty of Pharmacy, Zagazig University, Al Sharqia Governorate, Egypt; Tenaya Therapeutics, South San Francisco, CA 94080, USA
| | - Yen-Sin Ang
- Gladstone Institute of Cardiovascular Disease and Roddenberry Stem Cell Center, San Francisco, CA 94158, USA
| | - Ethan Radzinsky
- Gladstone Institute of Cardiovascular Disease and Roddenberry Stem Cell Center, San Francisco, CA 94158, USA
| | - Ping Zhou
- Gladstone Institute of Cardiovascular Disease and Roddenberry Stem Cell Center, San Francisco, CA 94158, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease and Roddenberry Stem Cell Center, San Francisco, CA 94158, USA
| | - Arye Elfenbein
- Gladstone Institute of Cardiovascular Disease and Roddenberry Stem Cell Center, San Francisco, CA 94158, USA
| | - Amy Foley
- Gladstone Institute of Cardiovascular Disease and Roddenberry Stem Cell Center, San Francisco, CA 94158, USA
| | - Sergey Magnitsky
- Department of Radiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Roddenberry Stem Cell Center, San Francisco, CA 94158, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Miyawaki A, Obana M, Mitsuhara Y, Orimoto A, Nakayasu Y, Yamashita T, Fukada SI, Maeda M, Nakayama H, Fujio Y. Adult murine cardiomyocytes exhibit regenerative activity with cell cycle reentry through STAT3 in the healing process of myocarditis. Sci Rep 2017; 7:1407. [PMID: 28469272 PMCID: PMC5431117 DOI: 10.1038/s41598-017-01426-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/29/2017] [Indexed: 11/09/2022] Open
Abstract
Mammalian cardiomyocytes substantially lose proliferative capacity immediately after birth, limiting adult heart regeneration after injury. However, clinical myocarditis appears to be self-limiting with tissue-reparative properties. Here, we investigated the molecular mechanisms underlying the recovery from myocarditis with regard to cardiomyocyte proliferation using an experimental autoimmune myocarditis (EAM) model. Three weeks after EAM induction (EAM3w), cardiac tissue displayed infiltration of inflammatory cells with cardiomyocyte apoptosis. However, by EAM5w, the myocardial damage was remarkably attenuated, associated with an increase in cardiomyocytes that were positively stained with cell cycle markers at EAM3w. Cardiomyocyte fate mapping study revealed that the proliferating cardiomyocytes primarily derived from pre-existing cardiomyocytes. Signal transducer and activator of transcription 3 (STAT3) was robustly activated in cardiomyocytes during inflammation, accompanied by induction of interleukin-6 family cytokines. Cardiomyocyte-specific ablation of STAT3 gene suppressed the frequency of cycling cardiomyocytes in the recovery period without influencing inflammatory status, resulting in impaired tissue repair and cardiac dysfunction. Finally, microarray analysis revealed that the expression of regeneration-related genes, metallothioneins and clusterin, in cardiomyocytes was decreased by STAT3 gene deletion. These data show that adult mammalian cardiomyocytes restore regenerative capacity with cell cycle reentry through STAT3 as the heart recovers from myocarditis-induced cardiac damage.
Collapse
Affiliation(s)
- Akimitsu Miyawaki
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Mitsuhara
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Aya Orimoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Nakayasu
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomomi Yamashita
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makiko Maeda
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Nakayama
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
14
|
MicroRNA-365 accelerates cardiac hypertrophy by inhibiting autophagy via the modulation of Skp2 expression. Biochem Biophys Res Commun 2017; 484:304-310. [PMID: 28130111 DOI: 10.1016/j.bbrc.2017.01.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/21/2017] [Indexed: 01/15/2023]
Abstract
Evidence is emerging of a tight link between cardiomyocyte autophagy and cardiac hypertrophy (CH). Sustained exposure to stress leads CH to progress to heart failure. Several miRNAs have been described in heart failure, and miRNA-based therapeutic approaches are being pursued. Although microRNA-365 (miR-365) has been testified as a positive modulator of CH, the specific mechanism remains unclear. In the present study, we observed that miR-365 expression was up-regulated in hypertrophic cardiomyocytes both in vivo and in vitro, and was accompanied by dysregulation of autophagy. We found that miR-365 negatively modulates autophagy in hypertrophic cardiomyocytes by targeting Skp2. Overexpression of Skp2 promoted autophagy and rescued CH induced by Ang-II; conversely, Skp2 knockdown further inhibited autophagy and CH. Furthermore, we found that the activation of mammalian target of rapamycin (mTOR) signaling was regulated by Skp2 following Ang-II treatment, as indicated by the up-regulation of p-S6K and p-4EBP1 levels. The inactivation of mTOR by rapamycin completely abolished the Ang-II-induced inhibition of autophagy. In conclusion, our study provides substantial evidence that miR-365 and its target gene Skp2 play a functional role in CH and suggests the development of novel therapeutic options based on miR-365 and Skp2.
Collapse
|
15
|
Abstract
Usually, cells balance their growth with their division. Coordinating growth inputs with cell division ensures the proper timing of division when sufficient cell material is available and affects the overall rate of cell proliferation. At a very fundamental level, cellular replicative lifespan-defined as the number of times a cell can divide, is a manifestation of cell cycle control. Hence, control of mitotic cell divisions, especially when the commitment is made to a new round of cell division, is intimately linked to replicative aging of cells. In this chapter, we review our current understanding, and its shortcomings, of how unbalanced growth and division, can dramatically influence the proliferative potential of cells, often leading to cellular and organismal aging phenotypes. The interplay between growth and division also underpins cellular senescence (i.e., inability to divide) and quiescence, when cells exit the cell cycle but still retain their ability to divide.
Collapse
|
16
|
Hauck L, Grothe D, Billia F. p21(CIP1/WAF1)-dependent inhibition of cardiac hypertrophy in response to Angiotensin II involves Akt/Myc and pRb signaling. Peptides 2016; 83:38-48. [PMID: 27486069 DOI: 10.1016/j.peptides.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
The cyclin-dependent kinase inhibitor p21(CIP1/WAF1) (p21) is highly expressed in the adult heart. However, in response to stress, its expression is downregulated. Therefore, we investigated the role of p21 in the regulation of cardiac hypertrophic growth. At 2 months of age, p21 knockout mice (p21KO) lack an overt cardiac phenotype. In contrast, by 10 months of age, p21KO developed age-dependent cardiac hypertrophy and heart failure. After 3 weeks of trans-aortic banding (TAB), the heart/body weight ratio in 11 week old p21KO mice increased by 57%, as compared to 42% in wild type mice indicating that p21KO have a higher susceptibility to pressure overload-induced cardiac hypertrophy. We then chronically infused 8 week old wild type mice with Angiotensin II (2.0mg/kg/min) or saline subcutaneously by osmotic pumps for 14 days. Recombinant TAT conjugated p21 protein variants (10mg/kg body weight) or saline were intraperitoneally injected once daily for 14 days into Angiotensin II and saline-infused animals. Angiotensin II treated mice developed pathological cardiac hypertrophy with an average increase of 38% in heart/body weight ratios, as compared to saline-treated controls. Reconstitution of p21 function by TAT.p21 protein transduction prevented Angiotensin II-dependent development of cardiac hypertrophy and failure. Taken together, our genetic and biochemical data show an important function of p21 in the regulation of growth-related processes in the heart.
Collapse
Affiliation(s)
- Ludger Hauck
- Toronto General Research Institute, 100 College St., Toronto, Ontario, M5G 1L7, Canada.
| | - Daniela Grothe
- Toronto General Research Institute, 100 College St., Toronto, Ontario, M5G 1L7, Canada.
| | - Filio Billia
- Toronto General Research Institute, 100 College St., Toronto, Ontario, M5G 1L7, Canada; Division of Cardiology, University Health Network (UHN), 200 Elizabeth St., Toronto, Ontario, M5G 2C4, Canada; Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5G 1A8, Canada.
| |
Collapse
|
17
|
Yang Y, Cheng HW, Qiu Y, Dupee D, Noonan M, Lin YD, Fisch S, Unno K, Sereti KI, Liao R. MicroRNA-34a Plays a Key Role in Cardiac Repair and Regeneration Following Myocardial Infarction. Circ Res 2015; 117:450-9. [PMID: 26082557 DOI: 10.1161/circresaha.117.305962] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/16/2015] [Indexed: 01/11/2023]
Abstract
RATIONALE In response to injury, the rodent heart is capable of virtually full regeneration via cardiomyocyte proliferation early in life. This regenerative capacity, however, is diminished as early as 1 week postnatal and remains lost in adulthood. The mechanisms that dictate postinjury cardiomyocyte proliferation early in life remain unclear. OBJECTIVE To delineate the role of miR-34a, a regulator of age-associated physiology, in regulating cardiac regeneration secondary to myocardial infarction (MI) in neonatal and adult mouse hearts. METHODS AND RESULTS Cardiac injury was induced in neonatal and adult hearts through experimental MI via coronary ligation. Adult hearts demonstrated overt cardiac structural and functional remodeling, whereas neonatal hearts maintained full regenerative capacity and cardiomyocyte proliferation and recovered to normal levels within 1-week time. As early as 1 week postnatal, miR-34a expression was found to have increased and was maintained at high levels throughout the lifespan. Intriguingly, 7 days after MI, miR-34a levels further increased in the adult but not neonatal hearts. Delivery of a miR-34a mimic to neonatal hearts prohibited both cardiomyocyte proliferation and subsequent cardiac recovery post MI. Conversely, locked nucleic acid-based anti-miR-34a treatment diminished post-MI miR-34a upregulation in adult hearts and significantly improved post-MI remodeling. In isolated cardiomyocytes, we found that miR-34a directly regulated cell cycle activity and death via modulation of its targets, including Bcl2, Cyclin D1, and Sirt1. CONCLUSIONS miR-34a is a critical regulator of cardiac repair and regeneration post MI in neonatal hearts. Modulation of miR-34a may be harnessed for cardiac repair in adult myocardium.
Collapse
Affiliation(s)
- Yanfei Yang
- From the Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.Y., H.-W.C., Y.Q., D.D., M.N., Y.-D.L., S.F., K.U., K.-I.S., R.L.)
| | - Hui-Wen Cheng
- From the Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.Y., H.-W.C., Y.Q., D.D., M.N., Y.-D.L., S.F., K.U., K.-I.S., R.L.)
| | - Yiling Qiu
- From the Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.Y., H.-W.C., Y.Q., D.D., M.N., Y.-D.L., S.F., K.U., K.-I.S., R.L.)
| | - David Dupee
- From the Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.Y., H.-W.C., Y.Q., D.D., M.N., Y.-D.L., S.F., K.U., K.-I.S., R.L.)
| | - Madyson Noonan
- From the Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.Y., H.-W.C., Y.Q., D.D., M.N., Y.-D.L., S.F., K.U., K.-I.S., R.L.)
| | - Yi-Dong Lin
- From the Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.Y., H.-W.C., Y.Q., D.D., M.N., Y.-D.L., S.F., K.U., K.-I.S., R.L.)
| | - Sudeshna Fisch
- From the Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.Y., H.-W.C., Y.Q., D.D., M.N., Y.-D.L., S.F., K.U., K.-I.S., R.L.)
| | - Kazumasa Unno
- From the Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.Y., H.-W.C., Y.Q., D.D., M.N., Y.-D.L., S.F., K.U., K.-I.S., R.L.)
| | - Konstantina-Ioanna Sereti
- From the Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.Y., H.-W.C., Y.Q., D.D., M.N., Y.-D.L., S.F., K.U., K.-I.S., R.L.)
| | - Ronglih Liao
- From the Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.Y., H.-W.C., Y.Q., D.D., M.N., Y.-D.L., S.F., K.U., K.-I.S., R.L.).
| |
Collapse
|
18
|
Yuan C, Yan L, Solanki P, Vatner SF, Vatner DE, Schwarz MA. Blockade of EMAP II protects cardiac function after chronic myocardial infarction by inducing angiogenesis. J Mol Cell Cardiol 2015; 79:224-31. [PMID: 25456857 PMCID: PMC4302026 DOI: 10.1016/j.yjmcc.2014.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 11/17/2014] [Accepted: 11/23/2014] [Indexed: 02/07/2023]
Abstract
Promoting angiogenesis is a key therapeutic target for protection from chronic ischemic cardiac injury. Endothelial-Monocyte-Activating-Polypeptide-II (EMAP II) protein, a tumor-derived cytokine having anti-angiogenic properties in cancer, is markedly elevated following myocardial ischemia. We examined whether neutralization of EMAP II induces angiogenesis and has beneficial effects on myocardial function and structure after chronic myocardial infarction (MI). EMAP II antibody (EMAP II AB), vehicle, or non-specific IgG (IgG) was injected ip at 30 min and 3, 6, and 9 days after permanent coronary artery occlusion in mice. EMAP II AB, compared with vehicle or non-specific antibody, significantly, p<0.05, improved the survival rate after MI, reduced scar size and attenuated the development of heart failure, i.e., left ventricular ejection fraction was significantly higher in EMAP II AB group, fibrosis was reduced by 24%, and importantly, more myocytes were alive in EMAP II AB group in the infarct area. In support of an angiogenic mechanism, capillary density (193/HPF vs. 172/HPF), doubling of the number of proliferating endothelial cells, and angiogenesis related biomarkers were upregulated in mice receiving EMAP II AB treatment as compared to IgG. Furthermore, EMAP II AB prevented EMAP II protein inhibition of in vitro tube formation in HUVECs. We conclude that blockade of EMAP II induces angiogenesis and improves cardiac function following chronic MI, resulting in reduced myocardial fibrosis and scar formation and increased capillary density and preserved viable myocytes in the infarct area.
Collapse
Affiliation(s)
- Chujun Yuan
- Department of Cell Biology & Molecular Medicine, The Cardiovascular Research Institute at Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA
| | - Lin Yan
- Department of Cell Biology & Molecular Medicine, The Cardiovascular Research Institute at Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pallavi Solanki
- Department of Cell Biology & Molecular Medicine, The Cardiovascular Research Institute at Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA
| | - Stephen F Vatner
- Department of Cell Biology & Molecular Medicine, The Cardiovascular Research Institute at Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA
| | - Dorothy E Vatner
- Department of Medicine, The Cardiovascular Research Institute at Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA.
| | - Margaret A Schwarz
- Department of Pediatrics, Indiana University School of Medicine, South Bend, IN 46617, USA.
| |
Collapse
|
19
|
Xiong CJ, Li PF, Song YL, Xue LX, Jia ZQ, Yao CX, Wei QX, Zhang SF, Zhang SF, Zhang YY, Zhao JM, Wang TQ, Guo MF, Zang MX. Insulin induces C2C12 cell proliferation and apoptosis through regulation of cyclin D1 and BAD expression. J Cell Biochem 2014; 114:2708-17. [PMID: 23794242 DOI: 10.1002/jcb.24619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 06/17/2013] [Indexed: 11/06/2022]
Abstract
Insulin is a secreted peptide hormone identified in human pancreas to promote glucose utilization. Insulin has been observed to induce cell proliferation and myogenesis in C2C12 cells. The precise mechanisms underlying the proliferation of C2C12 cells induced by insulin remain unclear. In this study, we observed for the first time that 10 nM insulin treatment promotes C2C12 cell proliferation. Additionally, 50 and 100 nM insulin treatment induces C2C12 cell apoptosis. By utilizing real-time PCR and Western blotting analysis, we found that the mRNA levels of cyclinD1 and BAD are induced upon 10 and 50 nM/100 nM insulin treatment, respectively. The similar results were observed in C2C12 cells expressing GATA-6 or PPARα. Our results identify for the first time the downstream targets of insulin, cyclin D1, and BAD, elucidate a new molecular mechanism of insulin in promoting cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Cheng-Juan Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou City, Henan, 450001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li WY, Song YL, Xiong CJ, Lu PQ, Xue LX, Yao CX, Wang WP, Zhang SF, Zhang SF, Wei QX, Zhang YY, Zhao JM, Zang MX. Insulin induces proliferation and cardiac differentiation of P19CL6 cells in a dose-dependent manner. Dev Growth Differ 2013; 55:676-86. [PMID: 24020834 DOI: 10.1111/dgd.12075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/27/2013] [Accepted: 08/04/2013] [Indexed: 12/29/2022]
Abstract
Insulin is a peptide hormone produced by beta cells of the pancreas. The roles of insulin in energy metabolism have been well studied, with most of the attention focused on glucose utilization, but the roles of insulin in cell proliferation and differentiation remain unclear. In this study, we observed for the first time that 10 nmol/L insulin treatment induces cell proliferation and cardiac differentiation of P19CL6 cells, whereas 50 and 100 nmol/L insulin treatment induces P19CL6 cell apoptosis and blocks cardiac differentiation of P19CL6 cells. By using real-time polymerase chain reaction (PCR) and Western blotting analysis, we found that the mRNA levels of cyclin D1 and α myosin heavy chain (α-MHC) are induced upon 10 nmol/L insulin stimulation and inhibited upon 50/100 nmol/L insulin treatment, whereas the mRNA levels of BCL-2-antagonist of cell death (BAD) exists a reverse trend. The similar results were observed in P19CL6 cells expressing GATA-6 or peroxisome proliferator-activated receptor α (PPARα). Our results identified the downstream targets of insulin, cyclin D1, BAD, α-MHC, and GATA-4, elucidate a novel molecular mechanism of insulin in promoting cell proliferation and differentiation.
Collapse
Affiliation(s)
- Wen-Yan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Proper protein turnover is required for cardiac homeostasis and, accordingly, impaired proteasomal function appears to contribute to heart disease. Specific proteasomal degradation mechanisms underlying cardiovascular biology and disease have been identified, and such cellular pathways have been proposed to be targets of clinical relevance. This review summarizes the latest literature regarding the specific E3 ligases involved in heart biology, and the general ways that the proteasome regulates protein quality control in heart disease. The potential for therapeutic intervention in Ubiquitin Proteasome System function in heart disease is discussed.
Collapse
Affiliation(s)
- Julia Pagan
- Department of Translational Medical Sciences, Via Sergio Pansini, 5, 80131 Naples, Italy
| | | | | | | |
Collapse
|
22
|
Henderson L, Bortone DS, Lim C, Zambon AC. Classic "broken cell" techniques and newer live cell methods for cell cycle assessment. Am J Physiol Cell Physiol 2013; 304:C927-38. [PMID: 23392113 DOI: 10.1152/ajpcell.00006.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many common, important diseases are either caused or exacerbated by hyperactivation (e.g., cancer) or inactivation (e.g., heart failure) of the cell division cycle. A better understanding of the cell cycle is critical for interpreting numerous types of physiological changes in cells. Moreover, new insights into how to control it will facilitate new therapeutics for a variety of diseases and new avenues in regenerative medicine. The progression of cells through the four main phases of their division cycle [G(0)/G(1), S (DNA synthesis), G(2), and M (mitosis)] is a highly conserved process orchestrated by several pathways (e.g., transcription, phosphorylation, nuclear import/export, and protein ubiquitination) that coordinate a core cell cycle pathway. This core pathway can also receive inputs that are cell type and cell niche dependent. "Broken cell" methods (e.g., use of labeled nucleotide analogs) to assess for cell cycle activity have revealed important insights regarding the cell cycle but lack the ability to assess living cells in real time (longitudinal studies) and with single-cell resolution. Moreover, such methods often require cell synchronization, which can perturb the pathway under study. Live cell cycle sensors can be used at single-cell resolution in living cells, intact tissue, and whole animals. Use of these more recently available sensors has the potential to reveal physiologically relevant insights regarding the normal and perturbed cell division cycle.
Collapse
Affiliation(s)
- Lindsay Henderson
- Department of Biology, University of California San Diego, La Jolla, CA, USA
| | | | | | | |
Collapse
|
23
|
Novel mechanisms for caspase inhibition protecting cardiac function with chronic pressure overload. Basic Res Cardiol 2013; 108:324. [PMID: 23277091 DOI: 10.1007/s00395-012-0324-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 01/19/2023]
Abstract
Myocyte apoptosis is considered a major mechanism in the pathogenesis of heart failure. Accordingly, manipulations that inhibit apoptosis are assumed to preserve cardiac function by maintaining myocyte numbers. We tested this assumption by examining the effects of caspase inhibition (CI) on cardiac structure and function in C57BL/6 mouse with pressure overload model induced by transverse aortic constriction (TAC). CI preserved left ventricular (LV) function following TAC compared with the vehicle. TAC increased apoptosis in non-myocytes more than in myocytes and these increases were blunted more in non-myocytes by CI. Total myocyte number, however, did not differ significantly among control and TAC groups and there was no correlation between myocyte number and apoptosis, but there was a strong correlation between myocyte number and an index of myocyte proliferation, Ki67-positive myocytes. Despite comparable pressure gradients, LV hypertrophy was less in the CI group, likely attributable to decreased wall stress. Since changes in myocyte numbers did not account for protection from TAC, several other CI-mediated mechanisms were identified including: (a) lessening of TAC-induced fibrosis, (b) augmentation of isolated myocyte contractility, and (c) increased angiogenesis and Ki67-positive myocytes, which were due almost entirely to the non-myocyte apoptosis, but not myocyte apoptosis, with CI. CI maintained LV function following TAC not by protecting against myocyte loss, but rather by augmenting myocyte contractile function, myocyte proliferation, and angiogenesis resulting in reduced LV wall stress, hypertrophy, and fibrosis.
Collapse
|
24
|
Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci U S A 2012; 109:17615-20. [PMID: 23047694 DOI: 10.1073/pnas.1206432109] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs are dysregulated in a setting of heart disease and have emerged as promising therapeutic targets. MicroRNA-34 family members (miR-34a, -34b, and -34c) are up-regulated in the heart in response to stress. In this study, we assessed whether inhibition of the miR-34 family using an s.c.-delivered seed-targeting 8-mer locked nucleic acid (LNA)-modified antimiR (LNA-antimiR-34) can provide therapeutic benefit in mice with preexisting pathological cardiac remodeling and dysfunction due to myocardial infarction (MI) or pressure overload via transverse aortic constriction (TAC). An additional cohort of mice subjected to MI was given LNA-antimiR-34a (15-mer) to inhibit miR-34a alone as a comparison for LNA-antimiR-34. LNA-antimiR-34 (8-mer) efficiently silenced all three miR-34 family members in both cardiac stress models and attenuated cardiac remodeling and atrial enlargement. In contrast, inhibition of miR-34a alone with LNA-antimiR-34a (15-mer) provided no benefit in the MI model. In mice subjected to pressure overload, LNA-antimiR-34 improved systolic function and attenuated lung congestion, associated with reduced cardiac fibrosis, increased angiogenesis, increased Akt activity, decreased atrial natriuretic peptide gene expression, and maintenance of sarcoplasmic reticulum Ca(2+) ATPase gene expression. Improved outcome in LNA-antimiR-34-treated MI and TAC mice was accompanied by up-regulation of several direct miR-34 targets, including vascular endothelial growth factors, vinculin, protein O-fucosyltranferase 1, Notch1, and semaphorin 4B. Our results provide evidence that silencing of the entire miR-34 family can protect the heart against pathological cardiac remodeling and improve function. Furthermore, these data underscore the utility of seed-targeting 8-mer LNA-antimiRs in the development of new therapeutic approaches for pharmacologic inhibition of disease-implicated miRNA seed families.
Collapse
|
25
|
Yamada K, Tamamori-Adachi M, Goto I, Iizuka M, Yasukawa T, Aso T, Okazaki T, Kitajima S. Degradation of p21Cip1 through anaphase-promoting complex/cyclosome and its activator Cdc20 (APC/CCdc20) ubiquitin ligase complex-mediated ubiquitylation is inhibited by cyclin-dependent kinase 2 in cardiomyocytes. J Biol Chem 2011; 286:44057-44066. [PMID: 22045811 DOI: 10.1074/jbc.m111.236711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinase inhibitor p21Cip1 plays a crucial role in regulating cell cycle arrest and differentiation. It is known that p21Cip1 increases during terminal differentiation of cardiomyocytes, but its expression control and biological roles are not fully understood. Here, we show that the p21Cip1 protein is stabilized in cardiomyocytes after mitogenic stimulation, due to its increased CDK2 binding and inhibition of ubiquitylation. The APC/CCdc20 complex is shown to be an E3 ligase mediating ubiquitylation of p21Cip1 at the N terminus. CDK2, but not CDC2, suppressed the interaction of p21Cip1 with Cdc20, thereby leading to inhibition of anaphase-promoting complex/cyclosome and its activator Cdc20 (APC/CCdc20)-mediated p21Cip1 ubiquitylation. It was further demonstrated that p21Cip1 accumulation caused G2 arrest of cardiomyocytes that were forced to re-enter the cell cycle. Taken together, these data show that the stability of the p21Cip1 protein is actively regulated in terminally differentiated cardiomyocytes and plays a role in inhibiting their uncontrolled cell cycle progression. Our study provides a novel insight on the control of p21Cip1 by ubiquitin-mediated degradation and its implication in cell cycle arrest in terminal differentiation.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Laboratory of Genome Structure and Regulation, School of Biomedical Science, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510
| | - Mimi Tamamori-Adachi
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510; Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605.
| | - Ikuko Goto
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510
| | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605
| | - Takashi Yasukawa
- Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku City, Kochi, 783-8505, Japan
| | - Teijiro Aso
- Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku City, Kochi, 783-8505, Japan
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605
| | - Shigetaka Kitajima
- Laboratory of Genome Structure and Regulation, School of Biomedical Science, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510; Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510
| |
Collapse
|
26
|
Kim EY, Chen L, Ma Y, Yu W, Chang J, Moskowitz IP, Wang J. Expression of sumoylation deficient Nkx2.5 mutant in Nkx2.5 haploinsufficient mice leads to congenital heart defects. PLoS One 2011; 6:e20803. [PMID: 21677783 PMCID: PMC3108998 DOI: 10.1371/journal.pone.0020803] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/12/2011] [Indexed: 12/16/2022] Open
Abstract
Nkx2.5 is a cardiac specific homeobox gene critical for normal heart development. We previously identified Nkx2.5 as a target of sumoylation, a posttranslational modification implicated in a variety of cellular activities. Sumoylation enhanced Nkx2.5 activity via covalent attachment to the lysine residue 51, the primary SUMO acceptor site. However, how sumoylation regulates the activity of Nkx2.5 in vivo remains unknown. We generated transgenic mice overexpressing sumoylation deficient mutant K51R (conversion of lysine 51 to arginine) specifically in mouse hearts under the control of cardiac α-myosin heavy chain (α-MHC) promoter (K51R-Tg). Expression of the Nkx2.5 mutant transgene in the wild type murine hearts did not result in any overt cardiac phenotype. However, in the presence of Nkx2.5 haploinsufficiency, cardiomyocyte-specific expression of the Nkx2.5 K51R mutant led to congenital heart diseases (CHDs), accompanied with decreased cardiomyocyte proliferation. Also, a number of human CHDs-associated Nkx2.5 mutants exhibited aberrant sumoylation. Our work demonstrates that altered sumoylation status may underlie the development of human CHDs associated with Nkx2.5 mutants.
Collapse
Affiliation(s)
- Eun Young Kim
- Program in Genes and Development, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Li Chen
- Department of Basic Research Laboratories, Texas Heart Institute, Houston, Texas, United States of America
| | - Yanlin Ma
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Wei Yu
- Department of Biochemistry and Molecular Biology, University of Houston, Houston, Texas, United States of America
| | - Jiang Chang
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Ivan P. Moskowitz
- Departments of Pediatrics and Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jun Wang
- Department of Basic Research Laboratories, Texas Heart Institute, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Dorn ES, Cook JG. Nucleosomes in the neighborhood: new roles for chromatin modifications in replication origin control. Epigenetics 2011; 6:552-9. [PMID: 21364325 DOI: 10.4161/epi.6.5.15082] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The importance of local chromatin structure in regulating replication initiation has become increasingly apparent. Most recently, histone methylation and nucleosome positioning have been added to the list of modifications demonstrated to regulate origins. In particular, the methylation states of H3K4, H3K36 and H4K20 have been associated with establishing active, repressed or poised origins depending on the timing and extent of methylation. The stability and precise positioning of nucleosomes has also been demonstrated to affect replication efficiency. Although it is not yet clear how these modifications alter the behavior of specific replication factors, ample evidence establishes their role in maintaining coordinated replication. This review will summarize recent advances in understanding these aspects of chromatin structure in DNA replication origin control.
Collapse
Affiliation(s)
- Elizabeth Suzanne Dorn
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
28
|
Coexpression of VEGF and angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. Proc Natl Acad Sci U S A 2011; 108:2064-9. [PMID: 21245320 DOI: 10.1073/pnas.1018925108] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
VEGF and angiopoietin-1 (Ang1) are two major angiogenic factors being investigated for the treatment of myocardial infarction (MI). Targeting VEGF and Ang1 expression in the ischemic myocardium can increase their local therapeutic effects and reduce possible adverse effects. Adeno-associated viral vectors (AAVs) expressing cardiac-specific and hypoxia-inducible VEGF [AAV-myosin light chain-2v (MLC)VEGF] and Ang1 (AAV-MLCAng1) were coinjected (VEGF/Ang1 group) into six different sites of the porcine myocardium at the peri-infarct zone immediately after ligating the left descending coronary artery. An identical dose of AAV-Cytomegalovirus (CMV)LacZ or saline was injected into control animals. AAV genomes were detected in the liver in addition to the heart. RT-PCR, Western blotting, and ELISA analyses showed that VEGF and Ang1 were predominantly expressed in the myocardium in the infarct core and border of the infarct heart. Gated single-photon emission computed tomography analyses showed that the VEGF/Ang1 group had better cardiac function and myocardial perfusion at 8 wk than at 2 wk after vector injection. Compared with the saline and LacZ controls, the VEGF/Ang1 group expressed higher phosphorylated Akt and Bcl-xL, less Caspase-3 and Bad, and had higher vascular density, more proliferating cardiomyocytes, and less apoptotic cells in the infarct and peri-infarct zones. Thus, cardiac-specific and hypoxia-induced coexpression of VEGF and Ang1 improves the perfusion and function of porcine MI heart through the induction of angiogenesis and cardiomyocyte proliferation, activation of prosurvival pathways, and reduction of cell apoptosis.
Collapse
|
29
|
Zitta K, Brandt B, Wuensch A, Meybohm P, Bein B, Steinfath M, Scholz J, Albrecht M. Interleukin-1beta regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells. Biochem Biophys Res Commun 2010; 399:542-7. [PMID: 20678474 DOI: 10.1016/j.bbrc.2010.07.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 07/27/2010] [Indexed: 12/29/2022]
Abstract
After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1beta is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1beta on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1beta. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1beta resulted in a dose-dependent increase of cell proliferation (P<0.05 vs. control; 100ng/ml; 24h). Gene expression of caspase-3 was increased by IL-1beta (P<0.05 vs. control; 100ng/ml; 3h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1beta (P<0.05 vs. control; 100ng/ml; 3h for gene expression, 48 and 72h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1beta plays a major role in the events of tissue remodelling in the heart. Combined with our recently published in vivo data (Meybohm et al., PLoS One, 2009), the results presented here strongly suggest IL-1beta as a key molecule guiding tissue remodelling events after myocardial infarction.
Collapse
Affiliation(s)
- Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Isobe K, Kuba K, Maejima Y, Suzuki JI, Kubota S, Isobe M. Inhibition of Endostatin/Collagen XVIII Deteriorates Left Ventricular Remodeling and Heart Failure in Rat Myocardial Infarction Model. Circ J 2010; 74:109-19. [DOI: 10.1253/circj.cj-09-0486] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuya Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - Keiji Kuba
- Medical Research Institute, MTT Program, Tokyo Medical and Dental University
- Department of Biological Informatics and Experimental Therapeutics, Akita University Graduate School of Medicine
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - Jun-ichi Suzuki
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, University of Tokyo
| | - Shunichiro Kubota
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| |
Collapse
|
31
|
Laguens RP, Crottogini AJ. Cardiac regeneration: the gene therapy approach. Expert Opin Biol Ther 2009; 9:411-25. [DOI: 10.1517/14712590902806364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
|