1
|
Arani G, Arora A, Yang S, Wu J, Kraszewski JN, Martins A, Miller A, Rahman Z, Jafri A, Hu C, Farland LV, Bea JW, Coletta DK, Aslan DH, Katherine Sayre M, Bharadwaj PK, Ally M, Maltagliati S, Lai MHC, Wilcox R, de Geus E, Alexander GE, Raichlen DA, Klimentidis YC. Plasma Proteomic Signatures of Physical Activity Provide Insights into Biological Impacts of Physical Activity and its Protective Role Against Dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.16.25320290. [PMID: 39867359 PMCID: PMC11759254 DOI: 10.1101/2025.01.16.25320290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Physical activity (PA), including sedentary behavior, is associated with many diseases, including Alzheimer's disease and all-cause dementia. However, the specific biological mechanisms through which PA protects against disease are not entirely understood. To address this knowledge gap, we first assessed the conventional observational associations of three self-reported and three device-based PA measures with circulating levels of 2,911 plasma proteins measured in the UK Biobank (n max =39,160) and assessed functional enrichment of identified proteins. We then used bi-directional Mendelian randomization (MR) to evaluate further the evidence for causal relationships of PA with protein levels. Finally, we performed mediation analyses to identify proteins that may mediate the relationship of PA with incident all-cause dementia. Our findings revealed 41 proteins consistently associated with all PA measures and 1,027 proteins associated with at least one PA measure. Both conventional observational and MR study designs converged on proteins that appear to increase as a result of PA, including integrin proteins such as ITGAV and ITGAM, as well as MXRA8, CLEC4A, CLEC4M, GFRA1, ADGRG2, and PTGDS; and on proteins that appear to decrease as a result of PA such as LEP, LPL, INHBC, CLMP, PTGDS, ADM, OGN, and PI3. Functional enrichment analyses revealed several relevant processes, including cell-matrix adhesion, integrin-mediated signaling, and collagen binding. Finally, several proteins, including GDF15, ITGAV, HPGDS, BCAN, and MENT, were found to mediate the relationship of PA with all-cause dementia, implicating processes such as synaptic plasticity, neurogenesis and inflammation as mechanisms through which PA protects against dementia. Our results provide insights into how PA may affect biological processes and protect from all-cause dementia, and provide avenues for future research into the health-promoting effects of PA.
Collapse
|
2
|
Liu Q, Zhang HY, Zhang QY, Wang FS, Zhu Y, Feng SG, Jiang Q, Yan B. Olink Profiling of Aqueous Humor Identifies Novel Biomarkers for Wet Age-Related Macular Degeneration. J Proteome Res 2024; 23:2532-2541. [PMID: 38902972 DOI: 10.1021/acs.jproteome.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metabolic dysfunction is recognized as a contributing factor in the pathogenesis of wet age-related macular degeneration (wAMD). However, the specific metabolism-related proteins implicated in wAMD remain elusive. In this study, we assessed the expression profiles of 92 metabolism-related proteins in aqueous humor (AH) samples obtained from 44 wAMD patients and 44 cataract control patients. Our findings revealed significant alterations in the expression of 60 metabolism-related proteins between the two groups. Notably, ANGPTL7 and METRNL displayed promising diagnostic potential for wAMD, as evidenced by area under the curve values of 0.88 and 0.85, respectively. Subsequent validation studies confirmed the upregulation of ANGPTL7 and METRNL in the AH of wAMD patients and in choroidal neovascularization (CNV) models. Functional assays revealed that increased ANGPTL7 and METRNL played a pro-angiogenic role in endothelial biology by promoting endothelial cell proliferation, migration, tube formation, and spouting in vitro. Moreover, in vivo studies revealed the pro-angiogenic effects of ANGPTL7 and METRNL in CNV formation. In conclusion, our findings highlight the association between elevated ANGPTL7 and METRNL levels and wAMD, suggesting their potential as novel predictive and diagnostic biomarkers for this condition. These results underscore the significance of ANGPTL7 and METRNL in the context of wAMD pathogenesis and offer new avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Qing Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Hui-Ying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Qiu-Yang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Feng-Sheng Wang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Yue Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Si-Guo Feng
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, China
| |
Collapse
|
3
|
Han J, Yook JM, Oh SH, Chung YK, Jung HY, Choi JY, Cho JH, Park SH, Kim CD, Kim YL, Han S, Lim JH. Dual Immunoglobulin Domain-Containing Cell Adhesion Molecule Increases Early in Renal Tubular Cell Injury and Plays Anti-Inflammatory Role. Curr Issues Mol Biol 2024; 46:1757-1767. [PMID: 38534731 DOI: 10.3390/cimb46030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Dual immunoglobulin domain-containing cell adhesion molecule (DICAM) is a type I transmembrane protein that presents in various cells including renal tubular cells. This study evaluated the expression and protective role of DICAM in renal tubular cell injury. HK-2 cells were incubated and treated with lipopolysaccharide (LPS, 30 μg/mL) or hydrogen peroxide (H2O2, 100 μM) for 24 h. To investigate the effect of the gene silencing of DICAM, small interfering RNA of DICAM was used. Additionally, to explain its role in cellular response to injury, DICAM was overexpressed using an adenoviral vector. DICAM protein expression levels significantly increased following treatment with LPS or H2O2 in HK-2 cells. In response to oxidative stress, DICAM showed an earlier increase (2-4 h following treatment) than neutrophil gelatinase-associated lipocalin (NGAL) (24 h following treatment). DICAM gene silencing increased the protein expression of inflammation-related markers, including IL-1β, TNF-α, NOX4, integrin β1, and integrin β3, in H2O2-induced HK-2 cell injury. Likewise, in the LPS-induced HK-2 cell injury, DICAM knockdown led to a decrease in occludin levels and an increase in integrin β3, IL-1β, and IL-6 levels. Furthermore, DICAM overexpression followed by LPS-induced HK-2 cell injury resulted in an increase in occludin levels and a decrease in integrin β1, integrin β3, TNF-α, IL-1β, and IL-6 levels, suggesting an alleviating effect on inflammatory responses. DICAM was elevated in the early stage of regular tubular cell injury and may protect against renal tubular injury through its anti-inflammatory properties. DICAM has a potential as an early diagnostic marker and therapeutic target for renal cell injury.
Collapse
Affiliation(s)
- Jin Han
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41404, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Ju-Min Yook
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Se-Hyun Oh
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Yu Kyung Chung
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Hee-Yeon Jung
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Ji-Young Choi
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Jang-Hee Cho
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Sun-Hee Park
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Chan-Duck Kim
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Yong-Lim Kim
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Seungwoo Han
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41404, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Jeong-Hoon Lim
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
4
|
Sun D, Guo K, Liu N, Li Y, Li Y, Hu Y, Li S, Fu Z, Wang Y, Wu Y, Zhang Y, Li J, Li C, Wang Z, Kang Z, Sun J, Wang Y, Yang X. Peptide RL-QN15 promotes wound healing of diabetic foot ulcers through p38 mitogen-activated protein kinase and smad3/miR-4482-3p/vascular endothelial growth factor B axis. BURNS & TRAUMA 2023; 11:tkad035. [PMID: 38026443 PMCID: PMC10654477 DOI: 10.1093/burnst/tkad035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/31/2023] [Accepted: 06/18/2023] [Indexed: 12/01/2023]
Abstract
Background Wound management of diabetic foot ulcers (DFUs) is a complex and challenging task, and existing strategies fail to meet clinical needs. Therefore, it is important to develop novel drug candidates and discover new therapeutic targets. However, reports on peptides as molecular probes for resolving issues related to DFUs remain rare. This study utilized peptide RL-QN15 as an exogenous molecular probe to investigate the underlying mechanism of endogenous non-coding RNA in DFU wound healing. The aim was to generate novel insights for the clinical management of DFUs and identify potential drug targets. Methods We investigated the wound-healing efficiency of peptide RL-QN15 under diabetic conditions using in vitro and in vivo experimental models. RNA sequencing, in vitro transfection, quantitative real-time polymerase chain reaction, western blotting, dual luciferase reporter gene detection, in vitro cell scratches, and cell proliferation and migration assays were performed to explore the potential mechanism underlying the promoting effects of RL-QN15 on DFU repair. Results Peptide RL-QN15 enhanced the migration and proliferation of human immortalized keratinocytes (HaCaT cells) in a high-glucose environment and accelerated wound healing in a DFU rat model. Based on results from RNA sequencing, we defined a new microRNA (miR-4482-3p) related to the promotion of wound healing. The bioactivity of miR-4482-3p was verified by inhibiting and overexpressing miR-4482-3p. Inhibition of miR-4482-3p enhanced the migration and proliferation ability of HaCaT cells as well as the expression of vascular endothelial growth factor B (VEGFB). RL-QN15 also promoted the migration and proliferation ability of HaCaT cells, and VEGFB expression was mediated via inhibition of miR-4482-3p expression by the p38 mitogen-activated protein kinase (p38MAPK) and smad3 signaling pathways. Conclusions RL-QN15 is an effective molecule for the treatment of DFUs, with the underlying mechanism related to the inhibition of miR-4482-3p expression via the p38MAPK and smad3 signaling pathways, ultimately promoting re-epithelialization, angiogenesis and wound healing. This study provides a theoretical basis for the clinical application of RL-QN15 as a molecular probe in promoting DFU wound healing.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Kun Guo
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yuansheng Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yan Hu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Shanshan Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yutong Wu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yingxuan Zhang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jiayi Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhuo Wang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zijian Kang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jun Sun
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan MinZu University, No. 2929 Yuehua Street, Chenggong District, Kunming, 650504, Yunnan, China
| | - Xinwang Yang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| |
Collapse
|
5
|
Simpson KE, Staikos CA, Watson KL, Moorehead RA. Loss of MXRA8 Delays Mammary Tumor Development and Impairs Metastasis. Int J Mol Sci 2023; 24:13730. [PMID: 37762032 PMCID: PMC10530983 DOI: 10.3390/ijms241813730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Matrix-remodeling-associated protein 8 or MXRA8 is a transmembrane protein that can bind arthritogenic alpha viruses like the Chikungunya virus and provide viral entry into cells. MXRA8 can also interact with integrin β3 and thus possibly regulate cell-cell interactions and binding to the extracellular matrix. While MXRA8 has been associated with reduced survival in patients with colorectal and renal clear cell cancers, the role of MXRA8 in breast cancer remains largely unexplored. Therefore, the aim of this research was to determine the role of MXRA8 in breast cancer by knocking out MXRA8 in the human triple-negative breast cancer cell line MDA-MB-231. The loss of MXRA8 reduced cell proliferation in vitro but had no effect on apoptosis or migration in cultured cells. However, the loss of MXRA8 significantly delayed tumor development and reduced metastatic dissemination to the lungs in a xenograft model. RNA sequencing identified three genes, ADMATS1, TIE1, and BMP2, whose expression were significantly reduced in MXRA8-knockout tumors compared to control tumors. MXRA8 staining of a human breast cancer tissue array revealed higher levels of MXRA8 in primary tumors and metastases of aggressive tumor subtypes (TNBC and HER2+) compared to less aggressive, ER+ breast cancers. Our findings demonstrate for the first time that MXRA8 regulates the progression of human TNBC possibly through influencing the interaction of tumor cells with their microenvironment.
Collapse
Affiliation(s)
| | | | | | - Roger A. Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.E.S.); (C.A.S.); (K.L.W.)
| |
Collapse
|
6
|
Ellen O, Ye S, Nheu D, Dass M, Pagnin M, Ozturk E, Theotokis P, Grigoriadis N, Petratos S. The Heterogeneous Multiple Sclerosis Lesion: How Can We Assess and Modify a Degenerating Lesion? Int J Mol Sci 2023; 24:11112. [PMID: 37446290 DOI: 10.3390/ijms241311112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase. The current review highlights the molecular and cellular sequelae that have been identified as cooperating with and/or contributing to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize the need for appropriate monitoring via known and novel molecular and imaging biomarkers that can accurately detect and predict progression for the purposes of newly designed clinical trials that can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair, we focus on the modifications required in the reactive cellular and extracellular milieu in order to enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the degenerative MS plaque.
Collapse
Affiliation(s)
- Olivia Ellen
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Danica Nheu
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| |
Collapse
|
7
|
Kim HJ, Lee DK, Choi JY. Functional Role of Phospholipase D in Bone Metabolism. J Bone Metab 2023; 30:117-125. [PMID: 37449345 PMCID: PMC10346002 DOI: 10.11005/jbm.2023.30.2.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/14/2023] [Accepted: 05/27/2023] [Indexed: 07/18/2023] Open
Abstract
Phospholipase D (PLD) proteins are major enzymes that regulate various cellular functions, such as cell growth, cell migration, membrane trafficking, and cytoskeletal dynamics. As they are responsible for such important biological functions, PLD proteins have been considered promising therapeutic targets for various diseases, including cancer and vascular and neurological diseases. Intriguingly, emerging evidence indicates that PLD1 and PLD2, 2 major mammalian PLD isoenzymes, are the key regulators of bone remodeling; this suggests that these isozymes could be used as potential therapeutic targets for bone diseases, such as osteoporosis and rheumatoid arthritis. PLD1 or PLD2 deficiency in mice can lead to decreased bone mass and dysregulated bone homeostasis. Although both mutant mice exhibit similar skeletal phenotypes, PLD1 and PLD2 play distinct and nonredundant roles in bone cell function. This review summarizes the physiological roles of PLD1 and PLD2 in bone metabolism, focusing on recent findings of the biological functions and action mechanisms of PLD1 and PLD2 in bone cells.
Collapse
|
8
|
Zimmerman O, Holmes AC, Kafai NM, Adams LJ, Diamond MS. Entry receptors - the gateway to alphavirus infection. J Clin Invest 2023; 133:e165307. [PMID: 36647825 PMCID: PMC9843064 DOI: 10.1172/jci165307] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alphaviruses are enveloped, insect-transmitted, positive-sense RNA viruses that infect humans and other animals and cause a range of clinical manifestations, including arthritis, musculoskeletal disease, meningitis, encephalitis, and death. Over the past four years, aided by CRISPR/Cas9-based genetic screening approaches, intensive research efforts have focused on identifying entry receptors for alphaviruses to better understand the basis for cellular and species tropism. Herein, we review approaches to alphavirus receptor identification and how these were used for discovery. The identification of new receptors advances our understanding of viral pathogenesis, tropism, and evolution and is expected to contribute to the development of novel strategies for prevention and treatment of alphavirus infection.
Collapse
Affiliation(s)
| | | | | | | | - Michael S. Diamond
- Department of Medicine
- Department of Pathology and Immunology
- Department of Molecular Microbiology, and
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Tan L, Fu D, Liu F, Liu J, Zhang Y, Li X, Gao J, Tao K, Wang G, Wang L, Wang Z. MXRA8 is an immune-relative prognostic biomarker associated with metastasis and CD8 + T cell infiltration in colorectal cancer. Front Oncol 2023; 12:1094612. [PMID: 36703779 PMCID: PMC9871988 DOI: 10.3389/fonc.2022.1094612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Background Colorectal cancer (CRC) is the second most common cause of cancer-related deaths worldwide. Tumor metastasis and CD8+ T cell infiltration play a crucial role in CRC patient survival. It is important to determine the etiology and mechanism of the malignant progression of CRC to develop more effective treatment strategies. Methods We conducted weighted gene co-expression network analysis (WGCNA) to explore vital modules of tumor metastasis and CD8+ T cell infiltration, then with hub gene selection and survival analysis. Multi-omics analysis is used to explore the expression pattern, immunity, and prognostic effect of MXRA8. The molecular and immune characteristics of MXRA8 are analyzed in independent cohorts, clinical specimens, and in vitro. Results MXRA8 expression was strongly correlated with tumor malignancy, metastasis, recurrence, and immunosuppressive microenvironment. Furthermore, MXRA8 expression predicts poor prognosis and is an independent prognostic factor for OS in CRC. Conclusion MXRA8 may be a potential immunotherapeutic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Lulu Tan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Lin Wang, ; Zheng Wang,
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Lin Wang, ; Zheng Wang,
| |
Collapse
|
10
|
Han J, Cho HJ, Park D, Han S. DICAM in the Extracellular Vesicles from Astrocytes Attenuates Microglia Activation and Neuroinflammation. Cells 2022; 11:2977. [PMID: 36230938 PMCID: PMC9562652 DOI: 10.3390/cells11192977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Cross-talk between astrocytes and microglia plays an important role in neuroinflammation and central sensitization, but the manner in which glial cells interact remains less well-understood. Herein, we investigated the role of dual immunoglobulin domain-containing cell adhesion molecules (DICAM) in the glial cell interaction during neuroinflammation. DICAM knockout (KO) mice revealed enhanced nociceptive behaviors and glial cell activation of the tibia fracture with a cast immobilization model of complex regional pain syndrome (CRPS). DICAM was selectively secreted in reactive astrocytes, mainly via extracellular vesicles (EVs), and contributed to the regulation of neuroinflammation through the M2 polarization of microglia, which is dependent on the suppression of p38 MAPK signaling. In conclusion, DICAM secreted from reactive astrocytes through EVs was involved in the suppression of microglia activation and subsequent attenuation of neuroinflammation during central sensitization.
Collapse
Affiliation(s)
- Jin Han
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41404, Korea
| | - Hyun-Jung Cho
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu 41404, Korea
| | - Donghwi Park
- Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44521, Korea
| | - Seungwoo Han
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41404, Korea
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41404, Korea
| |
Collapse
|
11
|
Tanaka A, Suzuki Y. Genome-Wide Approaches to Unravel the Host Factors Involved in Chikungunya Virus Replication. Front Microbiol 2022; 13:866271. [PMID: 35401487 PMCID: PMC8988064 DOI: 10.3389/fmicb.2022.866271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/26/2022] [Indexed: 01/05/2023] Open
Abstract
Chikungunya virus (CHIKV), the causative agent of Chikungunya fever (CHIKVF) that is often characterized by fever, headache, rash, and arthralgia, is transmitted to humans by Aedes mosquito bites. Although the mortality rate associated with CHIKV infection is not very high, CHIKVF has been confirmed in more than 40 countries, not only in tropical but also in temperate areas. Therefore, CHIKV is a growing major threat to the public health of the world. However, a specific drug is not available for CHIKV infection. As demonstrated by many studies, the processes completing the replication of CHIKV are assisted by many host factors, whereas it has become clear that the host cell possesses some factors limiting the virus replication. This evidence will provide us with an important clue for the development of pharmacological treatment against CHIKVF. In this review, we briefly summarize cellular molecules participating in the CHIKV infection, particularly focusing on introducing recent genome-wide screen studies that enabled illuminating the virus-host interactions.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
- *Correspondence: Atsushi Tanaka,
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
- Youichi Suzuki,
| |
Collapse
|
12
|
Charabati M, Grasmuck C, Ghannam S, Bourbonnière L, Fournier AP, Lécuyer MA, Tastet O, Kebir H, Rébillard RM, Hoornaert C, Gowing E, Larouche S, Fortin O, Pittet C, Filali-Mouhim A, Lahav B, Moumdjian R, Bouthillier A, Girard M, Duquette P, Cayrol R, Peelen E, Quintana FJ, Antel JP, Flügel A, Larochelle C, Arbour N, Zandee S, Prat A. DICAM promotes T H17 lymphocyte trafficking across the blood-brain barrier during autoimmune neuroinflammation. Sci Transl Med 2022; 14:eabj0473. [PMID: 34985970 DOI: 10.1126/scitranslmed.abj0473] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Marc Charabati
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Camille Grasmuck
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Soufiane Ghannam
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Lyne Bourbonnière
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Antoine P Fournier
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Marc-André Lécuyer
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen D-37073, Germany
| | - Olivier Tastet
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Hania Kebir
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Rose-Marie Rébillard
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Chloé Hoornaert
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Elizabeth Gowing
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Sandra Larouche
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Olivier Fortin
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Camille Pittet
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Ali Filali-Mouhim
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Boaz Lahav
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| | - Robert Moumdjian
- Division of Neurosurgery, Université de Montréal and CHUM, Montreal, Quebec H2L 4M1, Canada
| | - Alain Bouthillier
- Division of Neurosurgery, Université de Montréal and CHUM, Montreal, Quebec H2L 4M1, Canada
| | - Marc Girard
- Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| | - Pierre Duquette
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| | - Romain Cayrol
- Department of Pathology, Université de Montréal and CHUM, Montreal, Quebec H2L 4M1, Canada
| | - Evelyn Peelen
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Francisco J Quintana
- Ann Romney Carter for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen D-37073, Germany
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| | - Nathalie Arbour
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Stephanie Zandee
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec H2L 4M1, Canada
| |
Collapse
|
13
|
Yu Y, Singh H, Kwon K, Tsitrin T, Petrini J, Nelson KE, Pieper R. Protein signatures from blood plasma and urine suggest changes in vascular function and IL-12 signaling in elderly with a history of chronic diseases compared with an age-matched healthy cohort. GeroScience 2021. [PMID: 32974878 DOI: 10.1007/s11357-020-00269-y/figures/10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Key processes characterizing human aging are immunosenescence and inflammaging. The capacity of the immune system to adequately respond to external perturbations (e.g., pathogens, injuries, and biochemical irritants) and to repair somatic mutations that may cause cancers or cellular senescence declines. An important goal remains to identify genetic or biochemical, predictive biomarkers for healthy aging. We recruited two cohorts in the age range 70 to 82, one afflicted by chronic illnesses (non-healthy aging, NHA) and the other in good health (healthy aging, HA). NHA criteria included major cardiovascular, neurodegenerative, and chronic pulmonary diseases, diabetes, and cancers. Quantitative analysis of forty proinflammatory cytokines in blood plasma and more than 500 proteins in urine was performed to identify candidate biomarkers for and biological pathway implications of healthy aging. Nine cytokines revealed lower quantities in blood plasma for the NHA compared with the HA groups (fold change > 1.5; p value < 0.025) including IL-12p40 and IL-12p70. We note that, sampling at two timepoints, intra-individual cytokine abundance patterns clustered in 86% of all 60 cases, indicative of person-specific, highly controlled multi-cytokine signatures in blood plasma. Twenty-three urinary proteins were differentially abundant (HA versus NHA; fold change > 1.5; p value < 0.01). Among the proteins increased in abundance in the HA cohort were glycoprotein MUC18, ephrin type-B receptor 4, matrix remodeling-associated protein 8, angiopoietin-related protein 2, K-cadherin, and plasma protease C1 inhibitor. These proteins have been linked to the extracellular matrix, cell adhesion, and vascular remodeling and repair processes. In silico network analysis identified the regulation of coagulation, antimicrobial humoral immune responses, and the IL-12 signaling pathway as enriched GO terms. To validate links of these preliminary biomarkers and IL-12 signaling with healthy aging, clinical studies using larger cohorts and functional characterization of the genes/proteins in cellular models of aging need to be conducted.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Harinder Singh
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Keehwan Kwon
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Tamara Tsitrin
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Joann Petrini
- Western Connecticut Health Network, 24 Hospital Avenue, Danbury, CT, 06810, USA
| | - Karen E Nelson
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Rembert Pieper
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
14
|
Zhang Q, Du Z, Zhang Y, Zheng Z, Li Q, Wang K. Apoptosis induction activity of polysaccharide from Lentinus edodes in H22-bearing mice through ROS-mediated mitochondrial pathway and inhibition of tubulin polymerization. Food Nutr Res 2020; 64:4364. [PMID: 33240031 PMCID: PMC7672475 DOI: 10.29219/fnr.v64.4364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/19/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background Lentinus edodes is a medicinal mushroom widely used in Asian countries for protecting people against some types of cancer and other diseases. Objective The objective of the present study was to investigate the direct antiproliferation activity and the antitumor mechanisms of water-extracted polysaccharide (WEP1) purified from L. edodes in H22 cells and H22-bearing mice. Design The extraction, isolation, purification, and structure determination of the water-soluted L. edodes polysaccharide WEP1 were performed. The growth inhibitory effects of WEP1 on H22 cells and H22-bearing mice were determined by 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) method and animal studies. Flow cytometry, scanning electron microscopy, and laser scanning confocal microscopy were used to observe the morphological characteristics of apoptotic cells. The levels of intracellular reactive oxygen species (ROS) were detected by flow cytometry using 2',7'-dichlorofluorescein-3',6'-diacetate (DCFH-DA). Western blot was used to determine the expressions of cell cycle proteins and apoptosis-related proteins. Results Results showed that WEP1 with a molecular weight of 662.1 kDa exhibited direct antiproliferation activity on H22 cells in a dose-dependent manner. In vivo, WEP1 significantly inhibited the growth of tumor at different doses (50, 100, and 200 mg/kg) and the inhibition rates were 28.27, 35.17, and 51.72%, respectively. Furthermore, morphological changes of apoptosis and ROS overproduction were observed in H22 cells by WEP1 treatment. Cell cycle assay and western blot analyses indicated that the apoptosis induction activity of WEP1 was associated with arresting cell cycle at G2/M phase and activating mitochondrial-apoptotic pathway. Besides, WEP1 disrupted the microtubule network accompanied by alteration of cellular morphology. Conclusion Results suggested that the antitumor mechanisms of WEP1 might be related to arresting cell cycle at G2/M phase, inhibiting tubulin polymerization and inducing mitochondrial apoptosis. Therefore, WEP1 possibly could be used as a promising functional food for preventing or treating liver cancer.
Collapse
Affiliation(s)
- Qilin Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Zhaosong Du
- Department of Pharmacy, Wuhan Women and Children Medical Care Center, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Yu Y, Singh H, Kwon K, Tsitrin T, Petrini J, Nelson KE, Pieper R. Protein signatures from blood plasma and urine suggest changes in vascular function and IL-12 signaling in elderly with a history of chronic diseases compared with an age-matched healthy cohort. GeroScience 2020; 43:593-606. [PMID: 32974878 PMCID: PMC8110643 DOI: 10.1007/s11357-020-00269-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/14/2020] [Indexed: 01/02/2023] Open
Abstract
Key processes characterizing human aging are immunosenescence and inflammaging. The capacity of the immune system to adequately respond to external perturbations (e.g., pathogens, injuries, and biochemical irritants) and to repair somatic mutations that may cause cancers or cellular senescence declines. An important goal remains to identify genetic or biochemical, predictive biomarkers for healthy aging. We recruited two cohorts in the age range 70 to 82, one afflicted by chronic illnesses (non-healthy aging, NHA) and the other in good health (healthy aging, HA). NHA criteria included major cardiovascular, neurodegenerative, and chronic pulmonary diseases, diabetes, and cancers. Quantitative analysis of forty proinflammatory cytokines in blood plasma and more than 500 proteins in urine was performed to identify candidate biomarkers for and biological pathway implications of healthy aging. Nine cytokines revealed lower quantities in blood plasma for the NHA compared with the HA groups (fold change > 1.5; p value < 0.025) including IL-12p40 and IL-12p70. We note that, sampling at two timepoints, intra-individual cytokine abundance patterns clustered in 86% of all 60 cases, indicative of person-specific, highly controlled multi-cytokine signatures in blood plasma. Twenty-three urinary proteins were differentially abundant (HA versus NHA; fold change > 1.5; p value < 0.01). Among the proteins increased in abundance in the HA cohort were glycoprotein MUC18, ephrin type-B receptor 4, matrix remodeling-associated protein 8, angiopoietin-related protein 2, K-cadherin, and plasma protease C1 inhibitor. These proteins have been linked to the extracellular matrix, cell adhesion, and vascular remodeling and repair processes. In silico network analysis identified the regulation of coagulation, antimicrobial humoral immune responses, and the IL-12 signaling pathway as enriched GO terms. To validate links of these preliminary biomarkers and IL-12 signaling with healthy aging, clinical studies using larger cohorts and functional characterization of the genes/proteins in cellular models of aging need to be conducted.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Harinder Singh
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Keehwan Kwon
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Tamara Tsitrin
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Joann Petrini
- Western Connecticut Health Network, 24 Hospital Avenue, Danbury, CT, 06810, USA
| | - Karen E Nelson
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA.,J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Rembert Pieper
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
16
|
Zhang R, Earnest JT, Kim AS, Winkler ES, Desai P, Adams LJ, Hu G, Bullock C, Gold B, Cherry S, Diamond MS. Expression of the Mxra8 Receptor Promotes Alphavirus Infection and Pathogenesis in Mice and Drosophila. Cell Rep 2020; 28:2647-2658.e5. [PMID: 31484075 PMCID: PMC6745702 DOI: 10.1016/j.celrep.2019.07.105] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Mxra8 is a recently described receptor for multiple alphaviruses, including Chikungunya (CHIKV), Mayaro (MAYV), Ross River (RRV), and O'nyong nyong (ONNV) viruses. To determine its role in pathogenesis, we generated mice with mutant Mxra8 alleles: an 8-nucleotide deletion that produces a truncated, soluble form (Mxra8Δ8/Δ8) and a 97-nucleotide deletion that abolishes Mxra8 expression (Mxra8Δ97/Δ97). Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 fibroblasts show reduced CHIKV infection in culture, and Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 mice have decreased infection of musculoskeletal tissues with CHIKV, MAYV, RRV, or ONNV. Less foot swelling is observed in CHIKV-infected Mxra8 mutant mice, which correlated with fewer infiltrating neutrophils and cytokines. A recombinant E2-D71A CHIKV with diminished binding to Mxra8 is attenuated in vivo in wild-type mice. Ectopic Mxra8 expression is sufficient to enhance CHIKV infection and lethality in transgenic flies. These studies establish a role for Mxra8 in the pathogenesis of multiple alphaviruses and suggest that targeting this protein may mitigate disease in humans.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - James T Earnest
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arthur S Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J Adams
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gaowei Hu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Christopher Bullock
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Beth Gold
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Bazile J, Jaffrezic F, Dehais P, Reichstadt M, Klopp C, Laloe D, Bonnet M. Molecular signatures of muscle growth and composition deciphered by the meta-analysis of age-related public transcriptomics data. Physiol Genomics 2020; 52:322-332. [PMID: 32657225 DOI: 10.1152/physiolgenomics.00020.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The lean-to-fat ratio is a major issue in the beef meat industry from both carcass and meat production perspectives. This industrial perspective has motivated meat physiologists to use transcriptomics technologies to decipher mechanisms behind fat deposition within muscle during the time course of muscle growth. However, synthetic biological information from this volume of data remains to be produced to identify mechanisms found in various breeds and rearing practices. We conducted a meta-analysis on 10 transcriptomic data sets stored in public databases, from the longissimus thoracis of five different bovine breeds divergent by age. We updated gene identifiers on the last version of the bovine genome (UCD1.2), and the 715 genes common to the 10 studies were subjected to the meta-analysis. Of the 238 genes differentially expressed (DEG), we identified a transcriptional signature of the dynamic regulation of glycolytic and oxidative metabolisms that agrees with a known shift between those two pathways from the animal puberty. We proposed some master genes of the myogenesis, namely MYOG and MAPK14, as probable regulators of the glycolytic and oxidative metabolisms. We also identified overexpressed genes related to lipid metabolism (APOE, LDLR, MXRA8, and HSP90AA1) that may contribute to the expected enhanced marbling as age increases. Lastly, we proposed a transcriptional signature related to the induction (YBX1) or repression (MAPK14, YWAH, ERBB2) of the commitment of myogenic progenitors into the adipogenic lineage. The relationships between the abundance of the identified mRNA and marbling values remain to be analyzed in a marbling biomarkers discovery perspectives.
Collapse
Affiliation(s)
- Jeanne Bazile
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Florence Jaffrezic
- INRAE, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Patrice Dehais
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAE, Castanet Tolosan, France.,SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Matthieu Reichstadt
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAE, Castanet Tolosan, France.,SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Denis Laloe
- INRAE, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Muriel Bonnet
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| |
Collapse
|
18
|
Kim AS, Zimmerman O, Fox JM, Nelson CA, Basore K, Zhang R, Durnell L, Desai C, Bullock C, Deem SL, Oppenheimer J, Shapiro B, Wang T, Cherry S, Coyne CB, Handley SA, Landis MJ, Fremont DH, Diamond MS. An Evolutionary Insertion in the Mxra8 Receptor-Binding Site Confers Resistance to Alphavirus Infection and Pathogenesis. Cell Host Microbe 2020; 27:428-440.e9. [PMID: 32075743 DOI: 10.1016/j.chom.2020.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 01/08/2023]
Abstract
Alphaviruses are emerging, mosquito-transmitted RNA viruses with poorly understood cellular tropism and species selectivity. Mxra8 is a receptor for multiple alphaviruses including chikungunya virus (CHIKV). We discovered that while expression of mouse, rat, chimpanzee, dog, horse, goat, sheep, and human Mxra8 enables alphavirus infection in cell culture, cattle Mxra8 does not. Cattle Mxra8 encodes a 15-amino acid insertion in its ectodomain that prevents Mxra8 binding to CHIKV. Identical insertions are present in zebu, yak, and the extinct auroch. As other Bovinae lineages contain related Mxra8 sequences, this insertion likely occurred at least 5 million years ago. Removing the Mxra8 insertion in Bovinae enhances alphavirus binding and infection, while introducing the insertion into mouse Mxra8 blocks CHIKV binding, prevents infection by multiple alphaviruses in cells, and mitigates CHIKV-induced pathogenesis in mice. Our studies on how this insertion provides resistance to CHIKV infection could facilitate countermeasures that disrupt Mxra8 interactions with alphaviruses.
Collapse
Affiliation(s)
- Arthur S Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ofer Zimmerman
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Julie M Fox
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Katherine Basore
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rong Zhang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lorellin Durnell
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chandni Desai
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher Bullock
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sharon L Deem
- Saint Louis Zoo Institute for Conservation Medicine, Saint Louis, MO 63110, USA
| | - Jonas Oppenheimer
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Beth Shapiro
- Department Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael J Landis
- Department of Biology, Washington University, Saint Louis, MO 63110, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
19
|
Han SW, Kim JM, Lho Y, Cho HJ, Jung YK, Kim JA, Lee H, Lee YJ, Kim ES. DICAM Attenuates Experimental Colitis via Stabilizing Junctional Complex in Mucosal Barrier. Inflamm Bowel Dis 2019; 25:853-861. [PMID: 30534988 DOI: 10.1093/ibd/izy373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Adhesion molecules maintain the intestinal barrier function that is crucial to prevent intestinal inflammation. Dual immunoglobulin domain-containing adhesion molecule (DICAM) has been recently identified and known for the involvement in cell-cell adhesion through homophilic interaction and heterophilic interaction with integrin αVβ3. We tested whether the change of DICAM expression affects the severity of colonic inflammation. METHODS Colitis was induced with oral administration of 2.5% dextran sulfate sodium (DSS) in 8-week-old male mice for 5 days. The function of DICAM under inflammatory condition was investigated using loss-of-function and gain-of-function models such as DICAM-deficient mice and adenoviral transduction of DICAM into Caco-2 colonic epithelial cells. RESULTS DICAM increased in parallel with the degree of inflammation after 5-day administration of DSS and decreased with the resolution of inflammation. DICAM was expressed in the epithelial junctional complex and colocalized with ZO-1. Treatment with TNF-α or IFN-γ in Caco-2 cells significantly increased DICAM in protein and RNA level. The DICAM knockout mice showed more severe DSS-induced colitis compared with WT littermates. Adenoviral transduction of DICAM into Caco-2 cells significantly attenuated the inflammation-mediated decrease of adhesion molecules, including ZO-1 and occludin. Furthermore, Caco-2 cells with DICAM overexpression maintained intestinal barrier function under IFN-γ treatment as estimated by transepithelial electrical resistance. CONCLUSION Our study demonstrates that DICAM which is increased in an inflammatory condition has a protective role in experimental colitis by stabilizing the integrity of junctional complex in the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Seung-Woo Han
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeong Min Kim
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Keimyung University, Daegu, Korea
| | - Yunmee Lho
- Department of Biochemistry, Pain Research Center, School of Medicine, Keimyung University, Daegu, Korea
| | - Hyun Jung Cho
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu, Korea
| | - Youn-Kwan Jung
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu, Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Daegu, Korea
| | - Hoyul Lee
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yu-Jeong Lee
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
20
|
Sadremomtaz A, Kobarfard F, Mansouri K, Mirzanejad L, Asghari SM. Suppression of migratory and metastatic pathways via blocking VEGFR1 and VEGFR2. J Recept Signal Transduct Res 2019; 38:432-441. [PMID: 30929546 DOI: 10.1080/10799893.2019.1567785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) A and B are endothelial cell mitogens whose ligation to VEGFR1/VEGFR2 drives tumor angiogenesis and metastasis, and epithelial-mesenchymal transition (EMT). Blockade of these signaling axes could be obtained by disturbing the interactions between VEGFA and/or VEGFB with VEGFR1 and/or VEGFR2. METHODS A 14-mer peptide (VGB) that recognizes both VEGFR1 and VEGFR2 were investigated for its inhibitory effects on the VEGF-induced proliferation and migration using MTT and scratch assay, respectively. Downstream signaling pathways were also assessed by quantitative estimation of gene and protein expression using real-time PCR and immunohistochemistry (IHC). RESULTS We investigated the inhibitory effects of VGB on downstream mediators of metastasis, including epithelial-cadherin (E-cadherin), matrix metalloprotease-9 (MMP-9), cancer myelocytomatosis (c-Myc), and nuclear factor-κβ (NF-κβ), and migration, comprising focal adhesion kinase (FAK) and its substrate Paxilin. VGB inhibited the VEGF-induced proliferation of human umbilical vein endothelial cells (HUVECs), 4T1 and U87 cells in a time- and dose-dependent manner and migration of HUVECs. Based on IHC analyses, treatment of 4T1 mammary carcinoma tumor with VGB led to the suppression of p-AKT, p-ERK1/2, MMP-9, NF-κβ, and activation of E-cadherin compared with PBS-treated controls. Moreover, quantitative real-time PCR analyses of VGB-treated tumors revealed the reduced expression level of FAK, Paxilin, NF-κβ, MMP-9, c-Myc, and increased expression level of E-cadherin compared to PBS-treated controls. CONCLUSIONS Our results demonstrated that simultaneous blockade of VEGFR1/VEGFR2 is an effective strategy to fight solid tumors by targeting a wider range of mediators involved in tumor angiogenesis, growth, and metastasis.
Collapse
Affiliation(s)
- Afsaneh Sadremomtaz
- a Department of Biology, Faculty of Sciences , University of Guilan , Rasht , Iran
| | - Farzad Kobarfard
- b Department of Medicinal Chemistry, School of Pharmacy , Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Kamran Mansouri
- c Medical Biology Research Center, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Laleh Mirzanejad
- a Department of Biology, Faculty of Sciences , University of Guilan , Rasht , Iran
| | - S Mohsen Asghari
- a Department of Biology, Faculty of Sciences , University of Guilan , Rasht , Iran
| |
Collapse
|
21
|
Han S, Park HR, Lee EJ, Jang JA, Han MS, Kim GW, Jeong JH, Choi JY, Beier F, Jung YK. Dicam promotes proliferation and maturation of chondrocyte through Indian hedgehog signaling in primary cilia. Osteoarthritis Cartilage 2018; 26:945-953. [PMID: 29702220 DOI: 10.1016/j.joca.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Primary cilium is required for mechano-biological signal transduction in chondrocytes, and its interaction with extracellular matrix is critical for cartilage homeostasis. However, the role of cilia-associated proteins that affect the function of cilia remains to be elucidated. Here, we show that Dicam has a novel function as a modulator of primary cilia-mediated Indian hedgehog (Ihh) signaling in chondrocytes. METHODS Cartilage-specific Dicam transgenic mouse was constructed and the phenotype of growth plates at embryonic day 15.5 and 18.5 was analyzed. Primary chondrocytes and tibiae isolated from embryonic day 15.5 mice were used in vitro study. RESULTS Dicam was mainly expressed in resting and proliferating chondrocytes of the growth plate and was increased by PTHrP and BMP2 in primary chondrocytes. Cartilage-specific Dicam gain-of-function demonstrated increased length of growth plate in long bones. Dicam enhanced both proliferation and maturation of growth plate chondrocytes in vivo and in vitro, and it was accompanied by enhanced Ihh and PTHrP signaling. Dicam was localized to primary cilia of chondrocytes, and increased the number of primary cilia and their assembly molecule, IFT88/Polaris as well. Dicam successfully rescued the knock-down phenotype of IFT88/Polaris and it was accompanied by increased number of cilia in tibia organ culture. CONCLUSION These findings suggest that Dicam positively regulates primary cilia and Ihh signaling resulting in elongation of long bone.
Collapse
Affiliation(s)
- S Han
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - H-R Park
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Republic of Korea
| | - E-J Lee
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Republic of Korea
| | - J-A Jang
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Republic of Korea
| | - M-S Han
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Republic of Korea
| | - G-W Kim
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Daegu Fatima Hospital, Republic of Korea
| | - J-H Jeong
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - J-Y Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - F Beier
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | - Y-K Jung
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Republic of Korea.
| |
Collapse
|
22
|
Zhang R, Kim AS, Fox JM, Nair S, Basore K, Klimstra WB, Rimkunas R, Fong RH, Lin H, Poddar S, Crowe JE, Doranz BJ, Fremont DH, Diamond MS. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 2018; 557:570-574. [PMID: 29769725 PMCID: PMC5970976 DOI: 10.1038/s41586-018-0121-3] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/03/2018] [Indexed: 11/09/2022]
Abstract
Arthritogenic alphaviruses comprise a group of enveloped RNA viruses that are transmitted to humans by mosquitoes and cause debilitating acute and chronic musculoskeletal disease 1 . The host factors required for alphavirus entry remain poorly characterized 2 . Here we use a genome-wide CRISPR-Cas9-based screen to identify the cell adhesion molecule Mxra8 as an entry mediator for multiple emerging arthritogenic alphaviruses, including chikungunya, Ross River, Mayaro and O'nyong nyong viruses. Gene editing of mouse Mxra8 or human MXRA8 resulted in reduced levels of viral infection of cells and, reciprocally, ectopic expression of these genes resulted in increased infection. Mxra8 bound directly to chikungunya virus particles and enhanced virus attachment and internalization into cells. Consistent with these findings, Mxra8-Fc fusion protein or anti-Mxra8 monoclonal antibodies blocked chikungunya virus infection in multiple cell types, including primary human synovial fibroblasts, osteoblasts, chondrocytes and skeletal muscle cells. Mutagenesis experiments suggest that Mxra8 binds to a surface-exposed region across the A and B domains of chikungunya virus E2 protein, which are a speculated site of attachment. Finally, administration of the Mxra8-Fc protein or anti-Mxra8 blocking antibodies to mice reduced chikungunya and O'nyong nyong virus infection as well as associated foot swelling. Pharmacological targeting of Mxra8 could form a strategy for mitigating infection and disease by multiple arthritogenic alphaviruses.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Arthur S Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Julie M Fox
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sharmila Nair
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Katherine Basore
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Hueylie Lin
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Subhajit Poddar
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Department of Pediatrics and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
23
|
CXCL12 enhances angiogenesis through CXCR7 activation in human umbilical vein endothelial cells. Sci Rep 2017; 7:8289. [PMID: 28811579 PMCID: PMC5557870 DOI: 10.1038/s41598-017-08840-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is the process by which new vessels form from existing vascular networks. Human umbilical vein endothelial cells (HUVECs) may contribute to the study of vascular repair and angiogenesis. The chemokine CXCL12 regulates multiple cell functions, including angiogenesis, mainly through its receptor CXCR4. In contrast to CXCL12/CXCR4, few studies have described roles for CXCR7 in vascular biology, and the downstream mechanism of CXCR7 in angiogenesis remains unclear. The results of the present study showed that CXCL12 dose-dependently enhanced angiogenesis in chorioallantoic membranes (CAMs) and HUVECs. The specific activation of CXCR7 with TC14012 (a CXCR7 agonist) resulted in the significant induction of tube formation in HUVECs and in vivo. Further evidence suggested that CXCL12 induced directional polarization and migration in the HUVECs, which is necessary for tube formation. Moreover, CXCR7 translocalization was observed during the polarization of HUVECs in stripe assays. Finally, treatment with TC14012 also significantly increased PI3K/Akt phosphorylation, and tube formation was blocked by treating HUVECs with an Akt inhibitor. Overall, this study indicated that CXCL12-stimulated CXCR7 acts as a functional receptor to activate Akt for angiogenesis in HUVECs and that CXCR7 may be a potential target molecule for endothelial regeneration and repair after vascular injury.
Collapse
|
24
|
Lang M, Zhou Z, Shi L, Niu J, Xu S, Lin W, Chen Z, Wang Y. Influence of zoledronic acid on proliferation, migration, and apoptosis of vascular endothelial cells. Br J Oral Maxillofac Surg 2016; 54:889-893. [DOI: 10.1016/j.bjoms.2016.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/29/2016] [Indexed: 11/30/2022]
|
25
|
Son Y, Lee B, Choi YJ, Jeon SA, Kim JH, Lee HK, Kwon SM, Cho JY. Nectin-2 (CD112) Is Expressed on Outgrowth Endothelial Cells and Regulates Cell Proliferation and Angiogenic Function. PLoS One 2016; 11:e0163301. [PMID: 27676263 PMCID: PMC5038973 DOI: 10.1371/journal.pone.0163301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022] Open
Abstract
Outgrowth endothelial cells (OECs) are a subpopulation of endothelial progenitor cells (EPCs) that have the capacity for proliferation and the ability to promote angiogenesis. In this study, we identified Nectin-2 as a surface protein of OECs through unbiased quantitative proteomics analysis. Using immunocytochemistry and flow cytometry, we confirmed that Nectin-2 is highly expressed on OECs. Nectin-2 (CD112) expression was limited or lower on mononuclear cells (MNCs) and mature tube-forming endothelial cells (ECs). Blocking Nectin-2 with a neutralizing monoclonal antibody significantly increased the trans-well migration and tube forming capacity of OECs. Similarly, Nectin-2 knockdown resulted in enhanced tube formation, cell migration and proliferation with p-Erk activation. Moreover, Nectin-2 deficiency resulted in compensatory increase of other Nectin family genes including Nectin-3 and Necl-4 which promote VEGFR signaling. These results indicate that Nectin-2 is a surface marker and an important regulator of OECs, with significant implications for the isolation of OECs and blocking Nectin-2 on OECs by an antibody for angiogenic applications.
Collapse
Affiliation(s)
- YeonSung Son
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - BomNaeRin Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - Young-Jin Choi
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - Seon Ae Jeon
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - Ju-Hyun Kim
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
| | - Hoo-Keun Lee
- College of Pharmacy, Gachon University, Incheon 406–840, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, school of Medicine, Pusan National University, Yangsan, 626–870 Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, 151–742, Korea
- * E-mail:
| |
Collapse
|
26
|
Dolcino M, Ottria A, Barbieri A, Patuzzo G, Tinazzi E, Argentino G, Beri R, Lunardi C, Puccetti A. Gene Expression Profiling in Peripheral Blood Cells and Synovial Membranes of Patients with Psoriatic Arthritis. PLoS One 2015; 10:e0128262. [PMID: 26086874 PMCID: PMC4473102 DOI: 10.1371/journal.pone.0128262] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/24/2015] [Indexed: 12/22/2022] Open
Abstract
Background Psoriatic arthritis (PsA) is an inflammatory arthritis whose pathogenesis is poorly understood; it is characterized by bone erosions and new bone formation. The diagnosis of PsA is mainly clinical and diagnostic biomarkers are not yet available. The aim of this work was to clarify some aspects of the disease pathogenesis and to identify specific gene signatures in paired peripheral blood cells (PBC) and synovial biopsies of patients with PsA. Moreover, we tried to identify biomarkers that can be used in clinical practice. Methods PBC and synovial biopsies of 10 patients with PsA were used to study gene expression using Affymetrix arrays. The expression values were validated by Q-PCR, FACS analysis and by the detection of soluble mediators. Results Synovial biopsies of patients showed a modulation of approximately 200 genes when compared to the biopsies of healthy donors. Among the differentially expressed genes we observed the upregulation of Th17 related genes and of type I interferon (IFN) inducible genes. FACS analysis confirmed the Th17 polarization. Moreover, the synovial trascriptome shows gene clusters (bone remodeling, angiogenesis and inflammation) involved in the pathogenesis of PsA. Interestingly 90 genes are modulated in both compartments (PBC and synovium) suggesting that signature pathways in PBC mirror those of the inflamed synovium. Finally the osteoactivin gene was upregulared in both PBC and synovial biopsies and this finding was confirmed by the detection of high levels of osteoactivin in PsA sera but not in other inflammatory arthritides. Conclusions We describe the first analysis of the trancriptome in paired synovial tissue and PBC of patients with PsA. This study strengthens the hypothesis that PsA is of autoimmune origin since the coactivity of IFN and Th17 pathways is typical of autoimmunity. Finally these findings have allowed the identification of a possible disease biomarker, osteoactivin, easily detectable in PsA serum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonio Puccetti
- Institute G. Gaslini, Genova, Italy
- University of Genova, Genova, Italy
- * E-mail:
| |
Collapse
|
27
|
Wang P, Du H, Zhou CC, Song J, Liu X, Cao X, Mehta JL, Shi Y, Su DF, Miao CY. Intracellular NAMPT-NAD+-SIRT1 cascade improves post-ischaemic vascular repair by modulating Notch signalling in endothelial progenitors. Cardiovasc Res 2014; 104:477-88. [PMID: 25341895 DOI: 10.1093/cvr/cvu220] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Intracellular nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for nicotinamide adenine dinucleotide (NAD(+)) biosynthesis. This study investigated the role of NAMPT-mediated NAD(+) signalling in post-ischaemic vascular repair. METHODS AND RESULTS Mouse hind-limb ischaemia up-regulated NAMPT expression and NAD(+) level in bone marrow (BM). Pharmacological inhibition of NAMPT by a chemical inhibitor FK866 impaired the mobilization of endothelial progenitor cells (EPCs) from BM upon ischaemic stress. Transgenic mice overexpressing NAMPT (Tg mice), but not H247A-mutant dominant-negative NAMPT (DN-Tg mice), exhibited enhanced capillary density, increased number of proliferating endothelial cells, improved blood flow recovery, and augmented collateral arterioles in the ischaemic limb. In cultured BM-derived EPCs, inhibition of NAMPT suppressed proliferation, migration, and tube formation, whereas overexpression of NAMPT induced opposite effects. The promoting effects of NAMPT on EPCs were abolished by silencing of sirtuin 1 (SIRT1), rather than silencing of SIRT2-7. Overexpression of NAMPT led to a SIRT1-depedent enhancement of Notch-1 intracellular domain deacetylation, which inhibited Delta-like ligand-4 (DLL4)-Notch signalling and thereby up-regulated of VEGFR-2 and VEGFR-3. Injection of recombinant VEGF induced a more pronounced EPC mobilization in Tg, but not in DN-Tg, mice. Furthermore, overexpression of NAMPT down-regulated Fringe family glycosyltransferases in a SIRT1-dependent manner, which rendered Notch more sensitive to the pro-angiogenic ligand Jagged1 rather than the anti-angiogenic ligand DLL4. CONCLUSIONS These results demonstrate that intracellular NAMPT-NAD(+)-SIRT1 cascade improves post-ischaemic neovascularization. The modulation of Notch signalling may contribute to the enhanced post-ischaemic neovascularization.
Collapse
Affiliation(s)
- Pei Wang
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| | - Hui Du
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China Department of Pharmacy, General Hospital of Lanzhou Military Region, Lanzhou, China
| | - Can-Can Zhou
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| | - Jie Song
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| | - Xingguang Liu
- Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Xuetao Cao
- Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Jawahar L Mehta
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yi Shi
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| |
Collapse
|
28
|
Hu X, Zhang P, Xu Z, Chen H, Xie X. GPNMB enhances bone regeneration by promoting angiogenesis and osteogenesis: potential role for tissue engineering bone. J Cell Biochem 2014; 114:2729-37. [PMID: 23794283 DOI: 10.1002/jcb.24621] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/18/2013] [Indexed: 12/13/2022]
Abstract
Bone regeneration is a coordinated process involving the connection between blood vessels and bone cells. Glycoprotein non-metastatic melanoma protein B (GPNMB) is known to be vital in bone formation. However, the effect of GPNMB on bone regeneration and the underlying molecular mechanism are still undefined. Fibroblast growth factor receptor (FGFR)-mediating signaling is pivotal in bone formation and angiogenesis. Therefore, we assessed GPNMB function as a communicating molecule between osteoblasts and angiogenesis, and the possible correlation with FGFR-1 signaling. Recombinant GPNMB dose-dependently increased the differentiation of human bone marrow stromal cells (hBMSCs) into osteoblasts, as well as the mRNA levels of osteoblasts marker alkaline phosphatase (ALP) and osteocalcin (OCN). Furthermore, these increases depended on the activation of FGFR-1 signaling, as pretreatment with FGFR-1 siRNA or its inhibitor SU5402 dramatically dampened GPNMB-induced osteogenesis. Additionally, GPNMB triggered dose-dependently the proliferation and migration of human umbilical vein endothelial cells (hUVECs), FGFR-1 phosphorylation, as well as capillary tube and vessels formation in vitro and in vivo. Blocking FGFR-1 signaling dampened GPNMB-induced angiogenic activity. Following construction of a rodent cranial defect model, scaffolds delivering GPNMB resulted in an evident increase in blood vessels and new bone formation; however, combined delivery of GPNMB and SU5402 abated these increase in defect sites. Taken together, these results suggest that GPNMB stimulates bone regeneration by inducing osteogenesis and angiogenesis via regulating FGFR-1 signaling. Consequently, our findings will clarify a new explanation about how GPNMB induces bone repair, and provide a potential target for bone regeneration therapeutics and bone engineering.
Collapse
Affiliation(s)
- Xuefeng Hu
- Department of Orthopedics, Chinese PLA 171 Hospital, Jiangxi, 332000, China
| | | | | | | | | |
Collapse
|
29
|
Kim HJ, Kim JK. Antiangiogenic effects of cucurbitacin-I. Arch Pharm Res 2014; 38:290-8. [DOI: 10.1007/s12272-014-0386-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/30/2014] [Indexed: 01/29/2023]
|
30
|
Kim BY, Park I, Jung YK, Han MS, Kim GW, Han SW. DICAM-mediated Inhibition of Type 1 Interferon System during Macrophage Differentiation of THP-1 Cells. JOURNAL OF RHEUMATIC DISEASES 2014. [DOI: 10.4078/jrd.2014.21.3.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bo Yeon Kim
- Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Korea
| | - In Park
- Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Korea
| | - Youn Kwan Jung
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu, Korea
| | - Min Su Han
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu, Korea
| | - Gun Woo Kim
- Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Korea
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu, Korea
| | - Seung Woo Han
- Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Korea
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu, Korea
| |
Collapse
|
31
|
Differential effects of cell adhesion, modulus and VEGFR-2 inhibition on capillary network formation in synthetic hydrogel arrays. Biomaterials 2013; 35:2149-61. [PMID: 24332391 DOI: 10.1016/j.biomaterials.2013.11.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 11/19/2013] [Indexed: 12/26/2022]
Abstract
Efficient biomaterial screening platforms can test a wide range of extracellular environments that modulate vascular growth. Here, we used synthetic hydrogel arrays to probe the combined effects of Cys-Arg-Gly-Asp-Ser (CRGDS) cell adhesion peptide concentration, shear modulus and vascular endothelial growth factor receptor 2 (VEGFR2) inhibition on human umbilical vein endothelial cell (HUVEC) viability, proliferation and tubulogenesis. HUVECs were encapsulated in degradable poly(ethylene glycol) (PEG) hydrogels with defined CRGDS concentration and shear modulus. VEGFR2 activity was modulated using the VEGFR2 inhibitor SU5416. We demonstrate that synergy exists between VEGFR2 activity and CRGDS ligand presentation in the context of maintaining HUVEC viability. However, excessive CRGDS disrupts this synergy. HUVEC proliferation significantly decreased with VEGFR2 inhibition and increased modulus, but did not vary monotonically with CRGDS concentration. Capillary-like structure (CLS) formation was highly modulated by CRGDS concentration and modulus, but was largely unaffected by VEGFR2 inhibition. We conclude that the characteristics of the ECM surrounding encapsulated HUVECs significantly influence cell viability, proliferation and CLS formation. Additionally, the ECM modulates the effects of VEGFR2 signaling, ranging from changing the effectiveness of synergistic interactions between integrins and VEGFR2 to determining whether VEGFR2 upregulates, downregulates or has no effect on proliferation and CLS formation.
Collapse
|
32
|
Wu M, Xu T, Zhou Y, Lu H, Gu Z. Pressure and inflammatory stimulation induced increase of cadherin-11 is mediated by PI3K/Akt pathway in synovial fibroblasts from temporomandibular joint. Osteoarthritis Cartilage 2013; 21:1605-12. [PMID: 23916685 DOI: 10.1016/j.joca.2013.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/12/2013] [Accepted: 07/24/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The goal of the study was to investigate the expression of cadherin-11 in synovial fibroblasts (SFs) under mechanical or inflammatory stimuli, and its potential relationship with PI3K/Akt signaling pathway. METHODS SFs separated from rat temporomandibular joint (TMJ) were treated with hydrostatic pressures (HP) of 30, 60, 90, and 120 kPa, as well as tumor necrosis factor-α (TNF-α) for 12, 24, 48, and 72 h. The location of cadherin-11 was observed by immunofluorescence microscopy, and its expression was detected by real-time PCR and Western blot. We also studied the activation of PI3K/Akt signaling pathway in SFs with HP or TNF-α stimulation. RESULTS The results showed that increased expression of cadherin-11 could be found in the cell-cell contact site of SFs in response to HP and inflammatory stimulation. The mRNA and protein expression of cadherin-11 was positively correlated with the intensity of HP and the duration time of TNF-α treatment. Increased expression of vascular endothelial growth factor-D (VEGF-D) and activation of Akt were also found. Treatment with PI3K inhibitor LY294002 attenuated the pressure or inflammatory cytokine induction increases of cadherin-11, VEGF-D, and FGF-2 both in mRNA and protein levels. CONCLUSIONS These findings suggest that cadherin-11 may play important roles in SFs following exposure to mechanical loading and inflammatory stimulation. In addition, PI3K/Akt pathway was associated with pressure or inflammation-induced cadherin-11 expression, which may involve in the pathogenesis of temporomandibular diseases.
Collapse
Affiliation(s)
- M Wu
- Department of Orthodontics, Hospital of Stomatology, Zhejiang University, 395 Yan'an Road, Hangzhou 310006, China
| | | | | | | | | |
Collapse
|