1
|
Zuo B, Zhu S, Zhong G, Bu H, Chen H. Causal association between placental growth factor and coronary heart disease: a Mendelian randomization study. Aging (Albany NY) 2023; 15:10117-10132. [PMID: 37787982 PMCID: PMC10599727 DOI: 10.18632/aging.205061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE Placental growth factor (PlGF), an important polypeptide hormone, plays an important regulatory role in various physiological processes. Observational studies have shown that PlGF is associated with the risk of coronary heart disease (CHD). However, the causal association between PlGF and CHD is unclear at present. This study aimed to investigate the causal association between genetically predicted PlGF levels and CHD. METHODS Single nucleotide polymorphisms (SNPs) associated with PlGF were selected as instrumental variables (IVs) to evaluate the causal association between genetically predicted circulating PlGF levels and CHD risk by two-sample Mendelian randomization (MR). RESULTS Inverse variance weighted (IVW) analysis showed that there was a suggestive causal association between genetically predicted PlGF level and the risk of CHD (OR = 0.79, 95% CI: 0.66-0.95, P = 0.011) overall. In addition, PlGF levels had a significant negative causal association with the risk of myocardial infarction (OR = 0.83, 95% CI: 0.72-0.95, P = 0.007). A negative correlation trend was found between PlGF level and the risk of angina pectoris (OR = 0.89, 95% CI: 0.79-1.01, P = 0.067). In addition, PlGF levels had a significant negative association with the risk of unstable angina pectoris (OR = 0.78, 95% CI: 0.64-0.94, P = 0.008). PlGF levels were negatively correlated with CHD events with suggestive significance (OR = 0.89, 95% CI: 0.80-0.99, P = 0.046). CONCLUSION Genetically predicted circulating PlGF levels are causally associated with the risk of CHD, especially acute coronary syndrome, and PlGF is a potential therapeutic target for CHD.
Collapse
Affiliation(s)
- Bo Zuo
- Department of Cardiology, Cardiovascular Centre, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Sha Zhu
- Department of Neurology, Peking University International Hospital, Beijing 102206, China
| | - Guoting Zhong
- Department of Neurology, Peking University International Hospital, Beijing 102206, China
| | - Haoyang Bu
- Department of Neurology, The First Hospital of Handan, Handan, China
| | - Hui Chen
- Department of Cardiology, Cardiovascular Centre, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
2
|
Mezi S, Botticelli A, Scagnoli S, Pomati G, Fiscon G, De Galitiis F, Di Pietro FR, Verkhovskaia S, Amirhassankhani S, Pisegna S, Gentile G, Simmaco M, Gohlke B, Preissner R, Marchetti P. The Impact of Drug-Drug Interactions on the Toxicity Profile of Combined Treatment with BRAF and MEK Inhibitors in Patients with BRAF-Mutated Metastatic Melanoma. Cancers (Basel) 2023; 15:4587. [PMID: 37760556 PMCID: PMC10526382 DOI: 10.3390/cancers15184587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND BRAF and MEK inhibition is a successful strategy in managing BRAF-mutant melanoma, even if the treatment-related toxicity is substantial. We analyzed the role of drug-drug interactions (DDI) on the toxicity profile of anti-BRAF/anti-MEK therapy. METHODS In this multicenter, observational, and retrospective study, DDIs were assessed using Drug-PIN software (V 2/23). The association between the Drug-PIN continuous score or the Drug-PIN traffic light and the occurrence of treatment-related toxicities and oncological outcomes was evaluated. RESULTS In total, 177 patients with advanced BRAF-mutated melanoma undergoing BRAF/MEK targeted therapy were included. All grade toxicity was registered in 79% of patients. Cardiovascular toxicities occurred in 31 patients (17.5%). Further, 94 (55.9%) patients had comorbidities requiring specific pharmacological treatments. The median Drug-PIN score significantly increased when the target combination was added to the patient's home therapy (p-value < 0.0001). Cardiovascular toxicity was significantly associated with the Drug-PIN score (p-value = 0.048). The Drug-PIN traffic light (p = 0.00821) and the Drug-PIN score (p = 0.0291) were seen to be significant predictors of cardiotoxicity. Patients with low-grade vs. high-grade interactions showed a better prognosis regarding overall survival (OS) (p = 0.0045) and progression-free survival (PFS) (p = 0.012). The survival analysis of the subgroup of patients with cardiological toxicity demonstrated that patients with low-grade vs. high-grade DDIs had better outcomes in terms of OS (p = 0.0012) and a trend toward significance in PFS (p = 0.068). CONCLUSIONS DDIs emerged as a critical issue for the risk of treatment-related cardiovascular toxicity. Our findings support the utility of DDI assessment in melanoma patients treated with BRAF/MEK inhibitors.
Collapse
Affiliation(s)
- Silvia Mezi
- Department of Radiological, Oncological, and Anatomopathological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (A.B.)
| | - Andrea Botticelli
- Department of Radiological, Oncological, and Anatomopathological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (A.B.)
| | - Simone Scagnoli
- Department of Radiological, Oncological, and Anatomopathological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (A.B.)
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.P.); (S.P.)
| | - Giulia Fiscon
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Federica De Galitiis
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| | - Francesca Romana Di Pietro
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| | - Sofia Verkhovskaia
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| | - Sasan Amirhassankhani
- Department of Urology, S. Orsola-Malpighi Hospital, University of Bologna, Via Palagi, 40126 Bologna, Italy;
| | - Simona Pisegna
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.P.); (S.P.)
| | - Giovanna Gentile
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00185 Rome, Italy; (G.G.); (M.S.)
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00185 Rome, Italy; (G.G.); (M.S.)
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Bjoern Gohlke
- Structural Bioinformatics Group, Institute for Physiology, Charité-University Medicine Berlin, 10117 Berlin, Germany; (B.G.); (R.P.)
| | - Robert Preissner
- Structural Bioinformatics Group, Institute for Physiology, Charité-University Medicine Berlin, 10117 Berlin, Germany; (B.G.); (R.P.)
| | - Paolo Marchetti
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| |
Collapse
|
3
|
Kumar K, Singh N, Yadav HN, Maslov L, Jaggi AS. Endless Journey of Adenosine Signaling in Cardioprotective Mechanism of Conditioning Techniques: Clinical Evidence. Curr Cardiol Rev 2023; 19:56-71. [PMID: 37309766 PMCID: PMC10636797 DOI: 10.2174/1573403x19666230612112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
Myocardial ischemic injury is a primary cause of death among various cardiovascular disorders. The condition occurs due to an interrupted supply of blood and vital nutrients (necessary for normal cellular activities and viability) to the myocardium, eventually leading to damage. Restoration of blood supply to ischemic tissue is noted to cause even more lethal reperfusion injury. Various strategies, including some conditioning techniques, like preconditioning and postconditioning, have been developed to check the detrimental effects of reperfusion injury. Many endogenous substances have been proposed to act as initiators, mediators, and end effectors of these conditioning techniques. Substances, like adenosine, bradykinin, acetylcholine, angiotensin, norepinephrine, opioids, etc., have been reported to mediate cardioprotective activity. Among these agents, adenosine has been widely studied and suggested to have the most pronounced cardioprotective effects. The current review article highlights the role of adenosine signaling in the cardioprotective mechanism of conditioning techniques. The article also provides an insight into various clinical studies that substantiate the applicability of adenosine as a cardioprotective agent in myocardial reperfusion injury.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leonid Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| |
Collapse
|
4
|
Efentakis P, Andreadou I, Iliodromitis KE, Triposkiadis F, Ferdinandy P, Schulz R, Iliodromitis EK. Myocardial Protection and Current Cancer Therapy: Two Opposite Targets with Inevitable Cost. Int J Mol Sci 2022; 23:14121. [PMID: 36430599 PMCID: PMC9696420 DOI: 10.3390/ijms232214121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial protection against ischemia/reperfusion injury (IRI) is mediated by various ligands, activating different cellular signaling cascades. These include classical cytosolic mediators such as cyclic-GMP (c-GMP), various kinases such as Phosphatydilinositol-3- (PI3K), Protein Kinase B (Akt), Mitogen-Activated-Protein- (MAPK) and AMP-activated (AMPK) kinases, transcription factors such as signal transducer and activator of transcription 3 (STAT3) and bioactive molecules such as vascular endothelial growth factor (VEGF). Most of the aforementioned signaling molecules constitute targets of anticancer therapy; as they are also involved in carcinogenesis, most of the current anti-neoplastic drugs lead to concomitant weakening or even complete abrogation of myocardial cell tolerance to ischemic or oxidative stress. Furthermore, many anti-neoplastic drugs may directly induce cardiotoxicity via their pharmacological effects, or indirectly via their cardiovascular side effects. The combination of direct drug cardiotoxicity, indirect cardiovascular side effects and neutralization of the cardioprotective defense mechanisms of the heart by prolonged cancer treatment may induce long-term ventricular dysfunction, or even clinically manifested heart failure. We present a narrative review of three therapeutic interventions, namely VEGF, proteasome and Immune Checkpoint inhibitors, having opposing effects on the same intracellular signal cascades thereby affecting the heart. Moreover, we herein comment on the current guidelines for managing cardiotoxicity in the clinical setting and on the role of cardiovascular confounders in cardiotoxicity.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, 35390 Giessen, Germany
| | | |
Collapse
|
5
|
Rocker AJ, Cavasin M, Johnson NR, Shandas R, Park D. Sulfonated Thermoresponsive Injectable Gel for Sequential Release of Therapeutic Proteins to Protect Cardiac Function after Myocardial Infarction. ACS Biomater Sci Eng 2022; 8:3883-3898. [PMID: 35950643 DOI: 10.1021/acsbiomaterials.2c00616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myocardial infarction causes cardiomyocyte death and persistent inflammatory responses, which generate adverse pathological remodeling. Delivering therapeutic proteins from injectable materials in a controlled-release manner may present an effective biomedical approach for treating this disease. A thermoresponsive injectable gel composed of chitosan, conjugated with poly(N-isopropylacrylamide) and sulfonate groups, was developed for spatiotemporal protein delivery to protect cardiac function after myocardial infarction. The thermoresponsive gel delivered vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), and platelet-derived growth factor (PDGF) in a sequential and sustained manner in vitro. An acute myocardial infarction mouse model was used to evaluate polymer biocompatibility and to determine therapeutic effects from the delivery system on cardiac function. Immunohistochemistry showed biocompatibility of the hydrogel, while the controlled delivery of the proteins reduced macrophage infiltration and increased vascularization. Echocardiography showed an improvement in ejection fraction and fractional shortening after injecting the thermal gel and proteins. A factorial design of experimental study was implemented to optimize the delivery system for the best combination and doses of proteins for further increasing stable vascularization and reducing inflammation using a subcutaneous injection mouse model. The results showed that VEGF, IL-10, and FGF-2 demonstrated significant contributions toward promoting long-term vascularization, while PDGF's effect was minimal.
Collapse
Affiliation(s)
- Adam J Rocker
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Maria Cavasin
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Noah R Johnson
- Department of Neurology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Robin Shandas
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
6
|
Nikolaou PE, Mylonas N, Makridakis M, Makrecka-Kuka M, Iliou A, Zerikiotis S, Efentakis P, Kampoukos S, Kostomitsopoulos N, Vilskersts R, Ikonomidis I, Lambadiari V, Zuurbier CJ, Latosinska A, Vlahou A, Dimitriadis G, Iliodromitis EK, Andreadou I. Cardioprotection by selective SGLT-2 inhibitors in a non-diabetic mouse model of myocardial ischemia/reperfusion injury: a class or a drug effect? Basic Res Cardiol 2022; 117:27. [PMID: 35581445 DOI: 10.1007/s00395-022-00934-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023]
Abstract
Major clinical trials with sodium glucose co-transporter-2 inhibitors (SGLT-2i) exhibit protective effects against heart failure events, whereas inconsistencies regarding the cardiovascular death outcomes are observed. Therefore, we aimed to compare the selective SGLT-2i empagliflozin (EMPA), dapagliflozin (DAPA) and ertugliflozin (ERTU) in terms of infarct size (IS) reduction and to reveal the cardioprotective mechanism in healthy non-diabetic mice. C57BL/6 mice randomly received vehicle, EMPA (10 mg/kg/day) and DAPA or ERTU orally at the stoichiometrically equivalent dose (SED) for 7 days. 24 h-glucose urinary excretion was determined to verify SGLT-2 inhibition. IS of the region at risk was measured after 30 min ischemia (I), and 120 min reperfusion (R). In a second series, the ischemic myocardium was collected (10th min of R) for shotgun proteomics and evaluation of the cardioprotective signaling. In a third series, we evaluated the oxidative phosphorylation capacity (OXPHOS) and the mitochondrial fatty acid oxidation capacity by measuring the respiratory rates. Finally, Stattic, the STAT-3 inhibitor and wortmannin were administered in both EMPA and DAPA groups to establish causal relationships in the mechanism of protection. EMPA, DAPA and ERTU at the SED led to similar SGLT-2 inhibition as inferred by the significant increase in glucose excretion. EMPA and DAPA but not ERTU reduced IS. EMPA preserved mitochondrial functionality in complex I&II linked oxidative phosphorylation. EMPA and DAPA treatment led to NF-kB, RISK, STAT-3 activation and the downstream apoptosis reduction coinciding with IS reduction. Stattic and wortmannin attenuated the cardioprotection afforded by EMPA and DAPA. Among several upstream mediators, fibroblast growth factor-2 (FGF-2) and caveolin-3 were increased by EMPA and DAPA treatment. ERTU reduced IS only when given at the double dose of the SED (20 mg/kg/day). Short-term EMPA and DAPA, but not ERTU administration at the SED reduce IS in healthy non-diabetic mice. Cardioprotection is not correlated to SGLT-2 inhibition, is STAT-3 and PI3K dependent and associated with increased FGF-2 and Cav-3 expression.
Collapse
Affiliation(s)
- Panagiota Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Nikolaos Mylonas
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Manousos Makridakis
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | | | - Aikaterini Iliou
- Faculty of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Stelios Zerikiotis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Stavros Kampoukos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Centre of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | | | - Ignatios Ikonomidis
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | - Antonia Vlahou
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - George Dimitriadis
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | | | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771, Athens, Greece.
| |
Collapse
|
7
|
Ding H, Chang J, He F, Gai S, Yang P. Hydrogen Sulfide: An Emerging Precision Strategy for Gas Therapy. Adv Healthc Mater 2022; 11:e2101984. [PMID: 34788499 DOI: 10.1002/adhm.202101984] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/06/2021] [Indexed: 12/13/2022]
Abstract
Advances in nanotechnology have enabled the rapid development of stimuli-responsive therapeutic nanomaterials for precision gas therapy. Hydrogen sulfide (H2 S) is a significant gaseous signaling molecule with intrinsic biochemical properties, which exerts its various physiological effects under both normal and pathological conditions. Various nanomaterials with H2 S-responsive properties, as new-generation therapeutic agents, are explored to guide therapeutic behaviors in biological milieu. The cross disciplinary of H2 S is an emerging scientific hotspot that studies the chemical properties, biological mechanisms, and therapeutic effects of H2 S. This review summarizes the state-of-art research on H2 S-related nanomedicines. In particular, recent advances in H2 S therapeutics for cancer, such as H2 S-mediated gas therapy and H2 S-related synergistic therapies (combined with chemotherapy, photodynamic therapy, photothermal therapy, and chemodynamic therapy) are highlighted. Versatile imaging techniques for real-time monitoring H2 S during biological diagnosis are reviewed. Finally, the biosafety issues, current challenges, and potential possibilities in the evolution of H2 S-based therapy that facilitate clinical translation to patients are discussed.
Collapse
Affiliation(s)
- He Ding
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Jinhu Chang
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| |
Collapse
|
8
|
Association between Tumor Prognosis Marker Visfatin and Proinflammatory Cytokines in Hypertensive Patients. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8568926. [PMID: 33816632 PMCID: PMC7990525 DOI: 10.1155/2021/8568926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 02/19/2021] [Indexed: 12/03/2022]
Abstract
Visfatin has been reported as a risk factor and a potential diagnostic marker in cancer. It is an adipokine, secreted by visceral fat and associated with the pathogenesis of arterial hypertension. We investigated the circulatory levels of visfatin in hypertensive patients with hypertriglyceridemia, which are the risk factors for various cancers and its association with proinflammatory cytokines. A total of 81 (male/female: 33/48) subjects with or without hypertension were enrolled for this study. Group 1 was normotensive, Group 2 hypertensive, and Group 3 with hypertension with hypertriglyceridemia. Data on anthropometric and biochemical data were recorded. Plasma visfatin levels were measured using an ELISA kit. The plasma inflammatory cytokines were estimated using a multiplex bead-based assay. The results revealed that the hypertension with hypertriglyceridemia group has the highest levels of visfatin compared to the hypertension and control groups with a significant difference (p < 0.001). Besides, circulatory visfatin showed the strongest possible correlation with proinflammatory cytokines among hypertensive patients with hypertriglyceridemia. We found a positive correlation between visfatin and diastolic blood pressure as well as high-density lipoproteins. In conclusion, the outcomes of the present study demonstrate that plasma visfatin levels were found to be elevated in hypertensive patients with hypertriglyceridemia and associated with proinflammatory cytokines. Since hypertension has been documented as the most common comorbidity observed in cancer patients, visfatin may be a novel potential therapeutic target for hypertension in cancer patients and survivors.
Collapse
|
9
|
Effects of morphine preconditioning on TRPV1 sensitization and ERK1/2 phosphorylation induced by TGFβ1 in neurocytes. Neuroreport 2021; 32:339-344. [PMID: 33661801 DOI: 10.1097/wnr.0000000000001603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Myocardium ischemia-reperfusion injury (IRI) is the major cause of cardiac dysfunction. While intrathecal morphine preconditioning (MPC) can alleviate IRI in animal model, the molecular processes underlying IRI and MPC remain elusive. This study aims to test whether pretreatment with morphine can ameliorate the increased activity of transient receptor potential vanilloid 1 (TRPV1) induced by transforming growth beta1 (TGFβ1) in cultured dorsal root ganglion neurons as a model of the effects of cardiac ischemia on nociceptive primary afferent neurons. METHODS To simulate the effect of MPC on dorsal root ganglia (DRG) neurons during myocardial IRI in vivo, the cells were pretreated with morphine for 10 min, followed by wash-out for 30 min before TGFβ1 was added. Afterwards, DRG neurons and N2a cells in all groups were stimulated by capsaicin, and the inward current induced by capsaicin were detected by whole-cell recording on DRG neurons; the expression of TRPV1, phosphorylated (p) TRPV1, ERK1/2, and pERK1/2 were detected by western blot in N2a cells. RESULTS In comparison with cells with normal culture, the inward current was enhanced of cells incubated with TGFβ1 (P < 0.05), and the relative expression of TRPV1, pTRPV1, and pERK1/2 was upregulated as well (P < 0.05); In comparison with cells incubated with TGFβ1, the inward current induced by capsaicin were decreased by pretreatment with morphine (P < 0.05), Moreover, the relative expression of TRPV1, pTRPV1, and pERK1/2 were also reduced by MPC (P < 0.05). CONCLUSION MPC inhibits TRPV1 sensitized by TGFβ1 in DRG cells, and the mechanism might be associated with the downregulation of pERK1/2 expression.
Collapse
|
10
|
Csósza G, Karlócai K, Losonczy G, Müller V, Lázár Z. Growth factors in pulmonary arterial hypertension: Focus on preserving right ventricular function. Physiol Int 2020; 107:177-194. [PMID: 32692713 DOI: 10.1556/2060.2020.00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disease, characterized by increased vascular resistance leading to right ventricle (RV) failure. The extent of right ventricular dysfunction crucially influences disease prognosis; however, currently no therapies have specific cardioprotective effects. Besides discussing the pathophysiology of right ventricular adaptation in PAH, this review focuses on the roles of growth factors (GFs) in disease pathomechanism. We also summarize the involvement of GFs in the preservation of cardiomyocyte function, to evaluate their potential as cardioprotective biomarkers and novel therapeutic targets in PAH.
Collapse
Affiliation(s)
- G Csósza
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - K Karlócai
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - G Losonczy
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - V Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Z Lázár
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Hansen J, Johnsen J, Nielsen JM, Sørensen CB, Elkjær CC, Jespersen NR, Bøtker HE. Impact of Administration Time and Kv7 Subchannels on the Cardioprotective Efficacy of Kv7 Channel Inhibition. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2549-2560. [PMID: 32669836 PMCID: PMC7337438 DOI: 10.2147/dddt.s226406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/15/2020] [Indexed: 01/12/2023]
Abstract
Purpose The mechanism of cardioprotection by Kv7.1-5 (KCNQ1-5) channels inhibition by XE991 is unclear. We examined the impact of administration time on the cardioprotective efficacy of XE991, the involvement of key pro-survival kinases, and the importance of the Kv7 subchannels. Methods Isolated perfused rat hearts were divided into five groups: 1) vehicle, 2) pre-, 3) post- or 4) pre- and post-ischemic administration of XE991 or 5) chromanol 293B (Kv7.1 inhibitor) followed by infarct size quantification. HL-1 cells undergoing simulated ischemia/reperfusion were exposed to either a) vehicle, b) pre-, c) per-, d) post-ischemic administration of XE991 or pre-, per- and post-ischemic administration of e) XE991, f) Chromanol 293B or g) HMR1556 (Kv7.1 inhibitor). HL-1 cell injury was evaluated by propidium iodide/Hoechst staining. Pro-survival kinase activation of Akt, Erk and STAT3 in XE991-mediated HL-1 cell protection was evaluated using phosphokinase inhibitors. Kv7 subtype expression was examined by RT-PCR and qPCR. Results XE991, but not Chromanol 293B, reduced infarct size and improved hemodynamic recovery in all isolated heart groups. XE991 protected HL-1 cells when administered during simulated ischemia. Minor activation of the survival kinases was observed in cells exposed to XE991 but pharmacological inhibition of kinase activation did not reduce XE991-mediated protection. Kv7 subchannels 1-5 were all present in rat hearts but predominately Kv7.1 and Kv7.4 were present in HL-1 cells and selective Kv7.1 did not reduce ischemia/reperfusion injury. Conclusion The cardioprotective efficacy of XE991 seems to depend on its presence during ischemia and early reperfusion and do not rely on RISK (p-Akt and p-Erk) and SAFE (p-STAT3) pathway activation. The protective effect of XE991 seems mainly mediated through the Kv7.4 subchannel.
Collapse
Affiliation(s)
- Jan Hansen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Johnsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jan Møller Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Charlotte Brandt Sørensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Casper Carlsen Elkjær
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nichlas Riise Jespersen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Han X, Liu P, Liu M, Wei Z, Fan S, Wang X, Sun S, Chu L. [6]-Gingerol Ameliorates ISO-Induced Myocardial Fibrosis by Reducing Oxidative Stress, Inflammation, and Apoptosis through Inhibition of TLR4/MAPKs/NF-κB Pathway. Mol Nutr Food Res 2020; 64:e2000003. [PMID: 32438504 DOI: 10.1002/mnfr.202000003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/30/2020] [Indexed: 12/15/2022]
Abstract
SCOPE [6]-Gingerol is one of the primary pungent constituents of ginger. While [6]-gingerol has many pharmacological effects, its benefits for myocardial fibrosis, including its exact role and underlying mechanisms, remain largely unexplored. The present study is designed to characterize the cardio-protective effects of [6]-gingerol in myocardial fibrosis mice and possible underlying mechanisms. METHODS AND RESULTS Mice are subcutaneously injected with isoproterenol (ISO, 10 mg kg-1 ) and gavaged with [6]-gingerol (10, 20 mg kg-1 day-1 ) for 14 days. Pathological alterations, fibrosis, oxidative stress, inflammation response, and apoptosis are examined. In ISO-induced myocardial fibrosis, [6]-gingerol treatment decreases the J-point, heart rate, cardiac weight index, left ventricle weight index, creatine kinase (CK), and lactate dehydrogenase serum levels, calcium concentration, reactive oxygen species, malondialdehyde, and glutathione disulfide (GSSG), and increases levels of superoxide dismutase, catalase, glutathione, and GSH/GSSG. Further, [6]-gingerol improved ISO-induced morphological pathologies, inhibited inflammation and apoptosis, and suppressed the toll-like receptor-4 (TLR4)/mitogen-activated protein kinases (MAPKs)/nuclear factor κB (NF-κB) signaling pathways. CONCLUSION The protective effect of [6]-gingerol in mice with ISO-induced myocardial fibrosis may be related to the inhibition of oxidative stress, inflammation, and apoptosis, potentially through the TLR4/MAPKs/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China.,Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei, 050091, China
| | - Panpan Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Miaomiao Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Ziheng Wei
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Sen Fan
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, Hebei, 050200, China.,School of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Shijiang Sun
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China.,Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, Hebei, 050200, China
| |
Collapse
|
13
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
14
|
Oldershaw R, Owens WA, Sutherland R, Linney M, Liddle R, Magana L, Lash GE, Gill JH, Richardson G, Meeson A. Human Cardiac-Mesenchymal Stem Cell-Like Cells, a Novel Cell Population with Therapeutic Potential. Stem Cells Dev 2019; 28:593-607. [PMID: 30803370 PMCID: PMC6486668 DOI: 10.1089/scd.2018.0170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cardiac stem/progenitors are being used in the clinic to treat patients with a range of cardiac pathologies. However, improvements in heart function following treatment have been reported to be variable, with some showing no response. This discrepancy in response remains unresolved. Mesenchymal stem cells (MSCs) have been highlighted as a regenerative tool as these cells display both immunomodulatory and proregenerative activities. The purpose of this study was to derive a cardiac MSC population to provide an alternative/support to current therapies. We derived human cardiac-mesenchymal stem cell-like cells (CMSCLC), so named as they share some MSC characteristics. However, CMSCLC lack the MSC trilineage differentiation capacity, being capable of only rare adipogenic differentiation and demonstrating low/no osteogenic or chondrogenic potential, a phenotype that may have advantages following transplantation. Furthermore, CMSCLC expressed low levels of p16, high levels of MHCI, and low levels of MHCII. A lack of senescent cells would also be advantageous for cells to be used therapeutically, as would the ability to modulate the immune response. Crucially, CMSCLC display a transcriptional profile that includes genes associated with cardioprotective/cardiobeneficial effects. CMSCLC are also secretory and multipotent, giving rise to cardiomyocytes and endothelial cells. Our findings support CMSCLC as a novel cell population suitable for use for transplantation.
Collapse
Affiliation(s)
- Rachel Oldershaw
- 1 Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - W Andrew Owens
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom.,3 Department of Cardiothoracic Surgery, South Tees Hospitals NHS Foundation Trust, Middlesbrough, United Kingdom
| | - Rachel Sutherland
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Martin Linney
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Liddle
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lissette Magana
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gendie E Lash
- 4 Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jason H Gill
- 5 The Faculty of Medical Sciences, School of Pharmacy, Northern Institute for Cancer Research (NICR), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gavin Richardson
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Annette Meeson
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
15
|
Ferrini A, Stevens MM, Sattler S, Rosenthal N. Toward Regeneration of the Heart: Bioengineering Strategies for Immunomodulation. Front Cardiovasc Med 2019; 6:26. [PMID: 30949485 PMCID: PMC6437044 DOI: 10.3389/fcvm.2019.00026] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
Myocardial Infarction (MI) is the most common cardiovascular disease. An average-sized MI causes the loss of up to 1 billion cardiomyocytes and the adult heart lacks the capacity to replace them. Although post-MI treatment has dramatically improved survival rates over the last few decades, more than 20% of patients affected by MI will subsequently develop heart failure (HF), an incurable condition where the contracting myocardium is transformed into an akinetic, fibrotic scar, unable to meet the body's need for blood supply. Excessive inflammation and persistent immune auto-reactivity have been suggested to contribute to post-MI tissue damage and exacerbate HF development. Two newly emerging fields of biomedical research, immunomodulatory therapies and cardiac bioengineering, provide potential options to target the causative mechanisms underlying HF development. Combining these two fields to develop biomaterials for delivery of immunomodulatory bioactive molecules holds great promise for HF therapy. Specifically, minimally invasive delivery of injectable hydrogels, loaded with bioactive factors with angiogenic, proliferative, anti-apoptotic and immunomodulatory functions, is a promising route for influencing the cascade of immune events post-MI, preventing adverse left ventricular remodeling, and offering protection from early inflammation to fibrosis. Here we provide an updated overview on the main injectable hydrogel systems and bioactive factors that have been tested in animal models with promising results and discuss the challenges to be addressed for accelerating the development of these novel therapeutic strategies.
Collapse
Affiliation(s)
- Arianna Ferrini
- Department of Materials, Imperial College London, London, United Kingdom,National Heart and Lung Institute and BHF Centre for Research Excellence, Imperial College London, London, United Kingdom
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, United Kingdom,Department of Bioengineering, Imperial College London, London, United Kingdom,Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute and BHF Centre for Research Excellence, Imperial College London, London, United Kingdom
| | - Nadia Rosenthal
- National Heart and Lung Institute and BHF Centre for Research Excellence, Imperial College London, London, United Kingdom,The Jackson Laboratory, Bar Harbor, ME, United States,*Correspondence: Nadia Rosenthal
| |
Collapse
|
16
|
Adipocytokines in Rheumatoid Arthritis: The Hidden Link between Inflammation and Cardiometabolic Comorbidities. J Immunol Res 2018; 2018:8410182. [PMID: 30584543 PMCID: PMC6280248 DOI: 10.1155/2018/8410182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/19/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease affecting typically synovial joints and leading to progressive articular damage, disability, and reduced quality of life. Despite better recent therapeutic strategies improving long-term outcomes, RA is associated with a high rate of comorbidities, infections, malignancies, and cardiovascular disease (CVD). Remarkably, some well-known pathogenic proinflammatory mediators in RA, such as interleukin-1β (IL-1β) and tumor necrosis factor (TNF), may play a pivotal role in the development of CVD. Interestingly, different preclinical and clinical studies have suggested that biologic agents commonly used to treat RA patients may be effective in improving CVD. In this context, the contribution of adipocytokines has been suggested. Adipocytokines are pleiotropic molecules, mainly released by white adipose tissue and immune cells. Adipocytokines modulate the function of different tissues and cells, and in addition to energy homeostasis and metabolism, amplify inflammation, immune response, and tissue damage. Adipocytokines may contribute to the proinflammatory state in RA patients and development of bone damage. Furthermore, they could be associated with the occurrence of CVD. In this study, we reviewed available evidence about adipocytokines in RA, because of their involvement in disease activity, associated CVD, and possible biomarkers of prognosis and treatment outcome and because of their potential as a possible new therapeutic target.
Collapse
|
17
|
Treatment with placental growth factor attenuates myocardial ischemia/reperfusion injury. PLoS One 2018; 13:e0202772. [PMID: 30212490 PMCID: PMC6136704 DOI: 10.1371/journal.pone.0202772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/08/2018] [Indexed: 02/05/2023] Open
Abstract
Studies have established that oxidative stress plays an important role in the pathology of myocardial ischemia/reperfusion injury (MIRI). Vascular endothelial growth factor receptor 1 (VEGFR1) activation was reported to reduce oxidative stress and apoptosis. In the present study, we tested the hypothesis that the activation of VEGFR1 by placental growth factor (PlGF) could reduce MIRI by regulating oxidative stress. Mouse hearts and neonatal mouse cardiomyocytes were subjected to ischemia/reperfusion (I/R) and oxygen glucose deprivation (OGD), respectively. PlGF pretreatment markedly ameliorated I/R injury, as demonstrated by reduced infarct size and improved cardiac function. The protection was associated with a reduction of cardiomyocyte apoptosis. Similarly, our in vitro study showed that PlGF treatment improved cell viability and reduced cardiomyocyte apoptosis. Also, activation of VEGFR1 by PlGF suppressed intracellular and mitochondrial reactive oxygen species (ROS) generation. However, VEGFR1 neutralizing monoclonal antibody, which preventing PlGF binding, totally blocked this protective effect. In conclusion, activation of VEGFR1 could protect heart from I/R injury by suppression of oxidative stress and apoptosis.
Collapse
|
18
|
Bronte E, Bronte G, Novo G, Rinaldi G, Bronte F, Passiglia F, Russo A. Cardiotoxicity mechanisms of the combination of BRAF-inhibitors and MEK-inhibitors. Pharmacol Ther 2018; 192:65-73. [PMID: 29964124 DOI: 10.1016/j.pharmthera.2018.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Many new drugs have appeared in last years in the oncological treatment scenario. Each drug carries an important set of adverse events, not less, cardiovascular adverse events. This aspect is even more important considering the increasing use of combination therapies with two drugs, or three drugs as in some ongoing clinical trials. Besides it represents a growing problem for Cardiologists, that face it in every day clinical practice and that will face it probably more and more in the coming years. This work reviews the mechanism of action of BRAF-inhibitors and MEK-inhibitors used together, the pathophysiological mechanisms that lead to cardiovascular toxicity. Particularly, it focuses on hypertension and ejection fraction reduction development. Then, it follows the examination of published data for each combination therapy. A Literature research was carried out using Pubmed selecting review articles, original studies and clinical trials, but mainly focusing on phase 3 studies. This work aims to summarize the knowledge about BRAF-inhibitor and MEK-inhibitor treatment and its cardiovascular toxicity to make it usable and give the basic tools to Cardiologists and Oncologists for a better management of cancer patient undergoing this treatment. Besides a deeper knowledge of the cardiovascular adverse events linked to this treatment and the magnitude of their expression and frequency can lead to a targeted cardiological treatment.
Collapse
Affiliation(s)
- Enrico Bronte
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy.
| | - Giuseppe Bronte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giuseppina Novo
- Division of Cardiology, Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Gaetana Rinaldi
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Fabrizio Bronte
- U.O.C. di Gastroenterologia, Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Francesco Passiglia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
19
|
Cianflone E, Aquila I, Scalise M, Marotta P, Torella M, Nadal-Ginard B, Torella D. Molecular basis of functional myogenic specification of Bona Fide multipotent adult cardiac stem cells. Cell Cycle 2018; 17:927-946. [PMID: 29862928 PMCID: PMC6103696 DOI: 10.1080/15384101.2018.1464852] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/01/2018] [Accepted: 04/08/2018] [Indexed: 01/14/2023] Open
Abstract
Ischemic Heart Disease (IHD) remains the developed world's number one killer. The improved survival from Acute Myocardial Infarction (AMI) and the progressive aging of western population brought to an increased incidence of chronic Heart Failure (HF), which assumed epidemic proportions nowadays. Except for heart transplantation, all treatments for HF should be considered palliative because none of the current therapies can reverse myocardial degeneration responsible for HF syndrome. To stop the HF epidemic will ultimately require protocols to reduce the progressive cardiomyocyte (CM) loss and to foster their regeneration. It is now generally accepted that mammalian CMs renew throughout life. However, this endogenous regenerative reservoir is insufficient to repair the extensive damage produced by AMI/IHD while the source and degree of CM turnover remains strongly disputed. Independent groups have convincingly shown that the adult myocardium harbors bona-fide tissue specific cardiac stem cells (CSCs). Unfortunately, recent reports have challenged the identity and the endogenous myogenic capacity of the c-kit expressing CSCs. This has hampered progress and unless this conflict is settled, clinical tests of repair/regenerative protocols are unlikely to provide convincing answers about their clinical potential. Here we review recent data that have eventually clarified the specific phenotypic identity of true multipotent CSCs. These cells when coaxed by embryonic cardiac morphogens undergo a precisely orchestrated myogenic commitment process robustly generating bona-fide functional cardiomyocytes. These data should set the path for the revival of further investigation untangling the regenerative biology of adult CSCs to harness their potential for HF prevention and treatment.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mariangela Scalise
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Pina Marotta
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania Campus “Salvatore Venuta” Viale Europa- Loc. Germaneto “L. Vanvitelli”, Naples, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
20
|
25-Hydroxyl-protopanaxatriol protects against H2O2-induced H9c2 cardiomyocytes injury via PI3K/Akt pathway and apoptotic protein down-regulation. Biomed Pharmacother 2018; 99:33-42. [DOI: 10.1016/j.biopha.2018.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/14/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
|
21
|
Selvasandran K, Makhoul G, Jaiswal PK, Jurakhan R, Li L, Ridwan K, Cecere R. A Tumor Necrosis Factor-α and Hypoxia-Induced Secretome Therapy for Myocardial Repair. Ann Thorac Surg 2017; 105:715-723. [PMID: 29258676 DOI: 10.1016/j.athoracsur.2017.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/23/2017] [Accepted: 09/11/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Poor viability and retention of transplanted bone marrow mesenchymal stem cells (BM-MSC) remains an obstacle in promoting healing after myocardial infarction (MI). This study aimed to understand the migratory, angiogenic, and cardioprotective effects induced by tumor necrosis factor (TNF)-α and hypoxia through rat BM-MSC (rBM-MSC) paracrine secretions, collectively referred to as secretome, after MI. METHODS Secretome from rBM-MSC cultures treated with various combinations of H9c2 cardiomyoblast-conditioned medium, TNF-α, and hypoxia was initially collected. Immunocytochemistry, Western blot analyses, and transwell cell migration assays were conducted. In vivo, echocardiography was performed on rats with induced MI after their treatment with TNF-α and hypoxia-induced secretome. RESULTS Immunocytochemistry confirmed the presence of TNF receptors 1 and 2 on rBM-MSCs. Western blot analyses of rBM-MSCs treated with TNF-α and hypoxia showed an overall increasing trend in the expression of antiinflammatory proteins and angiogenic and migratory cytokines (transforming growth factor-β, fibroblast growth factor-2, angiopoietin-2, vascular endothelial growth factor-1). In addition, the TNF-α and hypoxia-induced secretome significantly increased the in vitro rBM-MSCs migration. In the rat MI model, the rats treated with the TNF-α and hypoxia-induced secretome had a significantly higher left ventricular fractional shortening than the control group. CONCLUSIONS Our data suggest that after MI, rBM-MSCs secrete paracrine factors in response to TNF-α and hypoxia that work together to manipulate the microenvironment and decrease inflammation. In addition, these signaling factors trigger angiogenic and migratory effects at the site of the infarct to promote myocardial healing and improve the cardiac function.
Collapse
Affiliation(s)
- Kaviyanka Selvasandran
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Georges Makhoul
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Prashant K Jaiswal
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rishi Jurakhan
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Li Li
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Khalid Ridwan
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada; Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Renzo Cecere
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada; Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Bhutani S, Nachlas ALY, Brown ME, Pete T, Johnson CT, García AJ, Davis ME. Evaluation of Hydrogels Presenting Extracellular Matrix-Derived Adhesion Peptides and Encapsulating Cardiac Progenitor Cells for Cardiac Repair. ACS Biomater Sci Eng 2017; 4:200-210. [PMID: 29457128 DOI: 10.1021/acsbiomaterials.7b00502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell therapy is an emerging paradigm for the treatment of heart disease. In spite of the exciting and promising preclinical results, the benefits of cell therapy for cardiac repair in patients have been modest at best. Biomaterials-based approaches may overcome the barriers of poor differentiation and retention of transplanted cells. In this study, we prepared and tested hydrogels presenting extracellular matrix (ECM)-derived adhesion peptides as delivery vehicles for c-kit+ cardiac progenitor cells (CPCs). We assessed their effects on cell behavior in vitro as well as cardiac repair in rats undergoing ischemia reperfusion. Hydrogels presenting the collagen-derived GFOGER peptide induced cardiomyocyte differentiation of CPCs as demonstrated by increased expression of cardiomyocyte structural proteins. However, conditioned media obtained from GFOGER hydrogels showed lower levels of secreted reparative factors. Interestingly, following injection in rats undergoing ischemia-reperfusion, treatment with CPCs encapsulated in nonadhesive RDG-presenting hydrogels resulted in the preservation of cardiac contractility and attenuation of postinfarct remodeling whereas the adhesion peptide-presenting hydrogels did not induce any functional improvement. Retention of cells was significantly higher when delivered with nonadhesive hydrogels compared to ECM-derived peptide gels. These data suggest that factors including cell differentiation state, paracrine factors and interaction with biomaterials influence the effectiveness of biomaterials-based cell therapy. A holistic consideration of these multiple variables should be included in cell-biomaterial combination therapy designs.
Collapse
Affiliation(s)
- Srishti Bhutani
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States
| | - Aline L Y Nachlas
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States
| | - Milton E Brown
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States
| | - Tionne Pete
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States
| | - Christopher T Johnson
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30313, United States
| | - Andres J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30313, United States.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30313, United States.,Division of Cardiology, Emory University School of Medicine, 101 Woodruff Circle, Room 319, Atlanta, Georgia 30322, United States.,Children's Heart Research and Outcomes Center, Children's Healthcare of Atlanta, 1760 Haygood Drive, W400, Atlanta, Georgia 30322, United States
| |
Collapse
|
23
|
Abstract
Coronary artery disease (CAD) is a major cause of morbidity and mortality worldwide. Coronary artery bypass graft (CABG) surgery is the revascularisation strategy of choice in patients with diabetes mellitus and complex CAD. Owing to a number of factors, including the ageing population, the increased complexity of CAD being treated, concomitant valve and aortic surgery, and multiple comorbidities, higher-risk patients are being operated on, the result of which is an increased risk of sustaining perioperative myocardial injury (PMI) and poorer clinical outcomes. As such, new treatment strategies are required to protect the heart against PMI and improve clinical outcomes following cardiac surgery. In this regard, the heart can be endogenously protected from PMI by subjecting the myocardium to one or more brief cycles of ischaemia and reperfusion, a strategy called "ischaemic conditioning". However, this requires an intervention applied directly to the heart, which may be challenging to apply in the clinical setting. In this regard, the strategy of remote ischaemic conditioning (RIC) may be more attractive, as it allows the endogenous cardioprotective strategy to be applied away from the heart to the arm or leg by simply inflating and deflating a cuff on the upper arm or thigh to induce one or more brief cycles of ischaemia and reperfusion (termed "limb RIC"). Although a number of small clinical studies have demonstrated less PMI with limb RIC following cardiac surgery, three recently published large multicentre randomised clinical trials found no beneficial effects on short-term or long-term clinical outcomes, questioning the role of limb RIC in the setting of cardiac surgery. In this article, we review ischaemic conditioning as a therapeutic strategy for endogenous cardioprotection in patients undergoing cardiac surgery and discuss the potential reasons for the failure of limb RIC to improve clinical outcomes in this setting. Crucially, limb RIC still has the therapeutic potential to protect the heart in other clinical settings, such as acute myocardial infarction, and it may also protect other organs against acute ischaemia/reperfusion injury (such as the brain, kidney, and liver).
Collapse
Affiliation(s)
- Luciano Candilio
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK.,The National Institute of Health Research-University College London Hospitals Biomedical Research Centre, London, UK
| | - Derek Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK.,The National Institute of Health Research-University College London Hospitals Biomedical Research Centre, London, UK.,Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Kim PH, Cho JY. Myocardial tissue engineering using electrospun nanofiber composites. BMB Rep 2016; 49:26-36. [PMID: 26497579 PMCID: PMC4914209 DOI: 10.5483/bmbrep.2016.49.1.165] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/18/2023] Open
Abstract
Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful cardiovascular tissue regeneration systems, new technologies must be introduced to improve myocardial regeneration. Electrospinning is a simple, versatile technique for fabricating nanofibers. Here, we discuss various biodegradable polymers (natural, synthetic, and combinatorial polymers) that can be used for fiber fabrication. We also describe a series of fiber modification methods that can increase cell survival, proliferation, and migration and provide supporting mechanical properties by mimicking micro-environment structures, such as the extracellular matrix (ECM). In addition, the applications and types of nanofiber-based scaffolds for myocardial regeneration are described. Finally, fusion research methods combined with stem cells and scaffolds to improve biocompatibility are discussed. [BMB Reports 2016; 49(1): 26-36]
Collapse
Affiliation(s)
- Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon 35365, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
25
|
Xu Y, Guan J. Biomaterial property-controlled stem cell fates for cardiac regeneration. Bioact Mater 2016; 1:18-28. [PMID: 29744392 PMCID: PMC5883968 DOI: 10.1016/j.bioactmat.2016.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 12/13/2022] Open
Abstract
Myocardial infarction (MI) affects more than 8 million people in the United States alone. Due to the insufficient regeneration capacity of the native myocardium, one widely studied approach is cardiac tissue engineering, in which cells are delivered with or without biomaterials and/or regulatory factors to fully regenerate the cardiac functions. Specifically, in vitro cardiac tissue engineering focuses on using biomaterials as a reservoir for cells to attach, as well as a carrier of various regulatory factors such as growth factors and peptides, providing high cell retention and a proper microenvironment for cells to migrate, grow and differentiate within the scaffolds before implantation. Many studies have shown that the full establishment of a functional cardiac tissue in vitro requires synergistic actions between the seeded cells, the tissue culture condition, and the biochemical and biophysical environment provided by the biomaterials-based scaffolds. Proper electrical stimulation and mechanical stretch during the in vitro culture can induce the ordered orientation and differentiation of the seeded cells. On the other hand, the various scaffolds biochemical and biophysical properties such as polymer composition, ligand concentration, biodegradability, scaffold topography and mechanical properties can also have a significant effect on the cellular processes. Cell therapy is an attractive approach for cardiac regeneration after myocardial infarction. Biomaterials are used as cell carriers. This review highlights how biochemical and biophysical properties of biomaterials affect cell fates.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: From ocean algae to patient bedside. Adv Drug Deliv Rev 2016; 96:54-76. [PMID: 25962984 DOI: 10.1016/j.addr.2015.04.021] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 12/20/2022]
Abstract
Alginate biomaterial is widely utilized for tissue engineering and regeneration due to its biocompatibility, non-thrombogenic nature, mild and physical gelation process, and the resemblance of its hydrogel matrix texture and stiffness to that of the extracellular matrix. In this review, we describe the versatile biomedical applications of alginate, from its use as a supporting cardiac implant in patients after acute myocardial infarction (MI) to its employment as a vehicle for stem cell delivery and for the controlled delivery and presentation of multiple combinations of bioactive molecules and regenerative factors into the heart. Preclinical and first-in-man clinical trials are described in details, showing the therapeutic potential of injectable acellular alginate implants to inhibit the damaging processes after MI, leading to myocardial repair and tissue reconstruction.
Collapse
Affiliation(s)
- Emil Ruvinov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel; The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
27
|
Chang MY, Huang TT, Chen CH, Cheng B, Hwang SM, Hsieh PCH. Injection of Human Cord Blood Cells With Hyaluronan Improves Postinfarction Cardiac Repair in Pigs. Stem Cells Transl Med 2015; 5:56-66. [PMID: 26574556 DOI: 10.5966/sctm.2015-0092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/16/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Recent clinical trials using autologous bone marrow or peripheral blood cells to treat myocardial infarction (MI) show controversial results, although the treatment has a good safety profile. These discrepancies are likely caused by factors such as aging, systemic inflammation, and cell processing procedures, all of which might impair the regenerative capability of the cells used. Here, we tested whether injection of human cord blood mononuclear cells (CB-MNCs) combined with hyaluronan (HA) hydrogel improves cell therapy efficacy in a pig MI model. A total of 34 minipigs were divided into 5 groups: sham operation (Sham), surgically induced-MI plus injection with normal saline (MI+NS), HA only (MI+HA), CB-MNC only (MI+CB-MNC), or CB-MNC combined with HA (MI+CB-MNC/HA). Two months after the surgery, injection of MI+CB-MNC/HA showed the highest left ventricle ejection fraction (51.32%±0.81%) compared with MI+NS (42.87%±0.97%, p<.001), MI+HA (44.2%±0.63%, p<.001), and MI+CB-MNC (46.17%±0.39%, p<.001) groups. The hemodynamics data showed that MI+CB-MNC/HA improved the systolic function (+dp/dt) and diastolic function (-dp/dt) as opposed to the other experimental groups, of which the CB-MNC alone group only modestly improved the systolic function (+dp/dt). In addition, CB-MNC alone or combined with HA injection significantly decreased the scar area and promoted angiogenesis in the infarcted region. Together, these results indicate that combined CB-MNC and HA treatment improves heart performance and may be a promising treatment for ischemic heart diseases. SIGNIFICANCE This study using healthy human cord blood mononuclear cells (CB-MNCs) to treat myocardial infarction provides preclinical evidence that combined injection of hyaluronan and human CB-MNCs after myocardial infarction significantly increases cell retention in the peri-infarct area, improves cardiac performance, and prevents cardiac remodeling. Moreover, using healthy cells to replace dysfunctional autologous cells may constitute a better strategy to achieve heart repair and regeneration.
Collapse
Affiliation(s)
- Ming-Yao Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China Institute of Clinical Medicine, and National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Tzu-Ting Huang
- Institute of Clinical Medicine, and National Cheng Kung University, Tainan, Taiwan, Republic of China Department of Life Science, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Chien-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Bill Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China
| | - Patrick C H Hsieh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China Institute of Clinical Medicine, and National Cheng Kung University, Tainan, Taiwan, Republic of China Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China Division of Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
28
|
Liu SQ, Ma XL, Qin G, Liu Q, Li YC, Wu YH. Trans-system mechanisms against ischemic myocardial injury. Compr Physiol 2015; 5:167-92. [PMID: 25589268 DOI: 10.1002/cphy.c140026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A mammalian organism possesses a hierarchy of naturally evolved protective mechanisms against ischemic myocardial injury at the molecular, cellular, and organ levels. These mechanisms comprise regional protective processes, including upregulation and secretion of paracrine cell-survival factors, inflammation, angiogenesis, fibrosis, and resident stem cell-based cardiomyocyte regeneration. There are also interactive protective processes between the injured heart, circulation, and selected remote organs, defined as trans-system protective mechanisms, including upregulation and secretion of endocrine cell-survival factors from the liver and adipose tissue as well as mobilization of bone marrow, splenic, and hepatic cells to the injury site to mediate myocardial protection and repair. The injured heart and activated remote organs exploit molecular and cellular processes, including signal transduction, gene expression, cell proliferation, differentiation, migration, mobilization, and/or extracellular matrix production, to establish protective mechanisms. Both regional and trans-system cardioprotective mechanisms are mediated by paracrine and endocrine messengers and act in coordination and synergy to maximize the protective effect, minimize myocardial infarction, and improve myocardial function, ensuring the survival and timely repair of the injured heart. The concept of the trans-system protective mechanisms may be generalized to other organ systems-injury in one organ may initiate regional as well as trans-system protective responses, thereby minimizing injury and ensuring the survival of the entire organism. Selected trans-system processes may serve as core protective mechanisms that can be exploited by selected organs in injury. These naturally evolved protective mechanisms are the foundation for developing protective strategies for myocardial infarction and injury-induced disorders in other organ systems.
Collapse
Affiliation(s)
- Shu Q Liu
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois Department of Emergency Medicine, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois Carbohydrate and Lipid Metabolism Research Laboratory, College of Life Science and Technology, Dalian University, Dalian, China Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
29
|
Altun I, Pamukcu B, Yildiz CE, Arkaya SC, Guz G, Yilmaz A, Bilge AK, Turkoglu UM, Adalet K. Cardiotrophin-1: A new predictor of atrial fibrillation relapses after successful cardioversion. Bosn J Basic Med Sci 2015; 15:68-73. [PMID: 26295297 DOI: 10.17305/bjbms.2015.503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/16/2015] [Accepted: 06/19/2015] [Indexed: 01/19/2023] Open
Abstract
We aimed to investigate whether or not cardiotrophin-1 (CT-1) can be used as a predictor of sinus rhythm constancy in patients with atrial fibrillation (AF) converted to sinus rhythm. Thirty two patients with AF (48-78 years), without any structural heart disease were enrolled for the study. The control group consisted of 32, age and gender matched healthy persons. Measurements of CT-1 were made after transthoracic and transesophageal echocardiography prior to cardioversion (CV). Relapses of AF were investigated by monthly electrocardiograms (ECGs) and ambulatory ECGs at 1st, 3rd, and 6th month. At the end of 6th month, measurements of CT-1 were repeated. At the beginning patients with AF had increased CT-1 levels when compared to controls (0.94 ± 0.32 pg/mL vs. 0.30 ± 0.12 pg/mL, [p < 0.001]). At the end of follow-up of the 32 patients, 17 (53%) had AF relapse. Age, initial duration of AF, left ventricle diameters, ejection fraction, left atrium appendix flow rates were similar among patients with and without AF relapse. However, basal left atrium diameter (4.24 ± 0.14 cm vs. 4.04 ± 0.22 cm, p = 0.005), pulmonary artery pressure (32.82 ± 5 vs. 28.60 ± 6.23 mmHg, p = 0.004) and CT-1 values (1.08 ± 0.37 vs. 0.82 ± 0.16 pg/mL, p = 0.02) were significantly increased in patients with AF relapse. Furthermore, patients with relapsed AF had higher CT-1 levels at 6th month when compared to those in sinus rhythm (1.00 ± 0.40 vs. 0.71 ± 0.23 pg/mL). We conclude that post-CV, AF relapses are more frequent among patients with increased baseline CT-1 levels, and CT-1 may be a potential predictor of AF relapse.
Collapse
Affiliation(s)
- Ibrahim Altun
- Mugla Sitki Kocman University, Faculty of Medicine, Department of Cardiology.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jiang H, Xiao J, Kang B, Zhu X, Xin N, Wang Z. PI3K/SGK1/GSK3β signaling pathway is involved in inhibition of autophagy in neonatal rat cardiomyocytes exposed to hypoxia/reoxygenation by hydrogen sulfide. Exp Cell Res 2015; 345:134-40. [PMID: 26163895 DOI: 10.1016/j.yexcr.2015.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/19/2015] [Accepted: 07/06/2015] [Indexed: 11/16/2022]
Abstract
Excessive autophagy aggravates myocardial ischemia/reperfusion (IR) injury. Hydrogen sulfide (H2S) has been shown to possess a strong cardioprotective effect due to its anti-necrosis, anti-apoptosis, anti-oxidant and anti-inflammatory properties. Our previous study showed that H2S could also protect the myocardium against IR injury through its anti-autophagy effect in vivo, but the underlying mechanism remains unclear. The aim of the present study was to determine whether PI3K/SGK1/GSK3β signaling pathway was involved in the anti-autophagy effect of H2S against myocardial hypoxia/reoxygenation (HR) injury in vitro. Autophagy was significantly increased in cardiomyocytes subjected to HR, but it was down-regulated by H2S (NaHS donor). Blocking PI3K by LY294002 (a PI3K inhibitor) or knocking down SGK1 by SGK1 siRNA augmented autophagy and attenuated the anti-autophagy effect of H2S. However, blocking GSK3β by tws119 (a GSK3β inhibitor) produced an opposite effect. In addition, while treatment of neonatal rat cardiomyocytes with HR reduced cell viability and augmented cell injury, H2S significantly reversed it. Blocking PI3K or knocking down SGK1 aggravated HR injury and weakened the protective effect of H2S, while blocking GSK3β produced an opposite effect. In conclusion, H2S can inhibit autophagy in neonatal rat cardiomyocytes exposed to H/R and exert a cardioprotective effect at least partly by regulating PI3K/SGK1/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Huan Jiang
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bo Kang
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoyan Zhu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Ni Xin
- Department of Physiology, Second Military Medical University, Shanghai, China.
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
31
|
SGK1 Is Involved in Cardioprotection of Urocortin-1 Against Hypoxia/Reoxygenation in Cardiomyocytes. Can J Cardiol 2014; 30:687-95. [DOI: 10.1016/j.cjca.2014.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/17/2014] [Accepted: 03/10/2014] [Indexed: 12/26/2022] Open
|
32
|
|
33
|
Tarasenko N, Cutts SM, Phillips DR, Berkovitch-Luria G, Bardugo-Nissim E, Weitman M, Nudelman A, Rephaeli A. A novel valproic acid prodrug as an anticancer agent that enhances doxorubicin anticancer activity and protects normal cells against its toxicity in vitro and in vivo. Biochem Pharmacol 2014; 88:158-68. [DOI: 10.1016/j.bcp.2014.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 12/16/2022]
|
34
|
Plowright AT, Engkvist O, Gill A, Knerr L, Wang QD. Heart regeneration: opportunities and challenges for drug discovery with novel chemical and therapeutic methods or agents. Angew Chem Int Ed Engl 2014; 53:4056-75. [PMID: 24470316 DOI: 10.1002/anie.201307034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Indexed: 12/11/2022]
Abstract
Following a heart attack, more than a billion cardiac muscle cells (cardiomyocytes) can be killed, leading to heart failure and sudden death. Much research in this area is now focused on the regeneration of heart tissue through differentiation of stem cells, proliferation of existing cardiomyocytes and cardiac progenitor cells, and reprogramming of fibroblasts into cardiomyocytes. Different chemical modalities (i.e. methods or agents), ranging from small molecules and RNA approaches (including both microRNA and anti-microRNA) to modified peptides and proteins, are showing potential to meet this medical need. In this Review, we outline the recent advances in these areas and describe both the modality and progress, including novel screening strategies to identify hits, and the upcoming challenges and opportunities to develop these hits into pharmaceuticals, at which chemistry plays a key role.
Collapse
Affiliation(s)
- Alleyn T Plowright
- Department of Medicinal Chemistry, Cardiovascular and Metabolic Diseases Innovative Medicines, AstraZeneca, Pepparedsleden 1, Mölndal, 43183 (Sweden).
| | | | | | | | | |
Collapse
|
35
|
Plowright AT, Engkvist O, Gill A, Knerr L, Wang QD. Herzregeneration: Chancen und Aufgaben für die Wirkstoff-Forschung mit neuartigen chemischen und therapeutischen Methoden oder Agentien. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201307034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Cardiotrophin-1 Administration Protects from Ischemia-Reperfusion Renal Injury and Inflammation. Transplantation 2013; 96:1034-42. [DOI: 10.1097/tp.0b013e3182a74db4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Urocortin 2 is associated with abdominal aortic aneurysm and mediates anti-proliferative effects on vascular smooth muscle cells via corticotrophin releasing factor receptor 2. Clin Sci (Lond) 2013; 126:517-27. [DOI: 10.1042/cs20130425] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There are no current effective drug therapies for abdominal aortic aneurysm, an important cause of death in older adults. Our study suggests that urocortin 2 participates in the disease process and may serve as a putative therapeutic target.
Collapse
|
38
|
Cong B, Zhu X, Cao B, Xiao J, Wang Z, Ni X. Estrogens protect myocardium against ischemia/reperfusion insult by up-regulation of CRH receptor type 2 in female rats. Int J Cardiol 2013; 168:4755-60. [DOI: 10.1016/j.ijcard.2013.07.231] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 07/01/2013] [Accepted: 07/25/2013] [Indexed: 11/25/2022]
|
39
|
Endocrine protection of ischemic myocardium by FGF21 from the liver and adipose tissue. Sci Rep 2013; 3:2767. [PMID: 24067542 PMCID: PMC3783882 DOI: 10.1038/srep02767] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/06/2013] [Indexed: 12/24/2022] Open
Abstract
Myocardial ischemia, while causing cardiomyocyte injury, can activate innate protective processes, enhancing myocardial tolerance to ischemia. Such processes are present in not only the heart, but also remote organs. In this investigation, we demonstrated a cardioprotective process involving FGF21 from the liver and adipose tissue. In response to myocardial ischemia/reperfusion injury in the mouse, FGF21 was upregulated and released from the hepatic cells and adipocytes into the circulation and interacted with FGFR1 in cardiomyocytes under the mediation of the cell membrane protein β-Klotho, inducing FGFR1 phosphorylation. This action caused phosphorylation of the signaling molecules PI3K p85, Akt1, and BAD, thereby reducing caspase 3 activity, cell death, and myocardial infarction in association with improvement of myocardial function. These observations suggest that FGF21 is upregulated and released from the liver and adipose tissue in myocardial injury, contributing to myocardial protection by the mediation of the FGFR1/β-Klotho–PI3K–Akt1–BAD signaling network.
Collapse
|
40
|
|
41
|
Kolluru GK, Shen X, Bir SC, Kevil CG. Hydrogen sulfide chemical biology: pathophysiological roles and detection. Nitric Oxide 2013; 35:5-20. [PMID: 23850632 DOI: 10.1016/j.niox.2013.07.002] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 01/02/2023]
Abstract
Hydrogen sulfide (H2S) is the most recent endogenous gasotransmitter that has been reported to serve many physiological and pathological functions in different tissues. Studies over the past decade have revealed that H2S can be synthesized through numerous pathways and its bioavailability regulated through its conversion into different biochemical forms. H2S exerts its biological effects in various manners including redox regulation of protein and small molecular weight thiols, polysulfides, thiosulfate/sulfite, iron-sulfur cluster proteins, and anti-oxidant properties that affect multiple cellular and molecular responses. However, precise measurement of H2S bioavailability and its associated biochemical and pathophysiological roles remains less well understood. In this review, we discuss recent understanding of H2S chemical biology, its relationship to tissue pathophysiological responses and possible therapeutic uses.
Collapse
Affiliation(s)
- Gopi K Kolluru
- Department of Pathology, LSU Health-Shreveport, United States
| | | | | | | |
Collapse
|
42
|
Xiang FL, Lu X, Liu Y, Feng Q. Cardiomyocyte-specific overexpression of human stem cell factor protects against myocardial ischemia and reperfusion injury. Int J Cardiol 2013; 168:3486-94. [PMID: 23680593 DOI: 10.1016/j.ijcard.2013.04.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 03/05/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Cardiomyocyte-specific overexpression of human membrane-associated stem cell factor (hSCF) improves cardiac function post-myocardial infarction. However, whether hSCF overexpression protects the heart from ischemia and reperfusion (I/R) injury is unknown. We aimed to investigate the effects of cardiomyocyte-specific overexpression of hSCF on cardiac injury after acute myocardial I/R and related cellular and molecular signaling mechanisms. METHODS AND RESULTS Wild-type (WT) and hSCF/tetracycline transactivator (tTA) transgenic mice (hSCF/tTA) were subjected to myocardial ischemia for 45 min followed by 3 h of reperfusion. Infarct size and myocardial apoptosis were decreased in hSCF/tTA compared to WT mice (P<0.05). Furthermore, these cardioprotective effects in the hSCF/tTA mice were abrogated by doxycycline, which turned off hSCF overexpression, and by a PI3 kinase inhibitor LY294002. Myocardial expression of insulin-like growth factor (IGF)-1 and hepatocyte growth factor (HGF), which are upstream activators of Akt signaling, was significantly increased in hSCF/tTA compared to WT mice after I/R (P<0.05), and was associated with higher number of c-kit(+) cardiac stem cells (CSCs) (P<0.05). Inhibition of c-kit signaling by ACK2 treatment abolished these protective effects in hSCF/tTA mice. CONCLUSIONS Cardiomyocyte-specific overexpression of hSCF protects the heart from I/R injury. The cardioprotective effects of hSCF overexpression are mediated by increased c-kit(+) CSCs, enhanced growth factor expression and activation of Akt signaling pathway.
Collapse
Affiliation(s)
- Fu-Li Xiang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
Penna C, Settanni F, Tullio F, Trovato L, Pagliaro P, Alloatti G, Ghigo E, Granata R. GH-releasing hormone induces cardioprotection in isolated male rat heart via activation of RISK and SAFE pathways. Endocrinology 2013; 154:1624-35. [PMID: 23417421 DOI: 10.1210/en.2012-2064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GHRH stimulates GH synthesis and release from the pituitary and exerts direct effects in extrapituitary tissues. We have previously shown that pretreatment with GHRH reduces cardiomyocyte apoptosis and improves heart function in isolated rat hearts subjected to ischemia/reperfusion (I/R). Here, we determined whether GHRH given at reperfusion reduces myocardial reperfusion injury and investigated the molecular mechanisms involved in GHRH effects. Isolated rat hearts subjected to I/R were treated at the onset of reperfusion with: 1) GHRH; 2) GHRH+GHRH antagonist JV-1-36; 3) GHRH+mitochondrial ATP-dependent potassium channel inhibitor 5-hydroxydecanoate; 4) GHRH+mitochondrial permeability transition pore opener atractyloside; 5) GHRH+ phosphoinositide 3-kinase/Akt inhibitor Wortmannin (WM); and 6) GHRH+signal transducer and activator of transcription-3 inhibitor tyrphostin-AG490 (AG490). GHRH reduced infarct size at the end of reperfusion and reverted contractility dysfunction in I/R hearts. These effects were inhibited by either JV-1-36, 5-hydroxydecanoate, atractylosid, WM, or AG490. Western blot analysis on left ventricles showed GHRH-induced phosphorylation of either the reperfusion injury salvage kinases (RISK), phosphoinositide 3-kinase/Akt, ERK1/2, and glycogen synthase kinase-3β or signal transducer and activator of transcription-3, as part of the survivor activating factor enhancement (SAFE) pathway. GHRH-induced activation of RISK and SAFE pathways was blocked by JV-1-36, WM, and AG490. Furthermore, GHRH increased the phosphorylation of endothelial nitric oxide synthase and AMP-activated protein kinase and preserved postischemic nicotinamide adenine dinucleotide (NAD(+)) levels. These results suggest that GHRH protects the heart from I/R injury through receptor-mediated mechanisms, leading to activation of RISK and SAFE pathways, which converge on mitochondria and possibly on AMP-activated protein kinase.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Torino, 10126 Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Hyaluronan enhances bone marrow cell therapy for myocardial repair after infarction. Mol Ther 2013; 21:670-9. [PMID: 23295948 DOI: 10.1038/mt.2012.268] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hyaluronan (HA) has been shown to play an important role during early heart development and promote angiogenesis under various physiological and pathological conditions. In recent years, stem cell therapy, which may reduce cardiomyocyte apoptosis, increase neovascularization, and prevent cardiac fibrosis, has emerged as a promising approach to treat myocardial infarction (MI). However, effective delivery of stem cells for cardiac therapy remains a major challenge. In this study, we tested whether transplanting a combination of HA and allogeneic bone marrow mononuclear cells (MNCs) promotes cell therapy efficacy and thus improves cardiac performance after MI in rats. We showed that HA provided a favorable microenvironment for cell adhesion, proliferation, and vascular differentiation in MNC culture. Following MI in rats, compared with the injection of HA alone or MNC alone, injection of both HA and MNCs significantly reduced inflammatory cell infiltration, cardiomyocyte apoptosis, and infarct size and also improved cell retention, angiogenesis, and arteriogenesis, and thus the overall cardiac performance. Ultimately, HA/MNC treatment improved vasculature engraftment of transplanted cells in the infarcted region. Together, our results indicate that combining the biocompatible material HA with bone marrow stem cells exerts a therapeutic effect on heart repair and may further provide potential treatment for ischemic diseases.
Collapse
|
46
|
Abstract
The discovery of leptin in 1994 sparked dramatic new interest in the study of white adipose tissue. It is now recognised to be a metabolically active endocrine organ, producing important chemical messengers - adipokines and cytokines (adipocytokines). The search for new adipocytokines or adipokines gained added fervour with the prospect of the reconciliation between cardiovascular diseases (CVDs), obesity and metabolic syndrome. The role these new chemical messengers play in inflammation, satiety, metabolism and cardiac function has paved the way for new research and theories examining the effects they have on (in this case) CVD. Adipokines are involved in a 'good-bad', yin-yang homoeostatic balance whereby there are substantial benefits: cardioprotection, promoting endothelial function, angiogenesis and reducing hypertension, atherosclerosis and inflammation. The flip side may show contrasting, detrimental effects in aggravating these cardiac parameters.
Collapse
Affiliation(s)
- Harman S Mattu
- Division of Metabolic and Vascular Health, University of Warwick Medical School, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | |
Collapse
|
47
|
Semple DJ, Bhandari S, Seymour AML. Uremic cardiomyopathy is characterized by loss of the cardioprotective effects of insulin. Am J Physiol Renal Physiol 2012; 303:F1275-86. [DOI: 10.1152/ajprenal.00048.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic kidney disease is associated with a unique cardiomyopathy, characterized by a combination of structural and cellular remodeling, and an enhanced susceptibility to ischemia-reperfusion injury. This may represent dysfunction of the reperfusion injury salvage kinase pathway due to insulin resistance. The susceptibility of the uremic heart to ischemia-reperfusion injury and the cardioprotective effects of insulin and rosiglitazone were investigated. Uremia was induced in Sprague-Dawley rats by subtotal nephrectomy. Functional recovery from ischemia was investigated in vitro in control and uremic hearts ± insulin ± rosiglitazone. The response of myocardial oxidative metabolism to insulin was determined by13C-NMR spectroscopy. Activation of reperfusion injury salvage kinase pathway intermediates (Akt and GSK3β) were assessed by SDS-PAGE and immunoprecipitation. Insulin improved postischemic rate pressure product in control but not uremic hearts, [recovered rate pressure product (%), control 59.6 ± 10.7 vs. 88.9 ± 8.5, P < 0.05; uremic 19.3 ± 4.6 vs. 28.5 ± 10.4, P = ns]. Rosiglitazone resensitized uremic hearts to insulin-mediated cardioprotection [recovered rate pressure product (%) 12.7 ± 7.0 vs. 61.8 ± 15.9, P < 0.05]. Myocardial carbohydrate metabolism remained responsive to insulin in uremic hearts. Uremia was associated with increased phosphorylation of Akt (1.00 ± 0.08 vs. 1.31 ± 0.11, P < 0.05) in normoxia, but no change in postischemic phosphorylation of Akt or GSK3β. Akt2 isoform expression was decreased postischemia in uremic hearts ( P < 0.05). Uremia is associated with enhanced susceptibility to ischemia-reperfusion injury and a loss of insulin-mediated cardioprotection, which can be restored by administration of rosiglitazone. Altered Akt2 expression in uremic hearts post-ischemia-reperfusion and impaired activation of the reperfusion injury salvage kinase pathway may underlie these findings.
Collapse
Affiliation(s)
- David J. Semple
- Department of Biological Sciences and Hull York Medical School, University of Hull, Kingston-upon-Hull, United Kingdom; and
| | - Sunil Bhandari
- Department of Renal Medicine, Hull and East Yorkshire Hospital NHS Trust, and Hull York Medical School, Kingston-upon-Hull, United Kingdom
| | - Anne-Marie L. Seymour
- Department of Biological Sciences and Hull York Medical School, University of Hull, Kingston-upon-Hull, United Kingdom; and
| |
Collapse
|
48
|
Cardiotrophin-1, an antiinflammatory cytokine; is there a therapeutic role in orthotopic liver transplantation? J Surg Res 2012; 185:e63-5. [PMID: 22940036 DOI: 10.1016/j.jss.2012.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 11/22/2022]
|
49
|
Bell RM, Yellon DM. Conditioning the whole heart—not just the cardiomyocyte. J Mol Cell Cardiol 2012; 53:24-32. [DOI: 10.1016/j.yjmcc.2012.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 03/05/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
|
50
|
Oba T, Yasukawa H, Hoshijima M, Sasaki KI, Futamata N, Fukui D, Mawatari K, Nagata T, Kyogoku S, Ohshima H, Minami T, Nakamura K, Kang D, Yajima T, Knowlton KU, Imaizumi T. Cardiac-specific deletion of SOCS-3 prevents development of left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 2012; 59:838-52. [PMID: 22361405 DOI: 10.1016/j.jacc.2011.10.887] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The study investigated the role of myocardial suppressor of cytokine signaling-3 (SOCS3), an intrinsic negative feedback regulator of the janus kinase and signal transducer and activator of transcription (JAK-STAT) signaling pathway, in the development of left ventricular (LV) remodeling after acute myocardial infarction (AMI). BACKGROUND LV remodeling after AMI results in poor cardiac performance leading to heart failure. Although it has been shown that JAK-STAT-activating cytokines prevent LV remodeling after AMI in animals, little is known about the role of SOCS3 in this process. METHODS Cardiac-specific SOCS3 knockout mice (SOCS3-CKO) were generated and subjected to AMI induced by permanent ligation of the left anterior descending coronary artery. RESULTS Although the initial infarct size after coronary occlusion measured by triphenyltetrazolium chloride staining was comparable between SOCS3-CKO and control mice, the infarct size 14 days after AMI was remarkably inhibited in SOCS3-CKO, indicating that progression of LV remodeling after AMI was prevented in SOCS3-CKO hearts. Prompt and marked up-regulations of multiple JAK-STAT-activating cytokines including leukemia inhibitory factor and granulocyte colony-stimulating factor (G-CSF) were observed within the heart following AMI. Cardiac-specific SOCS3 deletion enhanced multiple cardioprotective signaling pathways including STAT3, AKT, and extracellular signal-regulated kinase (ERK)-1/2, while inhibiting myocardial apoptosis and fibrosis as well as augmenting antioxidant expression. CONCLUSIONS Enhanced activation of cardioprotective signaling pathways by inhibiting myocardial SOCS3 expression prevented LV remodeling after AMI. Our data suggest that myocardial SOCS3 may be a key molecule in the development of LV remodeling after AMI.
Collapse
Affiliation(s)
- Toyoharu Oba
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|