1
|
Blair GA, Depman M, Adams WP, Maisonneuve RO, Hoeker GS, Weinberg SH, Poelzing S. Sequence-Dependent Repolarization Is Modulated by Endogenous Action Potential Duration Gradients Rather Than Electrical Coupling in Ventricular Myocardium. J Am Heart Assoc 2025; 14:e030433. [PMID: 39719415 DOI: 10.1161/jaha.123.030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Previous studies suggest the relationship between activation time (AT) and action potential duration (APD) in the heart is dependent on electrotonic coupling, but this has not been directly tested. This study assessed whether acute changes in electrical coupling, or other determinants of conduction or repolarization, modulate APD heterogeneity. METHODS AND RESULTS Langendorff-perfused guinea pig hearts were epicardially paced and optically mapped after treatment with the gap junction uncoupler carbenoxolone, ephaptic uncoupler mannitol, ephaptic enhancer dextran 2MDa, sodium channel inhibitor flecainide, or rapid component of the delayed rectifier potassium channel inhibitor E4031. SD of APD and the AT-APD slope and coefficient of determination were quantified as metrics of APD heterogeneity. SD of APD increased with carbenoxolone, mannitol, and altered activation sequence. The AT-APD slope was insensitive to carbenoxolone, mannitol, dextran, flecainide, or E4031 but changed in response to activation sequence. The coefficient of determination did not change with carbenoxolone; decreased with mannitol, E4031, and activation sequence; but increased with dextran and flecainide. APD heterogeneity changes were dependent on whether the estimation used SD of APD or the AT-APD relationship. The pacing stimulus increased APD at the site of stimulation, revealing a confounding stimulus effect on APD within the measurement area. Simulations predict that the stimulus artifact and endogenous APD gradients are stronger determinants of APD heterogeneity than AT. CONCLUSIONS APD dependence on conduction is relatively small. Furthermore, APD heterogeneity within a mapping field of view is dependent on endogenous gradients, the stimulus artifact, and the experimental approach, rather than electrical coupling.
Collapse
Affiliation(s)
- Grace A Blair
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech Roanoke VA USA
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - Madeline Depman
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech Roanoke VA USA
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - William P Adams
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - Rowan O Maisonneuve
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - Gregory S Hoeker
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - Seth H Weinberg
- Department of Biomedical Engineering Davis Heart and Lung Research Institute, The Ohio State University Columbus OH USA
| | - Steve Poelzing
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech Roanoke VA USA
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
- Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Blacksburg VA USA
| |
Collapse
|
2
|
Takasugi N, Endo S, Takasugi M, Tochibora R, Yoshida A, Watanabe T, Kawaguchi T, Yamada Y, Kanamori H, Ushikoshi H, Okura H. Roles of Atrial Arrhythmias in Triggering Torsade de Pointes in Patients With Acquired Long QT Syndrome. Circ Arrhythm Electrophysiol 2024; 17:e012675. [PMID: 39234741 DOI: 10.1161/circep.123.012675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Little is known about the role of atrial arrhythmias (AAs) in triggering Torsade de Pointes (TdP) in patients with long QT syndrome (LQTS). The aim of this study was to examine the contribution of AAs to the development of TdP in acquired LQTS patients. METHODS The initiation patterns of 81 episodes of TdP obtained from 34 consecutive acute acquired LQTS patients (14 men, median age, 69 years; median QTc, 645.5 ms) with documented TdP were analyzed. The initiation mode of TdP was divided into 3 categories: (1) preceding short-long sequence (SLS); (2) sudden R-on-T phenomenon without preceding SLS; and (3) increased atrial rate. The patients were divided into 2 groups based on the presence or absence of AAs-induced TdP; AAs-induced (n=18) and non-AAs-induced (n=16) groups. The association of clinical/ECG characteristics and TdP frequency after initiating conventional therapy with AAs-induced TdP was evaluated. The groups were compared using the Mann-Whitney U test or Fisher exact test. RESULTS AAs-induced group comprised 52.9% (18/34) of the patients studied. TdP was preceded by AAs-initiated SLSs in 41.2% (14/34) of the patients and was directly induced by R-on-T AAs (AAs coincidentally encountered a vulnerable repolarizing region during the T wave) in 23.5% (8/34). AAs triggered 48 (59.3%) of the 81 TdP episodes. AAs initiated SLSs in 67.8% (40/59) of the SLS-induced TdP episodes. R-on-T AAs accounted for 23.5% (19/81) of the TdP episodes. AAs-induced group experienced TdP after initiating therapy more frequently than non-AAs-induced group (2.5 versus 1 event, P=0.008). AAs-induced group exhibited macroscopic T-wave alternans more frequently than non-AAs-induced group (6 versus 0 event, P=0.02). CONCLUSIONS AAs play a key role in triggering TdP in more than half of patients with acute acquired LQTS and can increase TdP frequency after initiating therapy. Thus, AAs are not benign but rather can be life-threatening in patients with acute acquired LQTS.
Collapse
Affiliation(s)
- Nobuhiro Takasugi
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Susumu Endo
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | | | - Ryota Tochibora
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Akihiro Yoshida
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Takatomo Watanabe
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Tomonori Kawaguchi
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Yoshihisa Yamada
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Hiromitsu Kanamori
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Hiroaki Ushikoshi
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| | - Hiroyuki Okura
- Gifu University Hospital (N.T., S.E., R.T., A.Y., T.W., T.K., Y.Y., H.K., H.U., H.O.)
| |
Collapse
|
3
|
Birla RK. State of the art in Purkinje bioengineering. Tissue Cell 2024; 90:102467. [PMID: 39053130 DOI: 10.1016/j.tice.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
This review article will cover the recent developments in the new evolving field of Purkinje bioengineering and the development of human Purkinje networks. Recent work has progressed to the point of a methodological and systematic process to bioengineer Purkinje networks. This involves the development of 3D models based on human anatomy, followed by the development of tunable biomaterials, and strategies to reprogram stem cells to Purkinje cells. Subsequently, the reprogrammed cells and the biomaterials are coupled to bioengineer Purkinje networks, which are then tested using a small animal injury model. In this article, we discuss this process as a whole and then each step separately. We then describe potential applications of bioengineered Purkinje networks and challenges in the field that need to be overcome to move this field forward. Although the field of Purkinje bioengineering is new and in a state of infancy, it holds tremendous potential, both for therapeutic applications and to develop tools that can be used for disease modeling.
Collapse
Affiliation(s)
- Ravi K Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA; Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA; Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA; Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
4
|
Berg LA, Rocha BM, Oliveira RS, Sebastian R, Rodriguez B, de Queiroz RAB, Cherry EM, Dos Santos RW. Enhanced optimization-based method for the generation of patient-specific models of Purkinje networks. Sci Rep 2023; 13:11788. [PMID: 37479707 PMCID: PMC10362015 DOI: 10.1038/s41598-023-38653-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
Cardiac Purkinje networks are a fundamental part of the conduction system and are known to initiate a variety of cardiac arrhythmias. However, patient-specific modeling of Purkinje networks remains a challenge due to their high morphological complexity. This work presents a novel method based on optimization principles for the generation of Purkinje networks that combines geometric and activation accuracy in branch size, bifurcation angles, and Purkinje-ventricular-junction activation times. Three biventricular meshes with increasing levels of complexity are used to evaluate the performance of our approach. Purkinje-tissue coupled monodomain simulations are executed to evaluate the generated networks in a realistic scenario using the most recent Purkinje/ventricular human cellular models and physiological values for the Purkinje-ventricular-junction characteristic delay. The results demonstrate that the new method can generate patient-specific Purkinje networks with controlled morphological metrics and specified local activation times at the Purkinje-ventricular junctions.
Collapse
Affiliation(s)
- Lucas Arantes Berg
- Graduate Program in Computational Modeling, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
- Department of Computer Science, University of Oxford, Oxford, UK.
| | - Bernardo Martins Rocha
- Graduate Program in Computational Modeling, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rafael Sachetto Oliveira
- Department of Computer Science, Federal University of São João del-Rei, São João del-Rei, Brazil
| | - Rafael Sebastian
- Department of Computer Science, Universitat de Valencia, Valencia, Spain
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Rafael Alves Bonfim de Queiroz
- Graduate Program in Computational Modeling, Federal University of Juiz de Fora, Juiz de Fora, Brazil
- Department of Computer Science, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Elizabeth M Cherry
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rodrigo Weber Dos Santos
- Graduate Program in Computational Modeling, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
5
|
Surget E, Duchateau J, Marchant J, Maury P, Walton R, Lavergne T, Gandjbakhch E, Leenhardt A, Extramiana F, Haïssaguerre M. Idiopathic ventricular fibrillation associated with long-coupled Purkinje ectopy. J Cardiovasc Electrophysiol 2023; 34:615-623. [PMID: 36748854 DOI: 10.1111/jce.15833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Idiopathic ventricular fibrillation (IVF) is mainly associated with and triggered by short-coupled (R-on-T) ventricular ectopics. However, little is known about the risk of VF associated with long-coupled premature ventricular complexes (LCPVCs). OBJECTIVE To examine the prevalence and characteristics of IVF patients presenting with LCPVCs. METHODS Consecutive patients with IVF and PVCs from five arrhythmia referral centers were reviewed. We included patients presenting LCPVCs, defined as PVCs falling after the end of the T wave, with a normal QTc interval. We evaluated demographics, medical history, and clinical circumstances associated with PVCs and VF episodes. The origin of PVCs was determined by invasive mapping. RESULTS Seventy-nine patients with IVF were reviewed. Among them, 12 (15.2%) met the inclusion criteria (8 women, age 36 ± 14 years). Eleven patients had documented LCPVCs initiating repetitive PVCs or sustained VF, whereas 1 had only documented isolated PVCs. In 10 of 12 patients, PVCs were recorded showing both long and short coupling intervals of 418 ± 46 and 304 ± 33 ms, respectively. Mapping showed that PVCs originated from the left Purkinje in 10 patients, from the right Purkinje in 1 patient, and both in 1 patient. Compared to other patients from the initial cohort, IVF with LCPVCs was associated with a left-sided origin of PVCs (92% in long-coupled IVF vs. 46% of left Purkinje PVCs in short-coupled IVF, p = .004). CONCLUSION Long-coupled fascicular PVCs, traditionally recognized as benign, can be associated with IVF in a subset of patients. They can induce IVF by themselves or in association with short-coupled PVCs.
Collapse
Affiliation(s)
- Elodie Surget
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Josselin Duchateau
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - James Marchant
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Philippe Maury
- Cardiology Department, Rangueil University Hospital, Toulouse, France
| | - Richard Walton
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Thomas Lavergne
- Cardiology Department, Rhythmology Unit, Hôpital Européen Georges Pompidou, Paris, France
| | - Estelle Gandjbakhch
- Institute of Cardiology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Antoine Leenhardt
- Université de Paris Cité, CNMR, Maladies Cardiaques Héréditaires Rares, APHP Hôpital Bichat, Paris, France
| | - Fabrice Extramiana
- Université de Paris Cité, CNMR, Maladies Cardiaques Héréditaires Rares, APHP Hôpital Bichat, Paris, France
| | - Michel Haïssaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| |
Collapse
|
6
|
Hurley M, Kaur S, Walton R, Power A, Haïssaguerre M, Bernus O, Ward ML, White E. Endocardial role in arrhythmias induced by acute ventricular stretch and the involvement of Purkinje fibres, in isolated rat hearts. Curr Res Physiol 2023; 6:100098. [PMID: 36814643 PMCID: PMC9939534 DOI: 10.1016/j.crphys.2023.100098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Purkinje fibres (PFs) play an important role in some ventricular arrhythmias and acute ventricular stretch can evoke mechanically-induced arrhythmias. We tested whether PFs and specifically TRPM4 channels, play a role in these mechanically-induced arrhythmias. Pseudo-ECGs and left ventricular (LV) activation, measured by optical mapping, were recorded in isolated, Langendorff-perfused, rat hearts. The LV endocardial surface was irrigated with experimental agents, via an indwelling catheter. The number and period of ectopic activations was measured during LV lumen inflation via an indwelling fluid-filled balloon (100 μL added over 2 s, maintained for 38 s). Mechanically-induced arrhythmias occurred during balloon inflation: they were multifocal, maximal in the first 5 s and ceased within 20 s. Optical mapping revealed activation patterns indicating PF-mediated and ectopic focal sources. Irrigation of the LV lumen with Lugol solution (IK/I2) for 10s reduced ectopics by 93% (n = 16, P < 0.001); with ablation of endocardial PFs confirmed by histology. Five min irrigation of the LV lumen with 50 μM 9-Phenanthrol, a blocker of TRPM4 channels, reduced ectopics by 39% (n = 15, P < 0.01). Immunohistochemistry confirmed that TRPM4 was more abundant in PFs than myocardium. Our results show that the endocardial surface plays an important role in these mechanically-induced ectopic activations. Ectopic activation patterns indicate a participation of PFs in these arrhythmias, with a potential involvement of TRPM4 channels, shown by the reduction of arrhythmias by 9-Phenanthrol.
Collapse
Affiliation(s)
- Miriam Hurley
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Sarbjot Kaur
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Richard Walton
- Université Bordeaux, INSERM Centre de recherche Cardio-Thoracique de Bordeaux, Pessac, Bordeaux, France,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation, Bordeaux Université, Pessac, Bordeaux, France
| | - Amelia Power
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Michel Haïssaguerre
- Université Bordeaux, INSERM Centre de recherche Cardio-Thoracique de Bordeaux, Pessac, Bordeaux, France,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation, Bordeaux Université, Pessac, Bordeaux, France,Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, Pessac, France
| | - Olivier Bernus
- Université Bordeaux, INSERM Centre de recherche Cardio-Thoracique de Bordeaux, Pessac, Bordeaux, France,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation, Bordeaux Université, Pessac, Bordeaux, France
| | - Marie-Louise Ward
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Ed White
- School of Biomedical Sciences, University of Leeds, Leeds, UK,Corresponding author. Garstang Building, School of Biomedical Sciences, University of Leeds, LS29JT, Leeds, UK.
| |
Collapse
|
7
|
Ezzeddine FM, Ward RC, Asirvatham SJ, DeSimone CV. Mapping and ablation of ventricular fibrillation substrate. J Interv Card Electrophysiol 2023:10.1007/s10840-022-01454-z. [PMID: 36598715 DOI: 10.1007/s10840-022-01454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023]
Abstract
Ventricular fibrillation (VF) is a life-threatening arrhythmia and a common cause of sudden cardiac death (SCD). A basic understanding of its mechanistic underpinning is crucial for enhancing our knowledge to develop innovative mapping and ablation techniques for this lethal rhythm. Significant advances in our understanding of VF have been made especially in the basic science and pre-clinical experimental realms. However, these studies have not yet translated into a robust clinical approach to identify and successfully ablate both the structural and functional substrate of VF. In this review, we aim to (1) provide a conceptual framework of VF and an overview of the data supporting the spatiotemporal dynamics of VF, (2) review experimental approaches to mapping VF to elucidate drivers and substrate for maintenance with a focus on the His-Purkinje system, (3) discuss current approaches using catheter ablation to treat VF, and (4) highlight current unknowns and gaps in the field where future work is necessary to transform the clinical landscape.
Collapse
Affiliation(s)
- Fatima M Ezzeddine
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Robert Charles Ward
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Christopher V DeSimone
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Jian K, Li C, Hancox JC, Zhang H. Pro-Arrhythmic Effects of Discontinuous Conduction at the Purkinje Fiber-Ventricle Junction Arising From Heart Failure-Induced Ionic Remodeling - Insights From Computational Modelling. Front Physiol 2022; 13:877428. [PMID: 35547576 PMCID: PMC9081695 DOI: 10.3389/fphys.2022.877428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure is associated with electrical remodeling of the electrical properties and kinetics of the ion channels and transporters that are responsible for cardiac action potentials. However, it is still unclear whether heart failure-induced ionic remodeling can affect the conduction of excitation waves at the Purkinje fiber-ventricle junction contributing to pro-arrhythmic effects of heart failure, as the complexity of the heart impedes a detailed experimental analysis. The aim of this study was to employ computational models to investigate the pro-arrhythmic effects of heart failure-induced ionic remodeling on the cardiac action potentials and excitation wave conduction at the Purkinje fiber-ventricle junction. Single cell models of canine Purkinje fiber and ventricular myocytes were developed for control and heart failure. These single cell models were then incorporated into one-dimensional strand and three-dimensional wedge models to investigate the effects of heart failure-induced remodeling on propagation of action potentials in Purkinje fiber and ventricular tissue and at the Purkinje fiber-ventricle junction. This revealed that heart failure-induced ionic remodeling of Purkinje fiber and ventricular tissue reduced conduction safety and increased tissue vulnerability to the genesis of the unidirectional conduction block. This was marked at the Purkinje fiber-ventricle junction, forming a potential substrate for the genesis of conduction failure that led to re-entry. This study provides new insights into proarrhythmic consequences of heart failure-induced ionic remodeling.
Collapse
Affiliation(s)
- Kun Jian
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Chen Li
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Anderson RD, Massé S, Asta J, Lai PFH, Chakraborty P, Azam MA, Downar E, Nanthakumar K. Role of Purkinje-Muscle Junction in Early Ventricular Fibrillation in a Porcine Model: Beyond the Trigger Concept. Pacing Clin Electrophysiol 2022; 45:742-751. [PMID: 35067947 DOI: 10.1111/pace.14453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/01/2022] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The role of the Purkinje network in triggering ventricular fibrillation (VF) has been studied, however, its involvement after onset and in early maintenance of VF is controversial. AIM We studied the role of the Purkinje-muscle junctions (PMJ) on epicardial-endocardial activation gradients during early VF. METHODS In a healthy, porcine, beating-heart Langendorff model [control, n = 5; ablation, n = 5], simultaneous epicardial-endocardial dominant frequent mapping was used (224 unipolar electrograms) to calculate activation rate gradients during the onset and early phase of VF. Selective Purkinje ablation was performed using Lugol's solution, followed by VF re-induction and mapping and finally, histological evaluation. RESULTS Epicardial activation rates were faster than endocardial rates for both onset and early VF. After PMJ ablation, activation rates decreased epicardially and endocardially for both onset and early VF [Epi: 9.7±0.2 to 8.3±0.2 Hz (P<0.0001) and 10.9±0.4 to 8.8±0.3 Hz (P<0.0001), respectively; Endo: 8.2 ± 0.3 Hz to 7.4 ± 0.2 Hz (P<0.0001) and 7.0 ± 0.4 Hz to 6.6 ± 0.3 Hz (P = 0.0002), respectively]. In controls, epicardial-endocardial activation rate gradients during onset and early VF were 1.7±0.3 Hz and 4.5±0.4 Hz (P<0.001), respectively. After endocardial ablation of PMJs, these gradients were reduced to 0.9±0.3 Hz (onset VF, P<0.001) and to 2.2±0.3 Hz (early VF, P<0.001). Endocardial-epicardial Purkinje fibre arborization and selective Purkinje fibre extinction after only endocardial ablation (not with epicardial ablation) was confirmed on histological analysis. CONCLUSIONS Beyond the trigger paradigm, PMJs determine activation rate gradients during onset and during early maintenance of VF. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Robert D Anderson
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| | - John Asta
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| | - Patrick F H Lai
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| | - Praloy Chakraborty
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| | - Mohammed Ali Azam
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| | - Eugene Downar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Canada
| |
Collapse
|
10
|
The Purkinje network plays a major role in low-energy ventricular defibrillation. Comput Biol Med 2021; 141:105133. [PMID: 34954609 DOI: 10.1016/j.compbiomed.2021.105133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND During ventricular fibrillation (VF), targeting the excitable gap (EG) of reentry throughout the myocardium with low-energy surface stimulation shows promise for painless defibrillation. However, the Purkinje network may provide alternative pathways for reentry to evade termination. This study investigates the role of the Purkinje network in painless defibrillation. METHODS In a computational human biventricular model featuring a Purkinje network, VF was initiated with 4 Hz epicardial pacing. Defibrillation was attempted by stimulating myocardial surface EG with a low-energy 2 ms duration pulse at 2x stimulus capture, which was administered at coupling intervals incremented by 0.25 s between 0.25 and 5 s after VF initiation. Defibrillation was accomplished if reentry ceased ≤ 1 s after the defibrillation pulse. The protocol was repeated with the Purkinje network and myocardial surface EG stimulated simultaneously, and again after uncoupling the Purkinje network from the myocardium. RESULTS VF with the Purkinje network coupled and uncoupled had comparable dominant frequency in the left (3.81 ± 0.44 versus 3.77 ± 0.53 Hz) and right (3.80 ± 0.37 versus 3.76 ± 0.48 Hz) ventricles. When uncoupling the Purkinje network, myocardial surface EG stimulation terminated VF for all defibrillation pulses. When coupled, myocardial EG surface stimulation terminated VF for only 55% of the defibrillation pulses, but improved to 100% when stimulated simultaneously with Purkinje network EG. Defibrillation failures were attributed to EG evading stimulation in the Purkinje network. CONCLUSIONS Defibrillation that exclusively targets myocardium can fail due to accessory pathways in the Purkinje network that allow for reentrant activity to evade termination and maintain VF. Painless defibrillation strategies should be adapted to include the Purkinje network.
Collapse
|
11
|
Analysis of vulnerability to reentry in acute myocardial ischemia using a realistic human heart model. Comput Biol Med 2021; 141:105038. [PMID: 34836624 DOI: 10.1016/j.compbiomed.2021.105038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022]
Abstract
Electrophysiological alterations of the myocardium caused by acute ischemia constitute a pro-arrhythmic substrate for the generation of potentially lethal arrhythmias. Experimental evidence has shown that the main components of acute ischemia that induce these electrophysiological alterations are hyperkalemia, hypoxia (or anoxia in complete artery occlusion), and acidosis. However, the influence of each ischemic component on the likelihood of reentry is not completely established. Moreover, the role of the His-Purkinje system (HPS) in the initiation and maintenance of arrhythmias is not completely understood. In the present work, we investigate how the three components of ischemia affect the vulnerable window (VW) for reentry using computational simulations. In addition, we analyze the role of the HPS on arrhythmogenesis. A 3D biventricular/torso human model that includes a realistic geometry of the central and border ischemic zones with one of the most electrophysiologically detailed model of ischemia to date, as well as a realistic cardiac conduction system, were used to assess the VW for reentry. Four scenarios of ischemic severity corresponding to different minutes after coronary artery occlusion were simulated. Our results suggest that ischemic severity plays an important role in the generation of reentries. Indeed, this is the first 3D simulation study to show that ventricular arrhythmias could be generated under moderate ischemic conditions, but not in mild and severe ischemia. Moreover, our results show that anoxia is the ischemic component with the most significant effect on the width of the VW. Thus, a change in the level of anoxia from moderate to severe leads to a greater increment in the VW (40 ms), in comparison with the increment of 20 ms and 35 ms produced by the individual change in the level of hyperkalemia and acidosis, respectively. Finally, the HPS was a necessary element for the generation of approximately 17% of reentries obtained. The retrograde conduction from the myocardium to HPS in the ischemic region, conduction blocks in discrete sections of the HPS, and the degree of ischemia affecting Purkinje cells, are suggested as mechanisms that favor the generation of ventricular arrhythmias.
Collapse
|
12
|
Gillette K, Gsell MAF, Prassl AJ, Karabelas E, Reiter U, Reiter G, Grandits T, Payer C, Štern D, Urschler M, Bayer JD, Augustin CM, Neic A, Pock T, Vigmond EJ, Plank G. A Framework for the generation of digital twins of cardiac electrophysiology from clinical 12-leads ECGs. Med Image Anal 2021; 71:102080. [PMID: 33975097 DOI: 10.1016/j.media.2021.102080] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/15/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022]
Abstract
Cardiac digital twins (Cardiac Digital Twin (CDT)s) of human electrophysiology (Electrophysiology (EP)) are digital replicas of patient hearts derived from clinical data that match like-for-like all available clinical observations. Due to their inherent predictive potential, CDTs show high promise as a complementary modality aiding in clinical decision making and also in the cost-effective, safe and ethical testing of novel EP device therapies. However, current workflows for both the anatomical and functional twinning phases within CDT generation, referring to the inference of model anatomy and parameters from clinical data, are not sufficiently efficient, robust and accurate for advanced clinical and industrial applications. Our study addresses three primary limitations impeding the routine generation of high-fidelity CDTs by introducing; a comprehensive parameter vector encapsulating all factors relating to the ventricular EP; an abstract reference frame within the model allowing the unattended manipulation of model parameter fields; a novel fast-forward electrocardiogram (Electrocardiogram (ECG)) model for efficient and bio-physically-detailed simulation required for parameter inference. A novel workflow for the generation of CDTs is then introduced as an initial proof of concept. Anatomical twinning was performed within a reasonable time compatible with clinical workflows (<4h) for 12 subjects from clinically-attained magnetic resonance images. After assessment of the underlying fast forward ECG model against a gold standard bidomain ECG model, functional twinning of optimal parameters according to a clinically-attained 12 lead ECG was then performed using a forward Saltelli sampling approach for a single subject. The achieved results in terms of efficiency and fidelity demonstrate that our workflow is well-suited and viable for generating biophysically-detailed CDTs at scale.
Collapse
Affiliation(s)
- Karli Gillette
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Matthias A F Gsell
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
| | - Anton J Prassl
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
| | - Elias Karabelas
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; Institute for Mathematics and Natural Sciences, University of Graz, Austria
| | - Ursula Reiter
- Department of Radiology, Medical University of Graz, Graz, Austria
| | - Gert Reiter
- Department of Radiology, Medical University of Graz, Graz, Austria; Research and Development, Siemens Healthcare Diagnostics, Graz, Austria
| | - Thomas Grandits
- Institute of Computer Graphics and Vision, Graz University of Technology, Austria
| | - Christian Payer
- School of Computer Science, The University of Auckland, Auckland, New Zealand
| | - Darko Štern
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; Institute of Computer Graphics and Vision, Graz University of Technology, Austria
| | - Martin Urschler
- School of Computer Science, The University of Auckland, Auckland, New Zealand
| | - Jason D Bayer
- LIRYC Electrophysiology and Heart Modeling Institute, Bordeaux Foundation, Pessac, France
| | - Christoph M Augustin
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
| | | | - Thomas Pock
- Institute of Computer Graphics and Vision, Graz University of Technology, Austria
| | | | - Gernot Plank
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
13
|
Coronel R, Potse M, Haïssaguerre M, Derval N, Rivaud MR, Meijborg VMF, Cluitmans M, Hocini M, Boukens BJ. Why Ablation of Sites With Purkinje Activation Is Antiarrhythmic: The Interplay Between Fast Activation and Arrhythmogenesis. Front Physiol 2021; 12:648396. [PMID: 33833689 PMCID: PMC8021688 DOI: 10.3389/fphys.2021.648396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Ablation of sites showing Purkinje activity is antiarrhythmic in some patients with idiopathic ventricular fibrillation (iVF). The mechanism for the therapeutic success of ablation is not fully understood. We propose that deeper penetrance of the Purkinje network allows faster activation of the ventricles and is proarrhythmic in the presence of steep repolarization gradients. Reduction of Purkinje penetrance, or its indirect reducing effect on apparent propagation velocity may be a therapeutic target in patients with iVF.
Collapse
Affiliation(s)
- Ruben Coronel
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Mark Potse
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.,UMR5251 Institut de mathématiques de Bordeaux, Talence, France.,Carmen Team, Inria Bordeaux - Sud-Ouest, Talence, France
| | - Michel Haïssaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Nicolas Derval
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Mathilde R Rivaud
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Veronique M F Meijborg
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Matthijs Cluitmans
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mélèze Hocini
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Árpádffy-Lovas T, Husti Z, Baczkó I, Varró A, Virág L. Different effects of amiodarone and dofetilide on the dispersion of repolarization between well-coupled ventricular and Purkinje fibers 1. Can J Physiol Pharmacol 2020; 99:48-55. [PMID: 32692935 DOI: 10.1139/cjpp-2020-0234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased transmural dispersion of repolarization is an established contributing factor to ventricular tachyarrhythmias. In this study, we evaluated the effect of chronic amiodarone treatment and acute administration of dofetilide in canine cardiac preparations containing electrotonically coupled Purkinje fibers (PFs) and ventricular muscle (VM) and compared the effects to those in uncoupled PF and VM preparations using the conventional microelectrode technique. Dispersion between PFs and VM was inferred from the difference in the respective action potential durations (APDs). In coupled preparations, amiodarone decreased the difference in APDs between PFs and VM, thus decreasing dispersion. In the same preparations, dofetilide increased the dispersion by causing a more pronounced prolongation in PFs. This prolongation was even more emphasized in uncoupled PF preparations, while the effect in VM was the same. In uncoupled preparations, amiodarone elicited no change on the difference in APDs. In conclusion, amiodarone decreased the dispersion between PFs and VM, while dofetilide increased it. The measured difference in APD between cardiac regions may be the affected by electrotonic coupling; thus, studying PFs and VM separately may lead to an over- or underestimation of dispersion.
Collapse
Affiliation(s)
- Tamás Árpádffy-Lovas
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary.,MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| |
Collapse
|
15
|
Clayton RH, Aboelkassem Y, Cantwell CD, Corrado C, Delhaas T, Huberts W, Lei CL, Ni H, Panfilov AV, Roney C, dos Santos RW. An audit of uncertainty in multi-scale cardiac electrophysiology models. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190335. [PMID: 32448070 PMCID: PMC7287340 DOI: 10.1098/rsta.2019.0335] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Models of electrical activation and recovery in cardiac cells and tissue have become valuable research tools, and are beginning to be used in safety-critical applications including guidance for clinical procedures and for drug safety assessment. As a consequence, there is an urgent need for a more detailed and quantitative understanding of the ways that uncertainty and variability influence model predictions. In this paper, we review the sources of uncertainty in these models at different spatial scales, discuss how uncertainties are communicated across scales, and begin to assess their relative importance. We conclude by highlighting important challenges that continue to face the cardiac modelling community, identifying open questions, and making recommendations for future studies. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Richard H. Clayton
- Insigneo institute for in-silico Medicine and Department of Computer Science, University of Sheffield, Sheffield, UK
- e-mail:
| | - Yasser Aboelkassem
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | - Cesare Corrado
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Tammo Delhaas
- School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Wouter Huberts
- School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Chon Lok Lei
- Computational Biology and Health Informatics, Department of Computer Science, University of Oxford, Oxford, UK
| | - Haibo Ni
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Alexander V. Panfilov
- Department of Physics and Astronomy, University of Gent, Gent, Belgium
- Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia
| | - Caroline Roney
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | | |
Collapse
|
16
|
Sugrue A, Vaidya VR, Livia C, Padmanabhan D, Abudan A, Isath A, Witt T, DeSimone CV, Stalboerger P, Kapa S, Asirvatham SJ, McLeod CJ. Feasibility of selective cardiac ventricular electroporation. PLoS One 2020; 15:e0229214. [PMID: 32084220 PMCID: PMC7034868 DOI: 10.1371/journal.pone.0229214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction The application of brief high voltage electrical pulses to tissue can lead to an irreversible or reversible electroporation effect in a cell-specific manner. In the management of ventricular arrhythmias, the ability to target different tissue types, specifically cardiac conduction tissue (His-Purkinje System) vs. cardiac myocardium would be advantageous. We hypothesize that pulsed electric fields (PEFs) can be applied safely to the beating heart through a catheter-based approach, and we tested whether the superficial Purkinje cells can be targeted with PEFs without injury to underlying myocardial tissue. Methods In an acute (n = 5) and chronic canine model (n = 6), detailed electroanatomical mapping of the left ventricle identified electrical signals from myocardial and overlying Purkinje tissue. Electroporation was effected via percutaneous catheter-based Intracardiac bipolar current delivery in the anesthetized animal. Repeat Intracardiac electrical mapping of the heart was performed at acute and chronic time points; followed by histological analysis to assess effects. Results PEF demonstrated an acute dose-dependent functional effect on Purkinje, with titration of pulse duration and/or voltage associated with successful acute Purkinje damage. Electrical conduction in the insulated bundle of His (n = 2) and anterior fascicle bundle (n = 2), was not affected. At 30 days repeat cardiac mapping demonstrated resilient, normal electrical conduction throughout the targeted area with no significant change in myocardial amplitude (pre 5.9 ± 1.8 mV, 30 days 5.4 ± 1.2 mV, p = 0.92). Histopathological analysis confirmed acute Purkinje fiber targeting, with chronic studies showing normal Purkinje fibers, with minimal subendocardial myocardial fibrosis. Conclusion PEF provides a novel, safe method for non-thermal acute modulation of the Purkinje fibers without significant injury to the underlying myocardium. Future optimization of this energy delivery is required to optimize conditions so that selective electroporation can be utilized in humans the treatment of cardiac disease.
Collapse
Affiliation(s)
- Alan Sugrue
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Vaibhav R. Vaidya
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher Livia
- Department of Cardiovascular Medicine and Department of Molecular Pharmacology and Experimental Therapeutics, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Deepak Padmanabhan
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Anas Abudan
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Ameesh Isath
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Tyra Witt
- Department of Cardiovascular Medicine and Department of Molecular Pharmacology and Experimental Therapeutics, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher V. DeSimone
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Paul Stalboerger
- Department of Cardiovascular Medicine and Department of Molecular Pharmacology and Experimental Therapeutics, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Suraj Kapa
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Samuel J. Asirvatham
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher J. McLeod
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
17
|
Piktel JS, Wilson LD. Translational Models of Arrhythmia Mechanisms and Susceptibility: Success and Challenges of Modeling Human Disease. Front Cardiovasc Med 2019; 6:135. [PMID: 31552276 PMCID: PMC6748164 DOI: 10.3389/fcvm.2019.00135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/27/2019] [Indexed: 01/10/2023] Open
Abstract
We discuss large animal translational models of arrhythmia susceptibility and sudden cardiac death, focusing on important considerations when interpreting the data derived before applying them to human trials. The utility of large animal models of arrhythmia and the pros and cons of specific translational large animals used will be discussed, including the necessary tradeoffs between models designed to derive mechanisms vs. those to test therapies. Recent technical advancements which can be applied to large animal models of arrhythmias to better elucidate mechanistic insights will be introduced. Finally, some specific examples of past successes and challenges in translating the results of large animal models of arrhythmias to clinical trials and practice will be examined, and common themes regarding the success and failure of translating studies to therapy in man will be discussed.
Collapse
Affiliation(s)
| | - Lance D. Wilson
- Department of Emergency Medicine, Emergency Care Research Institute and Heart and Vascular Research Center, MetroHealth Campus of Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
18
|
El-Sherif N, Turitto G, Boutjdir M. Acquired Long QT Syndrome and Electrophysiology of Torsade de Pointes. Arrhythm Electrophysiol Rev 2019; 8:122-130. [PMID: 31114687 PMCID: PMC6528034 DOI: 10.15420/aer.2019.8.3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Congenital long QT syndrome (LQTS) has been the most investigated cardiac ion channelopathy. Although congenital LQTS remains the domain of cardiologists, cardiac electrophysiologists and specialised centres, the much more frequently acquired LQTS is the domain of physicians and other members of healthcare teams required to make therapeutic decisions. This paper reviews the electrophysiological mechanisms of acquired LQTS, its ECG characteristics, clinical presentation, and management. The paper concludes with a comprehensive review of the electrophysiological mechanisms of torsade de pointes.
Collapse
Affiliation(s)
- Nabil El-Sherif
- SUNY Downstate Medical CenterNY, US
- VA NY Harbor Healthcare SystemNY, US
| | - Gioia Turitto
- Weill Cornell Medical College, NewYork-Presbyterian Brooklyn Methodist HospitalNY, US
| | - Mohamed Boutjdir
- SUNY Downstate Medical CenterNY, US
- VA NY Harbor Healthcare SystemNY, US
- NYU School of MedicineNew York NY, US
| |
Collapse
|
19
|
Martinez ME, Walton RD, Bayer JD, Haïssaguerre M, Vigmond EJ, Hocini M, Bernus O. Role of the Purkinje-Muscle Junction on the Ventricular Repolarization Heterogeneity in the Healthy and Ischemic Ovine Ventricular Myocardium. Front Physiol 2018; 9:718. [PMID: 29962961 PMCID: PMC6010581 DOI: 10.3389/fphys.2018.00718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/24/2018] [Indexed: 01/23/2023] Open
Abstract
Alteration of action potential duration (APD) heterogeneity contributes to arrhythmogenesis. Purkinje-muscle junctions (PMJs) present differential electrophysiological properties including longer APD. The goal of this study was to determine if Purkinje-related or myocardial focal activation modulates ventricular repolarization differentially in healthy and ischemic myocardium. Simultaneous epicardial (EPI) and endocardial (ENDO) optical mapping was performed on sheep left ventricular (LV) wedges with intact free-running Purkinje network (N = 7). Preparations were paced on either ENDO or EPI surfaces, or the free-running Purkinje fibers (PFs), mimicking normal activation. EPI and ENDO APDs were assessed for each pacing configuration, before and after (7 min) of the onset of no-flow ischemia. Experiments were supported by simulations. In control conditions, maximal APD was found at endocardial PMJ sites. We observed a significant transmural APD gradient for PF pacing with PMJ APD = 347 ± 41 ms and EPI APD = 273 ± 36 ms (p < 0.001). A similar transmural gradient was observed when pacing ENDO (49 ± 31 ms; p = 0.005). However, the gradient was reduced when pacing EPI (37 ± 20 ms; p = 0.005). Global dispersion of repolarization was the most pronounced for EPI pacing. In ischemia, both ENDO and EPI APD were reduced (p = 0.005) and the transmural APD gradient (109 ± 55 ms) was increased when pacing ENDO compared to control condition or when pacing EPI (p < 0.05). APD maxima remained localized at functional PMJs during ischemia. Local repolarization dispersion was significantly higher at the PMJ than at other sites. The results were consistent with simulations. We found that the activation sequence modulates repolarization heterogeneity in the ischemic sheep LV. PMJs remain active following ischemia and exert significant influence on local repolarization patterns.
Collapse
Affiliation(s)
- Marine E Martinez
- Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France.,INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Richard D Walton
- Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France.,INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Jason D Bayer
- Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France.,UMR5251, Centre National De La Recherche Scientifique, Institut de Mathématiques de Bordeaux, Bordeaux, France
| | - Michel Haïssaguerre
- Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France.,INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.,Centre Hospitalier Universitaire, Bordeaux University Hospital, Hopital Cardiologique du Haut Lévèque, Bordeaux, France
| | - Edward J Vigmond
- Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France.,UMR5251, Centre National De La Recherche Scientifique, Institut de Mathématiques de Bordeaux, Bordeaux, France
| | - Mélèze Hocini
- Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France.,INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.,Centre Hospitalier Universitaire, Bordeaux University Hospital, Hopital Cardiologique du Haut Lévèque, Bordeaux, France
| | - Olivier Bernus
- Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France.,INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| |
Collapse
|
20
|
Boukens BJ, Meijborg VMF, Belterman CN, Opthof T, Janse MJ, Schuessler RB, Coronel R, Efimov IR. Local transmural action potential gradients are absent in the isolated, intact dog heart but present in the corresponding coronary-perfused wedge. Physiol Rep 2018; 5:e13251. [PMID: 28554962 PMCID: PMC5449556 DOI: 10.14814/phy2.13251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 11/24/2022] Open
Abstract
The left ventricular (LV) coronary‐perfused canine wedge preparation is a model commonly used for studying cardiac repolarization. In wedge studies, transmembrane potentials typically are recorded; whereas, extracellular electrical recordings are commonly used in intact hearts. We compared electrically measured activation recovery interval (ARI) patterns in the intact heart with those recorded at the same location in the LV wedge preparation. We also compared electrically recorded and optically obtained ARIs in the LV wedge preparation. Five Langendorff‐perfused canine hearts were paced from the right atrium. Local activation and repolarization times were measured with eight transmural needle electrodes. Subsequently, left ventricular coronary‐perfused wedge preparations were prepared from these hearts while the electrodes remained in place. Three electrodes remained at identical positions as in the intact heart. Both electrograms and optical action potentials were recorded (pacing cycle length 400–4000 msec) and activation and repolarization patterns were analyzed. ARIs found in the subepicardium were shorter than in the subendocardium in the LV wedge preparation but not in the intact heart. The transmural ARI gradient recorded at the cut surface of the wedge was not different from that recorded internally. ARIs recorded internally and at the cut surface in the LV wedge preparation, both correlated with optically recorded action potentials. ARI and RT gradients in the LV wedge preparation differed from those in the intact canine heart, implying that those observations in human LV wedge preparations also should be extrapolated to the intact human heart with caution.
Collapse
Affiliation(s)
- Bastiaan J Boukens
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia.,Department of Medical Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Veronique M F Meijborg
- Department of Experimental and Clinical Cardiology, University of Amsterdam, Amsterdam, The Netherlands.,Netherlands Heart Institute, Holland Heart House, Utrecht, The Netherlands
| | - Charly N Belterman
- Department of Experimental and Clinical Cardiology, University of Amsterdam, Amsterdam, The Netherlands.,Institut LIRYC, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac- Bordeaux, France
| | - Tobias Opthof
- Department of Experimental and Clinical Cardiology, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Physiology, University of Utrecht, Utrecht, The Netherlands
| | - Michiel J Janse
- Department of Experimental and Clinical Cardiology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ruben Coronel
- Department of Experimental and Clinical Cardiology, University of Amsterdam, Amsterdam, The Netherlands.,Institut LIRYC, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac- Bordeaux, France
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia.,Institut LIRYC, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac- Bordeaux, France
| |
Collapse
|
21
|
Campos FO, Shiferaw Y, Vigmond EJ, Plank G. Stochastic spontaneous calcium release events and sodium channelopathies promote ventricular arrhythmias. CHAOS (WOODBURY, N.Y.) 2017; 27:093910. [PMID: 28964108 PMCID: PMC5568869 DOI: 10.1063/1.4999612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Premature ventricular complexes (PVCs), the first initiating beats of a variety of cardiac arrhythmias, have been associated with spontaneous calcium release (SCR) events at the cell level. However, the mechanisms underlying the degeneration of such PVCs into arrhythmias are not fully understood. The objective of this study was to investigate the conditions under which SCR-mediated PVCs can lead to ventricular arrhythmias. In particular, we sought to determine whether sodium (Na+) current loss-of-function in the structurally normal ventricles provides a substrate for unidirectional conduction block and reentry initiated by SCR-mediated PVCs. To achieve this goal, a stochastic model of SCR was incorporated into an anatomically accurate compute model of the rabbit ventricles with the His-Purkinje system (HPS). Simulations with reduced Na+ current due to a negative-shift in the steady-state channel inactivation showed that SCR-mediated delayed afterdepolarizations led to PVC formation in the HPS, where the electrotonic load was lower, conduction block, and reentry in the 3D myocardium. Moreover, arrhythmia initiation was only possible when intrinsic electrophysiological heterogeneity in action potential within the ventricles was present. In conclusion, while benign in healthy individuals SCR-mediated PVCs can lead to life-threatening ventricular arrhythmias when combined with Na+ channelopathies.
Collapse
Affiliation(s)
- Fernando O Campos
- Department of Congenital Heart Diseases and Pediatric Cardiology, German Heart Institute Berlin, Berlin, Germany
| | - Yohannes Shiferaw
- Department of Physics, California State University, Northridge, California 91330, USA
| | | | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| |
Collapse
|
22
|
Zeng M, Jiang W, Tian Y, Hao J, Cao Z, Liu Z, Fu C, Zhang P, Ma J. Andrographolide inhibits arrhythmias and is cardioprotective in rabbits. Oncotarget 2017; 8:61226-61238. [PMID: 28977859 PMCID: PMC5617419 DOI: 10.18632/oncotarget.18051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/21/2017] [Indexed: 01/01/2023] Open
Abstract
Andrographolide has a protective effect on the cardiovascular system. To study its cardic-electrophysiological effects, action potentials and voltage-gated Na+ (INa), Ca2+ (ICaL), and K+ (IK1, IKr, Ito and IKur) currents were recorded using whole-cell patch clamp and current clamp techniques. Additionally, the effects of andrographolide on aconitine-induced arrhythmias were assessed on electrocardiograms in vivo. We found that andrographolide shortened action potential duration and reduced maximum upstroke velocity in rabbit left ventricular and left atrial myocytes. Andrographolide attenuated rate-dependence of action potential duration, and reduced or abolished delayed afterdepolarizations and triggered activities induced by isoproterenol (1 μM) and high calcium ([Ca2+]o=3.6 mM) in left ventricular myocytes. Andrographolide also concentration-dependently inhibited INa and ICaL, but had no effect on Ito, IKur, IK1, or IKr in rabbit left ventricular and left atrial myocytes. Andrographolide treatment increased the time and dosage thresholds of aconitine-induced arrhythmias, and reduced arrhythmia incidence and mortality in rabbits. Our results indicate that andrographolide inhibits cellular arrhythmias (delayed afterdepolarizations and triggered activities) and aconitine-induced arrhythmias in vivo, and these effects result from INa and ICaL inhibition. Andrographolide may be useful as a class I and IV antiarrhythmic therapeutic.
Collapse
Affiliation(s)
- Mengliu Zeng
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Wanzhen Jiang
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Youjia Tian
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jie Hao
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Zhenzhen Cao
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Zhipei Liu
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Chen Fu
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Peihua Zhang
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jihua Ma
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Transmural electrophysiological heterogeneity, the T-wave and ventricular arrhythmias. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:202-214. [DOI: 10.1016/j.pbiomolbio.2016.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/21/2016] [Accepted: 05/03/2016] [Indexed: 01/05/2023]
|
24
|
Opthof T, Janse MJ, Meijborg VMF, Cinca J, Rosen MR, Coronel R. Dispersion in ventricular repolarization in the human, canine and porcine heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:222-35. [PMID: 26790342 DOI: 10.1016/j.pbiomolbio.2016.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/12/2022]
Abstract
Dispersion in repolarization is important for the genesis of the T wave, and for the induction of reentrant arrhtyhmias. Because the T wave differs across species our intent here is to review the epicardial, endocardial and transmural repolarization patterns contributing to repolarization in whole hearts from man, dog and pig. The major points we emphasize are: transmural repolarization time gradients are small and are directed from endocardium (early) to epicardium (late) in dog and human and from epicardium to endocardium in pig; the right ventricle tends to repolarize before the left ventricle and this difference is larger in dog than in pig; a negative relation between the activation times and the repolarization times is rare in man, and absent in dog and pig. Given the above, a large dispersion in repolarization between two myocardial areas does not lead to arrhythmias without a premature beat. Moreover, an arrhythmic substrate can be identified by a metric composed of activation times and repolarization times, the reentry vulnerability index, RVI.
Collapse
Affiliation(s)
- Tobias Opthof
- Department of Clinical and Experimental Cardiology, Heart Center Amsterdam, The Netherlands; Department of Medical Physiology, University Medical Center Utrecht, The Netherlands.
| | - Michiel J Janse
- Department of Clinical and Experimental Cardiology, Heart Center Amsterdam, The Netherlands
| | - Veronique M F Meijborg
- Department of Clinical and Experimental Cardiology, Heart Center Amsterdam, The Netherlands
| | - Juan Cinca
- Cardiology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Michael R Rosen
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Ruben Coronel
- Department of Clinical and Experimental Cardiology, Heart Center Amsterdam, The Netherlands; IHU Institut de Rythmologie en Modélisation Cardiaque, Fondation Bordeaux Université, France
| |
Collapse
|
25
|
Boukens BJ, Sulkin MS, Gloschat CR, Ng FS, Vigmond EJ, Efimov IR. Transmural APD gradient synchronizes repolarization in the human left ventricular wall. Cardiovasc Res 2015. [PMID: 26209251 DOI: 10.1093/cvr/cvv202] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The duration and morphology of the T wave predict risk for ventricular fibrillation. A transmural gradient in action potential duration (APD) in the ventricular wall has been suggested to underlie the T wave in humans. We hypothesize that the transmural gradient in APD compensates for the normal endocardium-to-epicardium activation sequence and synchronizes repolarization in the human ventricular wall. METHODS AND RESULTS We made left ventricular wedge preparations from 10 human donor hearts and measured transmural activation and repolarization patterns by optical mapping, while simultaneously recording a pseudo-ECG. We also studied the relation between local timings of repolarization with the T wave in silico. During endocardial pacing (1 Hz), APD was longer at the subendocardium than at the subepicardium (360 ± 17 vs. 317 ± 20 ms, P < 0.05). The transmural activation time was 32 ± 4 ms and resulted in final repolarization of the subepicardium at 349 ± 18 ms. The overall transmural dispersion in repolarization time was smaller than that of APD. During epicardial pacing, the dispersion in repolarization time increased, whereas that of APD remained similar. The morphology of the T wave did not differ between endocardial and epicardial stimulation. Simulations explained the constant T wave morphology without transmural APD gradients. CONCLUSION The intrinsic transmural difference in APD compensates for the normal cardiac activation sequence, resulting in more homogeneous repolarization of the left ventricular wall. Our data suggest that the transmural repolarization differences do not fully explain the genesis of the T wave.
Collapse
Affiliation(s)
- Bastiaan J Boukens
- Department of Biomedical Engineering, George Washington University, 5000 Science and Engineering Hall, 800 22ng Street NW, Washington, DC 20052, USA
| | - Matthew S Sulkin
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Chris R Gloschat
- Department of Biomedical Engineering, George Washington University, 5000 Science and Engineering Hall, 800 22ng Street NW, Washington, DC 20052, USA
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Edward J Vigmond
- Institut LIRYC, and Institut de Mathématiques de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, 5000 Science and Engineering Hall, 800 22ng Street NW, Washington, DC 20052, USA Department of Biomedical Engineering, Washington University, St. Louis, MO, USA Institut LIRYC, and Institut de Mathématiques de Bordeaux, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
26
|
Doshi AN, Walton RD, Krul SP, de Groot JR, Bernus O, Efimov IR, Boukens BJ, Coronel R. Feasibility of a semi-automated method for cardiac conduction velocity analysis of high-resolution activation maps. Comput Biol Med 2015; 65:177-83. [PMID: 26045101 DOI: 10.1016/j.compbiomed.2015.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
Abstract
Myocardial conduction velocity is important for the genesis of arrhythmias. In the normal heart, conduction is primarily dependent on fiber direction (anisotropy) and may be discontinuous at sites with tissue heterogeneities (trabeculated or fibrotic tissue). We present a semi-automated method for the accurate measurement of conduction velocity based on high-resolution activation mapping following central stimulation. The method was applied to activation maps created from myocardium from man, sheep and mouse with anisotropic and discontinuous conduction. Advantages of the presented method over existing methods are discussed.
Collapse
Affiliation(s)
- Ashish N Doshi
- Department of Biomedical Engineering, Washington University, St Louis, USA
| | - Richard D Walton
- L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Fondation Université Bordeaux, Bordeaux, France
| | - Sébastien P Krul
- Heart Center, Departments of Experimental Cardiology, Cardiology, and Cardiothoracic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joris R de Groot
- Department of Biomedical Engineering, George Washington University, Washington D.C., USA
| | - Olivier Bernus
- L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Fondation Université Bordeaux, Bordeaux, France; Centre de Recherche Cardio-Thoracique de Bordeaux Inserm U1045, Université de Bordeaux, Bordeaux, France
| | - Igor R Efimov
- Department of Biomedical Engineering, Washington University, St Louis, USA; L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Fondation Université Bordeaux, Bordeaux, France; Department of Biomedical Engineering, George Washington University, Washington D.C., USA
| | - Bastiaan J Boukens
- Department of Biomedical Engineering, George Washington University, Washington D.C., USA.
| | - Ruben Coronel
- L'Institut de RYthmologie et de Modélisation Cardiaque (LIRYC), Fondation Université Bordeaux, Bordeaux, France; Heart Center, Departments of Experimental Cardiology, Cardiology, and Cardiothoracic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Cárdenes R, Sebastian R, Soto-Iglesias D, Berruezo A, Camara O. Estimation of Purkinje trees from electro-anatomical mapping of the left ventricle using minimal cost geodesics. Med Image Anal 2015; 24:52-62. [PMID: 26073786 DOI: 10.1016/j.media.2015.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 04/20/2015] [Accepted: 05/12/2015] [Indexed: 01/29/2023]
Abstract
The electrical activation of the heart is a complex physiological process that is essential for the understanding of several cardiac dysfunctions, such as ventricular tachycardia (VT). Nowadays, patient-specific activation times on ventricular chambers can be estimated from electro-anatomical maps, providing crucial information to clinicians for guiding cardiac radio-frequency ablation treatment. However, some relevant electrical pathways such as those of the Purkinje system are very difficult to interpret from these maps due to sparsity of data and the limited spatial resolution of the system. We present here a novel method to estimate these fast electrical pathways from the local activations maps (LATs) obtained from electro-anatomical maps. The location of Purkinje-myocardial junctions (PMJs) is estimated considering them as critical points of a distance map defined by the activation maps, and then minimal cost geodesic paths are computed on the ventricular surface between the detected junctions. Experiments to validate the proposed method have been carried out in simplified and realistic simulated data, showing good performance on recovering the main characteristics of simulated Purkinje networks (e.g. PMJs). A feasibility study with real cases of fascicular VT was also performed, showing promising results.
Collapse
Affiliation(s)
- Rubén Cárdenes
- Physense, Universitat Pompeu Fabra, Roc de Boronat 138, 08018 Barcelona, Spain.
| | - Rafael Sebastian
- Computational Multiscale Physiology Lab (CoMMLab), Department of Computer Science, Universitat de Valencia, 46100 Valencia, Spain
| | - David Soto-Iglesias
- Physense, Universitat Pompeu Fabra, Roc de Boronat 138, 08018 Barcelona, Spain
| | - Antonio Berruezo
- Arrhythmia Section, Cardiology Department, Thorax Institute, Hospital Clínic, Universitat de Barcelona, Villaroel 107, 08036 Barcelona, Spain
| | - Oscar Camara
- Physense, Universitat Pompeu Fabra, Roc de Boronat 138, 08018 Barcelona, Spain
| |
Collapse
|
28
|
Affiliation(s)
- Alexei Shvilkin
- From the Department of Medicine/Cardiology Division, Beth Israel Deaconess Medical Center, Boston, MA
| | - Henry D. Huang
- From the Department of Medicine/Cardiology Division, Beth Israel Deaconess Medical Center, Boston, MA
| | - Mark E. Josephson
- From the Department of Medicine/Cardiology Division, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|