1
|
Chen S, Li L, Wu Z, Liu Y, Li F, Huang K, Wang Y, Chen Q, Wang X, Shen W, Zhang R, Shen Y, Lu L, Ding F, Dai Y. SerpinG1: A Novel Biomarker Associated With Poor Coronary Collateral in Patients With Stable Coronary Disease and Chronic Total Occlusion. J Am Heart Assoc 2022; 11:e027614. [PMID: 36515245 PMCID: PMC9798810 DOI: 10.1161/jaha.122.027614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background This study aimed to explore predictive biomarkers of coronary collateralization in patients with chronic total occlusion. Methods and Results By using a microarray expression profiling program downloaded from the Gene Expression Omnibus database, weighted gene coexpression network analysis was constructed to analyze the relationship between potential modules and coronary collateralization and screen out the hub genes. Then, the hub gene was identified and validated in an independent cohort of patients (including 299 patients with good arteriogenic responders and 223 patients with poor arteriogenic responders). Weighted gene coexpression network analysis showed that SERPING1 in the light-cyan module was the only gene that was highly correlated with both the gene module and the clinical traits. Serum levels of serpinG1 were significantly higher in patients with bad arteriogenic responders than in patients with good arteriogenic responders (472.53±197.16 versus 314.80±208.92 μg/mL; P<0.001) and were negatively associated with the Rentrop score (Spearman r=-0.50; P<0.001). Receiver operating characteristic curve analysis indicated that the area under the curve was 0.77 (95% CI, 0.72-0.81; P<0.001) for serum serpinG1 in prediction of bad arteriogenic responders. After adjusting for traditional cardiovascular risk factors, serum serpinG1 levels (per SD) remained an independent risk factor for bad arteriogenic responders (odds ratio, 2.20 [95% CI, 1.76-2.74]; P<0.001). Conclusions Our findings illustrate that SERPING1 screened by weighted gene coexpression network analysis was associated with poor collateralization in patients with chronic total occlusion.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Le‐Ying Li
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Zhi‐Ming Wu
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yong Liu
- Department of Nursing, Chongqing Medical and Pharmaceutical CollegeChongqingChina
| | - Fei‐Fei Li
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Ke Huang
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yi‐Xuan Wang
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Qiu‐Jing Chen
- Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xiao‐Qun Wang
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Wei‐Feng Shen
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Rui‐Yan Zhang
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Shanghai Clinical Research Center for Interventional MedicineShanghaiChina
| | - Ying Shen
- Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Lin Lu
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| | - Feng‐Hua Ding
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Shanghai Clinical Research Center for Interventional MedicineShanghaiChina
| | - Yang Dai
- Department of Vascular and Cardiology, Rui Jin HospitalShanghai Jiaotong University School of MedicineShanghaiChina,Institute of Cardiovascular DiseasesShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
The Involvement of CXC Motif Chemokine Ligand 10 (CXCL10) and Its Related Chemokines in the Pathogenesis of Coronary Artery Disease and in the COVID-19 Vaccination: A Narrative Review. Vaccines (Basel) 2021; 9:vaccines9111224. [PMID: 34835155 PMCID: PMC8623875 DOI: 10.3390/vaccines9111224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Coronary artery disease (CAD) and coronary heart disease (CHD) constitute two of the leading causes of death in Europe, USA and the rest of the world. According to the latest reports of the Iranian National Health Ministry, CAD is the main cause of death in Iranian patients with an age over 35 years despite a significant reduction in mortality due to early interventional treatments in the context of an acute coronary syndrome (ACS). Inflammation plays a fundamental role in coronary atherogenesis, atherosclerotic plaque formation, acute coronary thrombosis and CAD establishment. Chemokines are well-recognized mediators of inflammation involved in several bio-functions such as leucocyte migration in response to inflammatory signals and oxidative vascular injury. Different chemokines serve as chemo-attractants for a wide variety of cell types including immune cells. CXC motif chemokine ligand 10 (CXCL10), also known as interferon gamma-induced protein 10 (IP-10/CXLC10), is a chemokine with inflammatory features whereas CXC chemokine receptor 3 (CXCR3) serves as a shared receptor for CXCL9, 10 and 11. These chemokines mediate immune responses through the activation and recruitment of leukocytes, eosinophils, monocytes and natural killer (NK) cells. CXCL10, interleukin (IL-15) and interferon (IFN-g) are increased after a COVID-19 vaccination with a BNT162b2 mRNA (Pfizer/BioNTech) vaccine and are enriched by tumor necrosis factor alpha (TNF-α) and IL-6 after the second vaccination. The aim of the present study is the presentation of the elucidation of the crucial role of CXCL10 in the patho-physiology and pathogenesis of CAD and in identifying markers associated with the vaccination resulting in antibody development.
Collapse
|
3
|
Xing Z, Wang X, Pei J, Zhu Z, Tai S, Hu X. The association of interferon-alpha with development of collateral circulation after artery occlusion. Clin Cardiol 2021; 44:1621-1627. [PMID: 34599832 PMCID: PMC8571556 DOI: 10.1002/clc.23734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 01/15/2023] Open
Abstract
Background Previous studies have demonstrated that interferon (IFN) signaling is enhanced in patients with poor collateral circulation (CC). However, the role and mechanisms of IFN‐alpha in the development of CC remain unknown. Methods We studied the serum levels of IFN‐alpha and coronary CC in a case–control study using logistics regression, including 114 coronary chronic total occlusion (CTO) patients with good coronary CC and 94 CTO patients with poor coronary CC. Restricted cubic splines was used to flexibly model the association of the levels of IFN‐alpha with the incidence of good CC perfusion restoration after systemic treatment with IFN‐alpha was assessed in a mice hind‐limb ischemia model. Results Compared with the first IFN‐alpha tertile, the risk of poor CC was higher in the third IFN‐alpha tertile (OR: 4.79, 95% CI: 2.22–10.4, p < .001). A cubic spline‐smoothing curve showed that the risk of poor CC increased with increasing levels of serum IFN‐alpha. IFN‐alpha inhibited the development of CC in a hindlimb ischemia model. Arterioles of CC in the IFN‐alpha group were smaller in diameter than in the control group. Conclusion Patients with CTO and with poor CC have higher serum levels of IFN‐alpha than CTO patients with good CC. IFN‐alpha might impair the development of CC after artery occlusion.
Collapse
Affiliation(s)
- Zhenhua Xing
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaopu Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junyu Pei
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhaowei Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shi Tai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinqun Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Chen HJ, Tas SW, de Winther MPJ. Type-I interferons in atherosclerosis. J Exp Med 2020; 217:132613. [PMID: 31821440 PMCID: PMC7037237 DOI: 10.1084/jem.20190459] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/05/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Chen et al. review the effects of type-I IFNs and the potential of anti–type-I IFN therapies in atherosclerosis. The contribution of dyslipidemia and inflammation in atherosclerosis is well established. Along with effective lipid-lowering treatments, the recent success of clinical trials with anti-inflammatory therapies and the accelerated atherosclerosis in many autoimmune diseases suggest that targeting inflammation may open new avenues for the prevention and the treatment for cardiovascular diseases (CVDs). In the past decades, studies have widened the role of type-I interferons (IFNs) in disease, from antivirus defense to autoimmune responses and immuno-metabolic syndromes. While elevated type-I IFN level in serum is associated with CVD incidence in patients with interferonopathies, experimental data have attested that type-I IFNs affect plaque-residing macrophages, potentiate foam cell and extracellular trap formation, induce endothelial dysfunction, alter the phenotypes of dendritic cells and T and B lymphocytes, and lead to exacerbated atherosclerosis outcomes. In this review, we discuss the production and the effects of type-I IFNs in different atherosclerosis-associated cell types from molecular biology studies, animal models, and clinical observations, and the potential of new therapies against type-I IFN signaling for atherosclerosis.
Collapse
Affiliation(s)
- Hung-Jen Chen
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, Netherlands
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
5
|
Hollander MR, Jansen MF, Hopman LHGA, Dolk E, van de Ven PM, Knaapen P, Horrevoets AJ, Lutgens E, van Royen N. Stimulation of Collateral Vessel Growth by Inhibition of Galectin 2 in Mice Using a Single-Domain Llama-Derived Antibody. J Am Heart Assoc 2019; 8:e012806. [PMID: 31594443 PMCID: PMC6818022 DOI: 10.1161/jaha.119.012806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background In the presence of arterial stenosis, collateral artery growth (arteriogenesis) can alleviate ischemia and preserve tissue function. In patients with poorly developed collateral arteries, Gal‐2 (galectin 2) expression is increased. In vivo administration of Gal‐2 inhibits arteriogenesis. Blocking of Gal‐2 potentially stimulates arteriogenesis. This study aims to investigate the effect of Gal‐2 inhibition on arteriogenesis and macrophage polarization using specific single‐domain antibodies. Methods and Results Llamas were immunized with Gal‐2 to develop anti–Gal‐2 antibodies. Binding of Gal‐2 to monocytes and binding inhibition of antibodies were quantified. To test arteriogenesis in vivo, Western diet‐fed LDLR.(low‐density lipoprotein receptor)–null Leiden mice underwent femoral artery ligation and received treatment with llama antibodies 2H8 or 2C10 or with vehicle. Perfusion restoration was measured with laser Doppler imaging. In the hind limb, arterioles and macrophage subtypes were characterized by histology, together with aortic atherosclerosis. Llama‐derived antibodies 2H8 and 2C10 strongly inhibited the binding of Gal‐2 to monocytes (93% and 99%, respectively). Treatment with these antibodies significantly increased perfusion restoration at 14 days (relative to sham, vehicle: 41.3±2.7%; 2H8: 53.1±3.4%, P=0.016; 2C10: 52.0±3.8%, P=0.049). In mice treated with 2H8 or 2C10, the mean arteriolar diameter was larger compared with control (vehicle: 17.25±4.97 μm; 2H8: 17.71±5.01 μm; 2C10: 17.84±4.98 μm; P<0.001). Perivascular macrophages showed a higher fraction of the M2 phenotype in both antibody‐treated animals (vehicle: 0.49±0.24; 2H8: 0.73±0.15, P=0.007; 2C10: 0.75±0.18, P=0.006). In vitro antibody treatment decreased the expression of M1‐associated cytokines compared with control (P<0.05 for each). Atherosclerotic lesion size was comparable between groups (overall P=0.59). Conclusions Inhibition of Gal‐2 induces a proarteriogenic M2 phenotype in macrophages, improves collateral artery growth, and increases perfusion restoration in a murine hind limb model.
Collapse
Affiliation(s)
- Maurits R Hollander
- Department of Cardiology VU University Medical Centre Amsterdam The Netherlands
| | - Matthijs F Jansen
- Department of Cardiology VU University Medical Centre Amsterdam The Netherlands.,Department of Medical Biochemistry Academic Medical Centre Amsterdam The Netherlands
| | - Luuk H G A Hopman
- Department of Cardiology VU University Medical Centre Amsterdam The Netherlands
| | | | - Peter M van de Ven
- Department of Epidemiology and Biostatistics VU University Amsterdam The Netherlands
| | - Paul Knaapen
- Department of Cardiology VU University Medical Centre Amsterdam The Netherlands
| | - Anton J Horrevoets
- Department of Molecular Cell Biology and Immunology VU Medical Center Amsterdam The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry Academic Medical Centre Amsterdam The Netherlands.,Institute for Cardiovascular Prevention (IPEK) Ludwig Maximilian's University Munich Germany
| | - Niels van Royen
- Department of Cardiology VU University Medical Centre Amsterdam The Netherlands.,Department of Cardiology Radboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
6
|
Chai JT, Ruparelia N, Goel A, Kyriakou T, Biasiolli L, Edgar L, Handa A, Farrall M, Watkins H, Choudhury RP. Differential Gene Expression in Macrophages From Human Atherosclerotic Plaques Shows Convergence on Pathways Implicated by Genome-Wide Association Study Risk Variants. Arterioscler Thromb Vasc Biol 2019; 38:2718-2730. [PMID: 30354237 PMCID: PMC6217969 DOI: 10.1161/atvbaha.118.311209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Plaque macrophages are intricately involved in atherogenesis and plaque destabilization. We sought to identify functional pathways in human plaque macrophages that are differentially regulated in respect of (1) plaque stability and (2) lipid content. We hypothesized that differentially regulated macrophage gene sets would relate to genome-wide association study variants associated with risk of acute complications of atherosclerosis. Approach and Results— Forty patients underwent carotid magnetic resonance imaging for lipid quantification before endarterectomy. Carotid plaque macrophages were procured by laser capture microdissection from (1) lipid core and (2) cap region, in 12 recently symptomatic and 12 asymptomatic carotid plaques. Applying gene set enrichment analysis, a number of gene sets were found to selectively upregulate in symptomatic plaque macrophages, which corresponded to 7 functional pathways: inflammation, lipid metabolism, hypoxic response, cell proliferation, apoptosis, antigen presentation, and cellular energetics. Predicted upstream regulators included IL-1β, TNF-α, and NF-κB. In vivo lipid quantification by magnetic resonance imaging correlated most strongly with the upregulation of genes of the IFN/STAT1 pathways. Cross-interrogation of gene set enrichment analysis and meta-analysis gene set enrichment of variant associations showed lipid metabolism pathways, driven by genes coding for APOE and ABCA1/G1 coincided with known risk-associated SNPs (single nucleotide polymorphisms) from genome-wide association studies. Conclusions— Macrophages from recently symptomatic carotid plaques show differential regulation of functional gene pathways. There were additional quantitative relationships between plaque lipid content and key gene sets. The data show a plausible mechanism by which known genome-wide association study risk variants for atherosclerotic complications could be linked to (1) a relevant cellular process, in (2) the key cell type of atherosclerosis, in (3) a human disease-relevant setting.
Collapse
Affiliation(s)
- Joshua T Chai
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Neil Ruparelia
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Anuj Goel
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Theodosios Kyriakou
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Luca Biasiolli
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Laurienne Edgar
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Ashok Handa
- Nuffield Department of Surgical Sciences (A.H.), University of Oxford, United Kingdom
| | - Martin Farrall
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Hugh Watkins
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| | - Robin P Choudhury
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.T.C., N.R., A.G., T.K., L.B., L.E., M.F., H.W., R.P.C.), University of Oxford, United Kingdom
| |
Collapse
|
7
|
Simons KH, de Vries MR, de Jong RCM, Peters HAB, Jukema JW, Quax PHA. IRF3 and IRF7 mediate neovascularization via inflammatory cytokines. J Cell Mol Med 2019; 23:3888-3896. [PMID: 30932349 PMCID: PMC6533520 DOI: 10.1111/jcmm.14247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To elucidate the role of interferon regulatory factor (IRF)3 and IRF7 in neovascularization. METHODS Unilateral hind limb ischaemia was induced in Irf3-/- , Irf7-/- and C57BL/6 mice by ligation of the left common femoral artery. Post-ischaemic blood flow recovery in the paw was measured with laser Doppler perfusion imaging. Soleus, adductor and gastrocnemius muscles were harvested to investigate angiogenesis and arteriogenesis and inflammation. RESULTS Post-ischaemic blood flow recovery was decreased in Irf3-/- and Irf7-/- mice compared to C57BL/6 mice at all time points up to and including sacrifice, 28 days after surgery (t28). This was supported by a decrease in angiogenesis and arteriogenesis in soleus and adductor muscles of Irf3-/- and Irf7-/- mice at t28. Furthermore, the number of macrophages around arterioles in adductor muscles was decreased in Irf3-/- and Irf7-/- mice at t28. In addition, mRNA expression levels of pro-inflammatory cytokines (tnfα, il6, ccl2) and growth factor receptor (vegfr2), were decreased in gastrocnemius muscles of Irf3-/- and Irf7-/- mice compared to C57BL/6 mice. CONCLUSION Deficiency of IRF3 and IRF7 results in impaired post-ischaemic blood flow recovery caused by attenuated angiogenesis and arteriogenesis linked to a lack of inflammatory components in ischaemic tissue. Therefore, IRF3 and IRF7 are essential regulators of neovascularization.
Collapse
Affiliation(s)
- Karin H. Simons
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Margreet R. de Vries
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Rob C. M. de Jong
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Hendrika A. B. Peters
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - J. Wouter Jukema
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Paul H. A. Quax
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
8
|
Janus revisited: The intricate role of the immune system in neovascularization. Int J Cardiol 2018; 260:193-194. [DOI: 10.1016/j.ijcard.2018.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 11/23/2022]
|
9
|
Simons KH, Peters HAB, Jukema JW, de Vries MR, Quax PHA. A protective role of IRF3 and IRF7 signalling downstream TLRs in the development of vein graft disease via type I interferons. J Intern Med 2017; 282:522-536. [PMID: 28857295 DOI: 10.1111/joim.12679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Toll like receptors (TLR) play an important role in vein graft disease (VGD). Interferon regulatory factors (IRF) 3 and 7 are the transcriptional regulators of type I interferons (IFN) and type I IFN responsive genes and are downstream factors of TLRs. Relatively little is known with regard to the interplay of IRFs and TLRs in VGD development. The aim of this study was to investigate the role of IRF3 and IRF7 signaling downstream TLRs and the effect of IRF3 and IRF7 in VGD. METHODS AND RESULTS In vitro activation of TLR3 induced IRF3 and IRF7 dependent IFNβ expression in bone marrow macrophages and vascular smooth muscle cells. Activation of TLR4 showed to regulate pro-inflammatory cytokines via IRF3. Vein graft surgery was performed in Irf3-/- , Irf7-/- and control mice. After 14 days Irf3-/- vein grafts had an increased vessel wall thickness compared to both control (P = 0.01) and Irf7-/- (P = 0.02) vein grafts. After 28 days, vessel wall thickness increased in Irf3-/- (P = 0.0003) and Irf7-/- (P = 0.04) compared to control vein grafts and also increased in Irf7-/- compared to Irf3-/- vein grafts (P = 0.02). Immunohistochemical analysis showed a significant higher influx of macrophages after 14 days in Irf3-/- vein grafts and after 28 days in Irf7-/- vein grafts compared to control vein grafts. CONCLUSIONS The present study is the first to describe a protective role of both IRF3 and IRF7 in VGD. IRFs regulate VGD downstream TLRs since Irf3-/- and Irf7-/- vein grafts show increased vessel wall thickening after respectively 14 and 28 days after surgery.
Collapse
Affiliation(s)
- K H Simons
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - H A B Peters
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - J W Jukema
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - M R de Vries
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - P H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Gal D, Sipido KR, Vandevelde W. Editorial highlights from Cardiovascular Research. Cardiovasc Res 2017; 113:e64-e68. [PMID: 29186440 DOI: 10.1093/cvr/cvx210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Diane Gal
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, Campus Gasthuisberg, KU Leuven, Belgium
| | - Karin R Sipido
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, Campus Gasthuisberg, KU Leuven, Belgium
| | - Wouter Vandevelde
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, Campus Gasthuisberg, KU Leuven, Belgium
| |
Collapse
|
11
|
IFN-β-induced reactive oxygen species and mitochondrial damage contribute to muscle impairment and inflammation maintenance in dermatomyositis. Acta Neuropathol 2017. [PMID: 28623559 DOI: 10.1007/s00401-017-1731-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dermatomyositis (DM) is an autoimmune disease associated with enhanced type I interferon (IFN) signalling in skeletal muscle, but the mechanisms underlying muscle dysfunction and inflammation perpetuation remain unknown. Transcriptomic analysis of early untreated DM muscles revealed that the main cluster of down-regulated genes was mitochondria-related. Histochemical, electron microscopy, and in situ oxygraphy analysis showed mitochondrial abnormalities, including increased reactive oxygen species (ROS) production and decreased respiration, which was correlated with low exercise capacities and a type I IFN signature. Moreover, IFN-β induced ROS production in human myotubes was found to contribute to mitochondrial malfunctions. Importantly, the ROS scavenger N-acetyl cysteine (NAC) prevented mitochondrial dysfunctions, type I IFN-stimulated transcript levels, inflammatory cell infiltrate, and muscle weakness in an experimental autoimmune myositis mouse model. Thus, these data highlight a central role of mitochondria and ROS in DM. Mitochondrial dysfunctions, mediated by IFN-β induced-ROS, contribute to poor exercise capacity. In addition, mitochondrial dysfunctions increase ROS production that drive type I IFN-inducible gene expression and muscle inflammation, and may thus self-sustain the disease. Given that current DM treatments only induce partial recovery and expose to serious adverse events (including muscular toxicity), protecting mitochondria from dysfunctions may open new therapeutic avenues for DM.
Collapse
|
12
|
Transflammation: Innate immune signaling in nuclear reprogramming. Adv Drug Deliv Rev 2017; 120:133-141. [PMID: 28916494 DOI: 10.1016/j.addr.2017.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 12/23/2022]
Abstract
Induction of pluripotency in somatic cells by retroviral overexpression of four transcription factors has revolutionized the field of stem cell biology and regenerative medicine. The efficient induction of pluripotency requires the activation of innate immune signaling in a process termed "transflammation" (Lee et al., 2012). Specifically, the stimulation of pattern recognition receptors (PRRs) causes global alterations in the expression and activity of epigenetic modifiers to favor an open chromatin configuration. Activation of toll-like receptors (TLR) or RIG-1-like receptors (RLR) (Sayed et al. 2017) trigger signaling cascades that result in NFκB or IRF-3 mediated changes in epigenetic plasticity that facilitate reprogramming. Another form of nuclear reprogramming is so-called direct reprogramming or transdifferentiation of one somatic cell to another lineage. We have shown that transdifferentiation of human fibroblasts to endothelial cells also involves transflammation (Sayed et al., 2015). Recently, we also identified reactive oxygen species (ROS) (Zhou et al. 2016) and reactive nitrogen species (RNS) (Meng et al., 2016) as mediators of innate immune signaling in nuclear reprogramming. Innate immune signaling plays a key role in nuclear reprogramming by regulating DNA accessibility (Fig. 1). Here, we review recent progress of innate immunity signaling in nuclear reprogramming and epigenetic plasticity.
Collapse
|
13
|
Sfyri P, Matsakas A. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease. J Biomed Sci 2017; 24:42. [PMID: 28688452 PMCID: PMC5502081 DOI: 10.1186/s12929-017-0346-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.
Collapse
Affiliation(s)
- Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
14
|
Gal D, Sipido KR, Vandevelde W. 'A picture is worth a thousand words': image highlights from Cardiovascular Research. Cardiovasc Res 2016; 112:622-625. [PMID: 27979810 DOI: 10.1093/cvr/cvw226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Diane Gal
- Department of Cardiovascular Sciences, Experimental Cardiology, KU Leuven, University of Leuven, Campus Gasthuisberg O/N1 704, Herestraat 49, B-3000 Leuven, Belgium
| | - Karin R Sipido
- Department of Cardiovascular Sciences, Experimental Cardiology, KU Leuven, University of Leuven, Campus Gasthuisberg O/N1 704, Herestraat 49, B-3000 Leuven, Belgium
| | - Wouter Vandevelde
- Department of Cardiovascular Sciences, Experimental Cardiology, KU Leuven, University of Leuven, Campus Gasthuisberg O/N1 704, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
15
|
Caolo V, Vries M, Zupancich J, Houben M, Mihov G, Wagenaar A, Swennen G, Nossent Y, Quax P, Suylen D, Dijkgraaf I, Molin D, Hackeng T, Post M. CXCL1 microspheres: a novel tool to stimulate arteriogenesis. Drug Deliv 2015; 23:2919-2926. [PMID: 26651867 DOI: 10.3109/10717544.2015.1120366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CONTEXT After arterial occlusion, diametrical growth of pre-existing natural bypasses around the obstruction, i.e. arteriogenesis, is the body's main coping mechanism. We have shown before that continuous infusion of chemokine (C-X-C motif) ligand 1 (CXCL1) promotes arteriogenesis in a rodent hind limb ischemia model. OBJECTIVE For clinical translation of these positive results, we developed a new administration strategy of local and sustained delivery. Here, we investigate the therapeutic potential of CXCL1 in a drug delivery system based on microspheres. MATERIALS AND METHODS We generated poly(ester amide) (PEA) microspheres loaded with CXCL1 and evaluated them in vitro for cellular toxicity and chemokine release characteristics. In vivo, murine femoral arteries were ligated and CXCL1 was administered either intra-arterially via osmopump or intramuscularly encapsulated in biodegradable microspheres. Perfusion recovery was measured with Laser-Doppler. RESULTS The developed microspheres were not cytotoxic and displayed a sustained chemokine release up to 28 d in vitro. The amount of released CXCL1 was 100-fold higher than levels in native ligated hind limb. Also, the CXCL1-loaded microspheres significantly enhanced perfusion recovery at day 7 after ligation compared with both saline and non-loaded conditions (55.4 ± 5.0% CXCL1-loaded microspheres versus 43.1 ± 4.5% non-loaded microspheres; n = 8-9; p < 0.05). On day 21 after ligation, the CXCL1-loaded microspheres performed even better than continuous CXCL1 administration (102.1 ± 4.4% CXCL1-loaded microspheres versus 85.7 ± 4.8% CXCL1 osmopump; n = 9; p < 0.05). CONCLUSION Our results demonstrate a proof of concept that sustained, local delivery of CXCL1 encapsulated in PEA microspheres provides a new tool to stimulate arteriogenesis in vivo.
Collapse
Affiliation(s)
- Vincenza Caolo
- a Department of Physiology , CARIM, Maastricht University , The Netherlands
| | - Mark Vries
- a Department of Physiology , CARIM, Maastricht University , The Netherlands
| | | | | | | | - Allard Wagenaar
- a Department of Physiology , CARIM, Maastricht University , The Netherlands
| | - Geertje Swennen
- a Department of Physiology , CARIM, Maastricht University , The Netherlands
| | - Yaël Nossent
- d Department of Surgery , Leiden University Medical Center , The Netherlands , and
| | - Paul Quax
- d Department of Surgery , Leiden University Medical Center , The Netherlands , and
| | - Dennis Suylen
- e Department of Biochemistry , CARIM, Maastricht University , The Netherlands
| | - Ingrid Dijkgraaf
- e Department of Biochemistry , CARIM, Maastricht University , The Netherlands
| | - Daniel Molin
- a Department of Physiology , CARIM, Maastricht University , The Netherlands
| | - Tilman Hackeng
- e Department of Biochemistry , CARIM, Maastricht University , The Netherlands
| | - Mark Post
- a Department of Physiology , CARIM, Maastricht University , The Netherlands
| |
Collapse
|
16
|
Cochain C, Zernecke A. Stimulating arteriogenesis but not atherosclerosis: IFN-α/β receptor subunit 1 as a novel therapeutic target. Cardiovasc Res 2015; 107:200-2. [PMID: 26084309 DOI: 10.1093/cvr/cvv174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Clément Cochain
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Josef-Schneider-Str. 2, Würzburg 97080, Germany
| | - Alma Zernecke
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Josef-Schneider-Str. 2, Würzburg 97080, Germany
| |
Collapse
|