1
|
Li K, Xiao X, Li Y, Lu S, Zi J, Sun X, Xu J, Liu HY, Li X, Song T, Cai D. Insights into the interplay between gut microbiota and lipid metabolism in the obesity management of canines and felines. J Anim Sci Biotechnol 2024; 15:114. [PMID: 39118186 PMCID: PMC11308499 DOI: 10.1186/s40104-024-01073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals, including dogs and cats. Obesity occurs with multiple comorbidities, such as diabetes, hypertension, heart disease and osteoarthritis in dogs and cats. A direct link between lipid metabolism dysregulation and obesity-associated diseases has been implicated. However, the understanding of such pathophysiology in companion animals is limited. This review aims to address the role of lipid metabolism in various metabolic disorders associated with obesity, emphasizing the involvement of the gut microbiota. Furthermore, we also discuss the management of obesity, including approaches like nutritional interventions, thus providing novel insights into obesity prevention and treatment for canines and felines.
Collapse
Affiliation(s)
- Kaiqi Li
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiangyu Xiao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuling Li
- School of Life Science and Engineering, Foshan University, Foshan, 528231, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China
| | - Sichen Lu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jianghang Zi
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqiang Sun
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Xu
- College of Agriculture, Jinhua Polytechnic, Jinhua, 321017, China
| | - Hao-Yu Liu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China.
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Demin Cai
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Huber AT, Fankhauser S, Wittmer S, Chollet L, Lam A, Maurhofer J, Madaffari A, Seiler J, Servatius H, Haeberlin A, Noti F, Brugger N, von Tengg-Kobligk H, Gräni C, Roten L, Tanner H, Reichlin T. Epicardial adipose tissue dispersion at CT and recurrent atrial fibrillation after pulmonary vein isolation. Eur Radiol 2024; 34:4928-4938. [PMID: 38197916 PMCID: PMC11255050 DOI: 10.1007/s00330-023-10498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVES Epicardial adipose tissue (EAT) remodeling is associated with atrial fibrillation (AF). Left atrial (LA) EAT dispersion on cardiac CT is a non-invasive imaging biomarker reflecting EAT heterogeneity. We aimed to investigate the association of LA EAT dispersion with AF recurrence after pulmonary vein isolation (PVI). METHODS In a prospective registry of consecutive patients undergoing first PVI, mean EAT attenuation values were measured on contrast-enhanced cardiac CT scans in Hounsfield units (HU) within low (- 195 to - 45 HU) and high (- 44 to - 15 HU) threshold EAT compartments around the left atrium (LA). EAT dispersion was defined as the difference between the mean HU values within the two EAT compartments. Continuous variables were compared between groups using the Mann-Whitney U test and cox proportional hazard models were used to calculate hazard ratios of predictors of 1-year AF recurrence. RESULTS A total of 208 patients were included, 135 with paroxysmal AF and 73 with persistent AF. LA EAT dispersion was significantly larger in patients with persistent compared to paroxysmal AF (52.6 HU vs. 49.9 HU; p = 0.001). After 1 year of follow-up, LA EAT dispersion above the mean (> 50.8 HU) was associated with a higher risk of AF recurrence (HR 2.3, 95% CI 1.5-3.6; p < 0.001). It retained its predictive value when corrected for age, sex, body mass index, LA volume, and AF type (HR 2.8, 95% CI 1.6-4.6; p < 0.001). CONCLUSION A larger LA EAT dispersion on contrast-enhanced cardiac CT scans, reflecting EAT heterogeneity, is independently associated with AF recurrence after PVI. CLINICAL RELEVANCE STATEMENT Based on LA EAT dispersion assessment, a more accurate risk stratification and patient selection may be possible based on a pre-procedural cardiac CT when planning PVI. KEY POINTS • Epicardial adipose tissue (EAT) remodeling is associated with atrial fibrillation (AF). • A larger left atrial EAT dispersion in a pre-procedural cardiac CT was associated with a higher 1-year AF recurrence risk after pulmonary vein isolation. • A pre-procedural cardiac CT with left atrial EAT dispersion assessment may provide a more accurate risk stratification and patient selection for PVI.
Collapse
Affiliation(s)
- Adrian Thomas Huber
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland.
- Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, University of Lucerne, Lucerne, Switzerland, Lucerne, Switzerland.
| | - Severin Fankhauser
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Severin Wittmer
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Laureve Chollet
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Anna Lam
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Jens Maurhofer
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Antonio Madaffari
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Jens Seiler
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Helge Servatius
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Haeberlin
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Fabian Noti
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Nicolas Brugger
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Hendrik von Tengg-Kobligk
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Laurent Roten
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Hildegard Tanner
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Tobias Reichlin
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Hill MC, Kim N, Galanter W, Gerber BS, Hubbard CC, Darbar D, McCauley MD. Association between obesity and statin use on mortality and hospital encounters in atrial fibrillation. IJC HEART & VASCULATURE 2024; 53:101450. [PMID: 39036424 PMCID: PMC11260021 DOI: 10.1016/j.ijcha.2024.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
Background Obesity increases risk of atrial fibrillation (AF) at least in part due to pro-inflammatory effects, but has been paradoxically associated with improved mortality. Although statins have pleiotropic anti-inflammatory properties, their interaction with obesity and clinical outcomes in AF is unknown. We explored the relationship between BMI, statin use, and all-cause mortality and AF/congestive heart failure (CHF)-related encounters, hypothesizing that statin exposure may be differentially associated with improved outcomes in overweight/obesity. Methods This was a single center retrospective cohort study of adults with AF diagnosed between 2011-2018. Patients were grouped by body mass index (BMI) and statin use at time of AF diagnosis. Outcomes included all-cause mortality and ED or inpatient encounters for AF or CHF. Results and Conclusions A total of 2503 subjects were included (median age 66 years, 43.4 % female, median BMI 29.8 kg/m2, 54.6 % on baseline statin therapy). Increasing BMI was associated with decreased mortality hazard but not associated with AF/CHF encounter risk. Adjusting for statin-BMI interaction, demographics, and cardiovascular comorbidities, overweight non-statin users experienced improved mortality (adjusted hazard ratio [aHR] 0.55, 95 % CI 0.35-0.84) compared to statin users (aHR 0.98, 95 % CI 0.69-1.40; interaction P-value = 0.013). Mortality hazard was consistently lower in obese non-statin users than in statin users, however interaction was insignificant. No significant BMI-statin interactions were observed in AF/CHF encounter risk. In summary, statin use was not differentially associated with improved mortality or hospitalization risk in overweight/obese groups. These findings do not support statins for secondary prevention of adverse outcomes based on overweight/obesity status alone.
Collapse
Affiliation(s)
- Michael C. Hill
- Division of Cardiology, College of Medicine, University of Illinois at Chicago, United States
| | - Noah Kim
- Division of Cardiology, College of Medicine, University of Illinois at Chicago, United States
| | - William Galanter
- Division of Academic Internal Medicine, College of Medicine, University of Illinois at Chicago, United States
| | - Ben S. Gerber
- Division of Health Informatics and Implementation Science, Department of Population and Quantitative Health Sciences, University of Massachusetts, United States
| | - Colin C. Hubbard
- Division of Hospital Medicine, University of California San Francisco, United States
| | - Dawood Darbar
- Division of Cardiology, College of Medicine, University of Illinois at Chicago, United States
- Jesse Brown VA Medical Center, United States
| | - Mark D. McCauley
- Division of Cardiology, College of Medicine, University of Illinois at Chicago, United States
- Jesse Brown VA Medical Center, United States
| |
Collapse
|
4
|
Fan Y, Huang S, Li S, Wu B, Zhao Q, Huang L, Zheng Z, Xie X, Liu J, Huang W, Sun J, Zhu X, Zhu J, Xiang AP, Li W. The adipose-neural axis is involved in epicardial adipose tissue-related cardiac arrhythmias. Cell Rep Med 2024; 5:101559. [PMID: 38744275 PMCID: PMC11148799 DOI: 10.1016/j.xcrm.2024.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/18/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Dysfunction of the sympathetic nervous system and increased epicardial adipose tissue (EAT) have been independently associated with the occurrence of cardiac arrhythmia. However, their exact roles in triggering arrhythmia remain elusive. Here, using an in vitro coculture system with sympathetic neurons, cardiomyocytes, and adipocytes, we show that adipocyte-derived leptin activates sympathetic neurons and increases the release of neuropeptide Y (NPY), which in turn triggers arrhythmia in cardiomyocytes by interacting with the Y1 receptor (Y1R) and subsequently enhancing the activity of the Na+/Ca2+ exchanger (NCX) and calcium/calmodulin-dependent protein kinase II (CaMKII). The arrhythmic phenotype can be partially blocked by a leptin neutralizing antibody or an inhibitor of Y1R, NCX, or CaMKII. Moreover, increased EAT thickness and leptin/NPY blood levels are detected in atrial fibrillation patients compared with the control group. Our study provides robust evidence that the adipose-neural axis contributes to arrhythmogenesis and represents a potential target for treating arrhythmia.
Collapse
Affiliation(s)
- Yubao Fan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanshan Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Suhua Li
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bingyuan Wu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Maoming, Guangdong, China
| | - Zhenda Zheng
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xujing Xie
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia Liu
- VIP Medical Service Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiaqi Sun
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiulong Zhu
- The Cardiovascular Center, Gaozhou People's Hospital, Maoming, Guangdong, China.
| | - Jieming Zhu
- Department of Cardiovascular Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China.
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Histoembryology and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Jiang F, Qin L, Wang Y, Peng Y, Yu L, Su P, Zhao L. Differential expression profiles and bioinformatics analysis of tRNA-derived small RNAs in epicardial fat of patients with atrial fibrillation. Heliyon 2024; 10:e30295. [PMID: 38707381 PMCID: PMC11066680 DOI: 10.1016/j.heliyon.2024.e30295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
The exact processes underlying atrial fibrillation (AF) are still unclear. It has been suggested that epicardial adipose tissue (EAT) may contribute to arrhythmias and can release various bioactive molecules, including exosomes containing tRNA-derived small RNAs (tsRNAs). Numerous studies have indicated that these tsRNAs can significantly affect key cellular functions. However, there is currently no research investigating the relationship between tsRNAs from EAT and AF. In order to explore the regulatory mechanisms of tsRNAs from EAT associated with AF, we conducted RNA-sequencing analysis on EAT samples collected from 6 AF patients and 6 control subjects with sinus rhythm. Our analysis revealed an upregulation of 146 tsRNAs and a downregulation of 126 tsRNAs in AF. Furthermore, we randomly selected four tsRNAs (tRF-SeC-TCA-001, tiRNA-Gly-CCC-003, tRF-Gly-GCC-002, and tRF-Tyr-GTA-007) for validation using quantitative reverse transcription-polymerase chain reaction. Following this, bioinformatic analyses revealed that the target genes of these tsRNAs were prominently involved in the regulation of cell adhesion and various cellular processes mediated by plasma membrane adhesion molecules. Additionally, based on KEGG analysis, it was suggested that the majority of these target genes might contribute to the pathogenesis of AF through processes such as glycosaminoglycan biosynthesis, AMP-activated protein kinase activity, and the insulin signaling pathway. Our results elucidate changes in the expression profiles of tsRNAs within EAT samples obtained from AF patients, and they forecast potential target genes and interactions between tsRNAs and mRNA within EAT that could contribute to the pathogenesis of AF.
Collapse
Affiliation(s)
| | - Lingling Qin
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yidan Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuanshu Peng
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Liping Yu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Pixiong Su
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lei Zhao
- Corresponding author. Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
6
|
Pucci M, Gammaldi V, Capece LM, Paoletta D, Iervolino A, Pontoriero M, Iacono M, Megaro P, Esposito R. Association between Obesity and Atrial Function in Patients with Non-Valvular Atrial Fibrillation: An Echocardiographic Study. J Clin Med 2024; 13:2895. [PMID: 38792436 PMCID: PMC11121835 DOI: 10.3390/jcm13102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Obesity is a public health problem which prevalence has increased worldwide and is associated with different degrees of hemodynamic alterations and structural cardiac changes. The aim of the study is to investigate the impact of body mass index (BMI) on left atrial function using standard and advanced echocardiography in a population of patients with non-valvular atrial fibrillation (AF). Methods: 395 adult patients suffering from non-valvular AF, divided into three tertiles based on BMI value, carry out a cardiological examination with standard and advanced echocardiography. Results: Peak atrial longitudinal strain (PALS), a measure of left atrial function, is lower in the tertile with highest BMI (14.3 ± 8.2%) compared to both the first (19 ± 11.5%) and the second tertile (17.7 ± 10.6%) in a statistically significant manner (p < 0.002). Furthermore, BMI is significantly associated independent with the PALS by multilinear regression analysis, even after correction of the data for CHA2DS2-VASc score, left ventricular mass index, left ventricular ejection fraction, E/E' ratio and systolic pulmonary arterial pressure (coefficient standardized β = -0.127, p < 0.02; Cumulative R2 = 0.41, SEE = 0.8%, p < 0.0001). Conclusions: BMI could be considered an additional factor in assessing cardiovascular risk in patients with non-valvular atrial fibrillation, in addition to the well-known CHA2DS2-VASc score.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Roberta Esposito
- Department of Clinical Medicine and Surgery, Federico II University Hospital, 80131 Naples, Italy; (M.P.); (L.M.C.); (D.P.)
| |
Collapse
|
7
|
Mascarenhas L, Downey M, Schwartz G, Adabag S. Antiarrhythmic effects of metformin. Heart Rhythm O2 2024; 5:310-320. [PMID: 38840768 PMCID: PMC11148504 DOI: 10.1016/j.hroo.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Atrial fibrillation/flutter (AF) is a major public health problem and is associated with stroke, heart failure, dementia, and death. It is estimated that 20%-30% of Americans will develop AF at some point in their life. Current medications to prevent AF have limited efficacy and significant adverse effects. Newer and safer therapies to prevent AF are needed. Ventricular arrhythmias are less prevalent than AF but may have significant consequences including sudden cardiac death. Metformin is the most prescribed, first-line medication for treatment of diabetes mellitus (DM). It decreases hepatic glucose production but also reduces inflammation and oxidative stress. Experimental studies have shown that metformin improves metabolic, electrical, and histologic risk factors associated with AF and ventricular arrhythmias. Furthermore, in large clinical observational studies, metformin has been associated with a reduced risk of AF in people with DM. These data suggest that metformin may have antiarrhythmic properties and may be a candidate to be repurposed as a medication to prevent cardiac arrhythmias. In this article, we review the clinical observational and experimental evidence for the association between metformin and cardiac arrhythmias. We also discuss the potential antiarrhythmic mechanisms underlying this association. Repurposing a well-tolerated, safe, and inexpensive medication to prevent cardiac arrhythmias has significant positive public health implications.
Collapse
Affiliation(s)
- Lorraine Mascarenhas
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Michael Downey
- Department of Cardiology, Hennepin County Medical Center, Minneapolis, Minnesota
| | - Gregory Schwartz
- Cardiology Section, Rocky Mountain Regional VA Medical Center and University of Colorado School of Medicine, Aurora, Colorado
| | - Selcuk Adabag
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Cardiology, Minneapolis Veterans Affairs Medical Center and University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
8
|
Gao T, Wang J, Xiao M, Wang J, Wang S, Tang Y, Zhang J, Lu G, Guo H, Guo Y, Liu Q, Li J, Gu J. SESN2-Mediated AKT/GSK-3β/NRF2 Activation to Ameliorate Adriamycin Cardiotoxicity in High-Fat Diet-Induced Obese Mice. Antioxid Redox Signal 2024; 40:598-615. [PMID: 37265150 DOI: 10.1089/ars.2022.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aims: Obese patients are highly sensitive to adriamycin (ADR)-induced cardiotoxicity. However, the potential mechanism of superimposed toxicity remains to be elucidated. Sestrin 2 (SESN2), a potential antioxidant, could attenuate stress-induced cardiomyopathy; therefore, this study aims to explore whether SESN2 enhances cardiac resistance to ADR-induced oxidative damage in high-fat diet (HFD)-induced obese mice. Results: The results revealed that obesity decreased SESN2 expression in ADR-exposed heart. And, HFD mice may predispose to ADR-induced cardiotoxicity, which was probably associated with inhibiting protein kinase B (AKT), glycogen synthase kinase-3 beta (GSK-3β) phosphorylation and subsequently blocking nuclear localization of nuclear factor erythroid-2 related factor 2 (NRF2), ultimately resulting in cardiac oxidative damage. However, these destructive cascades and cardiac oxidative damage effects induced by HFD/sodium palmitate combined with ADR were blocked by overexpression of SESN2. Moreover, the antioxidant effect of SESN2 could be largely abolished by sh-Nrf2 or wortmannin. And sulforaphane, an NRF2 agonist, could remarkably reverse cardiac pathological and functional abnormalities caused by ADR in obese mice. Innovation and Conclusion: This study demonstrated that SESN2 might be a promising therapeutic target for improving anthracycline-related cardiotoxicity in obesity by upregulating activity of NRF2 via AKT/GSK-3β/Src family tyrosine kinase signaling pathway. Antioxid. Redox Signal. 40, 598-615.
Collapse
Affiliation(s)
- Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, Shenyang, China
- Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hua Guo
- Department of Nursing, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Meulendijks ER, Krul SPJ, Baalman SW, de Vries TAC, Wesselink R, Ernault AC, Kawasaki M, Al-Shama R, Neefs J, Limpens J, de Groot JR. Circulating adipose tissue proteins involved in atrial fibrillation: An explorative scoping review. Trends Cardiovasc Med 2024; 34:148-158. [PMID: 36538994 DOI: 10.1016/j.tcm.2022.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Obesity increases the risk of atrial fibrillation (AF), potentially through proteins secreted by adipose tissue (AT) that affect atrial electrical and structural remodeling. We aim to give a comprehensive overview of circulating AT proteins involved in inflammation and fibrosis, that are associated with prevalent AF (paroxysmal or persistent) and the risk on developing new-onset AF. These include adipokines, defined as proteins enriched in AT as adiponectin, but also proteins less specific to AT. We systematically performed an explorative search for studies reporting associations between proteins secreted from cells residing in the AT and AF, and additionally assessed the effect of obesity on these proteins by a secondary search. The AT proteins involved in inflammation were mostly increased in patients with prevalent and new-onset AF, and with obesity, while the AT enriched adipokines were mostly not associated with AF. This review provides insight into circulating adipose tissue proteins involved in AF substrate formation.
Collapse
Affiliation(s)
- Eva R Meulendijks
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands.
| | - Sébastien P J Krul
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands
| | - Sarah W Baalman
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands
| | - Tim A C de Vries
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Robin Wesselink
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Auriane C Ernault
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Makiri Kawasaki
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands
| | - Rushd Al-Shama
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Jolien Neefs
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands
| | - Jacqueline Limpens
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands
| | - Joris R de Groot
- Amsterdam UMC, University of Amsterdam, Heart Center, department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Gao P, Gao X, Xie B, Tse G, Liu T. Aging and atrial fibrillation: A vicious circle. Int J Cardiol 2024; 395:131445. [PMID: 37848123 DOI: 10.1016/j.ijcard.2023.131445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Atrial fibrillation (AF) is the commonest sustained cardiac arrhythmia observed in clinical practice. Its prevalence increases dramatically with advancing age. This review article discusses the recent advances in studies investigating the relationship between aging and AF and the possible underlying mechanisms.
Collapse
Affiliation(s)
- Pan Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinyi Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
11
|
Lu Y, Luo Z, Zhou H, Shi Y, Zhu Y, Guo X, Huang J, Zhang J, Liu X, Wang S, Shan X, Yin H, Du Y, Li Q, You J, Luo L. A nanoemulsion targeting adipose hypertrophy and hyperplasia shows anti-obesity efficiency in female mice. Nat Commun 2024; 15:72. [PMID: 38167723 PMCID: PMC10761889 DOI: 10.1038/s41467-023-44416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Obesity often leads to severe medical complications. However, existing FDA-approved medications to combat obesity have limited effectiveness in reducing adiposity and often cause side effects. These medications primarily act on the central nervous system or disrupt fat absorption through the gastrointestinal tract. Adipose tissue enlargement involves adipose hyperplasia and hypertrophy, both of which correlate with increased reactive oxygen species (ROS) and hyperactivated X-box binding protein 1 (XBP1) in (pre)adipocytes. In this study, we demonstrate that KT-NE, a nanoemulsion loaded with the XBP1 inhibitor KIRA6 and α-Tocopherol, simultaneously alleviates aberrant endoplasmic reticulum stress and oxidative stress in (pre)adipocytes. As a result, KT-NE significantly inhibits abnormal adipogenic differentiation, reduces lipid droplet accumulation, restricts lipid droplet transfer, impedes obesity progression, and lowers the risk of obesity-associated non-alcoholic fatty liver disease in female mice with obesity. Furthermore, diverse administration routes of KT-NE impact its in vivo biodistribution and contribute to localized and/or systemic anti-obesity effectiveness.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Ying Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Hang Yin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Qingpo Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China.
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
12
|
Goldman SA, Requena-Ibanez JA, Devesa A, Santos-Gallego CG, Badimon JJ, Fuster V. Uncovering the Role of Epicardial Adipose Tissue in Heart Failure With Preserved Ejection Fraction. JACC. ADVANCES 2023; 2:100657. [PMID: 38938732 PMCID: PMC11198699 DOI: 10.1016/j.jacadv.2023.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 06/29/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the most common form of heart failure. Obesity is a modifiable risk factor of HFpEF; however, body mass index provides limited information on visceral adiposity and patients with similar anthropometrics can present variable cardiovascular risk. Epicardial adipose tissue (EAT) is the closest fat deposit to the heart and has been proposed as a biomarker of visceral adiposity. EAT may be particularly important for cardiac function, because of its location (under the pericardium) and because it acts as a metabolically active endocrine organ (which can produce both beneficial and detrimental cytokines). In this paper, the authors review the role of EAT in normal and pathologic conditions and discuss the noninvasive imaging modalities that allow its identification. This review highlights EAT implications in HFpEF and discuss new therapies that act on EAT and might also exert beneficial effects on the cardiovascular system.
Collapse
Affiliation(s)
- Sarah A. Goldman
- Department of Internal Medicine, Zucker School of Medicine at Hofstra Northwell, Lenox Hill Hospital New York, New York, New York, USA
| | - Juan Antonio Requena-Ibanez
- Atherothrombosis Research Unit, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai School of Medicine, New York, New York, USA
| | - Ana Devesa
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Carlos G. Santos-Gallego
- Atherothrombosis Research Unit, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai School of Medicine, New York, New York, USA
| | - Juan José Badimon
- Atherothrombosis Research Unit, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai School of Medicine, New York, New York, USA
| | - Valentin Fuster
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Nakahara S, Hori Y, Fukuda R, Sato H, Aoki H, Ishikawa T, Itabashi Y, Kobayashi S, Taguchi I, Okumura Y. Chronic Effect of HotBalloon-Based Wide Planar Ablation on Epicardial Adipose Tissue in Persistent Atrial Fibrillation. Circ Rep 2023; 5:371-380. [PMID: 37818284 PMCID: PMC10561997 DOI: 10.1253/circrep.cr-23-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
Background: Adverse atrial remodeling, including epicardial adipose tissue (EAT) deposition in the left atrium (LA), is implicated in atrial fibrillation (AF). Radiofrequency hotballoon (RHB) ablation can produce wide planar lesions because the balloon is highly compliant; however, chronic effects of RHB ablation on structural remodeling remain unknown. This clinical-experimental investigation characterized chronic effects of RHB ablation on EAT in persistent AF (PsAF). Methods and Results: The clinical study involved 91 patients (obese, n=30; non-obese, n=61) undergoing RHB ablation for PsAF. LA-EAT was assessed from computed tomography images obtained before ablation and 6 months later. Tissue effects of RHB ablation were explored in a chronic swine model. RHB ablation significantly reduced LA volume (mean [±SD] 177.7±29.7 vs. 138.4±29.6 mL; P<0.001) and LA-EAT volume (median [interquartile range] 22.0 [12.4-33.3] vs. 16.5 [7.9-25.8] mL; P<0.001). The reduction in EAT was significantly greater in the pulmonary vein (PV) antrum than in other LA regions (37.9% vs. 15.8%; P<0.001). The percentage reduction in PV antrum EAT was equivalent between obese and non-obese patients, as was the postablation success rate (73% vs. 70%; P=0.77). RHB ablation produced transmural lesions reaching the pigs' epicardial fat region. Conclusions: RHB-based planar-transmural lesions altered the structurally remodeled LA, including EAT. Further studies are needed to determine whether factors other than PV isolation contribute to the clinical success of RHB ablation.
Collapse
Affiliation(s)
- Shiro Nakahara
- Department of Cardiology, Dokkyo Medical University Saitama Medical Center Koshigaya Japan
| | - Yuichi Hori
- Department of Cardiology, Dokkyo Medical University Saitama Medical Center Koshigaya Japan
| | - Reiko Fukuda
- Department of Cardiology, Dokkyo Medical University Saitama Medical Center Koshigaya Japan
| | - Hirotsugu Sato
- Department of Cardiology, Dokkyo Medical University Saitama Medical Center Koshigaya Japan
| | - Hideyuki Aoki
- Department of Cardiology, Dokkyo Medical University Saitama Medical Center Koshigaya Japan
| | - Tetsuya Ishikawa
- Department of Cardiology, Dokkyo Medical University Saitama Medical Center Koshigaya Japan
| | - Yuji Itabashi
- Department of Cardiology, Dokkyo Medical University Saitama Medical Center Koshigaya Japan
| | - Sayuki Kobayashi
- Department of Cardiology, Dokkyo Medical University Saitama Medical Center Koshigaya Japan
| | - Isao Taguchi
- Department of Cardiology, Dokkyo Medical University Saitama Medical Center Koshigaya Japan
| | - Yasuo Okumura
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine Tokyo Japan
| |
Collapse
|
14
|
Anagnostopoulos I, Kousta M, Kossyvakis C, Paraskevaidis NT, Vrachatis D, Deftereos S, Giannopoulos G. Epicardial Adipose Tissue and Atrial Fibrillation Recurrence following Catheter Ablation: A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:6369. [PMID: 37835012 PMCID: PMC10573952 DOI: 10.3390/jcm12196369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
(1)Introduction: Catheter ablation has become a cornerstone for the management of patients with atrial fibrillation (AF). Nevertheless, recurrence rates remain high. Epicardial adipose tissue (EAT) has been associated with AF pathogenesis and maintenance. However, the literature has provided equivocal results regarding the relationship between EAT and post-ablation recurrence.(2) Purpose: to investigate the relationship between total and peri-left atrium (peri-LA) EAT with post-ablation AF recurrence. (3) Methods: major electronic databases were searched for articles assessing the relationship between EAT, quantified using computed tomography, and the recurrence of AF following catheter ablation procedures. (4) Results: Twelve studies (2179 patients) assessed total EAT and another twelve (2879 patients) peri-LA EAT. Almost 60% of the included patients had paroxysmal AF and recurrence was documented in 34%. Those who maintained sinus rhythm had a significantly lower volume of peri-LA EAT (SMD: -0.37, 95%; CI: -0.58-0.16, I2: 68%). On the contrary, no significant difference was documented for total EAT (SMD: -0.32, 95%; CI: -0.65-0.01; I2: 92%). No differences were revealed between radiofrequency and cryoenergy pulmonary venous isolation. No publication bias was identified. (5) Conclusions: Only peri-LA EAT seems to be predictive of post-ablation AF recurrence. These findings may reflect different pathophysiological roles of EAT depending on its location. Whether peri-LA EAT can be used as a predictor and target to prevent recurrence is a matter of further research.
Collapse
Affiliation(s)
| | - Maria Kousta
- Cardiology Department, Athens General Hospital “G. Gennimatas”, 11527 Athens, Greece (C.K.)
| | - Charalampos Kossyvakis
- Cardiology Department, Athens General Hospital “G. Gennimatas”, 11527 Athens, Greece (C.K.)
| | | | - Dimitrios Vrachatis
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Spyridon Deftereos
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios Giannopoulos
- 3rd Department of Cardiology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
15
|
Macheret F, Bifulco SF, Scott GD, Kwan KT, Chahine Y, Afroze T, McDonagh R, Akoum N, Boyle PM. Comparing Inducibility of Re-Entrant Arrhythmia in Patient-Specific Computational Models to Clinical Atrial Fibrillation Phenotypes. JACC Clin Electrophysiol 2023; 9:2149-2162. [PMID: 37656099 PMCID: PMC10909381 DOI: 10.1016/j.jacep.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Computational models of fibrosis-mediated, re-entrant left atrial (LA) arrhythmia can identify possible substrate for persistent atrial fibrillation (AF) ablation. Contemporary models use a 1-size-fits-all approach to represent electrophysiological properties, limiting agreement between simulations and patient outcomes. OBJECTIVES The goal of this study was to test the hypothesis that conduction velocity (ϴ) modulation in persistent AF models can improve simulation agreement with clinical arrhythmias. METHODS Patients with persistent AF (n = 37) underwent ablation and were followed up for ≥2 years to determine post-ablation outcomes: AF, atrial flutter (AFL), or no recurrence. Patient-specific LA models (n = 74) were constructed using pre-ablation and ≥90 days' post-ablation magnetic resonance imaging data. Simulated pacing gauged in silico arrhythmia inducibility due to AF-like rotors or AFL-like macro re-entrant tachycardias. A physiologically plausible range of ϴ values (±10 or 20% vs. baseline) was tested, and model/clinical agreement was assessed. RESULTS Fifteen (41%) patients had a recurrence with AF and 6 (16%) with AFL. Arrhythmia was induced in 1,078 of 5,550 simulations. Using baseline ϴ, model/clinical agreement was 46% (34 of 74 models), improving to 65% (48 of 74) when any possible ϴ value was used (McNemar's test, P = 0.014). ϴ modulation improved model/clinical agreement in both pre-ablation and post-ablation models. Pre-ablation model/clinical agreement was significantly greater for patients with extensive LA fibrosis (>17.2%) and an elevated body mass index (>32.0 kg/m2). CONCLUSIONS Simulations in persistent AF models show a 41% relative improvement in model/clinical agreement when ϴ is modulated. Patient-specific calibration of ϴ values could improve model/clinical agreement and model usefulness, especially in patients with higher body mass index or LA fibrosis burden. This could ultimately facilitate better personalized modeling, with immediate clinical implications.
Collapse
Affiliation(s)
- Fima Macheret
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - Savannah F Bifulco
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Griffin D Scott
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Kirsten T Kwan
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Yaacoub Chahine
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - Tanzina Afroze
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | | | - Nazem Akoum
- Division of Cardiology, University of Washington, Seattle, Washington, USA; Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA; Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
16
|
Schram Serban C, de Groot NMS. Impact of Obesity on Atrial Electrophysiological Substrate. J Cardiovasc Dev Dis 2023; 10:342. [PMID: 37623355 PMCID: PMC10455641 DOI: 10.3390/jcdd10080342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
(1) Background. Obesity is a well-established worldwide recognised risk factor for atrial fibrillation (AF). Prior review papers reported on the associations between obesity and AF development, but not on the relation between obesity and atrial electrophysiology. We therefore conducted a systematic review to describe the current knowledge of the characteristics of the atrial electrophysiological substrate in obese individuals and how they relate to the development of AF. (2) Methods. A search was conducted in Pubmed, Embase, and the Cochrane Library for publications evaluating the impact of obesity on atrial electrophysiology, electrical substrates, and their relation to the development of AF. (3) Results. A systematic literature search retrieved 477 potential publications based on the inclusion criteria; 76 full-text articles were selected for the present systematic review. The literature demonstrated that obesity predisposes to not only a higher AF incidence but also to more extensive atrial electrophysiological abnormalities increasing susceptibility to AF development. (4) Conclusion. Obesity may predispose to an overall increase in atrial electropathology, consisting of an increase in the slowing of the conduction, conduction block, low-voltage areas, and complex fractionated electrograms. To determine the impact of obesity-induced atrial electrical abnormalities on the long-term clinical outcome, further prospective studies are mandatory.
Collapse
Affiliation(s)
- Corina Schram Serban
- Department of Cardiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Natasja M. S. de Groot
- Department of Cardiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Department of Microelectronics, Circuits and Systems, Faculty of Electrical Engineering, Mathematics and Computer Sciences, Delft University of Technology, 2628 CD Delft, The Netherlands
| |
Collapse
|
17
|
Hu D, Barajas-Martinez H, Zhang ZH, Duan HY, Zhao QY, Bao MW, Du YM, Burashnikov A, Monasky MM, Pappone C, Huang CX, Antzelevitch C, Jiang H. Advances in basic and translational research in atrial fibrillation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220174. [PMID: 37122214 PMCID: PMC10150218 DOI: 10.1098/rstb.2022.0174] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/08/2023] [Indexed: 05/02/2023] Open
Abstract
Atrial fibrillation (AF) is a very common cardiac arrhythmia with an estimated prevalence of 33.5 million patients globally. It is associated with an increased risk of death, stroke and peripheral embolism. Although genetic studies have identified a growing number of genes associated with AF, the definitive impact of these genetic findings is yet to be established. Several mechanisms, including electrical, structural and neural remodelling of atrial tissue, have been proposed to contribute to the development of AF. Despite over a century of exploration, the molecular and cellular mechanisms underlying AF have not been fully established. Current antiarrhythmic drugs are associated with a significant rate of adverse events and management of AF using ablation is not optimal, especially in cases of persistent AF. This review discusses recent advances in our understanding and management of AF, including new concepts of epidemiology, genetics and pathophysiological mechanisms. We review the current status of antiarrhythmic drug therapy for AF, new potential agents, as well as mechanism-based AF ablation. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Zhong-He Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Hong-Yi Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Qing-Yan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Ming-Wei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Yi-Mei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Alexander Burashnikov
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Michelle M. Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan 20097, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan 20097, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan 20097, Italy
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| |
Collapse
|
18
|
Guglielmini C, Valente C, Romito G, Mazzoldi C, Baron Toaldo M, Goncalves Sousa M, Wolf M, Beluque T, Domenech O, Patata V, Porciello F, Ferrari P, Caivano D, Contiero B, Poser H. Risk factors for atrial fibrillation in dogs with dilated cardiomyopathy. Front Vet Sci 2023; 10:1183689. [PMID: 37228845 PMCID: PMC10203468 DOI: 10.3389/fvets.2023.1183689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Atrial fibrillation secondary to dilated cardiomyopathy (DCM) frequently affects large-breed dogs. The aim of the present study was to identify risk factors for the development of atrial fibrillation in dogs of different breeds with an echocardiographic diagnosis of DCM. Methods In this multicenter retrospective study, we searched the electronic databases of five cardiology referral centers for dogs with an echocardiographic diagnosis of DCM. A comparison of clinical and echocardiographic variables was performed between dogs developing atrial fibrillation and those not developing atrial fibrillation and the ability to distinguish between these two groups of dogs was evaluated by receiver operating characteristic curve analysis. Univariate and multivariable logistic regression analysis estimated the odds ratio (OR) with 95% confidence interval (CI) of developing atrial fibrillation. Results We included 89 client-owned dogs with occult and overt echocardiographic DCM. Of these, 39 dogs (43.8%) had atrial fibrillation, 29 dogs (32.6%) maintained a sinus rhythm, and 21 dogs (23.6%) showed other cardiac arrhythmias. Left atrial diameter had high accuracy (area under the curve = 0.816, 95% CI = 0.719-0.890) to predict the development of atrial fibrillation at the cut-off of >4.66 cm. After multivariable stepwise logistic regression analysis, only increased left atrial diameter (OR = 3.58, 95% CI = 1.87-6.87; p < 0.001) and presence of right atrial enlargement (OR = 4.02, 95% CI = 1.35-11.97; p = 0.013) were significant predictors of atrial fibrillation development. Discussion Atrial fibrillation is a common complication of DCM in the dog and is significantly associated with increased absolute left atrial diameter and right atrial enlargement.
Collapse
Affiliation(s)
- Carlo Guglielmini
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| | - Carlotta Valente
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| | - Giovanni Romito
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Chiara Mazzoldi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Marco Baron Toaldo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | - Marcela Wolf
- Department of Veterinary Medicine, Federal University of Paraná, Curitiba, Brazil
| | - Tamyris Beluque
- Department of Veterinary Medicine, Federal University of Paraná, Curitiba, Brazil
| | - Oriol Domenech
- Department of Cardiology, AniCura Istituto Veterinario Novara, Novara, Italy
| | - Valentina Patata
- Department of Cardiology, AniCura Istituto Veterinario Novara, Novara, Italy
| | | | - Paolo Ferrari
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Domenico Caivano
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Barbara Contiero
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| | - Helen Poser
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| |
Collapse
|
19
|
Akboga MK, Inanc IH, Keskin M, Sabanoglu C, Gorenek B. Current Evidence on Prevention of Atrial Fibrillation: Modifiable Risk Factors and the Effects of Risk Factor Intervention. Cardiol Rev 2023; 31:70-79. [PMID: 36735576 DOI: 10.1097/crd.0000000000000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atrial fibrillation (AF) is one of the most encountered arrhythmias in clinical practice. It is also estimated that the absolute AF burden may increase by greater than 60% by 2050. It is inevitable that AF will become one of the largest epidemics in the world and may pose a major health problem for countries. Although AF rarely causes mortality in the acute period, it causes a significant increase in mortality and morbidity, including a fivefold increase in the risk of stroke, a twofold increase in dementia, and a twofold increase in myocardial infarction in the chronic period. Despite all the advances in the treatment of AF, it is better understood day by day that preventing AF may play a key role in reducing AF and its related complications. Modification of the main modifiable factors such as quitting smoking, abstaining from alcohol, changing eating habits, and exercise seems to be the first step in preventing AF. The strict adherence to the treatment process of secondary causes predisposing to AF such as DM, hypertension, obesity, and sleep apnea is another step in the prevention of AF. Both an individual approach and global public health campaigns can be highly beneficial to reduce the risk of AF. In this review, we aimed to summarize the current evidence on the relationship between modifiable risk factors and AF, and the impact of possible interventions on these factors in preventing or reducing the AF burden in the light of recently published guidelines and studies.
Collapse
Affiliation(s)
- Mehmet Kadri Akboga
- From the Department of Cardiology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ibrahim Halil Inanc
- Department of Cardiology, Kirikkale Yuksek Ihtisas Hospital, Kirikkale, Turkey
| | - Muhammed Keskin
- Department of Cardiology, Bahcesehir University Faculty of Medicine, Istanbul, Turkey
| | - Cengiz Sabanoglu
- Department of Cardiology, Kirikkale Yuksek Ihtisas Hospital, Kirikkale, Turkey
| | - Bulent Gorenek
- Department of Cardiology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| |
Collapse
|
20
|
Sanganalmath SK, Dubey S, Veeranki S, Narisetty K, Krishnamurthy P. The interplay of inflammation, exosomes and Ca 2+ dynamics in diabetic cardiomyopathy. Cardiovasc Diabetol 2023; 22:37. [PMID: 36804872 PMCID: PMC9942322 DOI: 10.1186/s12933-023-01755-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Diabetes mellitus is one of the prime risk factors for cardiovascular complications and is linked with high morbidity and mortality. Diabetic cardiomyopathy (DCM) often manifests as reduced cardiac contractility, myocardial fibrosis, diastolic dysfunction, and chronic heart failure. Inflammation, changes in calcium (Ca2+) handling and cardiomyocyte loss are often implicated in the development and progression of DCM. Although the existence of DCM was established nearly four decades ago, the exact mechanisms underlying this disease pathophysiology is constantly evolving. Furthermore, the complex pathophysiology of DCM is linked with exosomes, which has recently shown to facilitate intercellular (cell-to-cell) communication through biomolecules such as micro RNA (miRNA), proteins, enzymes, cell surface receptors, growth factors, cytokines, and lipids. Inflammatory response and Ca2+ signaling are interrelated and DCM has been known to adversely affect many of these signaling molecules either qualitatively and/or quantitatively. In this literature review, we have demonstrated that Ca2+ regulators are tightly controlled at different molecular and cellular levels during various biological processes in the heart. Inflammatory mediators, miRNA and exosomes are shown to interact with these regulators, however how these mediators are linked to Ca2+ handling during DCM pathogenesis remains elusive. Thus, further investigations are needed to understand the mechanisms to restore cardiac Ca2+ homeostasis and function, and to serve as potential therapeutic targets in the treatment of DCM.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nevada Las Vegas School of Medicine, Las Vegas, NV, 89102, USA.
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, University Blvd., Birmingham, AL, 35294, USA
| | - Sudhakar Veeranki
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | | | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, University Blvd., Birmingham, AL, 35294, USA
| |
Collapse
|
21
|
Complement factor D derived from epicardial adipose tissue participates in cardiomyocyte apoptosis after myocardial infarction by mediating PARP-1 activity. Cell Signal 2023; 101:110518. [PMID: 36351508 DOI: 10.1016/j.cellsig.2022.110518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Acute myocardial infarction (MI) is considered to be the main cause of congestive heart failure. The aim of this study was to provide an in-depth analysis of athophysiological processes and provide key targets for intervention in the occurrence of acute MI. METHODS A rat model of MI was established by ligation of left anterior descending branch. Heart tissue, epicardial adipose tissue (EAT) and subcutaneous adipose tissue (SAT) were collected. H9c2 cells were used to explore the mechanism of complement factor D (CFD) regulating cardiomyocyte apoptosis. RESULTS Myocardial apoptosis were observed in MI rat, and more EAT was found in the MI group in vivo. The conditioned medium prepared by EAT (EAT-CM) significantly reduced the activity of H9c2 cells. The content of CFD in EAT was significantly increased, and CFD promoted cardiomyocyte apoptosis in vitro and CFD-IN1 (a selective inhibitor of CFD) could revised this effect. CFD induced poly ADP-ribosepolymerase-1 (PARP-1) overactivation. Furthermore, the addition of pan-caspase inhibitor Z-VAD in the SAT-CM + CFD group couldn't affect H9c2 cell apoptosis. CFD induced cell apoptosis via PARP-1 activation and PARP-1 inhibitor 3-Aminobenzamide could revise this effect. The injection of CFD-IN1 in MI rat model confirmed that inhibition of CFD activity alleviated cardiomyocytes apoptosis. CONCLUSION Our findings indicate that EAT mediating cardiomyocyte apoptosis after MI through secretion of CFD and activation of PARP-1 activity.
Collapse
|
22
|
Reactivation of PPAR α alleviates myocardial lipid accumulation and cardiac dysfunction by improving fatty acid β-oxidation in Dsg2-deficient arrhythmogenic cardiomyopathy. Acta Pharm Sin B 2023; 13:192-203. [PMID: 36815030 PMCID: PMC9939300 DOI: 10.1016/j.apsb.2022.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM), a fatal heart disease characterized by fibroadipocytic replacement of cardiac myocytes, accounts for 20% of sudden cardiac death and lacks effective treatment. It is often caused by mutations in desmosome proteins, with Desmoglein-2 (DSG2) mutations as a common etiology. However, the mechanism underlying the accumulation of fibrofatty in ACM remains unknown, which impedes the development of curative treatment. Here we investigated the fat accumulation and the underlying mechanism in a mouse model of ACM induced by cardiac-specific knockout of Dsg2 (CS-Dsg2 -/-). Heart failure and cardiac lipid accumulation were observed in CS-Dsg2 -/- mice. We demonstrated that these phenotypes were caused by decline of fatty acid (FA) β-oxidation resulted from impaired mammalian target of rapamycin (mTOR) signaling. Rapamycin worsened while overexpression of mTOR and 4EBP1 rescued the FA β-oxidation pathway in CS-Dsg2 -/- mice. Reactivation of PPARα by fenofibrate or AAV9-Pparα significantly alleviated the lipid accumulation and restored cardiac function. Our results suggest that impaired mTOR-4EBP1-PPARα-dependent FA β-oxidation contributes to myocardial lipid accumulation in ACM and PPARα may be a potential target for curative treatment of ACM.
Collapse
|
23
|
Baykaner T, Narayan S. Machine learning of adipose tissue in atrial fibrillation. Heart Rhythm 2022; 19:2042-2043. [PMID: 36041687 PMCID: PMC10115142 DOI: 10.1016/j.hrthm.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Tina Baykaner
- Department of Internal Medicine, Division of Cardiology, Stanford University, Stanford, California
| | - Sanjiv Narayan
- Department of Internal Medicine, Division of Cardiology, Stanford University, Stanford, California.
| |
Collapse
|
24
|
Conte M, Petraglia L, Cabaro S, Valerio V, Poggio P, Pilato E, Attena E, Russo V, Ferro A, Formisano P, Leosco D, Parisi V. Epicardial Adipose Tissue and Cardiac Arrhythmias: Focus on Atrial Fibrillation. Front Cardiovasc Med 2022; 9:932262. [PMID: 35845044 PMCID: PMC9280076 DOI: 10.3389/fcvm.2022.932262] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 01/02/2023] Open
Abstract
Atrial Fibrillation (AF) is the most frequent cardiac arrhythmia and its prevalence increases with age. AF is strongly associated with an increased risk of stroke, heart failure and cardiovascular mortality. Among the risk factors associated with AF onset and severity, obesity and inflammation play a prominent role. Numerous recent evidence suggested a role of epicardial adipose tissue (EAT), the visceral fat depot of the heart, in the development of AF. Several potential arrhythmogenic mechanisms have been attributed to EAT, including myocardial inflammation, fibrosis, oxidative stress, and fat infiltration. EAT is a local source of inflammatory mediators which potentially contribute to atrial collagen deposition and fibrosis, the anatomical substrate for AF. Moreover, the close proximity between EAT and myocardium allows the EAT to penetrate and generate atrial myocardium fat infiltrates that can alter atrial electrophysiological properties. These observations support the hypothesis of a strong implication of EAT in structural and electrical atrial remodeling, which underlies AF onset and burden. The measure of EAT, through different imaging methods, such as echocardiography, computed tomography and cardiac magnetic resonance, has been proposed as a useful prognostic tool to predict the presence, severity and recurrence of AF. Furthermore, EAT is increasingly emerging as a promising potential therapeutic target. This review aims to summarize the recent evidence exploring the potential role of EAT in the pathogenesis of AF, the main mechanisms by which EAT can promote structural and electrical atrial remodeling and the potential therapeutic strategies targeting the cardiac visceral fat.
Collapse
Affiliation(s)
- Maddalena Conte
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Casa di Cura San Michele, Maddaloni, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Serena Cabaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | | | - Emanuele Pilato
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Emilio Attena
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Vincenzo Russo
- Chair of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli" - Monaldi and Cotugno Hospital, Naples, Italy
| | - Adele Ferro
- Institute of Biostructure and Bioimaging, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
25
|
Zhu J, Zhuo K, Zhang B, Xie Z, Li W. Sex Differences in Epicardial Adipose Tissue: Association With Atrial Fibrillation Ablation Outcomes. Front Cardiovasc Med 2022; 9:905351. [PMID: 35770221 PMCID: PMC9234200 DOI: 10.3389/fcvm.2022.905351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Background There are significant differences in the prevalence and prognosis of atrial fibrillation (AF) between sexes. Epicardial adipose tissue (EAT) has been found as a risk factor for AF. This study aimed to evaluate whether sex-based EAT differences were correlated with AF recurrence and major adverse cardiovascular events (MACE). Methods In this study, postmenopausal women and age, BMI, and type of AF matched men who had received first catheter ablation were included. EAT volume was quantified based on the pre-ablation cardiac computed tomography (CT) images. Clinical, CT, and echocardiographic variables were compared by sex groups. The predictors of AF recurrence and MACE were determined through Cox proportional hazards regression. Results Women were found with significantly lower total EAT volumes (P < 0.001) but higher periatrial/total (P/T) EAT ratios (P = 0.009). The median follow-up duration was 444.5 days. As revealed by the result of the Kaplan-Meier survival analysis, the women were found to have a significantly higher prevalence of AF recurrence (log rank, P = 0.011) but comparable MACE (log rank, P = 0.507) than men. Multivariate analysis demonstrated that female gender (HR: 1.88 [95% CI: 1.03, 4.15], P = 0.032), persistent AF (HR: 2.46 [95% CI: 1.19, 5.05], P = 0.015), left atrial (LA) dimension (HR: 1.47 [95% CI: 1.02, 2.13], P = 0.041), and P/T EAT ratio (HR: 1.73 [95% CI: 1.12, 2.67], P = 0.013) were found as the independent predictors of AF recurrence. Sex-based subgroup multivariable analysis showed that the P/T EAT ratio was an independent predictor of AF recurrence in both men (HR: 1.13 [95% CI: 1.01, 1.46], P = 0.047) and women (HR: 1.37 [95% CI: 1.11, 1.67], P = 0.028). While age (HR: 1.81 [95% CI: 1.18, 2.77], P = 0.007), BMI (HR: 1.44 [95% CI: 1.02, 2.03], P = 0.038), and periatrial EAT volume (HR: 1.31 [95% CI: 1.01, 1.91], P = 0.046) were found to be independent of MACE. Conclusion Women had a higher P/T EAT ratio and AF post-ablation recurrence but similar MACE as compared with men. Female gender and P/T EAT ratio were found to be independent predictors of AF recurrence, whereas age and periatrial EAT volume were found to be independent predictors of MACE.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- *Correspondence: Jing Zhu
| | - Kaimin Zhuo
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Bo Zhang
- Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhen Xie
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenjia Li
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
26
|
Conte M, Petraglia L, Poggio P, Valerio V, Cabaro S, Campana P, Comentale G, Attena E, Russo V, Pilato E, Formisano P, Leosco D, Parisi V. Inflammation and Cardiovascular Diseases in the Elderly: The Role of Epicardial Adipose Tissue. Front Med (Lausanne) 2022; 9:844266. [PMID: 35242789 PMCID: PMC8887867 DOI: 10.3389/fmed.2022.844266] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
Human aging is a complex phenomenon characterized by a wide spectrum of biological changes which impact on behavioral and social aspects. Age-related changes are accompanied by a decline in biological function and increased vulnerability leading to frailty, thereby advanced age is identified among the major risk factors of the main chronic human diseases. Aging is characterized by a state of chronic low-grade inflammation, also referred as inflammaging. It recognizes a multifactorial pathogenesis with a prominent role of the innate immune system activation, resulting in tissue degeneration and contributing to adverse outcomes. It is widely recognized that inflammation plays a central role in the development and progression of numerous chronic and cardiovascular diseases. In particular, low-grade inflammation, through an increased risk of atherosclerosis and insulin resistance, promote cardiovascular diseases in the elderly. Low-grade inflammation is also promoted by visceral adiposity, whose accumulation is paralleled by an increased inflammatory status. Aging is associated to increase in epicardial adipose tissue (EAT), the visceral fat depot of the heart. Structural and functional changes in EAT have been shown to be associated with several heart diseases, including coronary artery disease, aortic stenosis, atrial fibrillation, and heart failure. EAT increase is associated with a greater production and secretion of pro-inflammatory mediators and neuro-hormones, so that thickened EAT can pathologically influence, in a paracrine and vasocrine manner, the structure and function of the heart and is associated to a worse cardiovascular outcome. In this review, we will discuss the evidence underlying the interplay between inflammaging, EAT accumulation and cardiovascular diseases. We will examine and discuss the importance of EAT quantification, its characteristics and changes with age and its clinical implication.
Collapse
Affiliation(s)
- Maddalena Conte
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Casa di Cura San Michele, Maddaloni, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | | | - Serena Cabaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Pasquale Campana
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe Comentale
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Emilio Attena
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Vincenzo Russo
- Department of Medical Translational Sciences, Monaldi Hospital, University of Campania Luigi Vanvitelli, Campania, Italy
| | - Emanuele Pilato
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The obesity epidemic is on the rise, and while it is well known that obesity is associated with an increase in cardiovascular risk factors such as type 2 diabetes mellitus, hypertension, and obstructive sleep apnea, recent data has highlighted that the degree and type of fat distribution may play a bigger role in the pathogenesis of cardiovascular disease (CVD) than body mass index (BMI) alone. We aim to review updated data on adipose tissue inflammation and distribution and CVD. RECENT FINDINGS We review the pathophysiology of inflammation secondary to adipose tissue, the association of obesity-related adipokines and CVD, and the differences and significance of brown versus white adipose tissue. We delve into the clinical manifestations of obesity-related inflammation in CVD. We discuss the available data on heterogeneity of adipose tissue-related inflammation with a focus on subcutaneous versus visceral adipose tissue, the differential pathophysiology, and clinical CVD manifestations of adipose tissue across sex, race, and ethnicity. Finally, we present the available data on lifestyle modification, medical, and surgical therapeutics on reduction of obesity-related inflammation. Obesity leads to a state of chronic inflammation which significantly increases the risk for CVD. More research is needed to develop non-invasive VAT quantification indices such as risk calculators which include variables such as sex, age, race, ethnicity, and VAT concentration, along with other well-known CVD risk factors in order to comprehensively determine risk of CVD in obese patients. Finally, pre-clinical biomarkers such as pro-inflammatory adipokines should be validated to estimate risk of CVD in obese patients.
Collapse
Affiliation(s)
- Mariam N Rana
- Department of Medicine, University Hospitals, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Ian J Neeland
- Department of Medicine, University Hospitals, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Harrington Heart and Vascular Institute, University Hospitals, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
28
|
Čarná Z, Osmančík P. The Effect of Obesity, Hypertension, Diabetes Mellitus, Alcohol, and Sleep Apnea on the Risk of Atrial Fibrillation. Physiol Res 2021. [DOI: 10.33549//physiolres.934744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia associated with a two-fold increase in mortality caused by a higher risk of stroke and heart failure. Currently, AF is present in ~ 2 % of the general population, and its incidence and prevalence are increasing. Obesity, hypertension, diabetes mellitus, obstructive sleep apnea, and alcohol consumption increase the risk of AF. Each unit of increase in BMI increases the risk of AF by 3 %, and intensive weight loss is also associated with reduced AF recurrence. Hypertension increases the risk of AF by 50 % in men and by 40 % in women, and explains ≈ 20 % of new AF cases. Patients with obstructive sleep apnea are at four times higher risk of developing AF than subjects without sleep apnea. Higher concentrations of pro-inflammatory cytokines, higher amounts of epicardial adipose tissue, and a higher degree of ventricular diffuse myocardial fibrosis are present in AF patients and patients with the aforementioned metabolic disorders. Several prospective cohort studies and randomized trials have been initiated to show whether weight loss and treatment of other risk factors will be associated with a reduction in AF recurrences.
Collapse
Affiliation(s)
| | - P Osmančík
- Cardiocenter, Charles University Prague, Dept. Of Cardiology, Prague, Czech Republic.
| |
Collapse
|
29
|
Affiliation(s)
- Stéphane N Hatem
- INSERM UMRS1166, ICAN - Institute of Cardiometabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Ariel Cohen
- INSERM UMRS1166, ICAN - Institute of Cardiometabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France.,Cardiology Department Saint-Antoine Hospital, Paris, France
| |
Collapse
|
30
|
Identifying Atrial Fibrillation Mechanisms for Personalized Medicine. J Clin Med 2021; 10:jcm10235679. [PMID: 34884381 PMCID: PMC8658178 DOI: 10.3390/jcm10235679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Atrial fibrillation (AF) is a major cause of heart failure and stroke. The early maintenance of sinus rhythm has been shown to reduce major cardiovascular endpoints, yet is difficult to achieve. For instance, it is unclear how discoveries at the genetic and cellular level can be used to tailor pharmacotherapy. For non-pharmacologic therapy, pulmonary vein isolation (PVI) remains the cornerstone of rhythm control, yet has suboptimal success. Improving these therapies will likely require a multifaceted approach that personalizes therapy based on mechanisms measured in individuals across biological scales. We review AF mechanisms from cell-to-organ-to-patient from this perspective of personalized medicine, linking them to potential clinical indices and biomarkers, and discuss how these data could influence therapy. We conclude by describing approaches to improve ablation, including the emergence of several mapping systems that are in use today.
Collapse
|
31
|
Gottlieb LA, Al Jefairi N, El Hamrani D, Naulin J, Lamy J, Kachenoura N, Constantin M, Quesson B, Cochet H, Coronel R, Dekker LR. Reduction in left atrial and pulmonary vein dimensions after ablation therapy is mediated by scar. IJC HEART & VASCULATURE 2021; 37:100894. [PMID: 34746362 PMCID: PMC8554268 DOI: 10.1016/j.ijcha.2021.100894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Ablative pulmonary vein isolation (PVI) decreases pulmonary vein (PV) and left atrial (LA) dimensions in atrial fibrillation (AF) patients. These changes are attributed to reverse structural remodeling following sinus rhythm restoration but evidence is lacking. We hypothesized that the downsizing is directly caused by the ablative energy and subsequent scar formation. METHODS We studied cardiac magnetic resonance imaging in 21 paroxysmal AF patients before and 3 months after successful PVI and in healthy sheep (n = 12) before and after PVI of the right PV only. RESULTS PVI decreased the PV diameter in patients and sheep by 11.0(10.3) and 9.2(11.0)%, (p < 0.001 and p = 0.020), respectively. The control left PV in sheep were unchanged. A linear correlation existed between the extent of PV scar and PVI-induced decrease in PV diameter in patients.After PVI, the LA volume decreased (103(38) vs. 92(31)ml, pre- vs. post-ablation, respectively, p = 0.006), while the right atrial (RA) volume was unchanged in patients. A decrease in active emptying fraction after ablation (26.5(10.7) vs. 21.8(10.6)%, pre- vs. post-ablation, p = 0.031) was associated with reduced contractility of the PV walls (p = 0.004). The contractility of the LA walls was unaltered (p = 0.749). CONCLUSION The ablation-induced PV diameter reduction was similar in patients with AF and healthy sheep without AF and was associated with PV scar extent. The volume only decreased in LA and not RA after PVI, and wall contractility decreased only in ablated sites. Therefore, the PVI-induced atrial downsizing is caused by the ablative energy and subsequent scar formation.
Collapse
Affiliation(s)
- Lisa A. Gottlieb
- Electrophysiology and Heart Modeling Institute, University of Bordeaux, Pessac, France
- Department of Experimental Cardiology, AUMC, Academic Medical Center, Amsterdam, the Netherlands
| | - Nora Al Jefairi
- Department of Cardiac Pacing and Electrophysiology, University Hospital, Bordeaux, Pessac, France
| | - Dounia El Hamrani
- Electrophysiology and Heart Modeling Institute, University of Bordeaux, Pessac, France
| | - Jérôme Naulin
- Electrophysiology and Heart Modeling Institute, University of Bordeaux, Pessac, France
| | - Jérôme Lamy
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - Nadjia Kachenoura
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, Paris, France
| | - Marion Constantin
- Electrophysiology and Heart Modeling Institute, University of Bordeaux, Pessac, France
| | - Bruno Quesson
- Electrophysiology and Heart Modeling Institute, University of Bordeaux, Pessac, France
| | - Hubert Cochet
- Electrophysiology and Heart Modeling Institute, University of Bordeaux, Pessac, France
| | - Ruben Coronel
- Electrophysiology and Heart Modeling Institute, University of Bordeaux, Pessac, France
- Department of Experimental Cardiology, AUMC, Academic Medical Center, Amsterdam, the Netherlands
| | - Lukas R.C. Dekker
- Department of Electrical Engineering, University of Technology, Eindhoven, the Netherlands
- Cardiology Department, Catharina Hospital, Eindhoven, the Netherlands
| |
Collapse
|
32
|
Kalpana SR, Shenthar J, Padmanabhan D, Rai MK, Singh A, Banavalikar B, Kalyani RN, Kamalapurkar G. A histological study of the atria in patients with isolated rheumatic mitral regurgitation with and without atrial fibrillation. J Cardiovasc Electrophysiol 2021; 33:32-39. [PMID: 34741568 DOI: 10.1111/jce.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is a high incidence of atrial fibrillation (AF) in patients with isolated rheumatic mitral regurgitation (MR). The histopathologic changes in the atria of patients with isolated rheumatic MR with and without AF are unknown. OBJECTIVES We aimed to determine the histological findings in patients with isolated severe rheumatic MR with and without AF. METHODS Patients with severe isolated rheumatic MR undergoing valve replacement surgeries underwent endocardial biopsies from right atrial appendage, left atrial appendage, right free wall, left free wall, left posterior wall, and mitral valve. Group I consisted of patients in sinus rhythm (SR), and Group II included patients with AF. We analyzed and compared these 10 histological features in the biopsies of patients in Groups I and II. RESULTS Of the 25 patients, 12 were in Group I and 13 in Group II. In Group I, patients had severe myocyte hypertrophy (60% vs. 18%, p = .04) that was significantly more in the right atrium (22.7% vs. 11.4%, p = .059). Interstitial adipose tissue deposition was more common in Group I (30% vs. 25%, p = .06). Interstitial fibrosis was evenly distributed at all sites without significant difference between the two groups. Group II patients had a higher prevalence and severity of vacuolar degeneration (91% vs. 60%, p = .09). CONCLUSIONS Patients with isolated severe rheumatic MR and AF have more vacuolar degeneration in the atrial tissue. Patients with SR have myocyte hypertrophy and interstitial adipose tissue deposition. Interstitial fibrosis is uniformly distributed in patients in SR and AF.
Collapse
Affiliation(s)
- Saligrama R Kalpana
- Department of Pathology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India
| | - Jayaprakash Shenthar
- Electrophysiology Unit, Department of Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India
| | - Deepak Padmanabhan
- Electrophysiology Unit, Department of Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India
| | - Maneesh K Rai
- Electrophysiology Unit, Department of Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India
| | - Ankit Singh
- Electrophysiology Unit, Department of Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India
| | - Bharatraj Banavalikar
- Electrophysiology Unit, Department of Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India
| | - Ravikumar N Kalyani
- Department of Cardiothoracic Surgery, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India
| | - Giridhar Kamalapurkar
- Department of Cardiothoracic Surgery, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, India
| |
Collapse
|
33
|
López-Canoa JN, Couselo-Seijas M, Baluja A, González-Melchor L, Rozados A, Llorente-Cortés V, de Gonzalo-Calvo D, Guerra JM, Vilades D, Leta R, Martínez-Sande JL, García-Seara FJ, Fernández-López XA, González-Juanatey JR, Eiras S, Rodríguez-Mañero M. Sex-related differences of fatty acid-binding protein 4 and leptin levels in atrial fibrillation. Europace 2021; 23:682-690. [PMID: 33319222 DOI: 10.1093/europace/euaa284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/23/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022] Open
Abstract
AIMS Adiposity plays a key role in the pathogenesis of atrial fibrillation (AF). Our aim was to study the sex differences in adipokines levels according to AF burden. METHODS AND RESULTS Two independent cohorts of patients were studied: (i) consecutive patients with AF undergoing catheter ablation (n = 217) and (ii) a control group (n = 105). (i) Adipokines, oxidative stress, indirect autonomic markers, and leucocytes mRNA levels were analysed; (ii) correlation between biomarkers was explored with heatmaps and Kendall correlation coefficients; and (iii) logistic regression and random forest model were used to determine predictors of AF recurrence after ablation. Our results showed that: (i) fatty acid-binding protein 4 (FABP4) and leptin levels were higher in women than in men in both cohorts (P < 0.01). In women, FABP4 levels were higher on AF cohort (20 ± 14 control, 29 ± 18 paroxysmal AF and 31 ± 17 ng/mL persistent AF; P < 0.01). In men, leptin levels were lower on AF cohort (22 ± 15 control, 13 ± 16 paroxysmal AF and 13 ± 11 ng/mL persistent AF; P < 0.01). (ii) In female with paroxysmal AF, there was a lower acetylcholinesterase and higher carbonic anhydrase levels with respect to men (P < 0.05). (iii) Adipokines have an important role on discriminate AF recurrence after ablation. In persistent AF, FABP4 was the best predictor of recurrence after ablation (1.067, 95% confidence interval 1-1.14; P = 0.046). CONCLUSION The major finding of the present study is the sex-based differences of FABP4 and leptin levels according to AF burden. These adipokines are associated with oxidative stress, inflammatory and autonomic indirect markers, indicating that they may play a role in AF perpetuation.
Collapse
Affiliation(s)
- J N López-Canoa
- Cardiovascular area and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Spain.,Translational Cardiology Group, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain
| | - M Couselo-Seijas
- Translational Cardiology Group, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain
| | - A Baluja
- Critical Patient Translational Research Group, Department of Anesthesiology, Intensive Care and Pain Management, University Clinical Hospital of Santiago de Compostela, Spain
| | - L González-Melchor
- Cardiovascular area and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Spain
| | - A Rozados
- Translational Cardiology Group, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain
| | - V Llorente-Cortés
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - D de Gonzalo-Calvo
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - J M Guerra
- CIBERCV, Institute of Health Carlos III, Madrid, Spain.,Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica-Sant Pau, Universitat Autònoma de Barcelona, Sant Antoni M a Claret, Spain
| | - D Vilades
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica-Sant Pau, Universitat Autònoma de Barcelona, Sant Antoni M a Claret, Spain
| | - R Leta
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica-Sant Pau, Universitat Autònoma de Barcelona, Sant Antoni M a Claret, Spain
| | - J L Martínez-Sande
- Cardiovascular area and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - F J García-Seara
- Cardiovascular area and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - X A Fernández-López
- Cardiovascular area and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Spain
| | - J R González-Juanatey
- Cardiovascular area and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Spain.,Translational Cardiology Group, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - S Eiras
- Translational Cardiology Group, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - M Rodríguez-Mañero
- Cardiovascular area and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Spain.,Translational Cardiology Group, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Travesía da Choupana s/n, Santiago de Compostela, 15706 A Coruña, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
34
|
Gottlieb LA, Blanco LSY, Hocini M, Dekker LRC, Coronel R. Self-Reported Onset of Paroxysmal Atrial Fibrillation Is Related to Sleeping Body Position. Front Physiol 2021; 12:708650. [PMID: 34335312 PMCID: PMC8320727 DOI: 10.3389/fphys.2021.708650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Because stretch of the atrial myocardium is proarrhythmic for atrial fibrillation (AF) and a left lateral body position increases atrial dimensions in humans, we hypothesized that left lateral recumbence is a frequent AF-triggering body position in AF patients. Methods: We performed a questionnaire study of symptomatic paroxysmal AF (episodes of AF < 1 week) patients scheduled for a first AF ablation therapy at Catharina Hospital, Eindhoven, the Netherlands and at University Hospital, Bordeaux, France. Results: Ninety-four symptomatic paroxysmal AF patients were included [mean age 61 ± 11 years, median AF history of 29(48) months, 31% were females]. Twenty-two percent of patients reported a specific body position as a trigger of their AF symptoms. The triggering body position was left lateral position in 57% of cases, supine position in 33%, right lateral position in 10%, and prone position in 5% (p = 0.003 overall difference in prevalence). Patients with positional AF had a higher body mass index compared to patients without nocturnal/positional AF [28.7(4.2) and 25.4(5.2) kg/m2, respectively, p = 0.025], but otherwise resembled these patients. Conclusion: Body position, and the left lateral position, in particular, is a common trigger of AF in symptomatic AF patients. Moreover, positional AF is associated with overweight. Understanding of the underlying mechanisms of positional AF can contribute to AF treatment and prevention.
Collapse
Affiliation(s)
- Lisa A Gottlieb
- Institut de rythmologie et modélisation cardiaque (IHU Liryc), University of Bordeaux, Pessac, France.,Department of Experimental Cardiology, Academic Medical Center, Amsterdam University Medical Center (AUMC), Amsterdam, Netherlands
| | - Lorena Sanchez Y Blanco
- Institut de rythmologie et modélisation cardiaque (IHU Liryc), University of Bordeaux, Pessac, France.,Department of Cardiology, University Hospital, Bordeaux, Pessac, France
| | - Mélèze Hocini
- Institut de rythmologie et modélisation cardiaque (IHU Liryc), University of Bordeaux, Pessac, France.,Department of Cardiology, University Hospital, Bordeaux, Pessac, France
| | - Lukas R C Dekker
- Department of Biomedical Engineering, University of Technology, Eindhoven, Netherlands.,Department of Cardiology, Catharina Hospital, Eindhoven, Netherlands
| | - Ruben Coronel
- Institut de rythmologie et modélisation cardiaque (IHU Liryc), University of Bordeaux, Pessac, France.,Department of Experimental Cardiology, Academic Medical Center, Amsterdam University Medical Center (AUMC), Amsterdam, Netherlands
| |
Collapse
|
35
|
Beyer C, Tokarska L, Stühlinger M, Feuchtner G, Hintringer F, Honold S, Fiedler L, Schönbauer MS, Schönbauer R, Plank F. Structural Cardiac Remodeling in Atrial Fibrillation. JACC Cardiovasc Imaging 2021; 14:2199-2208. [PMID: 34147453 DOI: 10.1016/j.jcmg.2021.04.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES This study sought to evaluate preablation computed tomography angiography (CTA) for atrial and epicardial features to predict atrial fibrillation (AF) recurrence after ablation. BACKGROUND Structural atrial remodeling is a process associated with occurrence or persistence of AF. Different anatomical imaging features have been proposed to influence atrial remodeling both negatively and positively as substrate for AF. METHODS Patients with nonvalvular AF underwent cardiac CTA before pulmonary vein isolation at 2 high-volume centers. Left atrial (LA) and right atrial volumes, LA wall thickness (LAWT), and epicardial adipose tissue volume and attenuation were evaluated. Additional subanalyses of electroanatomical maps were made. Follow-up was performed for at least 12 months, including subanalysis of repeated cardiac CTA studies. Interrater variability was assessed. RESULTS Of 732 patients, 270 (36.9%) had AF recurrence after a mean of 7 months. CT analysis revealed larger indexed LA volume (47.3 mL/m2 vs 43.6 mL/m2; P = 0.0001) and higher mean anterior (1.91 mm vs 1.65 mm; P < 0.0001) and posterior (1.61 mm vs 1.39 mm; P = 0.001) LAWT in patients with AF recurrence. Epicardial adipose tissue volume in patients with AF recurrence was higher (144.5 mm³ vs 128.5 mm³; P < 0.0001) and further progressed significantly in a subset of 85 patients after 2 years (+11.8 mm2 vs -3.5 mm2; P = 0.041). Attenuation levels were lower, indicating a higher lipid component associated with AF recurrence (-69.1 HU vs -67.5 HU; P = 0.001). A total of 103 atrial voltage maps were highly predictive of AF recurrence and showed good discriminatory power for patients with low voltage >50% and LAWT (1.55 ± 0.5 mm vs 1.81 ± 0.6 mm; P = 0.032). Net reclassification improvement (NRI) showed a significant incremental benefit (NRI = 0.279; P < 0.0001) when adding LAWT to established risk models. CONCLUSIONS Atrial wall thickness, epicardial fat volume, and attenuation are associated with AF recurrence in patients undergoing ablation therapy.
Collapse
Affiliation(s)
- Christoph Beyer
- Department of Cardiology and Angiology, Innsbruck Medical University, Innsbruck, Austria
| | - Lyudmyla Tokarska
- Department of Internal Medicine II, Landesklinicum Wiener Neustadt Hospital, Wiener Neustadt, Austria
| | - Markus Stühlinger
- Department of Cardiology and Angiology, Innsbruck Medical University, Innsbruck, Austria
| | - Gudrun Feuchtner
- Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | - Florian Hintringer
- Department of Cardiology and Angiology, Innsbruck Medical University, Innsbruck, Austria
| | - Sarah Honold
- Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | - Lukas Fiedler
- Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Robert Schönbauer
- Department of Cardiology and Angiology, Innsbruck Medical University, Innsbruck, Austria; Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | - Fabian Plank
- Department of Cardiology and Angiology, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
36
|
Aguilar M, Rose RA, Takawale A, Nattel S, Reilly S. New aspects of endocrine control of atrial fibrillation and possibilities for clinical translation. Cardiovasc Res 2021; 117:1645-1661. [PMID: 33723575 PMCID: PMC8208746 DOI: 10.1093/cvr/cvab080] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Hormones are potent endo-, para-, and autocrine endogenous regulators of the function of multiple organs, including the heart. Endocrine dysfunction promotes a number of cardiovascular diseases, including atrial fibrillation (AF). While the heart is a target for endocrine regulation, it is also an active endocrine organ itself, secreting a number of important bioactive hormones that convey significant endocrine effects, but also through para-/autocrine actions, actively participate in cardiac self-regulation. The hormones regulating heart-function work in concert to support myocardial performance. AF is a serious clinical problem associated with increased morbidity and mortality, mainly due to stroke and heart failure. Current therapies for AF remain inadequate. AF is characterized by altered atrial function and structure, including electrical and profibrotic remodelling in the atria and ventricles, which facilitates AF progression and hampers its treatment. Although features of this remodelling are well-established and its mechanisms are partly understood, important pathways pertinent to AF arrhythmogenesis are still unidentified. The discovery of these missing pathways has the potential to lead to therapeutic breakthroughs. Endocrine dysfunction is well-recognized to lead to AF. In this review, we discuss endocrine and cardiocrine signalling systems that directly, or as a consequence of an underlying cardiac pathology, contribute to AF pathogenesis. More specifically, we consider the roles of products from the hypothalamic-pituitary axis, the adrenal glands, adipose tissue, the renin–angiotensin system, atrial cardiomyocytes, and the thyroid gland in controlling atrial electrical and structural properties. The influence of endocrine/paracrine dysfunction on AF risk and mechanisms is evaluated and discussed. We focus on the most recent findings and reflect on the potential of translating them into clinical application.
Collapse
Affiliation(s)
- Martin Aguilar
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Physiology/Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada
| | - Robert A Rose
- Department of Cardiac Sciences, Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, Health Research Innovation Center, University of Calgary, AB, Canada
| | - Abhijit Takawale
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Physiology/Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Stanley Nattel
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Faculty of Medicine, Department of Pharmacology and Physiology, and Research Centre, Montreal Heart Institute and University of Montreal, Montreal, QC, Canada.,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany.,IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
37
|
Blessberger H, Mueller P, Makimoto H, Hauffe F, Meissner A, Gemein C, Schmitt J, Hamm C, Deneke T, Schiedat F, Mügge A, Gabriel M, Steinwender C. Association of adipocytokines serum levels with left atrial thrombus formation in atrial fibrillation patients on oral anticoagulation (Alert) - A cross-sectional study. Nutr Metab Cardiovasc Dis 2021; 31:860-868. [PMID: 33549449 DOI: 10.1016/j.numecd.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Oral anticoagulation is effective for stroke prevention in atrial fibrillation (AF). However, strokes may still occur in high-risk individuals. We conducted a prospective trial to assess the association between adipocytokine serum levels and surrogate parameters for thromboembolic events. METHODS AND RESULTS In this cross-sectional multicenter trial, we enrolled 189 patients with AF who were on oral anticoagulation. The primary endpoint was defined as either the presence of spontaneous echo contrast (SEC), a left atrial appendage (LAA), or a left atrial (LA) thrombus on transesophageal echocardiography. We investigated the association of adipocytokine serum levels with the combined endpoint using logistic regression analysis. Forty-eight individuals (25%) were assigned to group 1 (G1) due to the occurrence of at least one of the components of the combined endpoint (41 [21.7%] SEC, 3 [1.6%] LA thrombus, 13 [6.9%] LAA thrombus), whereas the remaining patients formed group 2 (G2). The BMI, logarithmized (loge) leptin (G1: 2.0 ± 1.3 μg/ml, G2: 2.0 ± 1.1 μg/ml, p = 0.746) and visfatin serum levels (G1: 3.4 ± 0.3 ng/ml, G2: 3.4 ± 0.5 ng/ml, p = 0.900) did not significantly differ between the groups. Conversely, logarithmized adiponectin (G1: 3.3 ± 0.6 ng/ml, G2: 3.1 ± 0.7 ng/ml, p = 0.036) and resistin levels (G1: 1.8 ± 0.5 ng/ml, G2: 1.6 ± 0.5 ng/ml, p = 0.009) were higher in patients with the primary endpoint. Multivariate logistic regression analysis using a score that combined the individual adiponectin and resistin values in each patient corroborated this association. CONCLUSIONS Our results suggest that adiponectin and resistin may act as potential biomarkers to identify individuals with AF who are at high thromboembolic risk.
Collapse
Affiliation(s)
- Hermann Blessberger
- Johannes Kepler University Linz, Medical Faculty, Linz, Austria; Department of Cardiology, Kepler University Hospital, Linz, Austria.
| | - Patrick Mueller
- Department of Cardiology, Pneumology and Angiology, University Hospital Duesseldorf, Germany; Department of Cardiology II - Electrophysiology, University Hospital of Muenster, Germany
| | - Hisaki Makimoto
- Department of Cardiology, Pneumology and Angiology, University Hospital Duesseldorf, Germany
| | - Friederike Hauffe
- Department of Cardiology, Pneumology and Angiology, University Hospital Duesseldorf, Germany
| | - Anita Meissner
- Department of Cardiology, Pneumology and Angiology, University Hospital Duesseldorf, Germany
| | - Christopher Gemein
- Department of Cardiology, University Hospital Giessen, Germany; Clinic for Cardiology, Klinikum Frankfurt Hoechst, Frankfurt, Germany
| | - Joern Schmitt
- Department of Cardiology, University Hospital Giessen, Germany
| | - Christian Hamm
- Department of Cardiology, University Hospital Giessen, Germany
| | - Thomas Deneke
- Department of Cardiology, Heart Center (Herz- und Gefäßklinik GmbH), Bad Neustadt a.d. Saale, Germany
| | - Fabian Schiedat
- Department of Cardiology, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Andreas Mügge
- Department of Cardiology, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Michael Gabriel
- Johannes Kepler University Linz, Medical Faculty, Linz, Austria; Institute of Nuclear Medicine and Endocrinology, Kepler University Hospital, Linz, Austria
| | - Clemens Steinwender
- Johannes Kepler University Linz, Medical Faculty, Linz, Austria; Department of Cardiology, Kepler University Hospital, Linz, Austria; Department of Internal Medicine II, Paracelsus Medical University Salzburg, Austria
| |
Collapse
|
38
|
Bonou M, Mavrogeni S, Kapelios CJ, Markousis-Mavrogenis G, Aggeli C, Cholongitas E, Protogerou AD, Barbetseas J. Cardiac Adiposity and Arrhythmias: The Role of Imaging. Diagnostics (Basel) 2021; 11:diagnostics11020362. [PMID: 33672778 PMCID: PMC7924558 DOI: 10.3390/diagnostics11020362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Increased cardiac fat depots are metabolically active tissues that have a pronounced pro-inflammatory nature. Increasing evidence supports a potential role of cardiac adiposity as a determinant of the substrate of atrial fibrillation and ventricular arrhythmias. The underlying mechanism appears to be multifactorial with local inflammation, fibrosis, adipocyte infiltration, electrical remodeling, autonomic nervous system modulation, oxidative stress and gene expression playing interrelating roles. Current imaging modalities, such as echocardiography, computed tomography and cardiac magnetic resonance, have provided valuable insight into the relationship between cardiac adiposity and arrhythmogenesis, in order to better understand the pathophysiology and improve risk prediction of the patients, over the presence of obesity and traditional risk factors. However, at present, given the insufficient data for the additive value of imaging biomarkers on commonly used risk algorithms, the use of different screening modalities currently is indicated for personalized risk stratification and prognostication in this setting.
Collapse
Affiliation(s)
- Maria Bonou
- Department of Cardiology, Laiko General Hospital, 11527 Athens, Greece; (M.B.); (J.B.)
| | - Sophie Mavrogeni
- Department of Cardiology, Onassis Cardiac Surgery Center, 17674 Athens, Greece; (S.M.); (G.M.-M.)
| | - Chris J. Kapelios
- Department of Cardiology, Laiko General Hospital, 11527 Athens, Greece; (M.B.); (J.B.)
- Correspondence: ; Tel.: +30-213-2061032; Fax: +30-213-2061761
| | | | - Constantina Aggeli
- First Department of Cardiology, Hippokration General Hospital, Medical School of National & Kapodistrian University, 11527 Athens, Greece;
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Medical School of National & Kapodistrian University, 11527 Athens, Greece;
| | - Athanase D. Protogerou
- Cardiovascular Prevention & Research Unit, Clinic and Laboratory of Pathophysiology, National & Kapodistrian University Athens School of Medicine, 11527 Athens, Greece;
| | - John Barbetseas
- Department of Cardiology, Laiko General Hospital, 11527 Athens, Greece; (M.B.); (J.B.)
| |
Collapse
|
39
|
Zhang L, Ye K, Xiaokereti J, Ma M, Guo Y, Zhou X, Tang B. Histopathological substrate of the atrial myocardium in the progression of obstructive sleep apnoea-related atrial fibrillation. Sleep Breath 2021; 25:807-818. [PMID: 33411188 DOI: 10.1007/s11325-020-02128-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/09/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) is closely related to atrial fibrillation (AF), and OSA-induced atrial structural remodelling is the basis of AF maintenance. However, the process of atrial structural remodelling during the progression of acute OSA to chronic OSA is still unclear. OBJECTIVE To investigate changes in the atrial myocardium in acute sleep apnoea (6 h) and chronic sleep apnoea (12 weeks) by echocardiography, atrial myocardium morphology analysis, PAS staining, TUNEL staining, Masson's trichrome staining and analyses of ultrastructural changes. METHODS Eighteen adult beagle dogs under general anaesthesia were used to establish an OSA model. The animals were divided into the control group, acute OSA group and chronic OSA group, and there were six animals in each group. Cardiac ultrasounds of dogs from the three groups were examined. Left and right atrial muscle tissues were taken for HE staining, PAS staining, TUNEL staining, Masson's trichrome staining and transmission electron microscopy. RESULTS In the acute OSA model, the left atrial diameter of the dogs began to increase 3 h after ventilation, and this difference was more obvious at 6 h. The morphology of the myocardial cells did not change significantly, but mitochondrial swelling was observed in some atrial myocytes at 3 h. In the chronic OSA model, the left atrial diameter gradually increased, the volume of the right and left atria increased, the glycogen and collagen volume fractions and apoptosis ratio were significantly increased in atrial myocytes, mitochondria swelling and lengthening occurred in some atrial myocytes, the matrix became lighter, the mitochondrial ridge density decreased and the myofilament arrangement was disordered. The disc was distorted and not continuous, and there was some cardiomyocyte necrosis. CONCLUSION With the prolongation of apnoea, the atrium gradually enlarges, myocardial cells become disordered, glycogen aggregates, the number of necrotic cells increases, fibrosis worsens, mitochondrial abnormalities occur and the arrangement of the discs are disordered, providing a basis for the maintenance of AF.
Collapse
Affiliation(s)
- Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Kun Ye
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,Cardiac Pacing and Physiological Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Jiasuoer Xiaokereti
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,Cardiac Pacing and Physiological Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Mei Ma
- Teaching Management Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Yankai Guo
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,Cardiac Pacing and Physiological Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Xianhui Zhou
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,Cardiac Pacing and Physiological Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China. .,Cardiac Pacing and Physiological Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
40
|
Podzolkov VI, Tarzimanova AI, Bragina AE, Osadchiy KK, Gataulin RG, Oganesyan KA, Jafarova ZB. Role of epicardial adipose tissue in the development of atrial fibrillation in hypertensive patients. ACTA ACUST UNITED AC 2020. [DOI: 10.15829/1728-8800-2020-2707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Obesity is a progressing epidemic, the prevalence of which has doubled over the past 30 years. The distribution of adipose tissue is an important factor in predicting the risk of cardiovascular events. The most significant inflammatory activity is characteristic of epicardial adipose tissue (EAT), the role of which in the development of atrial fibrillation (AF) remains a subject of discussion.Aim. To study the effect of EAT size on the development of AF in hypertensive (HTN) patients.Material and methods. The study included 95 patients with HTN aged 38-72 years (mean age, 61,5±1,8 years), including 45 patients with paroxysmal AF (group I) and 50 patients in the comparison group (group II). In order to assess the severity of visceral obesity, all patients underwent a general examination and echocardiography. To determine the EAT volume, cardiac multislice computed tomography was performed.Results. Echocardiography revealed that the EAT thickness was significantly greater in hypertensive patients with paroxysmal AF than in the comparison group: 11,6±0,8 and 8,6±0,4 mm, respectively (p<0,001). According to cardiac multislice computed tomography, a significant increase in EAT volume was revealed in patients of group I (4,6±0,4 ml) compared with group II (3,5±0,25 ml) (p=0,019). In hypertensive patients with paroxysmal AF, a positive moderate relationship between the EAT volume and left atrial volume was revealed (r=0,7, p=0,022). Multivariate analysis showed that in hypertensive patients, EAT thickness >10 mm and volume >6 ml can serve as integral markers of the onset of paroxysmal AF.Conclusion. Integral markers of AF in hypertensive patients are an increase in the EAT thickness >10 mm (odds ratio, 4,1; 95% confidence interval, 1,1-5,6) and volume >6 ml (odds ratio 3,7; 95%, confidence interval 1,0-4,2).
Collapse
Affiliation(s)
| | | | - A. E. Bragina
- I. M. Sechenov First Moscow State Medical University
| | | | | | | | | |
Collapse
|
41
|
Xie ZJ, Novograd J, Itzkowitz Y, Sher A, Buchen YD, Sodhi K, Abraham NG, Shapiro JI. The Pivotal Role of Adipocyte-Na K peptide in Reversing Systemic Inflammation in Obesity and COVID-19 in the Development of Heart Failure. Antioxidants (Basel) 2020; 9:E1129. [PMID: 33202598 PMCID: PMC7697697 DOI: 10.3390/antiox9111129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
This review summarizes data from several laboratories that have demonstrated a role of the Na/K-ATPase, specifically its α1 subunit, in the generation of reactive oxygen species (ROS) via the negative regulator of Src. Together with Src and other signaling proteins, the Na/K-ATPase forms an oxidant amplification loop (NKAL), amplifies ROS, and participates in cytokines storm in obesity. The development of a peptide fragment of the α1 subunit, NaKtide, has been shown to negatively regulate Src. Several groups showed that the systemic administration of the cell permeable modification of NaKtide (pNaKtide) or its selective delivery to fat tissue-adipocyte specific expression of NaKtide-ameliorate the systemic elevation of inflammatory cytokines seen in chronic obesity. Severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2), the RNA Coronavirus responsible for the COVID-19 global pandemic, invades cells via the angiotensin converting enzyme 2 (ACE-2) receptor (ACE2R) that is appended in inflamed fat tissue and exacerbates the formation of the cytokines storm. Both obesity and heart and renal failure are well known risks for adverse outcomes in patients infected with COVID-19. White adipocytes express ACE-2 receptors in high concentration, especially in obese patients. Once the virus invades the white adipocyte cell, it creates a COVID19-porphyrin complex which degrades and produces free porphyrin and iron and increases ROS. The increased formation of ROS and activation of the NKAL results in a further potentiated formation of ROS production, and ultimately, adipocyte generation of more inflammatory mediators, leading to systemic cytokines storm and heart failure. Moreover, chronic obesity also results in the reduction of antioxidant genes such as heme oxygenase-1 (HO-1), increasing adipocyte susceptibility to ROS and cytokines. It is the systemic inflammation and cytokine storm which is responsible for many of the adverse outcomes seen with COVID-19 infections in obese subjects, leading to heart failure and death. This review will also describe the potential antioxidant drugs and role of NaKtide and their demonstrated antioxidant effect used as a major strategy for improving obesity and epicardial fat mediated heart failure in the context of the COVID pandemic.
Collapse
Affiliation(s)
- Zi-jian Xie
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Joel Novograd
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yaakov Itzkowitz
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Ariel Sher
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yosef D. Buchen
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Komal Sodhi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Nader G. Abraham
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| |
Collapse
|
42
|
Vyas V, Hunter RJ, Longhi MP, Finlay MC. Inflammation and adiposity: new frontiers in atrial fibrillation. Europace 2020; 22:1609-1618. [PMID: 33006596 DOI: 10.1093/europace/euaa214] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023] Open
Abstract
Abstract
The aetiology of atrial fibrillation (AF) remains poorly understood, despite its growing prevalence and associated morbidity, mortality, and healthcare costs. Obesity is implicated in myriad different disease processes and is now recognized a major risk factor in the pathogenesis of AF. Moreover, the role of distinct adipose tissue depots is a matter of intense scientific interest with the depot directly surrounding the heart—epicardial adipose tissue (EAT) appearing to have the greatest correlation with AF presence and severity. Similarly, inflammation is implicated in the pathophysiology of AF with EAT thought to act as a local depot of inflammatory mediators. These can easily diffuse into atrial tissue with the potential to alter its structural and electrical properties. Various meta-analyses have indicated that EAT size is an independent risk factor for AF with adipose tissue expansion being inevitably associated with a local inflammatory process. Here, we first briefly review adipose tissue anatomy and physiology then move on to the epidemiological data correlating EAT, inflammation, and AF. We focus particularly on discussing the mechanistic basis of how EAT inflammation may precipitate and maintain AF. Finally, we review how EAT can be utilized to help in the clinical management of AF patients and discuss future avenues for research.
Collapse
Affiliation(s)
- Vishal Vyas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Cardiac Electrophysiology, Barts Heart Centre, St. Bartholomew’s Hospital, West Smithfield, London, UK
| | - Ross J Hunter
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Cardiac Electrophysiology, Barts Heart Centre, St. Bartholomew’s Hospital, West Smithfield, London, UK
| | - M Paula Longhi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Malcolm C Finlay
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Cardiac Electrophysiology, Barts Heart Centre, St. Bartholomew’s Hospital, West Smithfield, London, UK
| |
Collapse
|
43
|
Ghattas KN, Ilyas S, Al-Refai R, Maharjan R, Diaz Bustamante L, Khan S. Obesity and Atrial Fibrillation: Should We Screen for Atrial Fibrillation in Obese Individuals? A Comprehensive Review. Cureus 2020; 12:e10471. [PMID: 32953364 PMCID: PMC7494408 DOI: 10.7759/cureus.10471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/15/2020] [Indexed: 11/14/2022] Open
Abstract
Obesity and obesity-related illnesses (ORIs) constitute a significant burden on the healthcare system, with a very high prevalence in the general population. Atrial fibrillation (AF) is the most common arrhythmia seen by healthcare providers. The risk of AF in obese individuals is reported to be high and in correlation with Body Mass Index (BMI), leading to the high prevalence of AF in the general population and the expected epidemic of AF to come. Greater left atrial dimensions and left atrial remodeling together form the AF substrate in the obese population along with the role of epicardial adipose tissue (EAT) in inducing inflammation and fibrosis of the atrial myocardium and thus facilitating the onset of AF. In our paper, we reviewed the literature published on the link between obesity and AF, as well as the potential behind new management approaches. Multiple studies have explored different approaches, either conventional or novel. Considering the impact of prevention in medicine nowadays, we proposed a screening practice for AF in obese individuals. More research is needed to acquire a comprehensive protocol for the management of AF in the obese population that can be applied by primary healthcare providers to combat this evolving matter.
Collapse
Affiliation(s)
- Kyrillos N Ghattas
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Shahbakht Ilyas
- Surgery, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Reham Al-Refai
- Pathology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Reeju Maharjan
- Neurology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Liliana Diaz Bustamante
- Family Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
44
|
Li B, Po SS, Zhang B, Bai F, Li J, Qin F, Liu N, Sun C, Xiao Y, Tu T, Zhou S, Liu Q. Metformin regulates adiponectin signalling in epicardial adipose tissue and reduces atrial fibrillation vulnerability. J Cell Mol Med 2020; 24:7751-7766. [PMID: 32441464 PMCID: PMC7348162 DOI: 10.1111/jcmm.15407] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 03/31/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Epicardial adipose tissue (EAT) remodelling is closely related to the pathogenesis of atrial fibrillation (AF). We investigated whether metformin (MET) prevents AF‐dependent EAT remodelling and AF vulnerability in dogs. A canine AF model was developed by 6‐week rapid atrial pacing (RAP), and electrophysiological parameters were measured. Effective refractory periods (ERP) were decreased in the left and right atrial appendages as well as in the left atrium (LA) and right atrium (RA). MET attenuated the RAP‐induced increase in ERP dispersion, cumulative window of vulnerability, AF inducibility and AF duration. RAP increased reactive oxygen species (ROS) production and nuclear factor kappa‐B (NF‐κB) phosphorylation; up‐regulated interleukin‐6 (IL‐6), tumour necrosis factor‐α (TNF‐α) and transforming growth factor‐β1 (TGF‐β1) levels in LA and EAT; decreased peroxisome proliferator‐activated receptor gamma (PPARγ) and adiponectin (APN) expression in EAT and was accompanied by atrial fibrosis and adipose infiltration. MET reversed these alterations. In vitro, lipopolysaccharide (LPS) exposure increased IL‐6, TNF‐α and TGF‐β1 expression and decreased PPARγ/APN expression in 3T3‐L1 adipocytes, which were all reversed after MET administration. Indirect coculture of HL‐1 cells with LPS‐stimulated 3T3‐L1 conditioned medium (CM) significantly increased IL‐6, TNF‐α and TGF‐β1 expression and decreased SERCA2a and p‐PLN expression, while LPS + MET CM and APN treatment alleviated the inflammatory response and sarcoplasmic reticulum Ca2+ handling dysfunction. MET attenuated the RAP‐induced increase in AF vulnerability, remodelling of atria and EAT adipokines production profiles. APN may play a key role in the prevention of AF‐dependent EAT remodelling and AF vulnerability by MET.
Collapse
Affiliation(s)
- Biao Li
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Sunny S Po
- Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Baojian Zhang
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.,Department of Cardiology, the Affiliated Chinese Medicine Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Province, China
| | - Fan Bai
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Jiayi Li
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Fen Qin
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Na Liu
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Chao Sun
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Yichao Xiao
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Tao Tu
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Shenghua Zhou
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Qiming Liu
- Department of Cardiology/Cardiac Catheterization Lab, Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
45
|
Abstract
This review addresses the interplay between obesity, type 2 diabetes mellitus, and cardiovascular diseases. It is proposed that obesity, generally defined by an excess of body fat causing prejudice to health, can no longer be evaluated solely by the body mass index (expressed in kg/m2) because it represents a heterogeneous entity. For instance, several cardiometabolic imaging studies have shown that some individuals who have a normal weight or who are overweight are at high risk if they have an excess of visceral adipose tissue-a condition often accompanied by accumulation of fat in normally lean tissues (ectopic fat deposition in liver, heart, skeletal muscle, etc). On the other hand, individuals who are overweight or obese can nevertheless be at much lower risk than expected when faced with excess energy intake if they have the ability to expand their subcutaneous adipose tissue mass, particularly in the gluteal-femoral area. Hence, excessive amounts of visceral adipose tissue and of ectopic fat largely define the cardiovascular disease risk of overweight and moderate obesity. There is also a rapidly expanding subgroup of patients characterized by a high accumulation of body fat (severe obesity). Severe obesity is characterized by specific additional cardiovascular health issues that should receive attention. Because of the difficulties of normalizing body fat content in patients with severe obesity, more aggressive treatments have been studied in this subgroup of individuals such as obesity surgery, also referred to as metabolic surgery. On the basis of the above, we propose that we should refer to obesities rather than obesity.
Collapse
Affiliation(s)
- Marie-Eve Piché
- From the Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval (M.-E.P., A.T., J.-P.D.), Université Laval, Québec, QC, Canada.,Department of Medicine, Faculty of Medicine (M.-E.P.), Université Laval, Québec, QC, Canada
| | - André Tchernof
- From the Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval (M.-E.P., A.T., J.-P.D.), Université Laval, Québec, QC, Canada.,School of Nutrition (A.T.), Université Laval, Québec, QC, Canada
| | - Jean-Pierre Després
- From the Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval (M.-E.P., A.T., J.-P.D.), Université Laval, Québec, QC, Canada.,Vitam - Centre de recherche en santé durable, CIUSSS - Capitale-Nationale (J.-P.D.), Université Laval, Québec, QC, Canada.,Department of Kinesiology, Faculty of Medicine (J.-P.D.), Université Laval, Québec, QC, Canada
| |
Collapse
|
46
|
Chang TY, Hsiao YW, Guo SM, Chang SL, Lin YJ, Lo LW, Hu YF, Chung FP, Chao TF, Liao JN, Tuan TC, Lin CY, Higa S, Chen SA. Resistin as a Biomarker for the Prediction of Left Atrial Substrate and Recurrence in Patients with Drug-Refractory Atrial Fibrillation Undergoing Catheter Ablation. Int Heart J 2020; 61:517-523. [PMID: 32418972 DOI: 10.1536/ihj.19-680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Resistin is an adipocytokine that is abundantly secreted from lipid cells and is related to the inflammatory process and cardiometabolic diseases. This study aimed to examine the role of resistin on inflammation and its effect on the clinical outcome of patients with atrial fibrillation (AF) following catheter ablation.A total of 108 patients (56.9 ± 12.0 years, 76.8% male) with symptomatic and drug-refractory AF undergoing catheter ablation were enrolled. Inflammatory biomarkers and epicardial fat volume by contrast computed tomography (CT) images were assessed in all patients before the procedure. Baseline resistin correlated with epicardial fat volume, tumor necrosis factor-α (TNF-α), and left atrial (LA) scar area. After the index procedure, the univariate analysis revealed that hypertension, persistent AF, LA diameter, and plasma resistin level were related to recurrent atrial arrhythmia. Multivariate regression analysis revealed that persistent AF, LA diameter, and plasma resistin level all independently predicted recurrent atrial arrhythmia after ablation. Plasma resistin with a level higher than 777 (pg/mL) could predict recurrence following catheter ablation of AF.High plasma resistin level is associated with poor left atrial substrate, high epicardial fat volume, and elevated TNF-α level in patients with AF. Plasma resistin may predict the recurrence of atrial arrhythmia after ablation.
Collapse
Affiliation(s)
- Ting-Yung Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.,Division of Cardiology, Taipei Veterans General Hospital.,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming University
| | - Ya-Wen Hsiao
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.,Division of Cardiology, Taipei Veterans General Hospital
| | - Shu-Mei Guo
- Department of Computer Science and Information Engineering, National Cheng-Kung University
| | - Shih-Lin Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.,Division of Cardiology, Taipei Veterans General Hospital.,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming University
| | - Yenn-Jiang Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.,Division of Cardiology, Taipei Veterans General Hospital.,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming University
| | - Li-Wei Lo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.,Division of Cardiology, Taipei Veterans General Hospital.,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming University
| | - Yu-Feng Hu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.,Division of Cardiology, Taipei Veterans General Hospital.,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming University
| | - Fa-Po Chung
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.,Division of Cardiology, Taipei Veterans General Hospital.,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming University
| | - Tze-Fan Chao
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.,Division of Cardiology, Taipei Veterans General Hospital.,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming University
| | - Jo-Nan Liao
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.,Division of Cardiology, Taipei Veterans General Hospital.,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming University
| | - Ta-Chuan Tuan
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.,Division of Cardiology, Taipei Veterans General Hospital.,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming University
| | - Chin-Yu Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.,Division of Cardiology, Taipei Veterans General Hospital.,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming University
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.,Division of Cardiology, Taipei Veterans General Hospital.,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming University
| |
Collapse
|
47
|
21st Century Advances in Multimodality Imaging of Obesity for Care of the Cardiovascular Patient. JACC Cardiovasc Imaging 2020; 14:482-494. [PMID: 32305476 DOI: 10.1016/j.jcmg.2020.02.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
Although obesity is typically defined by body mass index criteria, this does not differentiate true body fatness, as this includes both body fat and muscle. Therefore, other fat depots may better define cardiometabolic and cardiovascular disease (CVD) risk imposed by obesity. Data from translational, epidemiological, and clinical studies over the past 3 decades have clearly demonstrated that accumulation of adiposity in the abdominal viscera and within tissue depots lacking physiological adipose tissue storage capacity (termed "ectopic fat") is strongly associated with the development of a clinical syndrome characterized by atherogenic dyslipidemia, hyperinsulinemia/glucose intolerance/type 2 diabetes mellitus, hypertension, atherosclerosis, and abnormal cardiac remodeling and heart failure. This state-of-the-art paper discusses the impact of various body fat depots on cardiometabolic parameters and CVD risk. Specifically, it reviews novel and emerging imaging techniques to evaluate adiposity and the risk of cardiometabolic diseases and CVD.
Collapse
|
48
|
Javed S, Gupta D, Lip GYH. Obesity and atrial fibrillation: making inroads through fat. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2020; 7:59-67. [PMID: 32096865 DOI: 10.1093/ehjcvp/pvaa013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
The global prevalence of obesity has reached epidemic proportions, paralleled by a rise in cases of atrial fibrillation (AF). Data from epidemiological cohorts support the role of obesity as an independent risk factor for AF. Increasing evidence indicates that obesity may contribute to the AF substrate through a number of pathways including by altering epicardial adipose tissue biology, inflammatory pathways, structural cardiac remodelling, and inducing atrial fibrosis. Due to changes in pharmacokinetics and pharmacodynamics, specific therapeutic considerations are required to guide management of patients with AF including anticoagulation and rhythm control. Also, weight loss in patients with AF has been associated with reduced progression from paroxysmal to persistent AF and indeed regression from persistent to proximal AF. However, the role of dietary intervention in AF control remains to be fully elucidated and hard prospective outcome data to support weight loss are required in AF to determine its role as part of a comprehensive risk factor management strategy for AF in obese patients.
Collapse
Affiliation(s)
- Saad Javed
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool Heart and Chest Hospital, Liverpool, UK.,Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Dhiraj Gupta
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
49
|
Babakr AA, Fomison-Nurse IC, van Hout I, Aitken-Buck HM, Sugunesegran R, Davis PJ, Bunton RW, Williams MJA, Coffey S, Stiles MK, Jones PP, Lamberts RR. Acute interaction between human epicardial adipose tissue and human atrial myocardium induces arrhythmic susceptibility. Am J Physiol Endocrinol Metab 2020; 318:E164-E172. [PMID: 31821041 DOI: 10.1152/ajpendo.00374.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epicardial adipose tissue (EAT) deposition has a strong clinical association with atrial arrhythmias; however, whether a direct functional interaction exists between EAT and the myocardium to induce atrial arrhythmias is unknown. Therefore, we aimed to determine whether human EAT can be an acute trigger for arrhythmias in human atrial myocardium. Human trabeculae were obtained from right atrial appendages of patients who have had cardiac surgery (n = 89). The propensity of spontaneous contractions (SCs) in the trabeculae (proxy for arrhythmias) was determined under physiological conditions and during known triggers of SCs (high Ca2+, β-adrenergic stimulation). To determine whether EAT could trigger SCs, trabeculae were exposed to superfusate of fresh human EAT, and medium of 24 h-cultured human EAT treated with β1/2 (isoproterenol) or β3 (BRL37344) adrenergic agonists. Without exposure to EAT, high Ca2+ and β1/2-adrenergic stimulation acutely triggered SCs in, respectively, 47% and 55% of the trabeculae that previously were not spontaneously active. Acute β3-adrenergic stimulation did not trigger SCs. Exposure of trabeculae to either superfusate of fresh human EAT or untreated medium of 24 h-cultured human EAT did not induce SCs; however, specific β3-adrenergic stimulation of EAT did trigger SCs in the trabeculae, either when applied to fresh (31%) or cultured (50%) EAT. Additionally, fresh EAT increased trabecular contraction and relaxation, whereas media of cultured EAT only increased function when treated with the β3-adrenergic agonist. An acute functional interaction between human EAT and human atrial myocardium exists that increases the propensity for atrial arrhythmias, which depends on β3-adrenergic rather than β1/2-adrenergic stimulation of EAT.
Collapse
Affiliation(s)
- Aram A Babakr
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ingrid C Fomison-Nurse
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle van Hout
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hamish M Aitken-Buck
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ramanen Sugunesegran
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Philip J Davis
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Richard W Bunton
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Michael J A Williams
- Department of Medicine, HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine, HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Martin K Stiles
- Department of Cardiology, Waikato District Health Board, Hamilton, New Zealand
- Waikato Clinical School, University of Auckland, Hamilton, New Zealand
| | - Peter P Jones
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
50
|
Antonopoulos AS, Antoniades C. Cardiac Magnetic Resonance Imaging of Epicardial and Intramyocardial Adiposity as an Early Sign of Myocardial Disease. Circ Cardiovasc Imaging 2019; 11:e008083. [PMID: 30354506 DOI: 10.1161/circimaging.118.008083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alexios S Antonopoulos
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|