1
|
Rako ZA, Kremer N, Yogeswaran A, Richter MJ, Tello K. Adaptive versus maladaptive right ventricular remodelling. ESC Heart Fail 2023; 10:762-775. [PMID: 36419369 PMCID: PMC10053363 DOI: 10.1002/ehf2.14233] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Right ventricular (RV) function and its adaptation to increased afterload [RV-pulmonary arterial (PA) coupling] are crucial in various types of pulmonary hypertension, determining symptomatology and outcome. In the course of disease progression and increasing afterload, the right ventricle undergoes adaptive remodelling to maintain right-sided cardiac output by increasing contractility. Exhaustion of compensatory RV remodelling (RV-PA uncoupling) finally leads to maladaptation and increase of cardiac volumes, resulting in heart failure. The gold-standard measurement of RV-PA coupling is the ratio of contractility [end-systolic elastance (Ees)] to afterload [arterial elastance (Ea)] derived from RV pressure-volume loops obtained by conductance catheterization. The optimal Ees/Ea ratio is between 1.5 and 2.0. RV-PA coupling in pulmonary hypertension has considerable reserve; the Ees/Ea threshold at which uncoupling occurs is estimated to be ~0.7. As RV conductance catheterization is invasive, complex, and not widely available, multiple non-invasive echocardiographic surrogates for Ees/Ea have been investigated. One of the first described and best validated surrogates is the ratio of tricuspid annular plane systolic excursion to estimated pulmonary arterial systolic pressure (TAPSE/PASP), which has shown prognostic relevance in left-sided heart failure and precapillary pulmonary hypertension. Other RV-PA coupling surrogates have been formed by replacing TAPSE with different echocardiographic measures of RV contractility, such as peak systolic tissue velocity of the lateral tricuspid annulus (S'), RV fractional area change, speckle tracking-based RV free wall longitudinal strain and global longitudinal strain, and three-dimensional RV ejection fraction. PASP-independent surrogates have also been studied, including the ratios S'/RV end-systolic area index, RV area change/RV end-systolic area, and stroke volume/end-systolic volume. Limitations of these non-invasive surrogates include the influence of severe tricuspid regurgitation (which can cause distortion of longitudinal measurements and underestimation of PASP) and the angle dependence of TAPSE and PASP. Detection of early RV remodelling may require isolated analysis of single components of RV shortening along the radial and anteroposterior axes as well as the longitudinal axis. Multiple non-invasive methods may need to be applied depending on the level of RV dysfunction. This review explains the mechanisms of RV (mal)adaptation to its load, describes the invasive assessment of RV-PA coupling, and provides an overview of studies of non-invasive surrogate parameters, highlighting recently published works in this field. Further large-scale prospective studies including gold-standard validation are needed, as most studies to date had a retrospective, single-centre design with a small number of participants, and validation against gold-standard Ees/Ea was rarely performed.
Collapse
Affiliation(s)
- Zvonimir A. Rako
- Department of Internal MedicineJustus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL)Klinikstrasse 3335392GiessenGermany
| | - Nils Kremer
- Department of Internal MedicineJustus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL)Klinikstrasse 3335392GiessenGermany
| | - Athiththan Yogeswaran
- Department of Internal MedicineJustus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL)Klinikstrasse 3335392GiessenGermany
| | - Manuel J. Richter
- Department of Internal MedicineJustus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL)Klinikstrasse 3335392GiessenGermany
| | - Khodr Tello
- Department of Internal MedicineJustus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL)Klinikstrasse 3335392GiessenGermany
| |
Collapse
|
2
|
Odeigah OO, Valdez-Jasso D, Wall ST, Sundnes J. Computational models of ventricular mechanics and adaptation in response to right-ventricular pressure overload. Front Physiol 2022; 13:948936. [PMID: 36091369 PMCID: PMC9449365 DOI: 10.3389/fphys.2022.948936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is associated with substantial remodeling of the right ventricle (RV), which may at first be compensatory but at a later stage becomes detrimental to RV function and patient survival. Unlike the left ventricle (LV), the RV remains understudied, and with its thin-walled crescent shape, it is often modeled simply as an appendage of the LV. Furthermore, PAH diagnosis is challenging because it often leaves the LV and systemic circulation largely unaffected. Several treatment strategies such as atrial septostomy, right ventricular assist devices (RVADs) or RV resynchronization therapy have been shown to improve RV function and the quality of life in patients with PAH. However, evidence of their long-term efficacy is limited and lung transplantation is still the most effective and curative treatment option. As such, the clinical need for improved diagnosis and treatment of PAH drives a strong need for increased understanding of drivers and mechanisms of RV growth and remodeling (G&R), and more generally for targeted research into RV mechanics pathology. Computational models stand out as a valuable supplement to experimental research, offering detailed analysis of the drivers and consequences of G&R, as well as a virtual test bench for exploring and refining hypotheses of growth mechanisms. In this review we summarize the current efforts towards understanding RV G&R processes using computational approaches such as reduced-order models, three dimensional (3D) finite element (FE) models, and G&R models. In addition to an overview of the relevant literature of RV computational models, we discuss how the models have contributed to increased scientific understanding and to potential clinical treatment of PAH patients.
Collapse
Affiliation(s)
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | | | | |
Collapse
|
3
|
De Lazzari B, Badagliacca R, Filomena D, Papa S, Vizza CD, Capoccia M, De Lazzari C. CARDIOSIM©: The First Italian Software Platform for Simulation of the Cardiovascular System and Mechanical Circulatory and Ventilatory Support. Bioengineering (Basel) 2022; 9:bioengineering9080383. [PMID: 36004908 PMCID: PMC9404951 DOI: 10.3390/bioengineering9080383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
This review is devoted to presenting the history of the CARDIOSIM© software simulator platform, which was developed in Italy to simulate the human cardiovascular and respiratory systems. The first version of CARDIOSIM© was developed at the Institute of Biomedical Technologies of the National Research Council in Rome. The first platform version published in 1991 ran on a PC with a disk operating system (MS-DOS) and was developed using the Turbo Basic language. The latest version runs on PC with Microsoft Windows 10 operating system; it is implemented in Visual Basic and C++ languages. The platform has a modular structure consisting of seven different general sections, which can be assembled to reproduce the most important pathophysiological conditions. One or more zero-dimensional (0-D) modules have been implemented in the platform for each section. The different modules can be assembled to reproduce part or the whole circulation according to Starling’s law of the heart. Different mechanical ventilatory and circulatory devices have been implemented in the platform, including thoracic artificial lungs, ECMO, IABPs, pulsatile and continuous right and left ventricular assist devices, biventricular pacemakers and biventricular assist devices. CARDIOSIM© is used in clinical and educational environments.
Collapse
Affiliation(s)
- Beatrice De Lazzari
- Department of Human Movement and Sport Sciences, “Foro Italico” 4th University of Rome, 00135 Rome, Italy
- Correspondence:
| | - Roberto Badagliacca
- Department of Clinical, Internal Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Domenico Filomena
- Department of Clinical, Internal Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Silvia Papa
- Department of Clinical, Internal Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Carmine Dario Vizza
- Department of Clinical, Internal Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Massimo Capoccia
- Department of Cardiac Surgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW, UK
| | - Claudio De Lazzari
- National Research Council, Institute of Clinical Physiology (IFC-CNR), 00185 Rome, Italy
- Faculty of Medicine, Teaching University Geomedi, Tbilisi 0114, Georgia
| |
Collapse
|
4
|
Schäfer M, Frank BS, Ivy DD, Mitchell MB, Collins KK, Jone PN, von Alvensleben JC. Repolarization Dispersion Is Associated With Diastolic Electromechanical Discoordination in Children With Pulmonary Arterial Hypertension. J Am Heart Assoc 2022; 11:e024787. [PMID: 35229614 PMCID: PMC9075289 DOI: 10.1161/jaha.121.024787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Electromechanical dyssynchrony is a well described comorbidity in pulmonary arterial hypertension (PAH). ECG‐derived measurements reflective of diastolic dysfunction and electromechanical imaging markers are yet to be investigated. In this study we investigated the ECG‐ derived marker of repolarization dispersion, interval between the peak and end of T wave (TpTe), in pediatric patients with PAH and left ventricular (LV) diastolic dysfunction. Methods and Results We measured TpTe from a standard 12‐lead ECG and in 30 children with PAH and matched control subjects. All participants underwent same‐day echocardiography and myocardial strain analysis to calculate the diastolic electromechanical discoordination marker diastolic relaxation fraction. When compared with control subjects, patients with PAH had increased TpTe (93±15 versus 81±12 ms, P=0.001) and elevated diastolic relaxation fraction (0.33±0.10 versus 0.27±0.03, P=0.001). Patients with PAH with LV diastolic dysfunction had significantly increased TpTe when compared with patients with PAH without diastolic dysfunction (P=0.012) and when compared with control group (P<0.001). Similarly, patients with PAH with LV diastolic dysfunction had increased diastolic relaxation fraction when compared with PAH patients without diastolic dysfunction (P=0.007) and when compared with control group (P<0.001). A 10‐ms increase in TpTe was significantly associated with 0.023 increase in diastolic relaxation fraction (P=0.008) adjusting for body surface area, heart rate, right ventricular volumes, and function. Conclusions Prolonged myocardial repolarization and abnormal LV diastolic electromechanical discoordination exist in parallel in children with PAH and are associated with worse LV diastolic function and functional class.
Collapse
Affiliation(s)
- Michal Schäfer
- Division of Cardiology Heart InstituteChildren's Hospital ColoradoUniversity of Colorado Denver Denver CO
| | - Benjamin S Frank
- Division of Cardiology Heart InstituteChildren's Hospital ColoradoUniversity of Colorado Denver Denver CO
| | - D Dunbar Ivy
- Division of Cardiology Heart InstituteChildren's Hospital ColoradoUniversity of Colorado Denver Denver CO
| | - Max B Mitchell
- Section of Congenital Heart Surgery Heart InstituteChildren's Hospital ColoradoUniversity of Colorado DenverAnschutz Medical Campus Aurora CO
| | - Kathryn K Collins
- Division of Cardiology Heart InstituteChildren's Hospital ColoradoUniversity of Colorado Denver Denver CO
| | - Pei-Ni Jone
- Division of Cardiology Heart InstituteChildren's Hospital ColoradoUniversity of Colorado Denver Denver CO
| | - Johannes C von Alvensleben
- Division of Cardiology Heart InstituteChildren's Hospital ColoradoUniversity of Colorado Denver Denver CO
| |
Collapse
|
5
|
Olsen NT, Göransson C, Vejlstrup N, Carlsen J. Myocardial adaptation and exercise performance in patients with pulmonary arterial hypertension assessed with patient-specific computer simulations. Am J Physiol Heart Circ Physiol 2021; 321:H865-H880. [PMID: 34448636 DOI: 10.1152/ajpheart.00442.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myocardial function and exercise reserve are important determinants of outcome in pulmonary arterial hypertension (PAH) but are incompletely understood. For this study, we performed subject-specific computer simulations, based on invasive measurements and cardiac magnetic resonance imaging (CMR), to investigate whole circulation properties in PAH at rest and exercise and determinants of exercise reserve. CMR and right heart catheterization were performed in nine patients with idiopathic PAH, and CMR in 10 healthy controls. CMR during exercise was performed in seven patients with PAH. A full-circulation computer model was developed, and model parameters were optimized at the individual level. Patient-specific simulations were used to analyze the effect of right ventricular (RV) inotropic reserve on exercise performance. Simulations achieved a high consistency with observed data. RV contractile force was increased in patients with PAH (127.1 ± 28.7 kPa vs. 70.5 ± 14.5 kPa, P < 0.001), whereas left ventricular contractile force was reduced (107.5 ± 17.5 kPa vs. 133.9 ± 10.3 kPa, P = 0.002). During exercise, RV contractile force increased by 1.56 ± 0.17, P = 0.001. In silico experiments confirmed RV inotropic reserve as the important limiting factor for cardiac output. Subject-specific computer simulation of myocardial mechanics in PAH is feasible and can be used to evaluate myocardial performance. With this method, we demonstrate marked functional myocardial adaptation to PAH in the resting state, primarily composed of increased contractile force development by RV myofibers, and we show the negative impact of reduced RV inotropic reserve on cardiac output during exercise.NEW & NOTEWORTHY Computer simulations of the myocardial mechanics and hemodynamics of rest and exercise were performed in nine patients with pulmonary arterial hypertension and 10 control subjects, with the use of data from invasive catheterization and from cardiac magnetic resonance. This approach allowed a detailed analysis of myocardial adaptation to pulmonary arterial hypertension and showed how reduction in right ventricular inotropic reserve is the important limiting factor for an increase in cardiac output during exercise.
Collapse
Affiliation(s)
- Niels Thue Olsen
- Department of Cardiology, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Göransson
- Department of Cardiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Niels Vejlstrup
- Department of Cardiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Jørn Carlsen
- Department of Cardiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Brainin P. Myocardial Postsystolic Shortening and Early Systolic Lengthening: Current Status and Future Directions. Diagnostics (Basel) 2021; 11:diagnostics11081428. [PMID: 34441362 PMCID: PMC8393947 DOI: 10.3390/diagnostics11081428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
The concept of paradoxical myocardial deformation, commonly referred to as postsystolic shortening and early systolic lengthening, was originally described in the 1970s when assessed by invasive cardiac methods, such as ventriculograms, in patients with ischemia and animal experimental models. Today, novel tissue-based imaging technology has revealed that these phenomena occur far more frequently than first described. This article defines these deformational patterns, summarizes current knowledge about their existence and highlights the clinical potential associated with their understanding.
Collapse
Affiliation(s)
- Philip Brainin
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, DK-2900 Gentofte, Denmark
| |
Collapse
|
7
|
Coleman RD, Chartan CA, Mourani PM. Intensive care management of right ventricular failure and pulmonary hypertension crises. Pediatr Pulmonol 2021; 56:636-648. [PMID: 33561307 DOI: 10.1002/ppul.24776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/03/2020] [Indexed: 01/22/2023]
Abstract
Pulmonary hypertension (PH), an often unrelenting disease that carries with it significant morbidity and mortality, affects not only the pulmonary vasculature but, in turn, the right ventricle as well. The survival of patients with PH is closely related to the right ventricular function. Therefore, having an understanding of how to manage right ventricular failure (RVF) and acute pulmonary hypertensive crises is imperative for clinicians who encounter these patients. This review addresses the management of these patients in detail, addressing: (a) the pathophysiology of RVF, (b) intensive care monitoring of these patients in the intensive care unit, (c) imaging of the right ventricle, (d) intubation and mechanical ventilation, (e) inotrope and vasopressor selection, (f) pulmonary vasodilator use, (g) interventional and surgical procedures for the acutely failing right ventricle, and (h) mechanical support for RVF.
Collapse
Affiliation(s)
- Ryan D Coleman
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Section of Pulmonary Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Corey A Chartan
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Section of Pulmonary Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Peter M Mourani
- Section of Critical Care Medicine and Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
8
|
Walmsley J, Squara P, Wolfhard U, Cornelussen R, Lumens J. Impact of abrupt versus gradual correction of mitral and tricuspid regurgitation: a modelling study. EUROINTERVENTION 2019; 15:902-911. [PMID: 31746755 DOI: 10.4244/eij-d-19-00598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS Correction of mitral and/or tricuspid regurgitation (MR, TR) frequently leads to poor outcomes in the days following intervention. We sought to understand how abrupt correction of MR and TR affects ventricular load and to investigate if gradual correction is beneficial. METHODS AND RESULTS MR and TR were simulated using the CircAdapt cardiovascular system model with effective regurgitant orifice (ERO) areas of 0.5 cm2 and 0.7 cm2. Ventricular and atrial contractility reductions to 40% of normal and pulmonary hypertension were simulated. Abrupt and gradual ERO closure were simulated with homeostatic regulation of blood pressure and volume. Abrupt correction of MR increased left and right ventricular fibre stress by 40% and 15%, respectively, whereas TR correction increased left and right ventricular fibre stress by 26% and 19%, respectively. This spike was followed by a rapid drop in fibre stress. Myocardial dysfunction prolonged the spike but reduced its amplitude. Right ventricular fibre stress increased more with pulmonary hypertension and TR. Gradual correction demonstrated no spike in tissue load. CONCLUSIONS Simulations demonstrated that abrupt ERO closure creates a transient increase in ventricular load that is prolonged by worsened myocardial condition and exacerbated by pulmonary hypertension. Gradual closure of the ERO abolishes this spike and merits clinical investigation.
Collapse
Affiliation(s)
- John Walmsley
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
9
|
Heusinkveld MHG, Delhaas T, Lumens J, Huberts W, Spronck B, Hughes AD, Reesink KD. Augmentation index is not a proxy for wave reflection magnitude: mechanistic analysis using a computational model. J Appl Physiol (1985) 2019; 127:491-500. [PMID: 31161882 PMCID: PMC6711407 DOI: 10.1152/japplphysiol.00769.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The augmentation index (AIx) is deemed to capture the deleterious effect on left ventricular (LV) work of increased wave reflection associated with stiffer arteries. However, its validity as a proxy for wave reflection magnitude has been questioned. We hypothesized that, in addition to increased wave reflection due to increased pulse wave velocity, LV myocardial shortening velocity influences AIx. Using a computational model of the circulation, we investigated the isolated and combined influences of myocardial shortening velocity vs,LV and arterial stiffness on AIx. Aortic blood pressure waveforms were characterized using AIx and the reflected wave pressure amplitude (p^bw, obtained using wave separation analysis). Our reference simulation (normal vs,LV and arterial stiffness) was characterized by an AIx of 21%. A realistic reduction in vs,LV caused AIx to increase from 21 to 42%. An arterial stiffness increase, characterized by a relevant 1.0 m/s increase in carotid-femoral pulse wave velocity, caused AIx to increase from 21 to 41%. Combining the reduced vs,LV and increased arterial stiffness resulted in an AIx of 54%. In a multistep parametric analysis, both vs,LV and arterial stiffness were about equal determinants of AIx, whereas p^bw was only determined by arterial stiffness. Furthermore, the relation between increased AIx and LV stroke work was only ≈50% explained by an increase in arterial stiffness, the other factor being vs,LV. The p^bw, on the other hand, related less ambiguously to LV stroke work. We conclude that the AIx reflects both cardiac and vascular properties and should not be considered an exclusively vascular parameter. NEW & NOTEWORTHY We used a state-of-the-art computational model to mechanistically investigate the validity of the augmentation index (AIx) as a proxy for (changes in) wave reflection. In contrary to current belief, we found that LV contraction velocity influences AIx as much as increased arterial stiffness, and increased AIx does not necessarily relate to an increase in LV stroke work. Wave reflection magnitude derived from considering pressure, as well as flow, does qualify as a determinant of LV stroke work.
Collapse
Affiliation(s)
| | - Tammo Delhaas
- CARIM School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Joost Lumens
- CARIM School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Wouter Huberts
- CARIM School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Alun D Hughes
- Institute of Cardiovascular Science, University College London, United Kingdom
| | - Koen D Reesink
- CARIM School for Cardiovascular Diseases, Maastricht University, The Netherlands
| |
Collapse
|
10
|
Vonk Noordegraaf A, Chin KM, Haddad F, Hassoun PM, Hemnes AR, Hopkins SR, Kawut SM, Langleben D, Lumens J, Naeije R. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J 2019; 53:13993003.01900-2018. [PMID: 30545976 PMCID: PMC6351344 DOI: 10.1183/13993003.01900-2018] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
The function of the right ventricle determines the fate of patients with pulmonary hypertension. Since right heart failure is the consequence of increased afterload, a full physiological description of the cardiopulmonary unit consisting of both the right ventricle and pulmonary vascular system is required to interpret clinical data correctly. Here, we provide such a description of the unit and its components, including the functional interactions between the right ventricle and its load. This physiological description is used to provide a framework for the interpretation of right heart catheterisation data as well as imaging data of the right ventricle obtained by echocardiography or magnetic resonance imaging. Finally, an update is provided on the latest insights in the pathobiology of right ventricular failure, including key pathways of molecular adaptation of the pressure overloaded right ventricle. Based on these outcomes, future directions for research are proposed. State of the art and research perspectives in pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension with theoretical and practical aspectshttp://ow.ly/18v830mgLiP
Collapse
Affiliation(s)
- Anton Vonk Noordegraaf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Kelly Marie Chin
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - François Haddad
- Division of Cardiovascular Medicine, Stanford University and Stanford Cardiovascular Institute, Palo Alto, CA, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Steven Mark Kawut
- Penn Cardiovascular Institute, Dept of Medicine, and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Langleben
- Center for Pulmonary Vascular Disease, Cardiology Division, Jewish General Hospital and McGill University, Montreal, QC, Canada
| | - Joost Lumens
- Maastricht University Medical Center, CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands.,Université de Bordeaux, LIRYC (L'Institut de Rythmologie et Modélisation Cardiaque), Bordeaux, France
| | - Robert Naeije
- Dept of Cardiology, Erasme University Hospital, Brussels, Belgium.,Laboratory of Cardiorespiratory Exercise Physiology, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
11
|
Capoccia M, Marconi S, Singh SA, Pisanelli DM, De Lazzari C. Simulation as a preoperative planning approach in advanced heart failure patients. A retrospective clinical analysis. Biomed Eng Online 2018; 17:52. [PMID: 29720187 PMCID: PMC5930731 DOI: 10.1186/s12938-018-0491-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Modelling and simulation may become clinically applicable tools for detailed evaluation of the cardiovascular system and clinical decision-making to guide therapeutic intervention. Models based on pressure-volume relationship and zero-dimensional representation of the cardiovascular system may be a suitable choice given their simplicity and versatility. This approach has great potential for application in heart failure where the impact of left ventricular assist devices has played a significant role as a bridge to transplant and more recently as a long-term solution for non eligible candidates. RESULTS We sought to investigate the value of simulation in the context of three heart failure patients with a view to predict or guide further management. CARDIOSIM© was the software used for this purpose. The study was based on retrospective analysis of haemodynamic data previously discussed at a multidisciplinary meeting. The outcome of the simulations addressed the value of a more quantitative approach in the clinical decision process. CONCLUSIONS Although previous experience, co-morbidities and the risk of potentially fatal complications play a role in clinical decision-making, patient-specific modelling may become a daily approach for selection and optimisation of device-based treatment for heart failure patients. Willingness to adopt this integrated approach may be the key to further progress.
Collapse
Affiliation(s)
- Massimo Capoccia
- Department of Cardiac Surgery, University Hospitals of Leicester NHS Trust, Leicester, UK.,Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Silvia Marconi
- National Research Council, Institute of Clinical Physiology, Rome, Italy
| | | | - Domenico M Pisanelli
- National Research Council, Institute of Cognitive Sciences and Technologies, Rome, Italy
| | - Claudio De Lazzari
- National Research Council, Institute of Clinical Physiology, Rome, Italy. .,National Institute for Cardiovascular Research (I.N.R.C.), Bologna, Italy.
| |
Collapse
|
12
|
Balakin A, Kuznetsov D, Protsenko Y. The phenomena of mechanical interaction of segments of hypertrophied myocardium. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 133:20-26. [PMID: 29050921 DOI: 10.1016/j.pbiomolbio.2017.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022]
Abstract
The main aims of adaptation mechanisms of heart contractility are to regulate the stroke volume and optimize the global heart function. These mechanisms manifest themselves in hearts of healthy animals and in hearts with severe hypertrophy in different ways. Severe right ventricle hypertrophy was induced by single treatment with monocrotaline. Young rats of both sexes were used to prevent influences of sex hormones on the development of right ventricular hypertrophy. Serial duplex method is used as a model of interaction of two ventricular wall segments. In serial duplex the muscles are in connection 'end-to-end' and subjected to mutual deformations during contractions. It is important to establish the fine-tuning phenomena and evaluate their expressiveness in healthy hearts and hearts with severe hypertrophy. Mild force transient processes occur on muscle connection to serial duplex and on muscle separation from duplex in all experimental groups. These transients manifest themselves as slow changes in the amplitude of muscle contraction from cycle to cycle. During the muscle interaction in the serial duplex, evident transient processes in the mutual amplitude of deformations in all experimental groups are observed. The greatest changes in the length occur in the relaxation phase of the contraction cycle. The loss of interaction between ventricular muscles of rats with severe heart hypertrophy is the most likely cause of an additional deterioration in the heart pumping function. New targets may occur for the recovery of contractility of hearts with severe hypertrophy.
Collapse
Affiliation(s)
- Alexander Balakin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 620049, Bldg. 106 (Office 119), Pervomayskaya St., Yekaterinburg, Russian Federation.
| | - Daniil Kuznetsov
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 620049, Bldg. 106 (Office 119), Pervomayskaya St., Yekaterinburg, Russian Federation
| | - Yuri Protsenko
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 620049, Bldg. 106 (Office 119), Pervomayskaya St., Yekaterinburg, Russian Federation
| |
Collapse
|
13
|
Walmsley J, van Everdingen W, Cramer MJ, Prinzen FW, Delhaas T, Lumens J. Combining computer modelling and cardiac imaging to understand right ventricular pump function. Cardiovasc Res 2017; 113:1486-1498. [DOI: 10.1093/cvr/cvx154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
|
14
|
Palau-Caballero G, Walmsley J, Van Empel V, Lumens J, Delhaas T. Why septal motion is a marker of right ventricular failure in pulmonary arterial hypertension: mechanistic analysis using a computer model. Am J Physiol Heart Circ Physiol 2016; 312:H691-H700. [PMID: 28039201 DOI: 10.1152/ajpheart.00596.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/28/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022]
Abstract
Rapid leftward septal motion (RLSM) during early left ventricular (LV) diastole is observed in patients with pulmonary arterial hypertension (PAH). RLSM exacerbates right ventricular (RV) systolic dysfunction and impairs LV filling. Increased RV wall tension caused by increased RV afterload has been suggested to cause interventricular relaxation dyssynchrony and RLSM in PAH. Simulations using the CircAdapt computational model were used to unravel the mechanism underlying RLSM by mechanistically linking myocardial tissue and pump function. Simulations of healthy circulation and mild, moderate, and severe PAH were performed. We also assessed the effects on RLSM when PAH coexists with RV or LV contractile dysfunction. Our results showed prolonged RV shortening in PAH causing interventricular relaxation dyssynchrony and RLSM. RLSM was observed in both moderate and severe PAH. A negative transseptal pressure gradient only occurred in severe PAH, demonstrating that negative pressure gradient does not entirely explain septal motion abnormalities. PAH coexisting with RV contractile dysfunction exacerbated both interventricular relaxation dyssynchrony and RLSM. LV contractile dysfunction reduced both interventricular relaxation dyssynchrony and RLSM. In conclusion, dyssynchrony in ventricular relaxation causes RLSM in PAH. Onset of RLSM in patients with PAH appears to indicate a worsening in RV function and hence can be used as a sign of RV failure. However, altered RLSM does not necessarily imply an altered RV afterload, but it can also indicate altered interplay of RV and LV contractile function. Reduction of RLSM can result from either improved RV function or a deterioration of LV function.NEW & NOTEWORTHY A novel approach describes the mechanism underlying abnormal septal dynamics in pulmonary arterial hypertension. Change in motion is not uniquely induced by altered right ventricular afterload, but also by altered ventricular relaxation dyssynchrony. Extension or change in motion is a marker reflecting interplay between right and left ventricular contractility.
Collapse
Affiliation(s)
- Georgina Palau-Caballero
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and
| | - John Walmsley
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and
| | - Vanessa Van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and
| |
Collapse
|
15
|
Drogalis-Kim D, Jefferies J, Wilmot I, Alejos J. Right sided heart failure and pulmonary hypertension: New insights into disease mechanisms and treatment modalities. PROGRESS IN PEDIATRIC CARDIOLOGY 2016. [DOI: 10.1016/j.ppedcard.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Mast TP, Teske AJ, Walmsley J, van der Heijden JF, van Es R, Prinzen FW, Delhaas T, van Veen TA, Loh P, Doevendans PA, Cramer MJ, Lumens J. Right Ventricular Imaging and Computer Simulation for Electromechanical Substrate Characterization in Arrhythmogenic Right Ventricular Cardiomyopathy. J Am Coll Cardiol 2016; 68:2185-2197. [DOI: 10.1016/j.jacc.2016.08.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/08/2016] [Accepted: 08/09/2016] [Indexed: 10/20/2022]
|
17
|
Dandel M, Knosalla C, Kemper D, Stein J, Hetzer R. Assessment of right ventricular adaptability to loading conditions can improve the timing of listing to transplantation in patients with pulmonary arterial hypertension. J Heart Lung Transplant 2015; 34:319-28. [DOI: 10.1016/j.healun.2014.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/16/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022] Open
|
18
|
Rasmussen JT, Thenappan T, Benditt DG, Weir EK, Pritzker MR. Is cardiac resynchronization therapy for right ventricular failure in pulmonary arterial hypertension of benefit? Pulm Circ 2015; 4:552-9. [PMID: 25610593 DOI: 10.1086/678470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension is a manifestation of a group of disorders leading to pulmonary vascular remodeling and increased pulmonary pressures. The right ventricular (RV) response to chronic pressure overload consists of myocardial remodeling, which is in many ways similar to that seen in left ventricular (LV) failure. Maladaptive myocardial remodeling often leads to intraventricular and interventricular dyssychrony, an observation that has led to cardiac resynchronization therapy (CRT) for LV failure. CRT has proven to be an effective treatment strategy in subsets of patients with LV failure resulting in improvement in LV function, heart failure symptoms, and survival. Current therapy for pulmonary arterial hypertension is based on decreasing pulmonary vascular resistance, and there is currently no effective therapy targeting the right ventricle or maladaptive ventricular remodeling in these patients. This review focuses on the RV response to chronic pressure overload, its effect on electromechanical coupling and synchrony, and how lessons learned from left ventricular cardiac resynchronization might be applied as therapy for RV dysfunction in the context of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jason T Rasmussen
- Department of Medicine, Division of Cardiovascular Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thenappan Thenappan
- Department of Medicine, Division of Cardiovascular Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - David G Benditt
- Department of Medicine, Division of Cardiovascular Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - E Kenneth Weir
- Department of Medicine, Division of Cardiovascular Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marc R Pritzker
- Department of Medicine, Division of Cardiovascular Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, Naeije R, Newman J, Oudiz RJ, Provencher S, Torbicki A, Voelkel NF, Hassoun PM. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol 2014; 62:D22-33. [PMID: 24355638 DOI: 10.1016/j.jacc.2013.10.027] [Citation(s) in RCA: 682] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/22/2013] [Indexed: 12/22/2022]
Abstract
Survival in patients with pulmonary arterial hypertension (PAH) is closely related to right ventricular (RV) function. Although pulmonary load is an important determinant of RV systolic function in PAH, there remains a significant variability in RV adaptation to pulmonary hypertension. In this report, the authors discuss the emerging concepts of right heart pathobiology in PAH. More specifically, the discussion focuses on the following questions. 1) How is right heart failure syndrome best defined? 2) What are the underlying molecular mechanisms of the failing right ventricle in PAH? 3) How are RV contractility and function and their prognostic implications best assessed? 4) What is the role of targeted RV therapy? Throughout the report, the authors highlight differences between right and left heart failure and outline key areas of future investigation.
Collapse
Affiliation(s)
| | - François Haddad
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California
| | - Kelly M Chin
- Department of Internal Medicine, Pulmonary Division, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Paul R Forfia
- Pulmonary Hypertension and Right Heart Failure Program, Temple University Hospital, Philadelphia, Pennsylvania
| | - Steven M Kawut
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joost Lumens
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Robert Naeije
- Department of Pathophysiology, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | - John Newman
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ronald J Oudiz
- The David Geffen School of Medicine at UCLA, Liu Center for Pulmonary Hypertension, Division of Cardiology, Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Steve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Chemin Sainte-Foy, Québec, Canada
| | - Adam Torbicki
- Department of Pulmonary Circulation and Thromboembolic Diseases, Centre of Postgraduate Medical Education, ECZ, Otwock, Poland
| | - Norbert F Voelkel
- Division of Pulmonary and Critical Care Medicine and Victoria Johnson Lab for Lung Research, Virginia Commonwealth University, Richmond, Virginia; Johns Hopkins University, Baltimore, Maryland
| | - Paul M Hassoun
- Department of Internal Medicine, Pulmonary Division, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
20
|
|