1
|
Belenkovich M, Veksler R, Kreinin Y, Mekler T, Flores M, Sznitman J, Holinstat M, Korin N. Clot Accumulation in 3D Microfluidic Bifurcating Microvasculature Network. MICROMACHINES 2024; 15:988. [PMID: 39203639 PMCID: PMC11356079 DOI: 10.3390/mi15080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024]
Abstract
The microvasculature, which makes up the majority of the cardiovascular system, plays a crucial role in the process of thrombosis, with the pathological formation of blood clots inside blood vessels. Since blood microflow conditions significantly influence platelet activation and thrombosis, accurately mimicking the structure of bifurcating microvascular networks and emulating local physiological blood flow conditions are valuable for understanding blood clot formation. In this work, we present an in vitro model for blood clotting in microvessels, focusing on 3D bifurcations that align with Murray's law, which guides vascular networks by maintaining a constant wall shear rate throughout. Using these models, we demonstrate that microvascular bifurcations act as sites facilitating thrombus formation compared to straight models. Additionally, by culturing endothelial cells on the luminal surfaces of the models, we show the potential of using our in vitro platforms to recapitulate the initial clotting in diseases involving endothelial dysfunction, such as Thrombotic Thrombocytopenic Purpura.
Collapse
Affiliation(s)
- Merav Belenkovich
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel; (M.B.); (Y.K.); (T.M.); (J.S.)
| | - Ruth Veksler
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel; (M.B.); (Y.K.); (T.M.); (J.S.)
| | - Yevgeniy Kreinin
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel; (M.B.); (Y.K.); (T.M.); (J.S.)
| | - Tirosh Mekler
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel; (M.B.); (Y.K.); (T.M.); (J.S.)
| | - Mariane Flores
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (M.F.); (M.H.)
| | - Josué Sznitman
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel; (M.B.); (Y.K.); (T.M.); (J.S.)
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (M.F.); (M.H.)
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Surgery, Division of Vascular Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Netanel Korin
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel; (M.B.); (Y.K.); (T.M.); (J.S.)
| |
Collapse
|
2
|
Dankano A, Prather R, Lozinski B, Divo E, Kassab A, DeCampli W. Tailoring left ventricular assist device cannula implantation using coupled multi-scale multi-objective optimization. Med Eng Phys 2024; 125:104124. [PMID: 38508801 DOI: 10.1016/j.medengphy.2024.104124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/17/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND The frequent occurrence of thromboembolic cerebral events continues to limit the widespread implementation of Ventricular Assist Devices (VAD) despite continued advancements in VAD design and anti-coagulation treatments. Recent studies point to the optimal positioning of the outflow graft (OG) as a potential mitigator of post implantation thromboembolism. OBJECTIVE This study aims to examine the tailoring of the OG implantation orientation with the goal of minimizing the number of thrombi reaching the cerebral vessels by means of a formal shape optimization scheme incorporated into a multi-scale hemodynamics analysis. METHODS A 3-D patient-specific computational fluid dynamics model is loosely coupled in a two-way manner to a 0-D lumped parameter model of the peripheral circulation. A Lagrangian particle-tracking scheme models and tracks thrombi as non-interacting solid spheres. The loose coupling between CFD and LPM is integrated into a geometric shape optimization scheme which aims to optimize an objective function that targets a drop in cerebral embolization, and an overall reduction in particle residence times. RESULTS The results elucidate the importance of OG anastomosis orientation and placement particularly in the case that studied particle release from the OG, as a fivefold decrease in cerebral embolization was observed between the optimal and non-optimal implantations. Another case considered particle release from the ventricle and aortic root walls, in which optimal implantation was achieved with a shallow insertion angle. Particle release from all three origins was investigated in the third case, demonstrating that the optimal configurations were generally characterized by VAD flow directed along the central lumen of the aortic arch. Because optimal configurations depended on the anatomic origin of the thrombus, it is important to determine, in clinical studies, the most likely sites of thrombus formation in VAD patients.
Collapse
Affiliation(s)
- Abubakar Dankano
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, United States.
| | - Ray Prather
- Arnold Palmer Children's Hospital, 92 West Miller St, Orlando, FL 32806, United States
| | - Blake Lozinski
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, United States
| | - Eduardo Divo
- Department of Mechanical Engineering, Embry-Riddle Aeronautical University, 600 South Clyde Morris Blvd, Daytona Beach, FL 32114, United States
| | - Alain Kassab
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, United States
| | - William DeCampli
- College of Medicine, University of Central Florida, Arnold Palmer Children's Hospital, 92 West Miller St, Orlando, FL 32806, United States
| |
Collapse
|
3
|
Ong CW, Wee IJY, Toma M, Cui F, Xu XY, Richards AM, Leo HL, Choong AMTL. Haemodynamic changes in visceral hybrid repairs of type III and type V thoracoabdominal aortic aneurysms. Sci Rep 2023; 13:13760. [PMID: 37612440 PMCID: PMC10447573 DOI: 10.1038/s41598-023-40323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
The visceral hybrid procedure combining retrograde visceral bypass grafting and completion endovascular stent grafting is a feasible alternative to conventional open surgical or wholly endovascular repairs of thoracoabdominal aneurysms (TAAA). However, the wide variability in visceral hybrid configurations means that a priori prediction of surgical outcome based on haemodynamic flow profiles such as velocity pattern and wall shear stress post repair remain challenging. We sought to appraise the clinical relevance of computational fluid dynamics (CFD) analyses in the setting of visceral hybrid TAAA repairs. Two patients, one with a type III and the other with a type V TAAA, underwent successful elective and emergency visceral hybrid repairs, respectively. Flow patterns and haemodynamic parameters were analysed using reconstructed pre- and post-operative CT scans. Both type III and type V TAAAs showed highly disturbed flow patterns with varying helicity values preoperatively within their respective aneurysms. Low time-averaged wall shear stress (TAWSS) and high endothelial cell action potential (ECAP) and relative residence time (RRT) associated with thrombogenic susceptibility was observed in the posterior aspect of both TAAAs preoperatively. Despite differing bypass configurations in the elective and emergency repairs, both treatment options appear to improve haemodynamic performance compared to preoperative study. However, we observed reduced TAWSS in the right iliac artery (portending a theoretical risk of future graft and possibly limb thrombosis), after the elective type III visceral hybrid repair, but not the emergency type V repair. We surmise that this difference may be attributed to the higher neo-bifurcation of the aortic stent graft in the type III as compared to the type V repair. Our results demonstrate that CFD can be used in complicated visceral hybrid repair to yield potentially actionable predictive insights with implications on surveillance and enhanced post-operative management, even in patients with complicated geometrical bypass configurations.
Collapse
Affiliation(s)
- Chi Wei Ong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Ian J Y Wee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Milan Toma
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, New York, USA
| | - Fangsen Cui
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
- Christchurch Heart Institute, University of Otago, New Zealand, New Zealand
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Andrew M T L Choong
- Division of Vascular and Endovascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore, Singapore.
- Asian Aortic & Vascular Centre, Singapore, Singapore.
| |
Collapse
|
4
|
Carpenter HJ, Ghayesh MH, Zander AC, Psaltis PJ. On the nonlinear relationship between wall shear stress topology and multi-directionality in coronary atherosclerosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107418. [PMID: 36842347 DOI: 10.1016/j.cmpb.2023.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE In this paper we investigate twelve multi-directional/topological wall shear stress (WSS) derived metrics and their relationships with the formation of coronary plaques in both computational fluid dynamics (CFD) and dynamic fluid-structure interaction (FSI) frameworks. While low WSS is one of the most established biomechanical markers associated with coronary atherosclerosis progression, alone it is limited. Multi-directional and topological WSS derived metrics have been shown to be important in atherosclerosis related mechanotransduction and near-wall transport processes. However, the relationships between these twelve WSS metrics and the influence of both FSI simulations and coronary dynamics is understudied. METHODS We first investigate the relationships between these twelve WSS derived metrics, stenosis percentage and lesion length through a parametric, transient CFD study. Secondly, we extend the parametric study to FSI, both with and without the addition of coronary dynamics, and assess their correlations. Finally, we present the case of a patient who underwent invasive coronary angiography and optical coherence tomography imaging at two time points 18 months apart. Associations between each of the twelve WSS derived metrics in CFD, static FSI and dynamic FSI simulations were assessed against areas of positive/negative vessel remodelling, and changes in plaque morphology. RESULTS 22-32% stenosis was the threshold beyond which adverse multi-directional/topological WSS results. Each metric produced a different relationship with changing stenoses and lesion length. Transient haemodynamics was impacted by coronary dynamics, with the topological shear variation index suppressed by up to 94%. These changes appear more critical at smaller stenosis levels, suggesting coronary dynamics could play a role in the earlier stages of atherosclerosis development. In the patient case, both dynamics and FSI vs CFD changes altered associations with measured changes in plaque morphology. An appendix of the linear fits between the various FSI- and CFD-based simulations is provided to assist in scaling CFD-based results to resemble the compliant walled characteristics of FSI more accurately. CONCLUSIONS These results highlight the potential for coronary dynamics to alter multi-directional/topological WSS metrics which could impact associations with changes in coronary atherosclerosis over time. These results warrant further investigation in a wider range of morphological settings and longitudinal cohort studies in the future.
Collapse
Affiliation(s)
- Harry J Carpenter
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Mergen H Ghayesh
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Anthony C Zander
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia
| |
Collapse
|
5
|
Duraivel S, Laurent D, Rajon DA, Scheutz GM, Shetty AM, Sumerlin BS, Banks SA, Bova FJ, Angelini TE. A silicone-based support material eliminates interfacial instabilities in 3D silicone printing. Science 2023; 379:1248-1252. [PMID: 36952407 DOI: 10.1126/science.ade4441] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Among the diverse areas of 3D printing, high-quality silicone printing is one of the least available and most restrictive. However, silicone-based components are integral to numerous advanced technologies and everyday consumer products. We developed a silicone 3D printing technique that produces precise, accurate, strong, and functional structures made from several commercially available silicone formulations. To achieve this level of performance, we developed a support material made from a silicone oil emulsion. This material exhibits negligible interfacial tension against silicone-based inks, eliminating the disruptive forces that often drive printed silicone features to deform and break apart. The versatility of this approach enables the use of established silicone formulations in fabricating complex structures and features as small as 8 micrometers in diameter.
Collapse
Affiliation(s)
- Senthilkumar Duraivel
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32603, USA
| | - Dimitri Laurent
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL 32608, USA
| | - Didier A Rajon
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL 32608, USA
| | - Georg M Scheutz
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Scott A Banks
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Frank J Bova
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL 32608, USA
| | - Thomas E Angelini
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32603, USA
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Poon EKW, Ono M, Wu X, Dijkstra J, Sato Y, Kutyna M, Torii R, Reiber JHC, Bourantas CV, Barlis P, El-Kurdi MS, Cox M, Virmani R, Onuma Y, Serruys PW. An optical coherence tomography and endothelial shear stress study of a novel bioresorbable bypass graft. Sci Rep 2023; 13:2941. [PMID: 36805474 PMCID: PMC9941467 DOI: 10.1038/s41598-023-29573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Endothelial shear stress (ESS) plays a key role in the clinical outcomes in native and stented segments; however, their implications in bypass grafts and especially in a synthetic biorestorative coronary artery bypass graft are yet unclear. This report aims to examine the interplay between ESS and the morphological alterations of a biorestorative coronary bypass graft in an animal model. Computational fluid dynamics (CFD) simulation derived from the fusion of angiography and optical coherence tomography (OCT) imaging was used to reconstruct data on the luminal anatomy of a bioresorbable coronary bypass graft with an endoluminal "flap" identified during OCT acquisition. The "flap" compromised the smooth lumen surface and considerably disturbed the local flow, leading to abnormally low ESS and high oscillatory shear stress (OSI) in the vicinity of the "flap". In the presence of the catheter, the flow is more stable (median OSI 0.02384 versus 0.02635, p < 0.0001; maximum OSI 0.4612 versus 0.4837). Conversely, OSI increased as the catheter was withdrawn which can potentially cause back-and-forth motions of the "flap", triggering tissue fatigue failure. CFD analysis in this report provided sophisticated physiological information that complements the anatomic assessment from imaging enabling a complete understanding of biorestorative graft pathophysiology.
Collapse
Affiliation(s)
- Eric K. W. Poon
- grid.1008.90000 0001 2179 088XDepartment of Medicine, St Vincent’s & Northern Hospitals, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Masafumi Ono
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.7177.60000000084992262Department of Clinical and Experimental Cardiology, Amsterdam UMC, Heart Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Xinlei Wu
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.417384.d0000 0004 1764 2632Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jouke Dijkstra
- grid.10419.3d0000000089452978Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yu Sato
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Matthew Kutyna
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Ryo Torii
- grid.83440.3b0000000121901201Department of Mechanical Engineering, University College London, London, UK
| | - Johan H. C. Reiber
- grid.10419.3d0000000089452978Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christos V. Bourantas
- grid.83440.3b0000000121901201Institute of Cardiovascular Science, University College London, London, UK ,grid.416353.60000 0000 9244 0345Department of Cardiology, Barts Heart Centre, London, UK
| | - Peter Barlis
- grid.1008.90000 0001 2179 088XDepartment of Medicine, St Vincent’s & Northern Hospitals, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | | | - Martijn Cox
- Xeltis BV, De Lismortel 31, 5612AR Eindhoven, The Netherlands
| | - Renu Virmani
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland
| | - Patrick W. Serruys
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.6906.90000000092621349Emeritus Professor of Medicine, Erasmus University, Rotterdam, The Netherlands ,CÚRAM, SFI Research Centre for Medical Devices, Galway, H91 TK33 Ireland
| |
Collapse
|
7
|
Albadawi M, Abuouf Y, Elsagheer S, Sekiguchi H, Ookawara S, Ahmed M. Influence of Rigid-Elastic Artery Wall of Carotid and Coronary Stenosis on Hemodynamics. Bioengineering (Basel) 2022; 9:708. [PMID: 36421109 PMCID: PMC9687628 DOI: 10.3390/bioengineering9110708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/18/2023] Open
Abstract
Cardiovascular system abnormalities can result in serious health complications. By using the fluid-structure interaction (FSI) procedure, a comprehensive realistic approach can be employed to accurately investigate blood flow coupled with arterial wall response. The hemodynamics was investigated in both the coronary and carotid arteries based on the arterial wall response. The hemodynamics was estimated based on the numerical simulation of a comprehensive three-dimensional non-Newtonian blood flow model in elastic and rigid arteries. For stenotic right coronary artery (RCA), it was found that the maximum value of wall shear stress (WSS) for the FSI case is higher than the rigid wall. On the other hand, for the stenotic carotid artery (CA), it was found that the maximum value of WSS for the FSI case is lower than the rigid wall. Moreover, at the peak systole of the cardiac cycle (0.38 s), the maximum percentage of arterial wall deformation was found to be 1.9%. On the other hand, for the stenotic carotid artery, the maximum percentage of arterial wall deformation was found to be 0.46%. A comparison between FSI results and those obtained by rigid wall arteries is carried out. Findings indicate slight differences in results for large-diameter arteries such as the carotid artery. Accordingly, the rigid wall assumption is plausible in flow modeling for relatively large diameters such as the carotid artery. Additionally, the FSI approach is essential in flow modeling in small diameters.
Collapse
Affiliation(s)
- Muhamed Albadawi
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan
- Engineering Mathematics and Physics Department, Faculty of Engineering, Alexandria University, Alexandria 5424041, Egypt
| | - Yasser Abuouf
- Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 5424041, Egypt
| | - Samir Elsagheer
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Faculty of Engineering, Aswan University, Aswan 81528, Egypt
| | - Hidetoshi Sekiguchi
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shinichi Ookawara
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mahmoud Ahmed
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Mechanical Engineering Department, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
8
|
Hann SY, Cui H, Zalud NC, Esworthy T, Bulusu K, Shen YL, Plesniak MW, Zhang LG. An in vitro analysis of the effect of geometry-induced flows on endothelial cell behavior in 3D printed small-diameter blood vessels. BIOMATERIALS ADVANCES 2022; 137:212832. [PMID: 35929247 DOI: 10.1016/j.bioadv.2022.212832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Clinical recovery from vascular diseases has increasingly become reliant upon the successful fabrication of artificial blood vessels (BVs) or vascular prostheses due to the shortage of autologous vessels and the high incidence of vessel graft diseases. Even though many attempts at the clinical implementation of large artificial BVs have been reported to be successful, the development of small-diameter BVs remains one of the significant challenges due to the limitation of micro-manufacturing capacity in complexity and reproducibility, as well as the development of thrombosis. The present study aims to develop 3D printed small-diameter artificial BVs that recapitulate the longitudinal geometric elements in the native BVs using biocompatible polylactic acid (PLA). As their intrinsic physical properties are crystallinity dependent, we used two PLA filaments with different crystallinity to investigate the suitability of their physical properties in the micro-manufacturing of BVs. To explore the mechanism of venous thrombosis, our study provided a preliminarily comparative analysis of the effect of geometry-induced flows on the behavior of human endothelial cells (ECs). Our results showed that the adhered healthy ECs in the 3D printed BV exhibited regulated patterns, such as elongated and aligned parallel to the flow direction, as well as geometry-induced EC response mechanisms that are associated with hemodynamic shear stresses. Furthermore, the computational fluid dynamics simulation results provided insightful information to predict velocity profile and wall shear stress distribution in the geometries of BVs in accordance with their spatiotemporally-dependent cell behaviors. Our study demonstrated that 3D printed small-diameter BVs could serve as suitable candidates for fundamental BV studies and hold great potential for clinical applications.
Collapse
Affiliation(s)
- Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Nora Caroline Zalud
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Kartik Bulusu
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Yin-Lin Shen
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Michael W Plesniak
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University Medical Center, Washington, DC 20052, USA.
| |
Collapse
|
9
|
Blanchard JW, Victor MB, Tsai LH. Dissecting the complexities of Alzheimer disease with in vitro models of the human brain. Nat Rev Neurol 2021; 18:25-39. [PMID: 34750588 DOI: 10.1038/s41582-021-00578-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD) is the most prevalent type of dementia. It is marked by severe memory loss and cognitive decline, and currently has limited effective treatment options. Although individuals with AD have common neuropathological hallmarks, emerging data suggest that the disease has a complex polygenic aetiology, and more than 25 genetic loci have been linked to an elevated risk of AD and dementia. Nevertheless, our ability to decipher the cellular and molecular mechanisms that underlie genetic susceptibility to AD, and its progression and severity, remains limited. Here, we discuss ongoing efforts to leverage genomic data from patients using cellular reprogramming technologies to recapitulate complex brain systems and build in vitro discovery platforms. Much attention has already been given to methodologies to derive major brain cell types from pluripotent stem cells. We therefore focus on technologies that combine multiple cell types to recreate anatomical and physiological properties of human brain tissue in vitro. We discuss the advances in the field for modelling four domains that have come into view as key contributors to the pathogenesis of AD: the blood-brain barrier, myelination, neuroinflammation and neuronal circuits. We also highlight opportunities for the field to further interrogate the complex genetic and environmental factors of AD using in vitro models.
Collapse
Affiliation(s)
- Joel W Blanchard
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Neuroscience, Black Family Stem Cell Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
10
|
Combining 4D Flow MRI and Complex Networks Theory to Characterize the Hemodynamic Heterogeneity in Dilated and Non-dilated Human Ascending Aortas. Ann Biomed Eng 2021; 49:2441-2453. [PMID: 34080100 PMCID: PMC8455395 DOI: 10.1007/s10439-021-02798-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022]
Abstract
Motivated by the evidence that the onset and progression of the aneurysm of the ascending aorta (AAo) is intertwined with an adverse hemodynamic environment, the present study characterized in vivo the hemodynamic spatiotemporal complexity and organization in human aortas, with and without dilated AAo, exploring the relations with clinically relevant hemodynamic and geometric parameters. The Complex Networks (CNs) theory was applied for the first time to 4D flow magnetic resonance imaging (MRI) velocity data of ten patients, five of them presenting with AAo dilation. The time-histories along the cardiac cycle of velocity-based quantities were used to build correlation-based CNs. The CNs approach succeeded in capturing large-scale coherent flow features, delimiting flow separation and recirculation regions. CNs metrics highlighted that an increasing AAo dilation (expressed in terms of the ratio between the maximum AAo and aortic root diameter) disrupts the correlation in forward flow reducing the correlation persistence length, while preserving the spatiotemporal homogeneity of secondary flows. The application of CNs to in vivo 4D MRI data holds promise for a mechanistic understanding of the spatiotemporal complexity and organization of aortic flows, opening possibilities for the integration of in vivo quantitative hemodynamic information into risk stratification and classification criteria.
Collapse
|
11
|
Lee JH, Chen Z, He S, Zhou JK, Tsai A, Truskey GA, Leong KW. Emulating Early Atherosclerosis in a Vascular Microphysiological System Using Branched Tissue-Engineered Blood Vessels. Adv Biol (Weinh) 2021; 5:e2000428. [PMID: 33852179 PMCID: PMC9951769 DOI: 10.1002/adbi.202000428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Indexed: 02/04/2023]
Abstract
Atherosclerosis begins with the accumulation of cholesterol-carrying lipoproteins on blood vessel walls and progresses to endothelial cell dysfunction, monocyte adhesion, and foam cell formation. Endothelialized tissue-engineered blood vessels (TEBVs) have previously been fabricated to recapitulate artery functionalities, including vasoconstriction, vasodilation, and endothelium activation. Here, the initiation of atherosclerosis is emulated by designing branched TEBVs (brTEBVs) of various geometries treated with enzyme-modified low-density-lipoprotein (eLDL) and TNF-α to induce endothelial cell dysfunction and adhesion of perfused human monocytes. Locations of monocyte adhesion under pulsatile flow are identified, and the hemodynamics in the brTEBVs are characterized using particle image velocimetry (PIV) and computational fluid dynamics (CFD). Monocyte adhesion is greater at the side outlets than at the main outlets or inlets, and is greatest at larger side outlet branching angles (60° or 80° vs 45°). In PIV experiments, the branched side outlets are identified as atherosclerosis-prone areas where fluorescent particles show a transient swirling motion following flow pulses; in CFD simulations, side outlets with larger branching angles show higher vorticity magnitude and greater flow disturbance than other areas. These results suggest that the branched TEBVs with eLDL/TNF-α treatment provide a physiologically relevant model of early atherosclerosis for preclinical studies.
Collapse
Affiliation(s)
- Jounghyun H. Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Zaozao Chen
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Siyu He
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Joyce K. Zhou
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Alexander Tsai
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
12
|
Brum J, Bernal M, Barrere N, Negreira C, Cabeza C. Vortex dynamics and transport phenomena in stenotic aortic models using Echo-PIV. Phys Med Biol 2021; 66. [PMID: 33361564 DOI: 10.1088/1361-6560/abd670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/23/2020] [Indexed: 11/12/2022]
Abstract
Atherosclerosis is the most fatal cardiovascular disease. As disease progresses, stenoses grow inside the arteries blocking their lumen and altering blood flow. Analysing flow dynamics can provide a deeper insight on the stenosis evolution. In this work we combined Eulerian and Lagrangian descriptors to analyze blood flow dynamics and fluid transport in stenotic aortic models with morphology, mechanical and optical properties close to those of real arteries. To this end, vorticity, particle residence time (PRT), particle's final position (FP) and finite time Lyapunov's exponents (FTLE) were computed from the experimental fluid velocity fields acquired using ultrasonic particle imaging velocimetry (Echo-PIV). For the experiments, CT-images were used to create morphological realistic models of the descending aorta with 0%, 35% and 50% occlusion degree with same mechanical properties as real arteries. Each model was connected to a circuit with a pulsatile programmable pump which mimics physiological flow and pressure conditions. The pulsatile frequency was set to ≈0.9 Hz (55 bpm) and the upstream peak Reynolds number (Re) was changed from 1100 to 2000. Flow in the post-stenotic region was composed of two main structures: a high velocity jet over the stenosis throat and a recirculation region behind the stenosis where vortex form and shed. We characterized vortex kinematics showing that vortex propagation velocity increases withRe. Moreover, from the FTLE field we identified Lagrangian coherent structures (i.e. material barriers) that dictate transport behind the stenosis. The size and strength of those barriers increased withReand the occlusion degree. Finally, from the PRT and FP maps, we showed that independently ofRe, the same amount of fluid remains on the stenosis over more than a pulsatile period.
Collapse
Affiliation(s)
- Javier Brum
- Laboratorio de Acústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Miguel Bernal
- Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Nicasio Barrere
- Grupo de Física No Lineal, Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Carlos Negreira
- Laboratorio de Acústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Cecilia Cabeza
- Grupo de Física No Lineal, Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| |
Collapse
|
13
|
Khadke S, Vidovic J, Patel V. Bridging the Gap in a Rare Cause of Angina. Eur Cardiol 2021; 16:e05. [PMID: 33737959 PMCID: PMC7967818 DOI: 10.15420/ecr.2020.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
Myocardial bridging occurs when coronary arteries run intramurally. Episodes of tachycardia can cause a dynamic obstruction that extends into diastole, compromising coronary filling time, and subsequently leading to ischaemia. Myocardial ischaemia, acute coronary syndrome, coronary spasm, myocardial stunning, arrhythmia, takotsubo cardiomyopathy, and sudden cardiac death have all been reported with bridging. Atherosclerotic plaques develop proximally in the bridge due to low shear stress and high oscillatory wall-flow. Factors affecting atherosclerotic build-up include disrupted flow patterns (particularly flow recirculation, which exacerbates LDL internalisation), cell adhesion and monocyte adhesion to the endothelium. Endothelial health depends on arterial flow patterns, given that the vessel reacts differently to various flow types, as confirmed in 3D simulations. Medication is the first-line therapy, while surgical de-roofing and coronary bypass are reserved for severe stenosis. Distinguishing physiological arterial compression from pathological stenosis is essential. Deeper bridges correlating with recurrent angina with an instantaneous wave-free ratio ≤0.89 or fractional flow reserve ≤0.80 are treated.
Collapse
Affiliation(s)
- Sumanth Khadke
- Our Lady of Fatima University, Fatima College of MedicineManila, Philippines
| | | | - Vinod Patel
- Division of Cardiology, Mount Sinai HospitalsNew York, NY, US
| |
Collapse
|
14
|
Dai WF, Wu P, Liu GM. A two-phase flow approach for modeling blood stasis and estimating the thrombosis potential of a ventricular assist device. Int J Artif Organs 2020; 44:471-480. [PMID: 33258722 DOI: 10.1177/0391398820975405] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thrombosis and its related events have become a major concern during the development and optimization of ventricular assist devices (VADs, also called blood pumps), and limit their clinical use and economic benefits. Attempts have been made to model the thrombosis formation, considering hemodynamic and biochemical processes. However, the complexities and computational expenses are prohibitive. Blood stasis is one of the key factors which may lead to the formation of thrombosis and excessive thromboembolic risks for patients. This study proposed a novel approach for modeling blood stasis, based on a two-phase flow principle. The locations of blood residual can be tracked over time, so that regions of blood stasis can be identified. The blood stasis in an axial blood pump is simulated under various working conditions, the results agree well with the experimental results. In contrast, conventional hemodynamic metrics such as velocity, time-averaged wall shear stress (TAWSS), and relative residence time (RRT), were contradictory in judging risk of blood stasis and thrombosis, and inconsistent with experimental results. We also found that the pump operating at the designed rotational speed is less prone to blood stasis. The model provides an efficient and fast alternative for evaluating blood stasis and thrombosis potential in blood pumps, and will be a valuable addition to the tools to support the design and improvement of VADs.
Collapse
Affiliation(s)
- Wei-Feng Dai
- Artificial Organ Laboratory, Bio-Manufacturing Research Centre, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Peng Wu
- Artificial Organ Laboratory, Bio-Manufacturing Research Centre, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Guang-Mao Liu
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Le Master E, Ahn SJ, Levitan I. Mechanisms of endothelial stiffening in dyslipidemia and aging: Oxidized lipids and shear stress. CURRENT TOPICS IN MEMBRANES 2020; 86:185-215. [PMID: 33837693 PMCID: PMC8168803 DOI: 10.1016/bs.ctm.2020.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular stiffening of the arterial walls is well-known as a key factor in aging and the development of cardiovascular disease; however, the role of endothelial stiffness in vascular dysfunction is still an emerging topic. In this review, the authors discuss the impact of dyslipidemia, oxidized lipids, substrate stiffness, age and pro-atherogenic disturbed flow have on endothelial stiffness. Furthermore, we investigate several mechanistic pathways that are key contributors in endothelial stiffness and discuss their physiological effects in the onset of atherogenesis in the disturbed flow regions of the aortic vasculature. The findings in this chapter describe a novel paradigm of synergistic interaction of plasma dyslipidemia/oxidized lipids and pro-atherogenic disturbed shear stress, as well as aging has on endothelial stiffness and vascular dysfunction.
Collapse
Affiliation(s)
- Elizabeth Le Master
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Sang Joon Ahn
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
16
|
Morbiducci U, Mazzi V, Domanin M, De Nisco G, Vergara C, Steinman DA, Gallo D. Wall Shear Stress Topological Skeleton Independently Predicts Long-Term Restenosis After Carotid Bifurcation Endarterectomy. Ann Biomed Eng 2020; 48:2936-2949. [PMID: 32929560 PMCID: PMC7723943 DOI: 10.1007/s10439-020-02607-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022]
Abstract
Wall Shear Stress (WSS) topological skeleton, composed by fixed points and the manifolds linking them, reflects the presence of blood flow features associated to adverse vascular response. However, the influence of WSS topological skeleton on vascular pathophysiology is still underexplored. This study aimed to identify direct associations between the WSS topological skeleton and markers of vascular disease from real-world clinical longitudinal data of long-term restenosis after carotid endarterectomy (CEA). Personalized computational hemodynamic simulations were performed on a cohort of 13 carotid models pre-CEA and at 1 month after CEA. At 60 months after CEA, intima-media thickness (IMT) was measured to detect long-term restenosis. The analysis of the WSS topological skeleton was carried out by applying a Eulerian method based on the WSS vector field divergence. To provide objective thresholds for WSS topological skeleton quantitative analysis, a computational hemodynamic dataset of 46 ostensibly healthy carotid bifurcation models was considered. CEA interventions did not completely restore physiological WSS topological skeleton features. Significant associations emerged between IMT at 60 months follow-up and the exposure to (1) high temporal variation of WSS contraction/expansion (R2 = 0.51, p < 0.05), and (2) high fixed point residence times, weighted by WSS contraction/expansion strength (R2 = 0.53, p < 0.05). These WSS topological skeleton features were statistically independent from the exposure to low WSS, a previously reported predictor of long-term restenosis, therefore representing different hemodynamic stimuli and potentially impacting differently the vascular response. This study confirms the direct association between WSS topological skeleton and markers of vascular disease, contributing to elucidate the mechanistic link between flow disturbances and clinical observations of vascular lesions.
Collapse
Affiliation(s)
- Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Valentina Mazzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Maurizio Domanin
- Department of Clinical Sciences and Community Health, Università di Milano, Milan, Italy.,Unità Operativa di Chirurgia Vascolare, Fondazione I.R.C.C.S. Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe De Nisco
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - Christian Vergara
- Laboratory of Biological Structure Mechanics (LaBS), Dipartimento di Chimica, Materiali e Ingegneria Chimica ''Giulio Natta'', Politecnico di Milano, Milan, Italy
| | - David A Steinman
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Diego Gallo
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy.
| |
Collapse
|
17
|
Calò K, De Nisco G, Gallo D, Chiastra C, Hoogendoorn A, Steinman DA, Scarsoglio S, Wentzel JJ, Morbiducci U. Exploring wall shear stress spatiotemporal heterogeneity in coronary arteries combining correlation-based analysis and complex networks with computational hemodynamics. Proc Inst Mech Eng H 2020; 234:1209-1222. [DOI: 10.1177/0954411920923253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Atherosclerosis at the early stage in coronary arteries has been associated with low cycle-average wall shear stress magnitude. However, parallel to the identification of an established active role for low wall shear stress in the onset/progression of the atherosclerotic disease, a weak association between lesions localization and low/oscillatory wall shear stress has been observed. In the attempt to fully identify the wall shear stress phenotype triggering early atherosclerosis in coronary arteries, this exploratory study aims at enriching the characterization of wall shear stress emerging features combining correlation-based analysis and complex networks theory with computational hemodynamics. The final goal is the characterization of the spatiotemporal and topological heterogeneity of wall shear stress waveforms along the cardiac cycle. In detail, here time-histories of wall shear stress magnitude and wall shear stress projection along the main flow direction and orthogonal to it (a measure of wall shear stress multidirectionality) are analyzed in a representative dataset of 10 left anterior descending pig coronary artery computational hemodynamics models. Among the main findings, we report that the proposed analysis quantitatively demonstrates that the model-specific inlet flow-rate shapes wall shear stress time-histories. Moreover, it emerges that a combined effect of low wall shear stress magnitude and of the shape of the wall shear stress–based descriptors time-histories could trigger atherosclerosis at its earliest stage. The findings of this work suggest for new experiments to provide a clearer determination of the wall shear stress phenotype which is at the basis of the so-called arterial hemodynamic risk hypothesis in coronary arteries.
Collapse
Affiliation(s)
- Karol Calò
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Giuseppe De Nisco
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Diego Gallo
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Claudio Chiastra
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Ayla Hoogendoorn
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - David A Steinman
- Biomedical Simulation Lab, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Stefania Scarsoglio
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Umberto Morbiducci
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
18
|
De Nisco G, Gallo D, Siciliano K, Tasso P, Lodi Rizzini M, Mazzi V, Calò K, Antonucci M, Morbiducci U. Hemodialysis arterio-venous graft design reducing the hemodynamic risk of vascular access dysfunction. J Biomech 2020; 100:109591. [PMID: 31902610 DOI: 10.1016/j.jbiomech.2019.109591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/04/2019] [Accepted: 12/18/2019] [Indexed: 11/18/2022]
Abstract
Although arterio-venous grafts (AVGs) represent the second choice as permanent vascular access for hemodialysis, this solution is still affected by a relevant failure rate due to graft thrombosis, and development of neointimal hyperplasia (IH) at the distal vein. As a key role in these processes has been attributed to the abnormal hemodynamics establishing in the distal vein, the optimization of AVGs design aimed at minimizing flow disturbances would reduce AVG hemodynamic-related risks. In this study we used computational fluid dynamics to investigate the impact of alternative AVG designs on the reduction of IH and thrombosis risk at the distal venous anastomosis. The performance of the newly designed AVGs was compared to that of commercially available devices. In detail, a total of eight AVG models in closed-loop configuration were constructed: two models resemble the commercially available straight conventional and helical-shaped AVGs; six models are characterized by the insertion of a flow divider (FD), straight or helical shaped, differently positioned inside the graft. Unfavorable hemodynamic conditions were analyzed by assessing the exposure to disturbed shear at the distal vein. Bulk flow was investigated in terms of helical blood flow features, potential thrombosis risk, and pressure drop over the graft. Findings from this study clearly show that using a helically-shaped FD located at the venous side of the graft could induce beneficial helical flow patterns that, minimizing flow disturbances, reduce the IH-related risk of failure at the distal vein, with a clinically irrelevant increase in thrombosis risk and pressure drop over the graft.
Collapse
Affiliation(s)
- Giuseppe De Nisco
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Diego Gallo
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Katia Siciliano
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Paola Tasso
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Lodi Rizzini
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Valentina Mazzi
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Karol Calò
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | - Umberto Morbiducci
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
19
|
Khoury M, Epshtein M, Zidan H, Zukerman H, Korin N. Mapping deposition of particles in reconstructed models of human arteries. J Control Release 2020; 318:78-85. [DOI: 10.1016/j.jconrel.2019.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022]
|
20
|
Arzani A. Coronary artery plaque growth: A two-way coupled shear stress-driven model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3293. [PMID: 31820589 DOI: 10.1002/cnm.3293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/30/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Atherosclerosis in coronary arteries can lead to plaque growth, stenosis formation, and blockage of the blood flow supplying the heart tissue. Several studies have shown that hemodynamics play an important role in the growth of coronary artery plaques. Specifically, low wall shear stress (WSS) appears to be the leading hemodynamic parameter promoting atherosclerotic plaque growth, which in turn influences the blood flow and WSS distribution. Therefore, a two-way coupled interaction exists between WSS and atherosclerosis growth. In this work, a computational framework was developed to study the coupling between WSS and plaque growth in coronary arteries. Computational fluid dynamics (CFD) was used to quantify WSS distribution. Surface mesh nodes were moved in the inward normal direction according to a growth model based on WSS. After each growth stage, the geometry was updated and the CFD simulation repeated to find updated WSS values for the next growth stage. One hundred twenty growth stages were simulated in an idealized tube and an image-based left anterior descending artery. An automated framework was developed using open-source software to couple CFD simulations with growth. Changes in plaque morphology and hemodynamic patterns during different growth stages are presented. The results show larger plaque growth towards the downstream segment of the plaque, agreeing with the reported clinical observations. The developed framework could be used to establish hemodynamic-driven growth models and study the interaction between these processes.
Collapse
Affiliation(s)
- Amirhossein Arzani
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
21
|
Thondapu V, Tenekecioglu E, Poon EKW, Collet C, Torii R, Bourantas CV, Chin C, Sotomi Y, Jonker H, Dijkstra J, Revalor E, Gijsen F, Onuma Y, Ooi A, Barlis P, Serruys PW. Endothelial shear stress 5 years after implantation of a coronary bioresorbable scaffold. Eur Heart J 2019; 39:1602-1609. [PMID: 29409057 DOI: 10.1093/eurheartj/ehx810] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022] Open
Abstract
Aims As a sine qua non for arterial wall physiology, local hemodynamic forces such as endothelial shear stress (ESS) may influence long-term vessel changes as bioabsorbable scaffolds dissolve. The aim of this study was to perform serial computational fluid dynamic (CFD) simulations to examine immediate and long-term haemodynamic and vascular changes following bioresorbable scaffold placement. Methods and results Coronary arterial models with long-term serial assessment (baseline and 5 years) were reconstructed through fusion of intravascular optical coherence tomography and angiography. Pulsatile non-Newtonian CFD simulations were performed to calculate the ESS and relative blood viscosity. Time-averaged, systolic, and diastolic results were compared between follow-ups. Seven patients (seven lesions) were included in this analysis. A marked heterogeneity in ESS and localised regions of high blood viscosity were observed post-implantation. Percent vessel area exposed to low averaged ESS (<1 Pa) significantly decreased over 5 years (15.92% vs. 4.99%, P < 0.0001) whereas moderate (1-7 Pa) and high ESS (>7 Pa) did not significantly change (moderate ESS: 76.93% vs. 80.7%, P = 0.546; high ESS: 7.15% vs. 14.31%, P = 0.281), leading to higher ESS at follow-up. A positive correlation was observed between baseline ESS and change in lumen area at 5 years (P < 0.0001). Maximum blood viscosity significantly decreased over 5 years (4.30 ± 1.54 vs. 3.21± 0.57, P = 0.028). Conclusion Immediately after scaffold implantation, coronary arteries demonstrate an alternans of extremely low and high ESS values and localized areas of high blood viscosity. These initial local haemodynamic disturbances may trigger fibrin deposition and thrombosis. Also, low ESS can promote neointimal hyperplasia, but may also contribute to appropriate scaffold healing with normalisation of ESS and reduction in peak blood viscosity by 5 years.
Collapse
Affiliation(s)
- Vikas Thondapu
- Department of Mechanical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, 3010 Victoria, Australia.,Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, Melbourne Medical School, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Erhan Tenekecioglu
- Department of Interventional Cardiology, Erasmus University Medical Centre, Thoraxcenter, Westblaak 98, 3012 KM Rotterdam, Netherlands
| | - Eric K W Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Carlos Collet
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, The Netherlands.,Department of Cardiology, University Hospital Brussels, Avenue du Laerbeek 101, 1090 Jette, Belgium
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, Torrington Place, WC1E 7JE London, UK
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, EC1A 7BE London, UK.,Institute of Cardiovascular Sciences, University College London, 62 Huntley St, Fitzrovia, WC1E 6DD London, UK
| | - Cheng Chin
- School of Mechanical Engineering, The University of Adelaide, Adelaide, 5005 South Australia, Australia
| | - Yohei Sotomi
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, The Netherlands
| | - Hans Jonker
- Department of Program Management, Cardialysis, Westblaak 98, 3012 KM Rotterdam, The Netherlands
| | - Jouke Dijkstra
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Eve Revalor
- Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, Melbourne Medical School, University of Melbourne, Parkville, 3010 Victoria, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, 3010 Parkville, Australia
| | - Frank Gijsen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus University Medical Center, Wytemaweg 80, Ee2302, 3015 CN Rotterdam, The Netherlands
| | - Yoshinobu Onuma
- Department of Interventional Cardiology, Erasmus University Medical Centre, Thoraxcenter, Westblaak 98, 3012 KM Rotterdam, Netherlands
| | - Andrew Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Peter Barlis
- Department of Medicine, Faculty of Medicine, Dentistry & Health Sciences, Melbourne Medical School, University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Patrick W Serruys
- Department of Interventional Cardiology, Erasmus University Medical Centre, Thoraxcenter, Westblaak 98, 3012 KM Rotterdam, Netherlands.,Cardiovascular Science Division, National Heart & Lung Institute, Guy Scadding Building, Royal Brompton Campus, Imperial College, London, UK
| |
Collapse
|
22
|
Calo K, Gallo D, Steinman DA, Mazzi V, Scarsoglio S, Ridolfi L, Morbiducci U. Spatiotemporal Hemodynamic Complexity in Carotid Arteries: An Integrated Computational Hemodynamics and Complex Networks-Based Approach. IEEE Trans Biomed Eng 2019; 67:1841-1853. [PMID: 31647419 DOI: 10.1109/tbme.2019.2949148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The study of the arterial hemodynamics is essential for a better understanding of the risks associated with the onset/progression of vascular disease. However, conventional quantification and visualization paradigms are not sufficient to fully capture the spatiotemporal evolution of correlated blood flow patterns and their "sphere of influence" in complex vascular geometries. In the attempt to bridge this knowledge gap, an integrated computational hemodynamics and complex networks-based approach is proposed to unveil organization principles of cardiovascular flows. METHODS The approach is applied to ten patient-specific hemodynamic models of carotid bifurcation, a vascular bed characterized by a complex hemodynamics and clinically-relevant disease. Correlation-based networks are built starting from time-histories of two fluid mechanics quantities of physiological significance, respectively (1) the blood velocity vector axial component locally aligned with the main flow direction, and (2) the kinetic helicity density. RESULTS Unlike conventional hemodynamic analyses, here the spatiotemporal similarity of dynamic intravascular flow structures is encoded in a distance function. In the case of the carotid bifurcation, this study measures for the first time to what extent flow similarity is disrupted by vascular geometric features. CONCLUSION It emerges that a larger bifurcation expansion, a hallmark of vascular disease, significantly disrupts the network topological connections between axial flow structures, reducing also their anatomical persistence length. On the contrary, connections in helical flow patterns are overall less geometry-sensitive. SIGNIFICANCE The integrated approach proposed here, by exploiting the connections of hemodynamic patterns undergoing similar dynamical evolution, opens avenues for further comprehension of vascular physiopathology.
Collapse
|
23
|
Molins B, Mora A, Romero-Vázquez S, Pascual-Méndez A, Rovira S, Figueras-Roca M, Balcells M, Adán A, Martorell J. Shear stress modulates inner blood retinal barrier phenotype. Exp Eye Res 2019; 187:107751. [DOI: 10.1016/j.exer.2019.107751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/28/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
|
24
|
Coronary Shear Stress after Implantation of Bioresorbable Scaffolds – a Modern Interdisciplinary Concept at the Border between Interventional Cardiology and Cardiac Imaging. JOURNAL OF INTERDISCIPLINARY MEDICINE 2019. [DOI: 10.2478/jim-2019-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abstract
Bioresorbable scaffolds/stents offer new and exciting perspectives in the treatment of patients with acute coronary syndromes, especially after the recent development of invasive imaging techniques, such as optical coherence tomography, which allow complete assessment of vascu-lar segments. A particular advantage of bioresorbable scaffolds is that once the biosorption of the scaffold is complete, the vascular segment regains its normal physiological functions, thus eliminating the risk of late complications. New studies show the importance of shear stress in the progression of vascular atherosclerosis or in accelerating endothelial turnover. Based on the current knowledge in this field, a future standardized determination of shear stress may help in the long-term follow-up of patients that have suffered or are at risk of developing an acute coronary syndrome.
Collapse
|
25
|
Gallo D, Bijari PB, Morbiducci U, Qiao Y, Xie YJ, Etesami M, Habets D, Lakatta EG, Wasserman BA, Steinman DA. Segment-specific associations between local haemodynamic and imaging markers of early atherosclerosis at the carotid artery: an in vivo human study. J R Soc Interface 2018; 15:rsif.2018.0352. [PMID: 30305419 DOI: 10.1098/rsif.2018.0352] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
Low and oscillatory wall shear stress (WSS) has long been hypothesized as a risk factor for atherosclerosis; however, evidence has been inferred primarily from model and post-mortem studies, or clinical studies of patients with already-developed plaques. This study aimed to identify associations between local haemodynamic and imaging markers of early atherosclerosis. Comprehensive magnetic resonance imaging allowed quantification of contrast enhancement (CE) (a marker of endothelial dysfunction) and vessel wall thickness at two distinct segments: the internal carotid artery bulb and the common carotid artery (CCA). Strict criteria were applied to a large dataset to exclude inward remodelling, resulting in 41 cases for which personalized computational fluid dynamic simulations were performed. After controlling for cardiovascular risk factors, bulb wall thickening was found to be weakly, but not significantly, associated with oscillatory WSS. CE at the bulb was significantly associated with low WSS (p < 0.001) and low flow helicity (p < 0.05). No significant associations were found for the CCA segment. Local haemodynamics at the bulb were significantly correlated with blood flow rates and heart rates, but not carotid bifurcation geometry (flare and curvature). Therefore low, but not oscillatory, WSS is an early independent marker of atherosclerotic changes preceding intimal thickening at the carotid bulb.
Collapse
Affiliation(s)
- Diego Gallo
- Biomedical Simulation Lab, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.,PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Payam B Bijari
- Biomedical Simulation Lab, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Umberto Morbiducci
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Ye Qiao
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuanyuan Joyce Xie
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maryam Etesami
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Damiaan Habets
- Biomedical Simulation Lab, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIA, Baltimore, MD, USA
| | - Bruce A Wasserman
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A Steinman
- Biomedical Simulation Lab, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Melgar-Lesmes P, Sánchez-Herrero A, Lozano-Juan F, de la Torre Hernández JM, Montell E, Jiménez W, Edelman ER, Balcells M. Chondroitin Sulphate Attenuates Atherosclerosis in ApoE Knockout Mice Involving Cellular Regulation of the Inflammatory Response. Thromb Haemost 2018; 118:1329-1339. [PMID: 29874688 DOI: 10.1055/s-0038-1657753] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chondroitin sulphate (CS) has long been used to treat osteoarthritis. Some investigations have also shown that the treatment with CS could reduce coronary events in patients with heart disease but no studies have identified the mechanistic role of these therapeutic effects. We aimed to investigate how the treatment with CS can interfere with the progress of atherosclerosis. The aortic arch, thoracic aorta and serum were obtained from apolipoprotein E (ApoE) knockout mice fed for 10 weeks with high-fat diet and then treated with CS (300 mg/kg, n = 15) or vehicle (n = 15) for 4 weeks. Atheromatous plaques were highlighted in aortas with Oil Red staining and analysed by microscopy. ApoE knockout mice treated with CS exhibited attenuated atheroma lesion size by 68% as compared with animals receiving vehicle. Serum lipids, glucose and C-reactive protein were not affected by treatment with CS. To investigate whether CS locally affects the inflamed endothelium or the formation of foam cells in plaques, human endothelial cells and monocytes were stimulated with tumour necrosis factor α or phorbol myristate acetate in the presence or absence of CS. CS reduced the expression of vascular cell adhesion molecule 1, intercellular adhesion molecule 1 and ephrin-B2 and improved the migration of inflamed endothelial cells. CS inhibited foam cell formation in vivo and concomitantly CD36 and CD146 expression and oxidized low-density lipoprotein uptake and accumulation in cultured activated human monocytes and macrophages. Reported cardioprotective effects of CS may arise from modulation of pro-inflammatory activation of endothelium and monocytes and foam cell formation.
Collapse
Affiliation(s)
- Pedro Melgar-Lesmes
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States.,Department of Biomedicine, Fundació Clínic per a la Recerca Biomèdica, University of Barcelona, Barcelona, Spain
| | - Alvaro Sánchez-Herrero
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Ferran Lozano-Juan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | | | | | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Service, Department of Biomedicine, Hospital Clínic Universitari, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States.,Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States.,Department of Biological Engineering, IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| |
Collapse
|
27
|
Tasso P, Raptis A, Matsagkas M, Lodi Rizzini M, Gallo D, Xenos M, Morbiducci U. Abdominal aortic aneurysm endovascular repair: profiling post-implantation morphometry and hemodynamics with image-based computational fluid dynamics. J Biomech Eng 2018; 140:2682796. [PMID: 30029263 DOI: 10.1115/1.4040337] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 11/08/2022]
Abstract
Endovascular aneurysm repair (EVAR) has disseminated rapidly as an alternative to open surgical repair for the treatment of abdominal aortic aneurysms (AAAs), because of its reduced invasiveness, low mortality and morbidity rate. The effectiveness of the endovascular devices used in EVAR is always at question as postoperative adverse events can lead to re-intervention or to a possible fatal scenario for the circulatory system. Motivated by the assessment of the risks related to thrombus formation, here the impact of two different commercial endovascular grafts on local hemodynamics is explored through 20 image-based computational hemodynamic models of EVAR-treated patients (N=10 per each endograft model). Hemodynamic features, susceptible to promote thrombus formation, such as flow separation and recirculation, are quantitatively assessed and compared with the local hemodynamics established in image-based infrarenal abdominal aortic models of healthy subjects (N=10). The hemodynamic analysis is complemented by a geometrical characterization of the EVAR-induced reshaping of the infrarenal abdominal aortic vascular region. The findings of this study indicate that: (1) the clinically observed propensity to thrombus formation in devices used in EVAR strategies can be explained in terms of local hemodynamics by means of image-based computational hemodynamics approach; (2) reportedly pro-thrombotic hemodynamic structures are strongly correlated with the geometry of the aortoiliac tract postoperatively. In perspective, our study suggests that future clinical follow up studies could include a geometric analysis of the region of the implant, monitoring shape variations that can lead to hemodynamic disturbances of clinical significance.
Collapse
Affiliation(s)
- Paola Tasso
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino 10129, Italy
| | - Anastasios Raptis
- Laboratory for Vascular Simulations, Institute of Vascular Diseases, Ioannina 45500, Greece
| | - Miltiadis Matsagkas
- Department of Vascular Surgery, Faculty of Medicine, University of Thessaly, Larissa 41334, Greece
| | - Maurizio Lodi Rizzini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino 10129, Italy
| | - Diego Gallo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino 10129, Italy
| | - Michalis Xenos
- Department of Mathematics, University of Ioannina, Ioannina 45500, Greece
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino 10129, Italy
| |
Collapse
|
28
|
Arzani A, Shadden SC. Wall shear stress fixed points in cardiovascular fluid mechanics. J Biomech 2018; 73:145-152. [DOI: 10.1016/j.jbiomech.2018.03.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
|
29
|
Determination of hemodynamic risk for vascular disease in planar artery bifurcations. Sci Rep 2018; 8:2795. [PMID: 29434229 PMCID: PMC5809427 DOI: 10.1038/s41598-018-21126-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022] Open
Abstract
Understanding hemodynamics in blood circulation is crucial in order to unveil the mechanisms underlying the formation of stenosis and atherosclerosis. In fact, there are experimental evidences pointing out to the existence of some given vessel configurations that are more likely to develop the above mentioned pathologies. Along this manuscript, we performed an exhaustive investigation in a simplified model aiming to characterize by means of physical quantities those regions and configurations in vessel bifurcations that are more likely to develop such pathologies. The two-fold analysis is based, on the one hand, on numerical simulations (via CFD) and, on the other hand, on experiments realized in an ad-hoc designed polydimethylsiloxane (PDMS) channel with the appropriate parameters and appropriate fluid flows. The results obtained demonstrate that low velocity regions and low shear stress zones are located in the outer walls of bifurcations. In fact, we found that there is a critical range of bifurcation angles that is more likely to vascular disease than the others in correspondence with some experimental evidence. The effect of the inflow velocity on this critical range is also analyzed.
Collapse
|
30
|
Le Master E, Huang RT, Zhang C, Bogachkov Y, Coles C, Shentu TP, Sheng Y, Fancher IS, Ng C, Christoforidis T, Subbaiah PV, Berdyshev E, Qain Z, Eddington DT, Lee J, Cho M, Fang Y, Minshall RD, Levitan I. Proatherogenic Flow Increases Endothelial Stiffness via Enhanced CD36-Mediated Uptake of Oxidized Low-Density Lipoproteins. Arterioscler Thromb Vasc Biol 2018; 38:64-75. [PMID: 29025707 PMCID: PMC5746473 DOI: 10.1161/atvbaha.117.309907] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Disturbed flow (DF) is well-known to induce endothelial dysfunction and synergistically with plasma dyslipidemia facilitate plaque formation. Little is known, however, about the synergistic impact of DF and dyslipidemia on endothelial biomechanics. Our goal was to determine the impact of DF on endothelial stiffness and evaluate the role of dyslipidemia/oxLDL (oxidized low-density lipoprotein) in this process. APPROACH AND RESULTS Endothelial elastic modulus of intact mouse aortas ex vivo and of human aortic endothelial cells exposed to laminar flow or DF was measured using atomic force microscopy. Endothelial monolayer of the aortic arch is found to be significantly stiffer than the descending aorta (4.2+1.1 versus 2.5+0.2 kPa for aortic arch versus descending aorta) in mice maintained on low-fat diet. This effect is significantly exacerbated by short-term high-fat diet (8.7+2.5 versus 4.5+1.2 kPa for aortic arch versus descending aorta). Exposure of human aortic endothelial cells to DF in vitro resulted in 50% increase in oxLDL uptake and significant endothelial stiffening in the presence but not in the absence of oxLDL. DF also increased the expression of oxLDL receptor CD36 (cluster of differentiation 36), whereas downregulation of CD36 abrogated DF-induced endothelial oxLDL uptake and stiffening. Furthermore, genetic deficiency of CD36 abrogated endothelial stiffening in the aortic arch in vivo in mice fed either low-fat diet or high-fat diet. We also show that the loss of endothelial stiffening in CD36 knockout aortas is not mediated by the loss of CD36 in circulating cells. CONCLUSIONS DF facilitates endothelial CD36-dependent uptake of oxidized lipids resulting in local increase of endothelial stiffness in proatherogenic areas of the aorta.
Collapse
Affiliation(s)
- Elizabeth Le Master
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Ru-Ting Huang
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Chongxu Zhang
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Yedida Bogachkov
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Cassandre Coles
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Tzu-Pin Shentu
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Yue Sheng
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Ibra S Fancher
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Carlos Ng
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Theodore Christoforidis
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Pappasani V Subbaiah
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Evgeny Berdyshev
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Zhijian Qain
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - David T Eddington
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - James Lee
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Michael Cho
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Yun Fang
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Richard D Minshall
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Irena Levitan
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.).
| |
Collapse
|
31
|
Mury P, Faes C, Millon A, Mura M, Renoux C, Skinner S, Nicaise V, Joly P, Della Schiava N, Lermusiaux P, Connes P, Pialoux V. Higher Daily Physical Activity Level Is Associated with Lower RBC Aggregation in Carotid Artery Disease Patients at High Risk of Stroke. Front Physiol 2017; 8:1043. [PMID: 29311973 PMCID: PMC5732916 DOI: 10.3389/fphys.2017.01043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/29/2017] [Indexed: 01/30/2023] Open
Abstract
Aim: Carotid artery disease (CAD) is an atherosclerotic inflammatory disease that affects the arterial wall, specifically at points of bifurcation where blood flow is disturbed. Abnormal blood rheology could participate in the pathophysiology of ischemic cardiovascular disease. Physical activity (PA) is known to improve blood rheology in several chronic disorders. This study aims to (i) compare the hemorheological profile of CAD patients and controls and (ii) investigate the associations between daily PA and hemorheological parameters in CAD patients. Methods: Blood viscosity, red blood cell (RBC) aggregation and RBC deformability were assessed in 80 patients (15 symptomatic and 65 asymptomatic) and 14 age-matched controls. Patients' PA levels were evaluated using questionnaires. Results: Symptomatic patients showed increased blood viscosity and RBC aggregation compared to healthy controls. RBC aggregation was significantly lower in the most physically active patients compared to the least physically active ones. Blood viscosity and RBC deformability did not vary according to physical activity level. Conclusions: Our results showed greater hemorheological abnormalities (blood hyper-viscosity and hyper-aggregation of red blood cells) in the most severe CAD patients, which could exacerbate the risk of stroke in patients with stenosis. As the most physically active patients had lower RBC aggregation than those who were less physically active, it is possible that regular PA may limit hemorheological alterations in CAD patients.
Collapse
Affiliation(s)
- Pauline Mury
- Interuniversity Laboratory of Human Movement Biology EA7424, Vascular Biology and Red Blood Cell Team, University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Camille Faes
- Interuniversity Laboratory of Human Movement Biology EA7424, Vascular Biology and Red Blood Cell Team, University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Antoine Millon
- CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, University Claude Bernard Lyon 1, Bron, France
- Department of Vascular Surgery, Edouard Herriot Hospital, Lyon, France
| | - Mathilde Mura
- Interuniversity Laboratory of Human Movement Biology EA7424, Vascular Biology and Red Blood Cell Team, University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Céline Renoux
- Interuniversity Laboratory of Human Movement Biology EA7424, Vascular Biology and Red Blood Cell Team, University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence GR-Ex, Paris, France
- Biochimie des Pathologies Erythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Sarah Skinner
- Interuniversity Laboratory of Human Movement Biology EA7424, Vascular Biology and Red Blood Cell Team, University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Virginie Nicaise
- Laboratory of Vulnerabilities and Innovation in Sport EA7428, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Philippe Joly
- Interuniversity Laboratory of Human Movement Biology EA7424, Vascular Biology and Red Blood Cell Team, University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence GR-Ex, Paris, France
- Biochimie des Pathologies Erythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | | | | | - Philippe Connes
- Interuniversity Laboratory of Human Movement Biology EA7424, Vascular Biology and Red Blood Cell Team, University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence GR-Ex, Paris, France
- Institut Universitaire de France, Paris, France
| | - Vincent Pialoux
- Interuniversity Laboratory of Human Movement Biology EA7424, Vascular Biology and Red Blood Cell Team, University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence GR-Ex, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
32
|
Menacho J, Rotllant L, Molins JJ, Reyes G, García-Granada AA, Balcells M, Martorell J. Arterial pulse attenuation prediction using the decaying rate of a pressure wave in a viscoelastic material model. Biomech Model Mechanobiol 2017; 17:589-603. [PMID: 29168070 PMCID: PMC5845065 DOI: 10.1007/s10237-017-0980-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 11/30/2022]
Abstract
The present study examines the possibility of attenuating blood pulses by means of introducing prosthetic viscoelastic materials able to absorb energy and damp such pulses. Vascular prostheses made of polymeric materials modify the mechanical properties of blood vessels. The effect of these materials on the blood pulse propagation remains to be fully understood. Several materials for medical applications, such as medical polydimethylsiloxane or polytetrafluoroethylene, show viscoelastic behavior, modifying the original vessel stiffness and affecting the propagation of blood pulses. This study focuses on the propagation of pressure waves along a pipe with viscoelastic materials using the Maxwell and the Zener models. An expression of exponential decay has been obtained for the Maxwell material model and also for low viscous coefficient values in the Zener model. For relatively high values of the viscous term in the Zener model, the steepest part of the pulse can be damped quickly, leaving a smooth, slowly decaying wave. These mathematical models are critical to tailor those materials used in cardiovascular implants to the mechanical environment they are confronted with to repair or improve blood vessel function.
Collapse
Affiliation(s)
- J Menacho
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - L Rotllant
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.,Department of Applied Sciences, CBSET, 500 Shire Way, Lexington, MA, USA
| | - J J Molins
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - G Reyes
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - A A García-Granada
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - M Balcells
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain. .,IMES - MIT, 77 Massachusetts Av., E25-229, Cambridge, MA, 02139, USA.
| | - J Martorell
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| |
Collapse
|
33
|
Murasato Y, Kinoshita Y, Yamawaki M, Shinke T, Takeda Y, Fujii K, Yamada SI, Shimada Y, Yamashita T, Yumoto K. Effect of low-density lipoprotein cholesterol on the geometry of coronary bifurcation lesions and clinical outcomes of coronary interventions in the J-REVERSE registry. Cardiovasc Interv Ther 2017; 33:360-371. [PMID: 29052106 DOI: 10.1007/s12928-017-0498-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
We investigated the effect of low-density lipoprotein cholesterol (LDL-C) on the geometry of coronary bifurcation lesions. A total of 300 non-left main bifurcation lesions in 298 patients from J-REVERSE registry were classified according to statin treatment status at admission (NT, non-treated; ST, statin-treated) and were further subdivided based on LDL-C levels with a cutoff of 100 mg/dL (NT-high, n = 76 lesions; NT-low, n = 46; ST-high, n = 99 and ST-low, n = 79). In addition, a group with strict control of LDL-C (< 70 mg/dL) was defined (ST-SC; n = 19). The NT-high group had higher angled bifurcations compared to that in the NT-low group (59.1° ± 21.5° vs. 50.3° ± 18.6°, p = 0.02). In the multivariate analysis, NT-high group was an independent factor contributing on generation of higher angled (> 80°) lesion (odds ratio 3.77, 95% CI 1.05-13.5, p = 0.04). The NT-low group had more men (95.6 vs. 81.6%, p = 0.03), and greater plaque volume in the distal main vessel (7.1 ± 3.2 mm3/mm vs. 5.7 ± 2.7 mm3/mm, p = 0.02), compared to those in the NT-high group. LDL-C was more likely to remain high after statin treatment in younger patients (65.3 ± 3.6 years vs. 68.6 ± 8.4 years, p = 0.02) and current smokers (36.7 vs. 16.9%, p = 0.004). The ST-SC group had limited luminal volume expansion compared to that in the ST-high group (proximal: 6.7 ± 1.4 mm3/mm vs. 7.7 ± 2.3 mm3/mm, p = 0.04; distal: 5.3 ± 1.5 mm3/mm vs. 6.5 ± 1.9 mm3/mm, p = 0.04), regardless of similar plaque volumes. Elevated LDL-C is likely to promote the generation of higher angled bifurcation lesions and multiple risk factors lead to a more progressed bifurcation lesion even in patients with lower LDL-C levels.
Collapse
Affiliation(s)
- Yoshinobu Murasato
- Department of Cardiology, Cardiovascular Center, Kyushu Medical Center, 1-8-1, Jigyohama, Chuo, Fukuoka, 810-8563, Japan. .,Clinical Research Institute, Kyushu Medical Center, Fukuoka, Japan.
| | - Yoshihisa Kinoshita
- Department of Cardiovascular Medicine, Toyohashi Heart Center, Toyohashi, Japan
| | - Masahiro Yamawaki
- Department of Cardiology, Saiseikai Yokohama-Eastern Hospital, Yokohama, Japan
| | - Toshiro Shinke
- Department of Cardiovascular Medicine, Kobe University, Kobe, Japan
| | - Yoshihiro Takeda
- Department of Cardiology, Rinku General Medical Center, Izumi-Sano, Japan
| | - Kenichi Fujii
- Department of Cardiovascular Medicine, Hyogo Medical University, Nishinomiya, Japan.,Department of Cardiology, Higashi Takarazuka Sato Hospital, Takarazuka, Japan
| | - Shin-Ichiro Yamada
- Department of Cardiovascular Medicine, Himeji Cardiovascular Center, Himeji, Japan.,Department of Cardiology, Kita Harima Medical Center, Ono, Japan
| | - Yoshihisa Shimada
- Department of Cardiovascular Medicine, Cardiovascular Center, Shiroyama Hospital, Habikino, Japan
| | - Takehiro Yamashita
- Department of Cardiovascular Medicine, Cardiovascular Center Hokkaido Ono Hospital, Sapporo, Japan
| | - Kazuhiko Yumoto
- Department of Cardiovascular Medicine, Yokohama Rosai Hospital, Yokohama, Japan
| | | |
Collapse
|
34
|
Castells-Sala C, Martorell J, Balcells M. A human plasma derived supplement preserves function of human vascular cells in absence of fetal bovine serum. Cell Biosci 2017; 7:41. [PMID: 28811873 PMCID: PMC5554976 DOI: 10.1186/s13578-017-0164-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/24/2017] [Indexed: 11/10/2022] Open
Abstract
Current techniques for cell culture routinely use animal-derived components. Fetal bovine serum (FBS) is the most widely applied supplement, but it often displays significant batch-to-batch variations and is generally not suitable for clinical applications in humans. A robust and xeno-free alternative to FBS is of high interest for cellular therapies, from early in vitro testing to clinical trials in human subjects. In the current work, a highly consistent human plasma derived supplement (SCC) has been tested, as a potential substitute of FBS in primary human vascular cells culture. Our results show that SCC is able to support proliferation, preserve cellular morphology and potentiate functionality analogously to FBS. We conclude that SCC is a viable substitute of FBS for culture and expansion of cells in advanced therapies using human vascular cells and fibroblasts.
Collapse
Affiliation(s)
- C Castells-Sala
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - J Martorell
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - M Balcells
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
35
|
Garcia-Polite F, Martorell J, Del Rey-Puech P, Melgar-Lesmes P, O’Brien CC, Roquer J, Ois A, Principe A, Edelman ER, Balcells M. Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium. J Cereb Blood Flow Metab 2017; 37:2614-2625. [PMID: 27702879 PMCID: PMC5531355 DOI: 10.1177/0271678x16672482] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/17/2016] [Accepted: 09/08/2016] [Indexed: 12/30/2022]
Abstract
Microvascular endothelial cells at the blood-brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli. Amongst them, shear stress enhances junctional tightness and limits transport at capillary-like levels. Abnormal flow patterns can reduce functional features of macrovascular endothelium. We now examine if this is true in brain microvascular endothelial cells. We suggest in this paper a complex response of endothelial cells to aberrant forces under different flow domains. Human brain microvascular endothelial cells were exposed to physiological or abnormal flow patterns. Physiologic shear (10-20 dyn/cm2) upregulates expression of tight junction markers Zona Occludens 1 (1.7-fold) and Claudin-5 (more than 2-fold). High shear stress (40 dyn/cm2) and/or pulsatility decreased their expression to basal levels and altered junctional morphology. We exposed cells to pathological shear stress patterns followed by capillary-like conditions. Results showed reversible recovery on the expression of tight junction markers. Flow protection of barrier phenotype commensurate with junctional signaling pathways decrease (Src, 0.25-fold, ERK, 0.77-fold) when compared to static conditions. This decrease was lost under high shear and pulsatile flow. In conclusion, abnormal shear stress inherent to systemic vascular disease leads to barrier impairment, which could be reverted by hemodynamic interventions.
Collapse
Affiliation(s)
- Fernando Garcia-Polite
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Jordi Martorell
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Paula Del Rey-Puech
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Pedro Melgar-Lesmes
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline C O’Brien
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaume Roquer
- Servei de Neurologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Angel Ois
- Servei de Neurologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alessandro Principe
- Servei de Neurologia, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| |
Collapse
|
36
|
Arzani A, Shadden SC. Characterizations and Correlations of Wall Shear Stress in Aneurysmal Flow. J Biomech Eng 2016; 138:2473566. [PMID: 26592536 DOI: 10.1115/1.4032056] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 11/08/2022]
Abstract
Wall shear stress (WSS) is one of the most studied hemodynamic parameters, used in correlating blood flow to various diseases. The pulsatile nature of blood flow, along with the complex geometries of diseased arteries, produces complicated temporal and spatial WSS patterns. Moreover, WSS is a vector, which further complicates its quantification and interpretation. The goal of this study is to investigate WSS magnitude, angle, and vector changes in space and time in complex blood flow. Abdominal aortic aneurysm (AAA) was chosen as a setting to explore WSS quantification. Patient-specific computational fluid dynamics (CFD) simulations were performed in six AAAs. New WSS parameters are introduced, and the pointwise correlation among these, and more traditional WSS parameters, was explored. WSS magnitude had positive correlation with spatial/temporal gradients of WSS magnitude. This motivated the definition of relative WSS gradients. WSS vectorial gradients were highly correlated with magnitude gradients. A mix WSS spatial gradient and a mix WSS temporal gradient are proposed to equally account for variations in the WSS angle and magnitude in single measures. The important role that WSS plays in regulating near wall transport, and the high correlation among some of the WSS parameters motivates further attention in revisiting the traditional approaches used in WSS characterizations.
Collapse
|
37
|
Wolf F, Vogt F, Schmitz-Rode T, Jockenhoevel S, Mela P. Bioengineered vascular constructs as living models for in vitro cardiovascular research. Drug Discov Today 2016; 21:1446-1455. [PMID: 27126777 DOI: 10.1016/j.drudis.2016.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases represent the most common cause of morbidity and mortality worldwide. In this review, we explore the potential of bioengineered vascular constructs as living models for in vitro cardiovascular research to advance the current knowledge of pathophysiological processes and support the development of clinical therapies. Bioengineered vascular constructs capable of recapitulating the cellular and mechanical environment of native vessels represent a valuable platform to study cellular interactions and signaling cascades, test drugs and medical devices under (patho)physiological conditions, with the additional potential benefit of reducing the number of animals required for preclinical testing.
Collapse
Affiliation(s)
- Frederic Wolf
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Felix Vogt
- Department of Cardiology, Pulmonology, Intensive Care and Vascular Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen, Germany; Aachen-Maastricht Institute for Biobased Materials, Maastricht University at Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Petra Mela
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| |
Collapse
|
38
|
Gallo D, Steinman DA, Morbiducci U. Insights into the co-localization of magnitude-based versus direction-based indicators of disturbed shear at the carotid bifurcation. J Biomech 2016; 49:2413-9. [PMID: 26900036 DOI: 10.1016/j.jbiomech.2016.02.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 11/26/2022]
Abstract
The observed co-localization of disturbed flow and lesion prevalence at predisposed districts such as the carotid bifurcation has led to the identification of the wall shear stress (WSS) as biomechanical localizing factor of vascular dysfunction. In particular, a proatherogenic role is attributed to low and oscillatory WSS. However, the endothelial cells (ECs) are exposed to a complex hemodynamic milieu that can be only partially described by low/oscillatory WSS. Recently, in the attempt to close this gap, descriptors of the complex multidirectional nature of WSS have been proposed, i.e., the axial component of WSS (aligned with the vessel׳s centerline, to quantify flow reversal), and the transverse WSS (transWSS, quantifying the WSS component orthogonal to the cycle averaged WSS direction). Here we explore the relationship between recently-proposed indicators quantifying WSS multidirectionality and "established" WSS-based hemodynamic descriptors of low/oscillatory WSS, in a representative sample (N=46) of subject-specific computational hemodynamics models of ostensibly normal carotid bifurcations. To do it, we quantitatively assess the co-localization of those descriptors at the luminal surface, aiming at providing connections among the peculiar hemodynamic features captured by the different descriptors. According to our findings: (1) regions of flow reversal are moderately co-localized with low WSS; (2) high WSS oscillations (quantified by the oscillatory shear index, OSI) at the carotid bulb are prevalently aligned with the main flow, where flow reversal is predominant; (3) regions where transWSS is high do not co-localize with the other descriptors. We suggest that the investigated WSS-based descriptors might represent different hemodynamic disturbances with different impact on ECs homeostasis, potentially being part of WSS phenotypes more effective in localizing the map of vascular atherosclerotic lesions.
Collapse
Affiliation(s)
- Diego Gallo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - David A Steinman
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON Canada
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
39
|
Zimering MB, Knight J, Ge L, Bahn G. Predictors of Cognitive Decline in Older Adult Type 2 Diabetes from the Veterans Affairs Diabetes Trial. Front Endocrinol (Lausanne) 2016; 7:123. [PMID: 27660621 PMCID: PMC5015004 DOI: 10.3389/fendo.2016.00123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022] Open
Abstract
AIMS Cognitive decline disproportionately affects older adult type 2 diabetes. We tested whether randomized intensive (INT) glucose-lowering reduces the rate(s) of cognitive decline in adults with advanced type 2 diabetes (mean: age, 60 years; diabetes duration, 11 years) from the Veterans Affairs Diabetes Trial. METHODS A battery of neuropsychological tests [digit span, digit symbol substitution (DSym), and Trails-making Test-Part B (TMT-B)] was administered at baseline in ~1700 participants and repeated at year 5. Thirty-seven risk factors were evaluated as predictors of cognitive decline in multivariable regression analyses. RESULTS The mean age-adjusted DSym or TMT-B declined significantly in all study participants (P < 0.001). Randomized INT glucose-lowering did not significantly alter the rate of cognitive decline. The final model of risk factors associated with 5-year decline in age-adjusted TMT-B included as significant predictors: longer baseline diabetes duration (beta = -0.028; P = 0.0057), lower baseline diastolic blood pressure (BP; beta = 0.028; P = 0.002), and baseline calcium channel blocker medication use (beta = -0.639; P < 0.001). Higher baseline pulse pressure was significantly associated with decline in age-adjusted TMT-B suggesting a role for both higher systolic and lower diastolic BPs. Baseline thiazide diuretic use (beta = -0.549; P = 0.015) was an additional significant predictor of 5-year decline in age-adjusted digit symbol score. Post-baseline systolic BP-lowering was significantly associated (P < 0.001) with decline in TMT-B performance. There was a significant inverse association between post-baseline plasma triglyceride-lowering (P = 0.045) and decline in digit symbol substitution task performance. CONCLUSION A 5-year period of randomized INT glucose-lowering did not significantly reduce the rate of cognitive decline in older-aged adults with type 2 diabetes. Systolic and diastolic BPs as well as plasma triglycerides appeared as modifiable risk factors of the rate of cognitive decline in older adult type 2 diabetes.
Collapse
Affiliation(s)
- Mark B. Zimering
- Medical Service, Department of Veterans Affairs New Jersey Health Care System, Lyons, NJ, USA
- Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- *Correspondence: Mark B. Zimering,
| | - Jeffrey Knight
- National Center for PTSD, VA Boston Healthcare System, Boston MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Ling Ge
- Hines Veterans Affairs Hospital, Hines, IL, USA
| | - Gideon Bahn
- Hines Veterans Affairs Hospital, Hines, IL, USA
| | | |
Collapse
|
40
|
Morbiducci U, Gallo D, Cristofanelli S, Ponzini R, Deriu MA, Rizzo G, Steinman DA. A rational approach to defining principal axes of multidirectional wall shear stress in realistic vascular geometries, with application to the study of the influence of helical flow on wall shear stress directionality in aorta. J Biomech 2015; 48:899-906. [PMID: 25748224 DOI: 10.1016/j.jbiomech.2015.02.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/03/2015] [Accepted: 02/15/2015] [Indexed: 11/17/2022]
Abstract
The distribution of arterial lesions is attributed by the prevalent mechanistic theory to the proatherogenic role played by low and oscillatory wall shear stress (WSS). However, discrepancies observed when comparing WSS distribution with location of regions with lesion prevalence challenge this theory and have recently stimulated the idea that a role in endothelial mechanosensing is played by WSS multidirectionality, which could contribute to explain the observed discrepancies. Here an approach is presented for analyzing the multidirectional nature of WSS in complex vascular geometries. Using an essential geometric attribute of the vessel (its centerline), the local WSS vector is projected along an "axial" direction (aligned with the tangent to the vessel׳s centerline), and "secondary" direction (orthogonal to centerline׳s tangent), which is related to secondary flow. The WSS projection scheme is applied: (1) to a realistic computational hemodynamic model of human aorta, with the aim to come up with a plausibility checking regarding its consistency; and (2) to investigate if an aortic hemodynamics characterized by different amount and topology of helical flow (HF) could influence WSS directionality. The projection scheme confirmed its consistency and plausibility in realistic arterial geometries and allowed to get insight into the relationship between aortic intravascular fluid structures and WSS directionality. The findings of this study clearly show the potential of the projection scheme as quantitative tool for an in depth investigation of the WSS multidirectional nature. The proposed approach enriches the arsenal of tools available to study and exploit the role played by local hemodynamics in vascular disease.
Collapse
Affiliation(s)
- Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| | - Diego Gallo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Simone Cristofanelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | - Marco A Deriu
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
| | | | - David A Steinman
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
41
|
Arzani A, Suh GY, Dalman RL, Shadden SC. A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. Am J Physiol Heart Circ Physiol 2014; 307:H1786-95. [PMID: 25326533 DOI: 10.1152/ajpheart.00461.2014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abdominal aortic aneurysm (AAA) is often accompanied by in traluminal thrombus (ILT), which complicates AAA progression and risk of rupture. Patient-specific computational fluid dynamics modeling of 10 small human AAA was performed to investigate relations between hemodynamics and ILT progression. The patients were imaged using magnetic resonance twice in a 2- to 3-yr interval. Wall content data were obtained by a planar T1-weighted fast spin echo black-blood scan, which enabled quantification of thrombus thickness at midaneurysm location during baseline and followup. Computational simulations with patient-specific geometry and boundary conditions were performed to quantify the hemodynamic parameters of time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and mean exposure time at baseline. Spatially resolved quantifications of the change in ILT thickness were compared with the different hemodynamic parameters. Regions of low OSI had the strongest correlation with ILT growth and demonstrated a statistically significant correlation coefficient. Prominent regions of high OSI (>0.4) and low TAWSS (<1 dyn/cm(2)) did not appear to coincide with locations of thrombus deposition.
Collapse
Affiliation(s)
- Amirhossein Arzani
- Mechanical Engineering, University of California, Berkeley, California; and
| | - Ga-Young Suh
- Division of Vascular Surgery, Stanford University, Stanford, California
| | - Ronald L Dalman
- Division of Vascular Surgery, Stanford University, Stanford, California
| | - Shawn C Shadden
- Mechanical Engineering, University of California, Berkeley, California; and
| |
Collapse
|