1
|
Charoenpong P, Hall NM, Keller CM, Ram AK, Murnane KS, Goeders NE, Dhillon NK, Walter RE. Overview of Methamphetamine-Associated Pulmonary Arterial Hypertension. Chest 2024; 165:1518-1533. [PMID: 38211700 PMCID: PMC11177101 DOI: 10.1016/j.chest.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
TOPIC IMPORTANCE The global surge in methamphetamine use is a critical public health concern, particularly due to its robust correlation with methamphetamine-associated pulmonary arterial hypertension (MA-PAH). This association raises urgent alarms about the potential escalation of MA-PAH incidence, posing a significant and imminent challenge to global public health. REVIEW FINDINGS This comprehensive review meticulously explores MA-PAH, offering insights into its epidemiology, pathophysiology, clinical presentation, diagnostic intricacies, and management strategies. The pathogenesis, yet to be fully described, involves complex molecular interactions, including alterations in serotonin signaling, reduced activity of carboxylesterase 1, oxidative stress, and dysregulation of pulmonary vasoconstrictors and vasodilators. These processes culminate in the structural remodeling of the pulmonary vasculature, resulting in pulmonary arterial hypertension. MA-PAH exhibits a more severe clinical profile in functional class and hemodynamics compared with idiopathic pulmonary arterial hypertension. Management involves a multifaceted approach, integrating pulmonary vasodilators, cessation of methamphetamine use, and implementing social and rehabilitation programs. These measures aim to enhance patient outcomes and detect potential relapses for timely intervention. SUMMARY This review consolidates our understanding of MA-PAH, pinpointing knowledge gaps for future studies. Addressing these gaps is crucial for advancing diagnostic accuracy, unraveling mechanisms, and optimizing treatment for MA-PAH, thereby addressing the evolving landscape of this complex health concern.
Collapse
Affiliation(s)
- Prangthip Charoenpong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA.
| | - Nicole M Hall
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Courtney M Keller
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Anil Kumar Ram
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Kevin S Murnane
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Nicholas E Goeders
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Navneet Kaur Dhillon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Robert E Walter
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| |
Collapse
|
2
|
Dignam JP, Sharma S, Stasinopoulos I, MacLean MR. Pulmonary arterial hypertension: Sex matters. Br J Pharmacol 2024; 181:938-966. [PMID: 37939796 DOI: 10.1111/bph.16277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex disease of multifactorial origin. While registries have demonstrated that women are more susceptible to the disease, females with PAH have superior right ventricle (RV) function and a better prognosis than their male counterparts, a phenomenon referred to as the 'estrogen paradox'. Numerous pre-clinical studies have investigated the involvement of sex hormones in PAH pathobiology, often with conflicting results. However, recent advances suggest that abnormal estrogen synthesis, metabolism and signalling underpin the sexual dimorphism of this disease. Other sex hormones, such as progesterone, testosterone and dehydroepiandrosterone may also play a role. Several non-hormonal factor including sex chromosomes and epigenetics have also been implicated. Though the underlying pathophysiological mechanisms are complex, several compounds that modulate sex hormones levels and signalling are under investigation in PAH patients. Further elucidation of the estrogen paradox will set the stage for the identification of additional therapeutic targets for this disease.
Collapse
Affiliation(s)
- Joshua P Dignam
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Smriti Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ioannis Stasinopoulos
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
3
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
4
|
MacLean MR, Fanburg B, Hill N, Lazarus HM, Pack TF, Palacios M, Penumatsa KC, Wring SA. Serotonin and Pulmonary Hypertension; Sex and Drugs and ROCK and Rho. Compr Physiol 2022; 12:4103-4118. [PMID: 36036567 DOI: 10.1002/cphy.c220004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin is often referred to as a "happy hormone" as it maintains good mood, well-being, and happiness. It is involved in communication between nerve cells and plays a role in sleeping and digestion. However, too much serotonin can have pathogenic effects and serotonin synthesis is elevated in pulmonary artery endothelial cells from patients with pulmonary arterial hypertension (PAH). PAH is characterized by elevated pulmonary pressures, right ventricular failure, inflammation, and pulmonary vascular remodeling; serotonin has been shown to be associated with these pathologies. The rate-limiting enzyme in the synthesis of serotonin in the periphery of the body is tryptophan hydroxylase 1 (TPH1). TPH1 expression and serotonin synthesis are elevated in pulmonary artery endothelial cells in patients with PAH. The serotonin synthesized in the pulmonary arterial endothelium can act on the adjacent pulmonary arterial smooth muscle cells (PASMCs), adventitial macrophages, and fibroblasts, in a paracrine fashion. In humans, serotonin enters PASMCs cells via the serotonin transporter (SERT) and it can cooperate with the 5-HT1B receptor on the plasma membrane; this activates both contractile and proliferative signaling pathways. The "serotonin hypothesis of pulmonary hypertension" arose when serotonin was associated with PAH induced by diet pills such as fenfluramine, aminorex, and chlorphentermine; these act as indirect serotonergic agonists causing the release of serotonin from platelets and cells through the SERT. Here the role of serotonin in PAH is reviewed. Targeting serotonin synthesis or signaling is a promising novel alternative approach which may lead to novel therapies for PAH. © 2022 American Physiological Society. Compr Physiol 12: 1-16, 2022.
Collapse
Affiliation(s)
- Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Barry Fanburg
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Nicolas Hill
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | | | | | | - Krishna C Penumatsa
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
MacLean MR, Pandya D, Swietlik EM, Denver N, Mair K, Morrell NW, Gräf S. A pilot study to examine association of BMI with functional class and 6 min walk distance in idiopathic and heritable PAH: Possible association with estrogen metabolism. Pulm Circ 2022; 12:e12139. [PMID: 36186719 PMCID: PMC9510900 DOI: 10.1002/pul2.12139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
The hypothesis that a relationship exists between body mass index (BMI), functional class, and 6 min walk distance (6MWD) in Group 1-pulmonary arterial hypertension (PAH) was examined. Analysis of data from the UK National Cohort Study for heritable pulmonary arterial/idiopathic PAH suggests increased BMI is a predictor of worse functional class and shorter 6MWD; increased body-weight in mice and man may be associated with increased estrogen metabolism.
Collapse
Affiliation(s)
- Margaret R. MacLean
- Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Divya Pandya
- Department of MedicineUniversity of CambridgeCambridgeUK
| | | | - Nina Denver
- Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Kirsty Mair
- Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | | | - Stefan Gräf
- Department of MedicineUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
- NIHR BioResource for Translational ResearchUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
6
|
Yu Z, Xiao J, Chen X, Ruan Y, Chen Y, Zheng X, Wang Q. Bioactivities and mechanisms of natural medicines in the management of pulmonary arterial hypertension. Chin Med 2022; 17:13. [PMID: 35033157 PMCID: PMC8760698 DOI: 10.1186/s13020-022-00568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and rare disease without obvious clinical symptoms that shares characteristics with pulmonary vascular remodeling. Right heart failure in the terminal phase of PAH seriously threatens the lives of patients. This review attempts to comprehensively outline the current state of knowledge on PAH its pathology, pathogenesis, natural medicines therapy, mechanisms and clinical studies to provide potential treatment strategies. Although PAH and pulmonary hypertension have similar pathological features, PAH exhibits significantly elevated pulmonary vascular resistance caused by vascular stenosis and occlusion. Currently, the pathogenesis of PAH is thought to involve multiple factors, primarily including genetic/epigenetic factors, vascular cellular dysregulation, metabolic dysfunction, even inflammation and immunization. Yet many issues regarding PAH need to be clarified, such as the "oestrogen paradox". About 25 kinds monomers derived from natural medicine have been verified to protect against to PAH via modulating BMPR2/Smad, HIF-1α, PI3K/Akt/mTOR and eNOS/NO/cGMP signalling pathways. Yet limited and single PAH animal models may not corroborate the efficacy of natural medicines, and those natural compounds how to regulate crucial genes, proteins and even microRNA and lncRNA still need to put great attention. Additionally, pharmacokinetic studies and safety evaluation of natural medicines for the treatment of PAH should be undertaken in future studies. Meanwhile, methods for validating the efficacy of natural drugs in multiple PAH animal models and precise clinical design are also urgently needed to promote advances in PAH.
Collapse
Affiliation(s)
- Zhijie Yu
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jun Xiao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiao Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yi Ruan
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yang Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China.
| | - Qiang Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
7
|
Kelly NJ, Chan SY. Pulmonary Arterial Hypertension: Emerging Principles of Precision Medicine across Basic Science to Clinical Practice. Rev Cardiovasc Med 2022; 23:378. [PMID: 36875282 PMCID: PMC9980296 DOI: 10.31083/j.rcm2311378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an enigmatic and deadly vascular disease with no known cure. Recent years have seen rapid advances in our understanding of the molecular underpinnings of PAH, with an expanding knowledge of the molecular, cellular, and systems-level drivers of disease that are being translated into novel therapeutic modalities. Simultaneous advances in clinical technology have led to a growing list of tools with potential application to diagnosis and phenotyping. Guided by fundamental biology, these developments hold the potential to usher in a new era of personalized medicine in PAH with broad implications for patient management and great promise for improved outcomes.
Collapse
Affiliation(s)
- Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Cheron C, McBride SA, Antigny F, Girerd B, Chouchana M, Chaumais MC, Jaïs X, Bertoletti L, Sitbon O, Weatherald J, Humbert M, Montani D. Sex and gender in pulmonary arterial hypertension. Eur Respir Rev 2021; 30:30/162/200330. [PMID: 34750113 DOI: 10.1183/16000617.0330-2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterised by pulmonary vascular remodelling and elevated pulmonary pressure, which eventually leads to right heart failure and death. Registries worldwide have noted a female predominance of the disease, spurring particular interest in hormonal involvement in the disease pathobiology. Several experimental models have shown both protective and deleterious effects of oestrogens, suggesting that complex mechanisms participate in PAH pathogenesis. In fact, oestrogen metabolites as well as receptors and enzymes implicated in oestrogen signalling pathways and associated conditions such as BMPR2 mutation contribute to PAH penetrance more specifically in women. Conversely, females have better right ventricular function, translating to a better prognosis. Along with right ventricular adaptation, women tend to respond to PAH treatment differently from men. As some young women suffer from PAH, contraception is of particular importance, considering that pregnancy in patients with PAH is strongly discouraged due to high risk of death. When contraception measures fail, pregnant women need a multidisciplinary team-based approach. This article aims to review epidemiology, mechanisms underlying the higher female predominance, but better prognosis and the intricacies in management of women affected by PAH.
Collapse
Affiliation(s)
- Céline Cheron
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Susan Ainslie McBride
- Internal Medicine Residency Program, Dept of Medicine, University of Calgary, Calgary, Canada
| | - Fabrice Antigny
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Barbara Girerd
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Margot Chouchana
- Assistance Publique Hôpitaux de Paris, Service de Pharmacie Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Marie-Camille Chaumais
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France.,Assistance Publique Hôpitaux de Paris, Service de Pharmacie Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Université Paris-Saclay, Faculté de Pharmacie, Chatenay Malabry, France
| | - Xavier Jaïs
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Laurent Bertoletti
- Centre Hospitalier Universitaire de Saint-Etienne, Service de Médecine Vasculaire et Thérapeutique, Saint-Etienne, France.,INSERM U1059 et CIC1408, Université Jean-Monnet, Saint-Etienne, France
| | - Olivier Sitbon
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Jason Weatherald
- Division of Respirology, Dept of Medicine, University of Calgary, Calgary, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
| | - Marc Humbert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - David Montani
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France .,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| |
Collapse
|
9
|
Sun Y, Sangam S, Guo Q, Wang J, Tang H, Black SM, Desai AA. Sex Differences, Estrogen Metabolism and Signaling in the Development of Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:719058. [PMID: 34568460 PMCID: PMC8460911 DOI: 10.3389/fcvm.2021.719058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex and devastating disease with a poor long-term prognosis. While women are at increased risk for developing PAH, they exhibit superior right heart function and higher survival rates than men. Susceptibility to disease risk in PAH has been attributed, in part, to estrogen signaling. In contrast to potential pathological influences of estrogen in patients, studies of animal models reveal estrogen demonstrates protective effects in PAH. Consistent with this latter observation, an ovariectomy in female rats appears to aggravate the condition. This discrepancy between observations from patients and animal models is often called the "estrogen paradox." Further, the tissue-specific interactions between estrogen, its metabolites and receptors in PAH and right heart function remain complex; nonetheless, these relationships are essential to characterize to better understand PAH pathophysiology and to potentially develop novel therapeutic and curative targets. In this review, we explore estrogen-mediated mechanisms that may further explain this paradox by summarizing published literature related to: (1) the synthesis and catabolism of estrogen; (2) activity and functions of the various estrogen receptors; (3) the multiple modalities of estrogen signaling in cells; and (4) the role of estrogen and its diverse metabolites on the susceptibility to, and progression of, PAH as well as their impact on right heart function.
Collapse
Affiliation(s)
- Yanan Sun
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shreya Sangam
- Department of Medicine, Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, United States
| | - Qiang Guo
- Department of Critical Care Medicine, Suzhou Dushu Lake Hospital, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Stephen M. Black
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Miami, FL, United States
- Center for Translational Science and Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL, United States
| | - Ankit A. Desai
- Department of Medicine, Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
10
|
Luo S, Kan J, Zhang J, Ye P, Wang D, Jiang X, Li M, Zhu L, Gu Y. Bioactive Compounds From Coptidis Rhizoma Alleviate Pulmonary Arterial Hypertension by Inhibiting Pulmonary Artery Smooth Muscle Cells' Proliferation and Migration. J Cardiovasc Pharmacol 2021; 78:253-262. [PMID: 34554677 DOI: 10.1097/fjc.0000000000001068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/08/2021] [Indexed: 12/21/2022]
Abstract
ABSTRACT Pulmonary arterial hypertension (PAH) is a devastating disorder characterized by excessive proliferation and vasoconstriction of small pulmonary artery vascular smooth muscle cells (PASMCs). Coptidis rhizoma (CR) because of the complexity of the components, the underlying pharmacological role and mechanism of it on PAH remains unknown. In this article, the network pharmacological analysis was used to screen the main active constituents of CR and the molecular targets that these constituents act on. Then, we evaluated the importance of berberine and quercetin (biologically active components of CR) on the proliferation and migration of PASMCs and vascular remodeling in experimental models of PAH. Our results showed that berberine and quercetin effectively inhibited the proliferation and migration of hypoxia-induced PASMCs in a manner likely to be mediated by the suppression of MAPK1, NADPH oxidase 4 (NOX4), and cytochrome P450 1B1 (CYP1B1) expression. Furthermore, berberine and quercetin treatment attenuates pulmonary hypertension, reduces right ventricular hypertrophy, and improves pulmonary artery remodeling in monocrotaline-induced pulmonary hypertension in rat models. In conclusion, this research demonstrates CR might be a promising treatment option for PAH, and the network pharmacology approach can be an effective tool to reveal the potential mechanisms of Chinese herbal medicine.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/isolation & purification
- Antihypertensive Agents/pharmacology
- Berberine/isolation & purification
- Berberine/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Coptis chinensis
- Cytochrome P-450 CYP1B1/metabolism
- Databases, Genetic
- Disease Models, Animal
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Mitogen-Activated Protein Kinase 1/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NADPH Oxidase 4/metabolism
- Network Pharmacology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/prevention & control
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Quercetin/isolation & purification
- Quercetin/pharmacology
- Rats, Sprague-Dawley
- Signal Transduction
- Vascular Remodeling/drug effects
- Ventricular Function, Right/drug effects
- Rats
Collapse
Affiliation(s)
- Shuai Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; and
| | - Junyan Kan
- College of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Juan Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; and
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; and
| | - Dongchen Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; and
| | - Xiaomin Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; and
| | - Minghui Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; and
| | - Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; and
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; and
| |
Collapse
|
11
|
Association of cytochrome P450 1B1 gene polymorphisms and environmental biomarkers with hypertension in Slovak midlife women. ACTA ACUST UNITED AC 2021; 27:1287-1294. [PMID: 33110045 DOI: 10.1097/gme.0000000000001605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study investigated the association of the Leu432Val and Asn453Ser CYP1B1 polymorphisms and selected environmental biomarkers with hypertension (HT) in Slovak midlife women. METHODS We studied 575 women. Divided according to their blood pressure status: 255 with HT and 320 without HT. All data was obtained by using standard anthropometric, genetic methods and analyzed by regression models to adjust for HT risk factors such as age, obesity, smoking, and level of education. RESULTS Our findings revealed that CYP1B1 Leu432Val polymorphism was associated with HT, whereas no association was found between Asn453Ser polymorphism and HT. Women with at least one Val allele had significantly higher odds of HT compared to women with the Leu/Leu genotype in the total sample (Exp(B) = 1.82, CI 1.16-2.84, P = 0.009). After dividing women by menopausal status and the presence of HT environmental risk factor, the association between CYP1B1 polymorphism and HT was observed in pre/perimenopausal women (Exp(B), 2.36; 95% CI 1.13-4.92; P = 0.02), smokers (Exp(B), 3.40; 95% CI 1.48-7.82; P = 0.004), abdominal obesity (Exp(B), 2.41; 95% CI 1.23-4.75; P = 0.01) and in women with only basic education (Exp(B), 4.20, 95% CI 1.12-15.71; P = 0.03). However, general linear models did not reveal a statistically significant interactions between CYP1B1, menopausal status, and HT risk factors and their common association with HT (P > 0.05). CONCLUSIONS In this pilot study, we have provided novel data that supports the significant association of CYP1B1 Leu432Val gene polymorphism with HT in Slovak midlife women.
Collapse
|
12
|
Odi R, Invernizzi RW, Gallily T, Bialer M, Perucca E. Fenfluramine repurposing from weight loss to epilepsy: What we do and do not know. Pharmacol Ther 2021; 226:107866. [PMID: 33895186 DOI: 10.1016/j.pharmthera.2021.107866] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
In 2020, racemic-fenfluramine was approved in the U.S. and Europe for the treatment of seizures associated with Dravet syndrome, through a restricted/controlled access program aimed at minimizing safety risks. Fenfluramine had been used extensively in the past as an appetite suppressant, but it was withdrawn from the market in 1997 when it was found to cause cardiac valvulopathy. Available evidence indicates that appetite suppression and cardiac valvulopathy are mediated by different serotonergic mechanisms. In particular, appetite suppression can be ascribed mainly to the enantiomers d-fenfluramine and d-norfenfluramine, the primary metabolite of d-fenfluramine, whereas cardiac valvulopathy can be ascribed mainly to d-norfenfluramine. Because of early observations of markedly improved seizure control in some forms of epilepsy, fenfluramine remained available in Belgium through a Royal Decree after 1997 for use in a clinical trial in patients with Dravet syndrome at average dosages lower than those generally prescribed for appetite suppression. More recently, double-blind placebo-controlled trials established its efficacy in the treatment of convulsive seizures associated with Dravet syndrome and of drop seizures associated with Lennox-Gastaut syndrome, at doses up to 0.7 mg/kg/day (maximum 26 mg/day). Although no cardiovascular toxicity has been associated with the use of fenfluramine in epilepsy, the number of patients exposed to date has been limited and only few patients had duration of exposure longer than 3 years. This article analyzes available evidence on the mechanisms involved in fenfluramine-induced appetite suppression, antiseizure effects and cardiovascular toxicity. Despite evidence that stimulation of 5-HT2B receptors (the main mechanism leading to cardiac valvulopathy) is not required for antiseizure activity, there are many critical gaps in understanding fenfluramine's properties which are relevant to its use in epilepsy. Particular emphasis is placed on the remarkable lack of publicly accessible information about the comparative activity of the individual enantiomers of fenfluramine and norfenfluramine in experimental models of seizures and epilepsy, and on receptors systems considered to be involved in antiseizure effects. Preliminary data suggest that l-fenfluramine retains prominent antiseizure effects in a genetic zebrafish model of Dravet syndrome. If these findings are confirmed and extended to other seizure/epilepsy models, there would be an incentive for a chiral switch from racemic-fenfluramine to l-fenfluramine, which could minimize the risk of cardiovascular toxicity and reduce the incidence of adverse effects such as loss of appetite and weight loss.
Collapse
Affiliation(s)
- Reem Odi
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Tamar Gallily
- Yissum Technology Transfer Company of the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Emilio Perucca
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Huang A, Kandhi S, Sun D. Roles of Genetic Predisposition in the Sex Bias of Pulmonary Pathophysiology, as a Function of Estrogens : Sex Matters in the Prevalence of Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:107-127. [PMID: 33788190 DOI: 10.1007/978-3-030-63046-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In addition to studies focused on estrogen mediation of sex-different regulation of systemic circulations, there is now increasing clinical relevance and research interests in the pulmonary circulation, in terms of sex differences in the morbidity and mortality of lung diseases such as inherent-, allergic- and inflammatory-based events. Thus, female predisposition to pulmonary artery hypertension (PAH) is an inevitable topic. To better understand the nature of sexual differentiation in the pulmonary circulation, and how heritable factors, in vivo- and/or in vitro-altered estrogen circumstances and changes in the live environment work in concert to discern the sex bias, this chapter reviews pulmonary events characterized by sex-different features, concomitant with exploration of how alterations of genetic expression and estrogen metabolisms trigger the female-predominant pathological signaling. We address the following: PAH (Sect.7.2) is characterized as an estrogenic promotion of its incidence (Sect. 7.2.2), as a function of specific germline mutations, and as an estrogen-elicited protection of its prognosis (Sect.7.2.1). More detail is provided to introduce a less recognized gene of Ephx2 that encodes soluble epoxide hydrolase (sEH) to degrade epoxyeicosatrienic acids (EETs). As a susceptible target of estrogen, Ephx2/sEH expression is downregulated by an estrogen-dependent epigenetic mechanism. Increases in pulmonary EETs then evoke a potentiation of PAH generation, but mitigation of its progression, a phenomenon similar to the estrogen-paradox regulation of PAH. Additionally, the female susceptibility to chronic obstructive pulmonary diseases (Sect. 7.3) and asthma (Sect.7.4), but less preference to COVID-19 (Sect. 7.5), and roles of estrogen in their pathogeneses are briefly discussed.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, NY, USA.
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
14
|
Abstract
Pulmonary arterial hypertension (PAH) occurs in women more than men whereas survival in men is worse than in women. In recent years, much research has been carried out to understand these sex differences in PAH. This article discusses clinical and preclinical studies that have investigated the influences of sex, serotonin, obesity, estrogen, estrogen synthesis, and estrogen metabolism on bone morphogenetic protein receptor type II signaling, the pulmonary circulation and right ventricle in both heritable and idiopathic pulmonary hypertension.
Collapse
Affiliation(s)
- Hannah Morris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Scotland
| | - Nina Denver
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Rosemary Gaw
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Hicham Labazi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Kirsty Mair
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland.
| |
Collapse
|
15
|
Keen J, Prisco SZ, Prins KW. Sex Differences in Right Ventricular Dysfunction: Insights From the Bench to Bedside. Front Physiol 2021; 11:623129. [PMID: 33536939 PMCID: PMC7848185 DOI: 10.3389/fphys.2020.623129] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/17/2020] [Indexed: 12/04/2022] Open
Abstract
There are inherent distinctions in right ventricular (RV) performance based on sex as females have better RV function than males. These differences are magnified and have very important prognostic implications in two RV-centric diseases, pulmonary hypertension (PH), and arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). In both PH and ARVC/D, RV dysfunction results in poor patient outcomes. However, there are no currently approved therapies specifically targeting the failing RV, an important unmet need for these two life-threatening disorders. In this review, we highlight human data demonstrating divergent RV phenotypes in healthy, PH, and ARVC/D patients based on sex. Furthermore, we discuss the links between estrogen (the female predominant sex hormone), testosterone (the male predominant sex hormone), and dehydroepiandrosterone (a precursor hormone for multiple sex hormones in males and females) and RV function in both disorders. To provide potential mechanistic insights into sex differences in RV function, we review data that investigate how sex hormones combat or contribute to pathophysiological changes in the RV. Finally, we highlight the ongoing clinical trials in pulmonary arterial hypertension targeting estrogen and dehydroepiandrosterone signaling. Hopefully, a greater understanding of the factors that promote superior RV function in females will lead to novel therapeutic approaches to combat RV dysfunction in PH and ARVC/D.
Collapse
Affiliation(s)
- Jennifer Keen
- Pulmonary and Critical Care, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Sasha Z Prisco
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Kurt W Prins
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
16
|
Larsen MC, Almeldin A, Tong T, Rondelli CM, Maguire M, Jaskula-Sztul R, Jefcoate CR. Cytochrome P4501B1 in bone marrow is co-expressed with key markers of mesenchymal stem cells. BMS2 cell line models PAH disruption of bone marrow niche development functions. Toxicol Appl Pharmacol 2020; 401:115111. [PMID: 32553695 PMCID: PMC7293885 DOI: 10.1016/j.taap.2020.115111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants that are metabolized to carcinogenic dihydrodiol epoxides (PAHDE) by cytochrome P450 1B1 (CYP1B1). This metabolism occurs in bone marrow (BM) mesenchymal stem cells (MSC), which sustain hematopoietic stem and progenitor cells (HSPC). In BM, CYP1B1-mediated metabolism of 7, 12-dimethylbenz[a]anthracene (DMBA) suppresses HSPC colony formation within 6 h, whereas benzo(a)pyrene (BP) generates protective cytokines. MSC, enriched from adherent BM cells, yielded the bone marrow stromal, BMS2, cell line. These cells express elevated basal CYP1B1 that scarcely responds to Ah receptor (AhR) inducers. BMS2 cells exhibit extensive transcriptome overlap with leptin receptor positive mesenchymal stem cells (Lepr+ MSC) that control the hematopoietic niche. The overlap includes CYP1B1 and the expression of HSPC regulatory factors (Ebf3, Cxcl12, Kitl, Csf1 and Gas6). MSC are large, adherent fibroblasts that sequester small HSPC and macrophage in the BM niche (Graphic abstract). High basal CYP1B1 expression in BMS2 cells derives from interactions between the Ah-receptor enhancer and proximal promoter SP1 complexes, boosted by autocrine signaling. PAH effects on BMS2 cells model Lepr+MSC niche activity. CYP1B1 metabolizes DMBA to PAHDE, producing p53-mediated mRNA increases, long after the in vivo HSPC suppression. Faster, direct p53 effects, favored by stem cells, remain possible PAHDE targets. However, HSPC regulatory factors remained unresponsive. BP is less toxic in BMS2 cells, but, in BM, CYP1A1 metabolism stimulates macrophage cytokines (Il1b > Tnfa> Ifng) within 6 h. Although absent from BMS2 and Lepr+MSC, their receptors are highly expressed. The impact of this cytokine signaling in MSC remains to be determined. BMS2 and Lepr+MSC cells co-express CYP1B1 and 12 functional niche activity markers. CYP1B1 mRNA in BMS2 cells depends on activation of SP1 coupled to an AhR enhancer unit. DMBA metabolism by CYP1B1 activates p53 gene targets in BMS2 cells far more than BP. HSPC suppression by CYP1B1 generation of PAHDE requires rapid, non-genomic targets. BMS2 and Lepr+MSC share receptors activated by BP stimulation of macrophage cytokines.
Collapse
Affiliation(s)
- Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, United States of America
| | - Ahmed Almeldin
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, United States of America; Physiology Department, Faculty of Medicine, Tanta University, Egypt
| | - Tiegang Tong
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, United States of America
| | - Catherine M Rondelli
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, United States of America
| | - Meghan Maguire
- Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI 53705, United States of America
| | - Renata Jaskula-Sztul
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, United States of America
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, United States of America; Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, United States of America; Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI 53705, United States of America.
| |
Collapse
|
17
|
Shi J, Yang Y, Cheng A, Xu G, He F. Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol 2020; 319:H613-H631. [PMID: 32762559 DOI: 10.1152/ajpheart.00220.2020] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are the fundamental component of the medial layer of arteries and are essential for arterial physiology and pathology. It is becoming increasingly clear that VSMCs can alter their metabolism to fulfill the bioenergetic and biosynthetic requirements. During vascular injury, VSMCs switch from a quiescent "contractile" phenotype to a highly migratory and proliferative "synthetic" phenotype. Recent studies have found that the phenotype switching of VSMCs is driven by a metabolic switch. Metabolic pathways, including aerobic glycolysis, fatty acid oxidation, and amino acid metabolism, have distinct, indispensable roles in normal and dysfunctional vasculature. VSMCs metabolism is also related to the metabolism of endothelial cells. In the present review, we present a brief overview of VSMCs metabolism and how it regulates the progression of several vascular diseases, including atherosclerosis, systemic hypertension, diabetes, pulmonary hypertension, vascular calcification, and aneurysms, and the effect of the risk factors for vascular disease (aging, cigarette smoking, and excessive alcohol drinking) on VSMC metabolism to clarify the role of VSMCs metabolism in the key pathological process.
Collapse
Affiliation(s)
- Jia Shi
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anying Cheng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Domingo-Relloso A, Riffo-Campos AL, Haack K, Rentero-Garrido P, Ladd-Acosta C, Fallin DM, Tang WY, Herreros-Martinez M, Gonzalez JR, Bozack AK, Cole SA, Navas-Acien A, Tellez-Plaza M. Cadmium, Smoking, and Human Blood DNA Methylation Profiles in Adults from the Strong Heart Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:67005. [PMID: 32484362 PMCID: PMC7265996 DOI: 10.1289/ehp6345] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND The epigenetic effects of individual environmental toxicants in tobacco remain largely unexplored. Cadmium (Cd) has been associated with smoking-related health effects, and its concentration in tobacco smoke is higher in comparison with other metals. OBJECTIVES We studied the association of Cd and smoking exposures with human blood DNA methylation (DNAm) profiles. We also evaluated the implication of findings to relevant methylation pathways and the potential contribution of Cd exposure from smoking to explain the association between smoking and site-specific DNAm. METHODS We conducted an epigenome-wide association study of urine Cd and self-reported smoking (current and former vs. never, and cumulative smoking dose) with blood DNAm in 790,026 CpGs (methylation sites) measured with the Illumina Infinium Human MethylationEPIC (Illumina Inc.) platform in 2,325 adults 45-74 years of age who participated in the Strong Heart Study in 1989-1991. In a mediation analysis, we estimated the amount of change in DNAm associated with smoking that can be independently attributed to increases in urine Cd concentrations from smoking. We also conducted enrichment analyses and in silico protein-protein interaction networks to explore the biological relevance of the findings. RESULTS At a false discovery rate (FDR)-corrected level of 0.05, we found 6 differentially methylated positions (DMPs) for Cd; 288 and 17, respectively, for current and former smoking status; and 77 for cigarette pack-years. Enrichment analyses of these DMPs displayed enrichment of 58 and 6 Gene Ontology and Kyoto Encyclopedia of Genes and Genomes gene sets, respectively, including biological pathways for cancer and cardiovascular disease. In in silico protein-to-protein networks, we observed key proteins in DNAm pathways directly and indirectly connected to Cd- and smoking-DMPs. Among DMPs that were significant for both Cd and current smoking (annotated to PRSS23, AHRR, F2RL3, RARA, and 2q37.1), we found statistically significant contributions of Cd to smoking-related DNAm. CONCLUSIONS Beyond replicating well-known smoking epigenetic signatures, we found novel DMPs related to smoking. Moreover, increases in smoking-related Cd exposure were associated with differential DNAm. Our integrative analysis supports a biological link for Cd and smoking-associated health effects, including the possibility that Cd is partly responsible for smoking toxicity through epigenetic changes. https://doi.org/10.1289/EHP6345.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
- Department of Chronic Diseases Epidemiology, National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain
- Department of Statistics and Operations Research, University of Valencia, Spain
| | | | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Pilar Rentero-Garrido
- Precision Medicine Unit, Institute for Biomedical Research INCLIVA, Valencia, Spain
- Department of Mental Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Daniele M Fallin
- Department of Mental Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wan Yee Tang
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Juan R Gonzalez
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Anne K Bozack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Maria Tellez-Plaza
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research INCLIVA, Valencia, Spain
- Department of Chronic Diseases Epidemiology, National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
19
|
Maguire M, Larsen MC, Vezina CM, Quadro L, Kim YK, Tanumihardjo SA, Jefcoate CR. Cyp1b1 directs Srebp-mediated cholesterol and retinoid synthesis in perinatal liver; Association with retinoic acid activity during fetal development. PLoS One 2020; 15:e0228436. [PMID: 32027669 PMCID: PMC7004353 DOI: 10.1371/journal.pone.0228436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cytochrome P450 1b1 (Cyp1b1) deletion and dietary retinol deficiency during pregnancy (GVAD) affect perinatal liver functions regulated by Srebp. Cyp1b1 is not expressed in perinatal liver but appears in the E9.5 embryo, close to sites of retinoic acid (RA) signaling. Hypothesis Parallel effects of Cyp1b1 and retinol on postnatal Srebp derive from effects in the developing liver or systemic signaling. Approach Cluster postnatal increases in hepatic genes in relation to effects of GVAD or Cyp1b1 deletion. Sort expression changes in relation to genes regulated by Srebp1 and Srebp2.Test these treatments on embryos at E9.5, examining changes at the site of liver initiation. Use in situ hybridization to resolve effects on mRNA distributions of Aldh1a2 and Cyp26a1 (RA homeostasis); Hoxb1 and Pax6 (RA targets). Assess mice lacking Lrat and Rbp4 (DKO mice) that severely limits retinol supply to embryos. Results At birth, GVAD and Cyp1b1 deletion stimulate gene markers of hepatic stellate cell (HSC) activation but also suppress Hamp. These treatments then selectively prevent the postnatal onset of genes that synthesize cholesterol (Hmgcr, Sqle) and fatty acids (Fasn, Scd1), but also direct cholesterol transport (Ldlr, Pcsk9, Stard4) and retinoid synthesis (Aldh1a1, Rdh11). Extensive support by Cyp1b1 is implicated, but with distinct GVAD interventions for Srebp1 and Srebp2. At E9.5, Cyp1b1 is expressed in the septum transversum mesenchyme (STM) with β-carotene oxygenase (Bco1) that generates retinaldehyde. STM provides progenitors for the HSC and supports liver expansion. GVAD and Cyp1b1-/- do not affect RA-dependent Hoxb1 and Pax6. In DKO embryos, RA-dependent Cyp26a1 is lost but Hoxb1 is sustained with Cyp1b1 at multiple sites. Conclusion Cyp1b1-/- suppresses genes supported by Srebp. GVAD effects distinguish Srebp1 and Srebp2 mediation. Srebp regulation overlaps appreciably in cholesterol and retinoid homeostasis. Bco1/Cyp1b1 partnership in the STM may contribute to this later liver regulation.
Collapse
Affiliation(s)
- Meghan Maguire
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | | | - Chad M. Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI
| | - Loredana Quadro
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey
| | - Youn-Kyung Kim
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey
| | | | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
- * E-mail:
| |
Collapse
|
20
|
Hester J, Ventetuolo C, Lahm T. Sex, Gender, and Sex Hormones in Pulmonary Hypertension and Right Ventricular Failure. Compr Physiol 2019; 10:125-170. [PMID: 31853950 DOI: 10.1002/cphy.c190011] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) encompasses a syndrome of diseases that are characterized by elevated pulmonary artery pressure and pulmonary vascular remodeling and that frequently lead to right ventricular (RV) failure and death. Several types of PH exhibit sexually dimorphic features in disease penetrance, presentation, and progression. Most sexually dimorphic features in PH have been described in pulmonary arterial hypertension (PAH), a devastating and progressive pulmonary vasculopathy with a 3-year survival rate <60%. While patient registries show that women are more susceptible to development of PAH, female PAH patients display better RV function and increased survival compared to their male counterparts, a phenomenon referred to as the "estrogen paradox" or "estrogen puzzle" of PAH. Recent advances in the field have demonstrated that multiple sex hormones, receptors, and metabolites play a role in the estrogen puzzle and that the effects of hormone signaling may be time and compartment specific. While the underlying physiological mechanisms are complex, unraveling the estrogen puzzle may reveal novel therapeutic strategies to treat and reverse the effects of PAH/PH. In this article, we (i) review PH classification and pathophysiology; (ii) discuss sex/gender differences observed in patients and animal models; (iii) review sex hormone synthesis and metabolism; (iv) review in detail the scientific literature of sex hormone signaling in PAH/PH, particularly estrogen-, testosterone-, progesterone-, and dehydroepiandrosterone (DHEA)-mediated effects in the pulmonary vasculature and RV; (v) discuss hormone-independent variables contributing to sexually dimorphic disease presentation; and (vi) identify knowledge gaps and pathways forward. © 2020 American Physiological Society. Compr Physiol 10:125-170, 2020.
Collapse
Affiliation(s)
- James Hester
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Corey Ventetuolo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
21
|
Lerche M, Eichstaedt CA, Hinderhofer K, Grünig E, Tausche K, Ziemssen T, Halank M, Wirtz H, Seyfarth HJ. Mutually reinforcing effects of genetic variants and interferon-β 1a therapy for pulmonary arterial hypertension development in multiple sclerosis patients. Pulm Circ 2019; 9:2045894019872192. [PMID: 31798832 PMCID: PMC6862775 DOI: 10.1177/2045894019872192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Based on a small number of cases, interferon beta (IFN-β) has been added to the list of drugs that might induce pulmonary arterial hypertension (PAH) in the current European guidelines for the diagnosis and treatment of pulmonary hypertension. Here, we propose that multiple sclerosis patients who are genetically predisposed to PAH may be at higher risk to develop disease when treated with IFN-β. We included two patients with multiple sclerosis who developed a manifest PAH after five amd eight years on IFN-β 1a therapy, respectively (without confirmed right heart catheterization). In both patients, PAH markedly improved after discontinuation of IFN-β 1a and initiation of targeted PAH therapy. For genetic analysis, we used a PAH-gene panel based on next-generation sequencing of 16 PAH and 38 candidate genes. In one of the two patients, we could identify a nonsense variant in the PAH gene ATP13A3. The second patient showed a missense variant of the CYP1B1 gene, which might be linked to PAH predisposition. The results of this study support the hypothesis that multiple sclerosis patients who receive IFN-β 1a therapy might be at higher risk for the development of manifest PAH, if they carry a pathogenic variant or sequence variant genetically predisposing to the disease. However, further studies are necessary to systematically investigate the presence of predisposing PAH gene variants in these patients.
Collapse
Affiliation(s)
- Marianne Lerche
- Department of Respiratory Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Centre, German Center for Lung Research, Heidelberg, Germany.,Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Centre, German Center for Lung Research, Heidelberg, Germany
| | - Kristin Tausche
- Internal Medicine, University Hospital Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Michael Halank
- Internal Medicine, University Hospital Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Hubert Wirtz
- Department of Respiratory Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Hans-Jürgen Seyfarth
- Department of Respiratory Medicine, University Hospital of Leipzig, Leipzig, Germany
| |
Collapse
|
22
|
Abstract
The rate-limiting enzyme in serotonin synthesis is tryptophan hydroxylase (TPH). There are two independent serotonin systems in the body characterized by two isoforms of TPH, TPH1 and TPH2. While TPH2 synthesizes serotonin in the brain, TPH1 is expressed in the gut and in other peripheral tissues and supplies platelets in the circulation with serotonin. This duality of the serotonin system is enforced by the blood-brain barrier which is impermeable for serotonin. In the brain serotonin acts as neurotransmitter and is a main target for the treatment of psychiatric disorders. In the periphery it is released by platelets at the site of activation and elicits numerous physiological effects. TPH1 deficient mice were shown to be protected from diverse diseases including hemostatic, inflammatory, fibrotic, gastrointestinal, and metabolic disorders and therefore serotonin synthesis inhibition emerged as a reasonable therapeutic paradigm. Recently the first TPH inhibitor, telotristat ethyl, came on the market for the treatment of carcinoid syndrome. This review summarizes the state of development and the therapeutic opportunities of such compounds.
Collapse
Affiliation(s)
- Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125 Berlin-Buch, Germany; University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany; Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany.
| |
Collapse
|
23
|
Shah BR, Xu W, Mraz J. Cytochrome P450 1B1: role in health and disease and effect of nutrition on its expression. RSC Adv 2019; 9:21050-21062. [PMID: 35515562 PMCID: PMC9065998 DOI: 10.1039/c9ra03674a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/23/2019] [Indexed: 01/06/2023] Open
Abstract
This review summarizes the available literature stating CYP1B1 to provide the readers with a comprehensive understanding of its role in different diseases, as well as the importance of nutrition in their control in terms of the influence of different nutrients on its expression. CYP1B1, a member of the cytochrome P450 enzyme family is expressed in different human tissues and is known to contribute to different life alarming pathologies. Particularly, till now much attention has been paid to its involvement in the development of primary congenital glaucoma (PCG) and cancer. However, recently there are some reports highlighting CYP1B1 as a potential regulator in energy homeostasis and adipogenesis thus promoting obesity and hypertension as well. Therefore, seeking out effective strategies to modulate the expression of CYP1B1 is a challenging task. In this context, nutrients based strategies will be the best choice as they are mostly harmless and are easily available in one's diet. In conclusion, this article will be helpful in providing a base for further research that is needed to identify the role of CYP1B1 in progression of different diseases, hypertension and obesity in particular, and then to present the effectiveness, mechanisms, and biologic plausibility of nutrients against its expression.
Collapse
Affiliation(s)
- Bakht Ramin Shah
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters Na Sádkách 1780 370 05 České Budějovice Czech Republic +420 775022640
| | - Wei Xu
- College of Life Science, Xinyang Normal University Xinyang 464000 People's Republic of China
| | - Jan Mraz
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters Na Sádkách 1780 370 05 České Budějovice Czech Republic +420 775022640
| |
Collapse
|
24
|
Kwapiszewska G, Johansen AKZ, Gomez-Arroyo J, Voelkel NF. Role of the Aryl Hydrocarbon Receptor/ARNT/Cytochrome P450 System in Pulmonary Vascular Diseases. Circ Res 2019; 125:356-366. [PMID: 31242807 DOI: 10.1161/circresaha.119.315054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE CYPs (cytochrome p450) are critically involved in the metabolism of xenobiotics and toxins. Given that pulmonary hypertension is strongly associated with environmental exposure, we hypothesize that CYPs play a role in the development and maintenance of pathological vascular remodeling. OBJECTIVE We sought to identify key CYPs that could link drug or hormone metabolism to the development of pulmonary hypertension. METHODS AND RESULTS We searched in Medline (PubMed) database, as well as http://www.clinicaltrials.gov, for CYPs associated with many key aspects of pulmonary arterial hypertension including, but not limited to, severe pulmonary hypertension, estrogen metabolism, inflammation mechanisms, quasi-malignant cell growth, drug susceptibility, and metabolism of the pulmonary arterial hypertension-specific drugs. CONCLUSIONS We postulate a hypothesis where the AhR (aryl hydrocarbon receptor) mediates aberrant cell growth via expression of different CYPs associated with estrogen metabolism and inflammation.
Collapse
Affiliation(s)
- Grazyna Kwapiszewska
- From the Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Austria (G.K.)
| | - Anne Katrine Z Johansen
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (A.K.Z.J.)
| | - Jose Gomez-Arroyo
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati College of Medicine, OH (J.G.-A.)
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Hospital Research Foundation, OH (J.G.-A.)
| | - Norbert F Voelkel
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, the Netherlands (N.F.V.)
| |
Collapse
|
25
|
Mair KM, Harvey KY, Henry AD, Hillyard DZ, Nilsen M, MacLean MR. Obesity alters oestrogen metabolism and contributes to pulmonary arterial hypertension. Eur Respir J 2019; 53:13993003.01524-2018. [PMID: 30923189 PMCID: PMC6581204 DOI: 10.1183/13993003.01524-2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Obesity is a common comorbidity for pulmonary arterial hypertension (PAH). Additionally, oestrogen and its metabolites are risk factors for the development of PAH. Visceral adipose tissue (VAT) is a major site of oestrogen production; however, the influence of obesity-induced changes in oestrogen synthesis and metabolism on the development of PAH is unclear. To address this we investigated the effects of inhibiting oestrogen synthesis and metabolism on the development of pulmonary hypertension in male and female obese mice. We depleted endogenous oestrogen in leptin-deficient (ob/ob) mice with the oestrogen inhibitor anastrozole (ANA) and determined the effects on the development of pulmonary hypertension, plasma oestradiol and urinary 16α-hydroxyestrone (16αOHE1). Oestrogen metabolism through cytochrome P450 1B1 (CYP1B1) was inhibited with 2,2′,4,6′-tetramethoxystilbene (TMS). ob/ob mice spontaneously develop pulmonary hypertension, pulmonary vascular remodelling and increased reactive oxygen species production in the lung; these effects were attenuated by ANA. Oestradiol levels were decreased in obese male mice; however, VAT CYP1B1 and 16αOHE1 levels were increased. TMS also attenuated pulmonary hypertension in male ob/ob mice. Intra-thoracic fat from ob/ob mice and VAT conditioned media produce 16αOHE1 and can contribute to oxidative stress, effects that are attenuated by both ANA and TMS. Obesity can induce pulmonary hypertension and changes in oestrogen metabolism, resulting in increased production of 16αOHE1 from VAT that contributes to oxidative stress. Oestrogen inhibitors are now in clinical trials for PAH. This study has translational consequences as it suggests that oestrogen inhibitors may be especially beneficial in treating obese individuals with PAH. Obesity is a risk factor in patients with PAH. This study suggests that this is due to altered oestrogen metabolism in adipose tissue. Inhibition of oestrogen production or metabolism may be of benefit to obese PAH patients.http://ow.ly/2zW830of1fG
Collapse
Affiliation(s)
- Kirsty M Mair
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, UK.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Katie Y Harvey
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, UK
| | - Alasdair D Henry
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, UK
| | - Dianne Z Hillyard
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, UK
| | - Margaret Nilsen
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, UK.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Margaret R MacLean
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, UK.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
26
|
Docherty CK, Harvey KY, Mair KM, Griffin S, Denver N, MacLean MR. The Role of Sex in the Pathophysiology of Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1065:511-528. [PMID: 30051404 DOI: 10.1007/978-3-319-77932-4_31] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterised by increased pulmonary vascular resistance and pulmonary artery remodelling as result of increased vascular tone and vascular cell proliferation, respectively. Eventually, this leads to right heart failure. Heritable PAH is caused by a mutation in the bone morphogenetic protein receptor-II (BMPR-II). Female susceptibility to PAH has been known for some time, and most recent figures show a female-to-male ratio of 4:1. Variations in the female sex hormone estrogen and estrogen metabolism modify FPAH risk, and penetrance of the disease in BMPR-II mutation carriers is increased in females. Several lines of evidence point towards estrogen being pathogenic in the pulmonary circulation, and thus increasing the risk of females developing PAH. Recent studies have also suggested that estrogen metabolism may be crucial in the development and progression of PAH with studies indicating that downstream metabolites such as 16α-hydroxyestrone are upregulated in several forms of experimental pulmonary hypertension (PH) and can cause pulmonary artery smooth muscle cell proliferation and subsequent vascular remodelling. Conversely, other estrogen metabolites such as 2-methoxyestradiol have been shown to be protective in the context of PAH. Estrogen may also upregulate the signalling pathways of other key mediators of PAH such as serotonin.
Collapse
Affiliation(s)
- Craig K Docherty
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Katie Yates Harvey
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kirsty M Mair
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sinead Griffin
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Nina Denver
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Margaret R MacLean
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
27
|
Dean A, Gregorc T, Docherty CK, Harvey KY, Nilsen M, Morrell NW, MacLean MR. Role of the Aryl Hydrocarbon Receptor in Sugen 5416-induced Experimental Pulmonary Hypertension. Am J Respir Cell Mol Biol 2018; 58:320-330. [PMID: 28956952 DOI: 10.1165/rcmb.2017-0260oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rats dosed with the vascular endothelial growth factor inhibitor Sugen 5416 (Su), subjected to hypoxia, and then restored to normoxia have become a widely used model of pulmonary arterial hypertension (PAH). However, the mechanism by which Su exacerbates pulmonary hypertension is unclear. We investigated Su activation of the aryl hydrocarbon receptor (AhR) in human pulmonary artery smooth muscle cells (hPASMCs) and blood outgrowth endothelial cells (BOECs) from female patients with PAH. We also examined the effect of AhR on aromatase and estrogen levels in the lung. Protein and mRNA analyses demonstrated that CYP1A1 was very highly induced in the lungs of Su/hypoxic (Su/Hx) rats. The AhR antagonist CH223191 (8 mg/kg/day) reversed the development of PAH in this model in vivo and normalized lung CYP1A1 expression. Increased lung aromatase and estrogen levels in Su/Hx rats were also normalized by CH223191, as was AhR nuclear translocator (ARNT [HIF-1β]), which is shared by HIF-1α and AhR. Su reduced HIF-1α expression in hPASMCs. Su induced proliferation in BOECs and increased apoptosis in human pulmonary microvascular ECs and also induced translocation of AhR to the nucleus in hPASMCs. Under normoxic conditions, hPASMCs did not proliferate to Su. However, when grown in hypoxia (1%), Su induced hPASMC proliferation. In combination with hypoxia, Su is proliferative in hPASMCs and BOECs from patients with PAH, and Su/Hx-induced PAH in rats may be facilitated by AhR-induced CYP1A1, ARNT, and aromatase. Inhibition of AhR may be a novel approach to the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Afshan Dean
- 1 Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Teja Gregorc
- 1 Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Craig K Docherty
- 1 Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Katie Y Harvey
- 1 Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Margaret Nilsen
- 1 Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Nicholas W Morrell
- 2 Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Margaret R MacLean
- 1 Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; and
| |
Collapse
|
28
|
Htet M, Nally JE, Shaw A, Foote BE, Martin PE, Dempsie Y. Connexin 43 Plays a Role in Pulmonary Vascular Reactivity in Mice. Int J Mol Sci 2018; 19:E1891. [PMID: 29954114 PMCID: PMC6073802 DOI: 10.3390/ijms19071891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic condition characterized by vascular remodeling and increased vaso-reactivity. PAH is more common in females than in males (~3:1). Connexin (Cx)43 has been shown to be involved in cellular communication within the pulmonary vasculature. Therefore, we investigated the role of Cx43 in pulmonary vascular reactivity using Cx43 heterozygous (Cx43+/−) mice and 37,43Gap27, which is a pharmacological inhibitor of Cx37 and Cx43. Contraction and relaxation responses were studied in intra-lobar pulmonary arteries (IPAs) derived from normoxic mice and hypoxic mice using wire myography. IPAs from male Cx43+/− mice displayed a small but significant increase in the contractile response to endothelin-1 (but not 5-hydroxytryptamine) under both normoxic and hypoxic conditions. There was no difference in the contractile response to endothelin-1 (ET-1) or 5-hydroxytryptamine (5-HT) in IPAs derived from female Cx43+/−mice compared to wildtype mice. Relaxation responses to methacholine (MCh) were attenuated in IPAs from male and female Cx43+/− mice or by pre-incubation of IPAs with 37,43Gap27. Nω-Nitro-L-arginine methyl ester (l-NAME) fully inhibited MCh-induced relaxation. In conclusion, Cx43 is involved in nitric oxide (NO)-induced pulmonary vascular relaxation and plays a gender-specific and agonist-specific role in pulmonary vascular contractility. Therefore, reduced Cx43 signaling may contribute to pulmonary vascular dysfunction.
Collapse
Affiliation(s)
- Myo Htet
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Jane E Nally
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Andrew Shaw
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Bradley E Foote
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Patricia E Martin
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Yvonne Dempsie
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| |
Collapse
|
29
|
Montani D, Henry J, O’Connell C, Jaïs X, Cottin V, Launay D, Habib G, Bourdin A, Jevnikar M, Savale L, Rottat L, Simonneau G, Sitbon O, Humbert M, Allanore Y. Association between Rheumatoid Arthritis and Pulmonary Hypertension: Data from the French Pulmonary Hypertension Registry. Respiration 2018; 95:244-250. [DOI: 10.1159/000485631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/22/2017] [Indexed: 11/19/2022] Open
|
30
|
Orcholski ME, Yuan K, Rajasingh C, Tsai H, Shamskhou EA, Dhillon NK, Voelkel NF, Zamanian RT, de Jesus Perez VA. Drug-induced pulmonary arterial hypertension: a primer for clinicians and scientists. Am J Physiol Lung Cell Mol Physiol 2018; 314:L967-L983. [PMID: 29417823 DOI: 10.1152/ajplung.00553.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drug-induced pulmonary arterial hypertension (D-PAH) is a form of World Health Organization Group 1 pulmonary hypertension (PH) defined by severe small vessel loss and obstructive vasculopathy, which leads to progressive right heart failure and death. To date, 16 different compounds have been associated with D-PAH, including anorexigens, recreational stimulants, and more recently, several Food and Drug Administration-approved medications. Although the clinical manifestation, pathology, and hemodynamic profile of D-PAH are indistinguishable from other forms of pulmonary arterial hypertension, its clinical course can be unpredictable and to some degree dependent on removal of the offending agent. Because only a subset of individuals develop D-PAH, it is probable that genetic susceptibilities play a role in the pathogenesis, but the characterization of the genetic factors responsible for these susceptibilities remains rudimentary. Besides aggressive treatment with PH-specific therapies, the major challenge in the management of D-PAH remains the early identification of compounds capable of injuring the pulmonary circulation in susceptible individuals. The implementation of pharmacovigilance, precision medicine strategies, and global warning systems will help facilitate the identification of high-risk drugs and incentivize regulatory strategies to prevent further outbreaks of D-PAH. The goal for this review is to inform clinicians and scientists of the prevalence of D-PAH and to highlight the growing number of common drugs that have been associated with the disease.
Collapse
Affiliation(s)
- Mark E Orcholski
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | | | - Halley Tsai
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California
| | - Elya A Shamskhou
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | | | - Norbert F Voelkel
- School of Pharmacy, Virginia Commonwealth University , Richmond, Virginia
| | - Roham T Zamanian
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| |
Collapse
|
31
|
Arora TK, Arora AK, Sachdeva MK, Rajput SK, Sharma AK. Pulmonary hypertension: Molecular aspects of current therapeutic intervention and future direction. J Cell Physiol 2017; 233:3794-3804. [DOI: 10.1002/jcp.26191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/08/2017] [Indexed: 12/28/2022]
Affiliation(s)
| | - Amit K. Arora
- Cardiovascular DivisionSir Ganga ram HospitalNew DelhiIndia
| | | | - Satyendra K. Rajput
- Department of Cardiovascular PharmacologyAmity UniversityNoidaUttar PradeshIndia
| | - Arun K. Sharma
- Department of Cardiovascular PharmacologyAmity UniversityNoidaUttar PradeshIndia
| |
Collapse
|
32
|
Chen X, Austin ED, Talati M, Fessel JP, Farber-Eger EH, Brittain EL, Hemnes AR, Loyd JE, West J. Oestrogen inhibition reverses pulmonary arterial hypertension and associated metabolic defects. Eur Respir J 2017; 50:50/2/1602337. [PMID: 28775043 DOI: 10.1183/13993003.02337-2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 04/15/2017] [Indexed: 12/11/2022]
Abstract
Increased oestrogen is a strong epidemiological risk factor for development of pulmonary arterial hypertension (PAH) in patients, associated with metabolic defects. In addition, oestrogens drive penetrance in mice carrying mutations in bone morphogenetic protein receptor type II (BMPR2), the cause of most heritable PAH. The goal of the present study was to determine whether inhibition of oestrogens was effective in the treatment of PAH in these mice.The oestrogen inhibitors fulvestrant and anastrozole were used in a prevention and treatment paradigm in BMPR2 mutant mice, and tamoxifen was used for treatment. In addition, BMPR2 mutant mice were crossed onto oestrogen receptor (ESR)1 and ESR2 knockout backgrounds to assess receptor specificity. Haemodynamic and metabolic outcomes were measured.Oestrogen inhibition both prevented and treated PAH in BMPR2 mutant mice. This was associated with reduction in metabolic defects including oxidised lipid formation, insulin resistance and rescue of peroxisome proliferator-activated receptor-γ and CD36. The effect was mediated primarily through ESR2, but partially through ESR1.Our data suggest that trials of oestrogen inhibition in human PAH are warranted, and may improve pulmonary vascular disease through amelioration of metabolic defects. Although fulvestrant and anastrozole were more effective than tamoxifen, tamoxifen may be useful in premenopausal females, because of a reduced risk of induction of menopause.
Collapse
Affiliation(s)
- Xinping Chen
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric D Austin
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Megha Talati
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua P Fessel
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Dept of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric H Farber-Eger
- Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan L Brittain
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna R Hemnes
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Loyd
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James West
- Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
33
|
Kawut SM, Archer-Chicko CL, DeMichele A, Fritz JS, Klinger JR, Ky B, Palevsky HI, Palmisciano AJ, Patel M, Pinder D, Propert KJ, Smith KA, Stanczyk F, Tracy R, Vaidya A, Whittenhall ME, Ventetuolo CE. Anastrozole in Pulmonary Arterial Hypertension. A Randomized, Double-Blind, Placebo-controlled Trial. Am J Respir Crit Care Med 2017; 195:360-368. [PMID: 27602993 DOI: 10.1164/rccm.201605-1024oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE The aromatase inhibitor anastrozole blocks the conversion of androgens to estrogen and blunts pulmonary hypertension in animals, but its efficacy in treating patients with pulmonary arterial hypertension (PAH) is unknown. OBJECTIVES We aimed to determine the safety and efficacy of anastrozole in PAH. METHODS We performed a randomized, double-blind, placebo-controlled trial of anastrozole in patients with PAH who received background therapy at two centers. MEASUREMENTS AND MAIN RESULTS A total of 18 patients with PAH were randomized to anastrozole 1 mg or matching placebo in a 2:1 ratio. The two co-primary outcomes were percent change from baseline in 17β-estradiol levels (E2) and tricuspid annular plane systolic excursion (TAPSE) at 3 months. Anastrozole significantly reduced E2 levels compared with placebo (percent change: -40%; interquartile range [IQR], -61 to -26% vs. -4%; IQR, -14 to +4%; P = 0.003), but there was no difference in TAPSE. Anastrozole significantly increased the 6-minute-walk distance (median change = +26 m) compared with placebo (median change = -12 m) (median percent change: anastrozole group, 8%; IQR, 2 to 17% vs. placebo -2%; IQR, -7 to +1%; P = 0.042). Anastrozole had no effect on circulating biomarkers, functional class, or health-related quality of life. There was no difference in adverse events. CONCLUSIONS Anastrozole significantly reduced E2 levels in patients with PAH but had no effect on TAPSE. Anastrozole was safe, well tolerated, and improved 6-minute-walk distance in this small "proof-of-principle" study. Larger and longer phase II clinical trials of anastrozole may be warranted in patients with PAH. Clinical trial registered with www.clinicaltrials.gov (NCT 1545336).
Collapse
Affiliation(s)
- Steven M Kawut
- 1 Department of Medicine and.,2 Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | - James R Klinger
- 3 Rhode Island Hospital, Providence, Rhode Island.,4 Department of Medicine, and
| | | | | | | | | | | | - Kathleen J Propert
- 2 Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Frank Stanczyk
- 5 Department of Obstetrics and Gynecology, Keck School of Medicine of the University of Southern California, Los Angeles, California; and
| | - Russell Tracy
- 6 Department of Laboratory Medicine, University of Vermont School of Medicine, Burlington, Vermont
| | | | - Mary E Whittenhall
- 3 Rhode Island Hospital, Providence, Rhode Island.,4 Department of Medicine, and
| | - Corey E Ventetuolo
- 3 Rhode Island Hospital, Providence, Rhode Island.,4 Department of Medicine, and.,7 Department of Health Services, Policy and Practice, Brown University, Providence, Rhode Island
| |
Collapse
|
34
|
Abstract
Cytochrome P450 1B1 (CYP1B1), a member of CYP superfamily, is expressed in liver and extrahepatic tissues carries out the metabolism of numerous xenobiotics, including metabolic activation of polycyclic aromatic hydrocarbons. Surprisingly, CYP1B1 was also shown to be important in regulating endogenous metabolic pathways, including the metabolism of steroid hormones, fatty acids, melatonin, and vitamins. CYP1B1 and nuclear receptors including peroxisome proliferator-activated receptors (PPARs), estrogen receptor (ER), and retinoic acid receptors (RAR) contribute to the maintenance of the homeostasis of these endogenous compounds. Many natural flavonoids and synthetic stilbenes show inhibitory activity toward CYP1B1 expression and function, notably isorhamnetin and 2,4,3',5'-tetramethoxystilbene. Accumulating evidence indicates that modulation of CYP1B1 can decrease adipogenesis and tumorigenesis, and prevent obesity, hypertension, atherosclerosis, and cancer. Therefore, it may be feasible to consider CYP1B1 as a therapeutic target for the treatment of metabolic diseases.
Collapse
|
35
|
Assaggaf H, Felty Q. Gender, Estrogen, and Obliterative Lesions in the Lung. Int J Endocrinol 2017; 2017:8475701. [PMID: 28469671 PMCID: PMC5392403 DOI: 10.1155/2017/8475701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/20/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
Gender has been shown to impact the prevalence of several lung diseases such as cancer, asthma, chronic obstructive pulmonary disease, and pulmonary arterial hypertension (PAH). Controversy over the protective effects of estrogen on the cardiopulmonary system should be of no surprise as clinical trials of hormone replacement therapy have failed to show benefits observed in experimental models. Potential confounders to explain these inconsistent estrogenic effects include the dose, cellular context, and systemic versus local tissue levels of estrogen. Idiopathic PAH is disproportionately found to be up to 4 times more common in females than in males; however, estrogen levels cannot explain why males develop PAH sooner and have poorer survival. Since the sex steroid hormone 17β-estradiol is a mitogen, obliterative processes in the lung such as cell proliferation and migration may impact the growth of pulmonary tissue or vascular cells. We have reviewed evidence for biological differences of sex-specific lung obliterative lesions and highlighted cell context-specific effects of estrogen in the formation of vessel lumen-obliterating lesions. Based on this information, we provide a biological-based mechanism to explain the sex difference in PAH severity as well as propose a mechanism for the formation of obliterative vascular lesions by estrogens.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Environmental & Occupational Health, Florida International University, Miami, FL, USA
| | - Quentin Felty
- Department of Environmental & Occupational Health, Florida International University, Miami, FL, USA
- *Quentin Felty:
| |
Collapse
|
36
|
Nie X, Tan J, Dai Y, Mao W, Chen Y, Qin G, Li G, Shen C, Zhao J, Chen J. Nur77 downregulation triggers pulmonary artery smooth muscle cell proliferation and migration in mice with hypoxic pulmonary hypertension via the Axin2-β-catenin signaling pathway. Vascul Pharmacol 2016; 87:230-241. [DOI: 10.1016/j.vph.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 11/03/2016] [Indexed: 01/15/2023]
|
37
|
Huetsch JC, Suresh K, Bernier M, Shimoda LA. Update on novel targets and potential treatment avenues in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 311:L811-L831. [PMID: 27591245 PMCID: PMC5130539 DOI: 10.1152/ajplung.00302.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023] Open
Abstract
Pulmonary hypertension (PH) is a condition marked by a combination of constriction and remodeling within the pulmonary vasculature. It remains a disease without a cure, as current treatments were developed with a focus on vasodilatory properties but do not reverse the remodeling component. Numerous recent advances have been made in the understanding of cellular processes that drive pathologic remodeling in each layer of the vessel wall as well as the accompanying maladaptive changes in the right ventricle. In particular, the past few years have yielded much improved insight into the pathways that contribute to altered metabolism, mitochondrial function, and reactive oxygen species signaling and how these pathways promote the proproliferative, promigratory, and antiapoptotic phenotype of the vasculature during PH. Additionally, there have been significant advances in numerous other pathways linked to PH pathogenesis, such as sex hormones and perivascular inflammation. Novel insights into cellular pathology have suggested new avenues for the development of both biomarkers and therapies that will hopefully bring us closer to the elusive goal: a therapy leading to reversal of disease.
Collapse
Affiliation(s)
- John C Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Meghan Bernier
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
38
|
Joshi SR, Lakhkar A, Dhagia V, Zias AL, Soldatos V, Oshima K, Jiang H, Gotlinger K, Capdevila JH, Schwartzman ML, McMurtry IF, Gupte SA. Cyp2c44 gene disruption exacerbated pulmonary hypertension and heart failure in female but not male mice. Pulm Circ 2016; 6:360-8. [PMID: 27683613 DOI: 10.1086/688060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epoxyeicosatrienoicacids (EETs), synthesized from arachidonic acid by epoxygenases of the CYP2C and CYP2J gene subfamilies, contribute to hypoxic pulmonary vasoconstriction (HPV) in mice. Despite their roles in HPV, it is controversial whether EETs mediate or ameliorate pulmonary hypertension (PH). A recent study showed that deficiency of Cyp2j did not protect male and female mice from hypoxia-induced PH. Since CYP2C44 is a functionally important epoxygenase, we hypothesized that knockout of the Cyp2c44 gene would protect both sexes of mice from hypoxia-induced PH. We tested this hypothesis in wild-type (WT) and Cyp2c44 knockout (Cyp2c44 (-/-)) mice exposed to normoxia (room air) and hypoxia (10% O2) for 5 weeks. Exposure of WT and Cyp2c44 (-/-) mice to hypoxia resulted in pulmonary vascular remodeling, increased pulmonary artery resistance, and decreased cardiac function in both sexes. However, in female Cyp2c44 (-/-) mice, compared with WT mice, (1) pulmonary artery resistance and right ventricular hypertrophy were greater, (2) cardiac index was lower, (3) left ventricular and arterial stiffness were higher, and (4) plasma aldosterone levels were higher, but (5) there was no difference in levels of EET in lungs and heart. Paradoxically and unexpectedly, we found that Cyp2c44 disruption exacerbated hypoxia-induced PH in female but not male mice. We attribute exacerbated PH in female Cyp2c44 (-/-) mice to elevated aldosterone and as-yet-unknown systemic factors. Therefore, we suggest a role for the human CYP2C genes in protecting women from severe PH and that this could be one of the underlying causes for a better 5-year survival rate in women than in men.
Collapse
Affiliation(s)
- Sachindra Raj Joshi
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Anand Lakhkar
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Vidhi Dhagia
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Ariadne L Zias
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Vasiliki Soldatos
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Kaori Oshima
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, USA
| | - Houli Jiang
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Katherine Gotlinger
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michal L Schwartzman
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - Ivan F McMurtry
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, USA
| | - Sachin A Gupte
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
39
|
Awad KS, West JD, de Jesus Perez V, MacLean M. Novel signaling pathways in pulmonary arterial hypertension (2015 Grover Conference Series). Pulm Circ 2016; 6:285-94. [PMID: 27683605 PMCID: PMC5019081 DOI: 10.1086/688034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022] Open
Abstract
The proliferative endothelial and smooth muscle cell phenotype, inflammation, and pulmonary vascular remodeling are prominent features of pulmonary arterial hypertension (PAH). Mutations in bone morphogenetic protein type 2 receptor (BMPR2) have been identified as the most common genetic cause of PAH and females with BMPR2 mutations are 2.5 times as likely to develop heritable forms of PAH than males. Higher levels of estrogen have also been observed in males with PAH, implicating sex hormones in PAH pathogenesis. Recently, the estrogen metabolite 16α-OHE1 (hydroxyestrone) was implicated in the regulation of miR29, a microRNA involved in modulating energy metabolism. In females, decreased miR96 enhances serotonin's effect by upregulating the 5-hydroxytryptamine 1B (5HT1B) receptor. Because PAH is characterized as a quasi-malignant disease, likely due to BMPR2 loss of function, altered signaling pathways that sustain this cancer-like phenotype are being explored. Extracellular signal-regulated kinases 1 and 2 and p38 mitogen-activated protein kinases (MAPKs) play a critical role in proliferation and cell motility, and dysregulated MAPK signaling is observed in various experimental models of PAH. Wnt signaling pathways preserve pulmonary vascular homeostasis, and dysregulation of this pathway could contribute to limited vascular regeneration in response to injury. In this review, we take a closer look at sex, sex hormones, and the interplay between sex hormones and microRNA regulation. We also focus on MAPK and Wnt signaling pathways in the emergence of a proproliferative, antiapoptotic endothelial phenotype, which then orchestrates an angioproliferative process of vascular remodeling, with the hope of developing novel therapies that could reverse the phenotype.
Collapse
Affiliation(s)
- Keytam S. Awad
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - James D. West
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Margaret MacLean
- Research Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
40
|
Dean A, Nilsen M, Loughlin L, Salt IP, MacLean MR. Metformin Reverses Development of Pulmonary Hypertension via Aromatase Inhibition. Hypertension 2016; 68:446-54. [DOI: 10.1161/hypertensionaha.116.07353] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/13/2016] [Indexed: 11/16/2022]
Abstract
Females are more susceptible to pulmonary arterial hypertension than males, although the reasons remain unclear. The hypoglycemic drug, metformin, is reported to have multiple actions, including the inhibition of aromatase and stimulation of AMP-activated protein kinase. Inhibition of aromatase using anastrazole is protective in experimental pulmonary hypertension but whether metformin attenuates pulmonary hypertension through this mechanism remains unknown. We investigated whether metformin affected aromatase activity and if it could reduce the development of pulmonary hypertension in the sugen 5416/hypoxic rat model. We also investigated its influence on proliferation in human pulmonary arterial smooth muscle cells. Metformin reversed right ventricular systolic pressure, right ventricular hypertrophy, and decreased pulmonary vascular remodeling in the rat. Furthermore, metformin increased rat lung AMP-activated protein kinase signaling, decreased lung and circulating estrogen levels, levels of aromatase, the estrogen metabolizing enzyme; cytochrome P450 1B1 and its transcription factor; the aryl hydrocarbon receptor. In human pulmonary arterial smooth muscle cells, metformin decreased proliferation and decreased estrogen synthesis by decreasing aromatase activity through the PII promoter site of
Cyp19a1
. Thus, we report for the first time that metformin can reverse pulmonary hypertension through inhibition of aromatase and estrogen synthesis in a manner likely to be mediated by AMP-activated protein kinase.
Collapse
Affiliation(s)
- Afshan Dean
- From the Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret Nilsen
- From the Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lynn Loughlin
- From the Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ian P. Salt
- From the Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret R. MacLean
- From the Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
41
|
Johansen AKZ, Dean A, Morecroft I, Hood K, Nilsen M, Loughlin L, Anagnostopoulou A, Touyz RM, White K, MacLean MR. The serotonin transporter promotes a pathological estrogen metabolic pathway in pulmonary hypertension via cytochrome P450 1B1. Pulm Circ 2016; 6:82-92. [PMID: 27162617 PMCID: PMC4860551 DOI: 10.1086/685023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating vasculopathy that predominates in women and has been associated with dysregulated estrogen and serotonin signaling. Overexpression of the serotonin transporter (SERT(+)) in mice results in an estrogen-dependent development of pulmonary hypertension (PH). Estrogen metabolism by cytochrome P450 1B1 (CYP1B1) contributes to the pathogenesis of PAH, and serotonin can increase CYP1B1 expression in human pulmonary arterial smooth muscle cells (hPASMCs). We hypothesized that an increase in intracellular serotonin via increased SERT expression may dysregulate estrogen metabolism via CYP1B1 to facilitate PAH. Consistent with this hypothesis, we found elevated lung CYP1B1 protein expression in female SERT(+) mice accompanied by PH, which was attenuated by the CYP1B1 inhibitor 2,3',4,5'-tetramethoxystilbene (TMS). Lungs from female SERT(+) mice demonstrated an increase in oxidative stress that was marked by the expression of 8-hydroxyguanosine; however, this was unaffected by CYP1B1 inhibition. SERT expression was increased in monocrotaline-induced PH in female rats; however, TMS did not reverse PH in monocrotaline-treated rats but prolonged survival. Stimulation of hPASMCs with the CYP1B1 metabolite 16α-hydroxyestrone increased cellular proliferation, which was attenuated by an inhibitor (MPP) of estrogen receptor alpha (ERα) and a specific ERα antibody. Thus, increased intracellular serotonin caused by increased SERT expression may contribute to PAH pathobiology by dysregulation of estrogen metabolic pathways via increased CYP1B1 activity. This promotes PASMC proliferation by the formation of pathogenic metabolites of estrogen that mediate their effects via ERα. Our studies indicate that targeting this pathway in PAH may provide a promising antiproliferative therapeutic strategy.
Collapse
Affiliation(s)
- Anne Katrine Z Johansen
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Afshan Dean
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ian Morecroft
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Katie Hood
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret Nilsen
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lynn Loughlin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Aikaterini Anagnostopoulou
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kevin White
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret R MacLean
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
42
|
Activity of the antiestrogenic cajanin stilbene acid towards breast cancer. J Nutr Biochem 2015; 26:1273-82. [DOI: 10.1016/j.jnutbio.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 06/03/2015] [Accepted: 06/10/2015] [Indexed: 02/07/2023]
|
43
|
Chen X, Talati M, Fessel JP, Hemnes AR, Gladson S, French J, Shay S, Trammell A, Phillips JA, Hamid R, Cogan JD, Dawson EP, Womble KE, Hedges LK, Martinez EG, Wheeler LA, Loyd JE, Majka SJ, West J, Austin ED. Estrogen Metabolite 16α-Hydroxyestrone Exacerbates Bone Morphogenetic Protein Receptor Type II-Associated Pulmonary Arterial Hypertension Through MicroRNA-29-Mediated Modulation of Cellular Metabolism. Circulation 2015; 133:82-97. [PMID: 26487756 DOI: 10.1161/circulationaha.115.016133] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 10/02/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a proliferative disease of the pulmonary vasculature that preferentially affects women. Estrogens such as the metabolite 16α-hydroxyestrone (16αOHE) may contribute to PAH pathogenesis, and alterations in cellular energy metabolism associate with PAH. We hypothesized that 16αOHE promotes heritable PAH (HPAH) via microRNA-29 (miR-29) family upregulation and that antagonism of miR-29 would attenuate pulmonary hypertension in transgenic mouse models of Bmpr2 mutation. METHODS AND RESULTS MicroRNA array profiling of human lung tissue found elevation of microRNAs associated with energy metabolism, including the miR-29 family, among HPAH patients. miR-29 expression was 2-fold higher in Bmpr2 mutant mice lungs at baseline compared with controls and 4 to 8-fold higher in Bmpr2 mice exposed to 16αOHE 1.25 μg/h for 4 weeks. Blot analyses of Bmpr2 mouse lung protein showed significant reductions in peroxisome proliferator-activated receptor-γ and CD36 in those mice exposed to 16αOHE and protein derived from HPAH lungs compared with controls. Bmpr2 mice treated with anti-miR-29 (20-mg/kg injections for 6 weeks) had improvements in hemodynamic profile, histology, and markers of dysregulated energy metabolism compared with controls. Pulmonary artery smooth muscle cells derived from Bmpr2 murine lungs demonstrated mitochondrial abnormalities, which improved with anti-miR-29 transfection in vitro; endothelial-like cells derived from HPAH patient induced pluripotent stem cell lines were similar and improved with anti-miR-29 treatment. CONCLUSIONS 16αOHE promotes the development of HPAH via upregulation of miR-29, which alters molecular and functional indexes of energy metabolism. Antagonism of miR-29 improves in vivo and in vitro features of HPAH and reveals a possible novel therapeutic target.
Collapse
Affiliation(s)
- Xinping Chen
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Megha Talati
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Joshua P Fessel
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Anna R Hemnes
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Santhi Gladson
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Jaketa French
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Sheila Shay
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Aaron Trammell
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - John A Phillips
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Rizwan Hamid
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Joy D Cogan
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Elliott P Dawson
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Kristie E Womble
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Lora K Hedges
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Elizabeth G Martinez
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Lisa A Wheeler
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - James E Loyd
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Susan J Majka
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - James West
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.)
| | - Eric D Austin
- From Departments of Medicine (X.C., M.T., J.P.F., A.R.H., S.G., J.F., S.S., L.A.W., J.E.L., S.J.M., J.W.), Pharmacology (J.P.F.), Pediatrics (J.A.P., R.H., J..C., L.K.H.), and Pathology (E.G.M.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Baylor College of Medicine, Houston, TX (A.T.); and Bioventures, Inc, Murfreesboro, TN (E.P.D., K.E.W.).
| |
Collapse
|
44
|
Wallace E, Morrell NW, Yang XD, Long L, Stevens H, Nilsen M, Loughlin L, Mair KM, Baker AH, MacLean MR. A Sex-Specific MicroRNA-96/5-Hydroxytryptamine 1B Axis Influences Development of Pulmonary Hypertension. Am J Respir Crit Care Med 2015; 191:1432-42. [PMID: 25871906 DOI: 10.1164/rccm.201412-2148oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Females are predisposed to pulmonary arterial hypertension (PAH); evidence suggests that serotonin, mutations in the bone morphogenetic protein receptor (BMPR) II gene, and estrogens influence development of PAH. The 5-hydroxytryptamine 1B receptor (5-HT1BR) mediates human pulmonary artery smooth muscle cell (hPASMC) proliferation. OBJECTIVES We aimed to determine whether selected microRNAs (miRNAs) expressed in PASMCs are influenced by sex, BMPR-II mutations, and estrogens, and contribute to PASMC proliferation in PAH. METHODS Expression levels of miRNAs targeting genes related to PAH, estrogen, and serotonin were determined by quantitative RT-PCR in hPASMCs and mouse PASMCs harboring a heterozygous mutation in BMPR-II (BMPR-II(R899X+/-) PASMCs). miRNA-96 targets 5-HT1BR and was selected for further investigation. miRNA target validation was confirmed by luciferase reporter assay. Precursor miRNA-96 was transfected into hPASMCs to examine effects on proliferation and 5-HT1BR expression. The effect of a miRNA-96 mimic on the development of hypoxic pulmonary hypertension in mice was also assessed. MEASUREMENTS AND MAIN RESULTS miRNA-96 expression was reduced in BMPR-II(R899X+/-) PASMCs from female mice and hPASMCs from female patients with PAH; this was associated with increased 5-HT1BR expression and serotonin-mediated proliferation. 5-HT1BR was validated as a target for miRNA-96. Transfection of precursor miRNA-96 into hPASMCs reduced 5-HT1BR expression and inhibited serotonin-induced proliferation. Restoration of miRNA-96 expression in pulmonary arteries in vivo via administration of an miRNA-96 mimic reduced the development of hypoxia-induced pulmonary hypertension in the mouse. CONCLUSIONS Increased 5-HT1BR expression may be a consequence of decreased miRNA-96 expression in female patient PASMCs, and this may contribute to the development of PAH.
Collapse
Affiliation(s)
- Emma Wallace
- 1 Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Nicholas W Morrell
- 2 School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xudong D Yang
- 2 School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lu Long
- 2 School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hannah Stevens
- 1 Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Margaret Nilsen
- 1 Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Lynn Loughlin
- 1 Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Kirsty M Mair
- 1 Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Andrew H Baker
- 1 Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Margaret R MacLean
- 1 Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and
| |
Collapse
|
45
|
Hemnes AR, Kiely DG, Cockrill BA, Safdar Z, Wilson VJ, Al Hazmi M, Preston IR, MacLean MR, Lahm T. Statement on pregnancy in pulmonary hypertension from the Pulmonary Vascular Research Institute. Pulm Circ 2015; 5:435-65. [PMID: 26401246 PMCID: PMC4556496 DOI: 10.1086/682230] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/25/2015] [Indexed: 01/06/2023] Open
Abstract
Pregnancy outcomes in patients with pulmonary hypertension remain poor despite advanced therapies. Although consensus guidelines recommend against pregnancy in pulmonary hypertension, it may nonetheless occasionally occur. This guideline document sought to discuss the state of knowledge of pregnancy effects on pulmonary vascular disease and to define usual practice in avoidance of pregnancy and pregnancy management. This guideline is based on systematic review of peer-reviewed, published literature identified with MEDLINE. The strength of the literature was graded, and when it was inadequate to support high-level recommendations, consensus-based recommendations were formed according to prespecified criteria. There was no literature that met standards for high-level recommendations for pregnancy management in pulmonary hypertension. We drafted 38 consensus-based recommendations on pregnancy avoidance and management. Further, we identified the current state of knowledge on the effects of sex hormones during pregnancy on the pulmonary vasculature and right heart and suggested areas for future study. There is currently limited evidence-based knowledge about both the basic molecular effects of sex hormones and pregnancy on the pulmonary vasculature and the best practices in contraception and pregnancy management in pulmonary hypertension. We have drafted 38 consensus-based recommendations to guide clinicians in these challenging topics, but further research is needed in this area to define best practices and improve patient outcomes.
Collapse
Affiliation(s)
- Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - David G. Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
| | - Barbara A. Cockrill
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, and Harvard University Medical School, Boston, Massachusetts, USA
| | - Zeenat Safdar
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria J. Wilson
- Department of Obstetrics and Gynaecology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Manal Al Hazmi
- Section of Pulmonary Diseases, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ioana R. Preston
- Pulmonary, Critical Care and Sleep Division, Tufts Medical Center, Boston, Massachusetts, USA
| | - Mandy R. MacLean
- Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, United Kingdom
| | - Tim Lahm
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine and Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
46
|
Mair KM, Yang XD, Long L, White K, Wallace E, Ewart MA, Docherty CK, Morrell NW, MacLean MR. Sex affects bone morphogenetic protein type II receptor signaling in pulmonary artery smooth muscle cells. Am J Respir Crit Care Med 2015; 191:693-703. [PMID: 25608111 DOI: 10.1164/rccm.201410-1802oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Major pulmonary arterial hypertension (PAH) registries report a greater incidence of PAH in women; mutations in the bone morphogenic protein type II receptor (BMPR-II) occur in approximately 80% of patients with heritable PAH (hPAH). OBJECTIVES We addressed the hypothesis that women may be predisposed to PAH due to normally reduced basal BMPR-II signaling in human pulmonary artery smooth muscle cells (hPASMCs). METHODS We examined the BMPR-II signaling pathway in hPASMCs derived from men and women with no underlying cardiovascular disease (non-PAH hPASMCs). We also determined the development of pulmonary hypertension in male and female mice deficient in Smad1. MEASUREMENTS AND MAIN RESULTS Platelet-derived growth factor, estrogen, and serotonin induced proliferation only in non-PAH female hPASMCs. Female non-PAH hPASMCs exhibited reduced messenger RNA and protein expression of BMPR-II, the signaling intermediary Smad1, and the downstream genes, inhibitors of DNA binding proteins, Id1 and Id3. Induction of phospho-Smad1/5/8 and Id protein by BMP4 was also reduced in female hPASMCs. BMP4 induced proliferation in female, but not male, hPASMCs. However, small interfering RNA silencing of Smad1 invoked proliferative responses to BMP4 in male hPASMCs. In male hPASMCs, estrogen decreased messenger RNA and protein expression of Id genes. The estrogen metabolite 4-hydroxyestradiol decreased phospho-Smad1/5/8 and Id expression in female hPASMCs while increasing these in males commensurate with a decreased proliferative effect in male hPASMCs. Female Smad1(+/-) mice developed pulmonary hypertension (reversed by ovariectomy). CONCLUSIONS We conclude that estrogen-driven suppression of BMPR-II signaling in non-PAH hPASMCs derived from women contributes to a pro-proliferative phenotype in hPASMCs that may predispose women to PAH.
Collapse
Affiliation(s)
- Kirsty M Mair
- 1 College of Medical and Veterinary Science, University of Glasgow, Glasgow, United Kingdom; and
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wright AF, Ewart MA, Mair K, Nilsen M, Dempsie Y, Loughlin L, Maclean MR. Oestrogen receptor alpha in pulmonary hypertension. Cardiovasc Res 2015; 106:206-16. [PMID: 25765937 PMCID: PMC4615797 DOI: 10.1093/cvr/cvv106] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/27/2015] [Indexed: 11/14/2022] Open
Abstract
Aims Pulmonary arterial hypertension (PAH) occurs more frequently in women with mutations in bone morphogenetic protein receptor type 2 (BMPR2) and dysfunctional BMPR2 signalling underpinning heritable PAH. We have previously shown that serotonin can uncover a pulmonary hypertensive phenotype in BMPR2+/− mice and that oestrogen can increase serotinergic signalling in human pulmonary arterial smooth muscle cells (hPASMCs). Hence, here we wished to characterize the expression of oestrogen receptors (ERs) in male and female human pulmonary arteries and have examined the influence of oestrogen and serotonin on BMPR2 and ERα expression. Methods and results By immunohistochemistry, we showed that ERα, ERβ, and G-protein-coupled receptors are expressed in human pulmonary arteries localizing mainly to the smooth muscle layer which also expresses the serotonin transporter (SERT). Protein expression of ERα protein was higher in female PAH patient hPASMCs compared with male and serotonin also increased the expression of ERα. 17β-estradiol induced proliferation of hPASMCs via ERα activation and this engaged mitogen-activated protein kinase and Akt signalling. Female mice over-expressing SERT (SERT+ mice) develop PH and the ERα antagonist MPP attenuated the development of PH in normoxic and hypoxic female SERT+ mice. The therapeutic effects of MPP were accompanied by increased expression of BMPR2 in mouse lung. Conclusion ERα is highly expressed in female hPASMCs from PAH patients and mediates oestrogen-induced proliferation of hPASMCs via mitogen-activated protein kinase and Akt signalling. Serotonin can increase ERα expression in hPASMCs and antagonism of ERα reverses serotonin-dependent PH in the mouse and increases BMPR2 expression.
Collapse
Affiliation(s)
- Audrey F Wright
- College of Medical, Veterinary, and Life Sciences, Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Room 448, West Medical Building/Wolfson Link Building, Glasgow G12 8QQ, UK
| | - Marie-Ann Ewart
- College of Medical, Veterinary, and Life Sciences, Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Room 448, West Medical Building/Wolfson Link Building, Glasgow G12 8QQ, UK
| | - Kirsty Mair
- College of Medical, Veterinary, and Life Sciences, Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Room 448, West Medical Building/Wolfson Link Building, Glasgow G12 8QQ, UK
| | - Margaret Nilsen
- College of Medical, Veterinary, and Life Sciences, Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Room 448, West Medical Building/Wolfson Link Building, Glasgow G12 8QQ, UK
| | - Yvonne Dempsie
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA
| | - Lynn Loughlin
- College of Medical, Veterinary, and Life Sciences, Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Room 448, West Medical Building/Wolfson Link Building, Glasgow G12 8QQ, UK
| | - Margaret R Maclean
- College of Medical, Veterinary, and Life Sciences, Research Institute of Cardiovascular and Medical Sciences, University of Glasgow, Room 448, West Medical Building/Wolfson Link Building, Glasgow G12 8QQ, UK
| |
Collapse
|
48
|
Mair KM, Wright AF, Duggan N, Rowlands DJ, Hussey MJ, Roberts S, Fullerton J, Nilsen M, Loughlin L, Thomas M, MacLean MR. Sex-dependent influence of endogenous estrogen in pulmonary hypertension. Am J Respir Crit Care Med 2014; 190:456-67. [PMID: 24956156 DOI: 10.1164/rccm.201403-0483oc] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RATIONALE The incidence of pulmonary arterial hypertension is greater in women, suggesting estrogens may play a role in the disease pathogenesis. Experimentally, in males, exogenously administered estrogen can protect against pulmonary hypertension (PH). However, in models that display female susceptibility, estrogens may play a causative role. OBJECTIVES To clarify the influence of endogenous estrogen and sex in PH and assess the therapeutic potential of a clinically available aromatase inhibitor. METHODS We interrogated the effect of reduced endogenous estrogen in males and females using the aromatase inhibitor, anastrozole, in two models of PH: the hypoxic mouse and Sugen 5416/hypoxic rat. We also determined the effects of sex on pulmonary expression of aromatase in these models and in lungs from patients with pulmonary arterial hypertension. MEASUREMENTS AND MAIN RESULTS Anastrozole attenuated PH in both models studied, but only in females. To verify this effect was caused by reduced estrogenic activity we confirmed that in hypoxic mice inhibition of estrogen receptor α also has a therapeutic effect specifically in females. Female rodent lung displays increased aromatase and decreased bone morphogenetic protein receptor 2 and Id1 expression compared with male. Anastrozole treatment reversed the impaired bone morphogenetic protein receptor 2 pathway in females. Increased aromatase expression was also detected in female human pulmonary artery smooth muscle cells compared with male. CONCLUSIONS The unique phenotype of female pulmonary arteries facilitates the therapeutic effects of anastrozole in experimental PH confirming a role for endogenous estrogen in the disease pathogenesis in females and suggests aromatase inhibitors may have therapeutic potential.
Collapse
Affiliation(s)
- Kirsty M Mair
- 1 Institute of Cardiovascular and Medical Sciences, College of Medical and Veterinary Science, University of Glasgow, Glasgow, United Kingdom; and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lahm T, Tuder RM, Petrache I. Progress in solving the sex hormone paradox in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2014; 307:L7-26. [PMID: 24816487 DOI: 10.1152/ajplung.00337.2013] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating and progressive disease with marked morbidity and mortality. Even though being female represents one of the most powerful risk factors for PAH, multiple questions about the underlying mechanisms remain, and two "estrogen paradoxes" in PAH exist. First, it is puzzling why estrogens have been found to be protective in various animal models of PAH, whereas PAH registries uniformly demonstrate a female susceptibility to the disease. Second, despite the pronounced tendency for the disease to develop in women, female PAH patients exhibit better survival than men. Recent mechanistic studies in classical and in novel animal models of PAH, as well as recent studies in PAH patients, have significantly advanced the field. In particular, it is now accepted that estrogen metabolism and receptor signaling, as well as estrogen interactions with key pathways in PAH development, appear to be potent disease modifiers. A better understanding of these interactions may lead to novel PAH therapies. It is the purpose of this review to 1) review sex hormone synthesis, metabolism, and receptor physiology; 2) assess the context in which sex hormones affect PAH pathogenesis; 3) provide a potential explanation for the observed estrogen paradoxes and gender differences in PAH; and 4) identify knowledge gaps and future research opportunities. Because the majority of published studies investigated 17β-estradiol and/or its metabolites, this review will primarily focus on pulmonary vascular and right ventricular effects of estrogens. Data for other sex hormones will be discussed very briefly.
Collapse
Affiliation(s)
- Tim Lahm
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, and Richard L. Roudebush VA Medical Center; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, School of Medicine, Denver, Colorado
| | - Irina Petrache
- Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, and Richard L. Roudebush VA Medical Center; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| |
Collapse
|
50
|
Martin YN, Pabelick CM. Sex differences in the pulmonary circulation: implications for pulmonary hypertension. Am J Physiol Heart Circ Physiol 2014; 306:H1253-64. [PMID: 24610923 DOI: 10.1152/ajpheart.00857.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pulmonary arterial hypertension (PAH), a form of pulmonary hypertension, is a complex disease of multifactorial origin. While new developments regarding pathophysiological features and therapeutic options in PAH are being reported, one important fact has emerged over the years: there is a sex difference in the incidence of this disease such that while there is a higher incidence in females, disease outcomes are much worse in males. Accordingly, recent attention has been focused on understanding the features of sex differences in the pulmonary circulation and the contributory mechanisms, particularly sex hormones and their role in the pathological and pathophysiological features of PAH. However, to date, there is no clear consensus whether sex hormones (particularly female sex steroids) are beneficial or detrimental in PAH. In this review, we highlight some of the most recent evidence regarding the influence of sex hormones (estrogen, testosterone, progesterone, dehydroepiandrosterone) and estrogen metabolites on key pathophysiological features of PAH such as proliferation, vascular remodeling, vasodilation/constriction, and inflammation, thus setting the stage for research avenues to identify novel therapeutic target for PAH as well as potentially other forms of pulmonary hypertension.
Collapse
Affiliation(s)
- Yvette N Martin
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and
| | | |
Collapse
|