1
|
Donniacuo M, De Angelis A, Rafaniello C, Cianflone E, Paolisso P, Torella D, Sibilio G, Paolisso G, Castaldo G, Urbanek K, Rossi F, Berrino L, Cappetta D. COVID-19 and atrial fibrillation: Intercepting lines. Front Cardiovasc Med 2023; 10:1093053. [PMID: 36755799 PMCID: PMC9899905 DOI: 10.3389/fcvm.2023.1093053] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Almost 20% of COVID-19 patients have a history of atrial fibrillation (AF), but also a new-onset AF represents a frequent complication in COVID-19. Clinical evidence demonstrates that COVID-19, by promoting the evolution of a prothrombotic state, increases the susceptibility to arrhythmic events during the infective stages and presumably during post-recovery. AF itself is the most frequent form of arrhythmia and is associated with substantial morbidity and mortality. One of the molecular factors involved in COVID-19-related AF episodes is the angiotensin-converting enzyme (ACE) 2 availability. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 to enter and infect multiple cells. Atrial ACE2 internalization after binding to SARS-CoV-2 results in a raise of angiotensin (Ang) II, and in a suppression of cardioprotective Ang(1-7) formation, and thereby promoting cardiac hypertrophy, fibrosis and oxidative stress. Furthermore, several pharmacological agents used in COVID-19 patients may have a higher risk of inducing electrophysiological changes and cardiac dysfunction. Azithromycin, lopinavir/ritonavir, ibrutinib, and remdesivir, used in the treatment of COVID-19, may predispose to an increased risk of cardiac arrhythmia. In this review, putative mechanisms involved in COVID-19-related AF episodes and the cardiovascular safety profile of drugs used for the treatment of COVID-19 are summarized.
Collapse
Affiliation(s)
- Maria Donniacuo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
2
|
Greene D, Kaboudian A, Wasserstrom JA, Fenton FH, Shiferaw Y. Voltage-mediated mechanism for calcium wave synchronization and arrhythmogenesis in atrial tissue. Biophys J 2022; 121:383-395. [PMID: 34968425 PMCID: PMC8822619 DOI: 10.1016/j.bpj.2021.12.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
A wide range of atrial arrythmias are caused by molecular defects in proteins that regulate calcium (Ca) cycling. In many cases, these defects promote the propagation of subcellular Ca waves in the cell, which can perturb the voltage time course and induce dangerous perturbations of the action potential (AP). However, subcellular Ca waves occur randomly in cells and, therefore, electrical coupling between cells substantially decreases their effect on the AP. In this study, we present evidence that Ca waves in atrial tissue can synchronize in-phase owing to an order-disorder phase transition. In particular, we show that, below a critical pacing rate, Ca waves are desynchronized and therefore do not induce substantial AP fluctuations in tissue. However, above this critical pacing rate, Ca waves gradually synchronize over millions of cells, which leads to a dramatic amplification of AP fluctuations. We exploit an underlying Ising symmetry of paced cardiac tissue to show that this transition exhibits universal properties common to a wide range of physical systems in nature. Finally, we show that in the heart, phase synchronization induces spatially out-of-phase AP duration alternans which drives wave break and reentry. These results suggest that cardiac tissue exhibits a phase transition that is required for subcellular Ca cycling defects to induce a life-threatening arrhythmia.
Collapse
Affiliation(s)
- D'Artagnan Greene
- Department of Physics and Astronomy, California State University, Northridge, California
| | - Abouzar Kaboudian
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - John A Wasserstrom
- The Feinberg Cardiovascular and Renal Research Institute, Department of Medicine (Cardiology), Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Yohannes Shiferaw
- Department of Physics and Astronomy, California State University, Northridge, California.
| |
Collapse
|
3
|
Linz D, Verheule S, Isaacs A, Schotten U. Considerations for the Assessment of Substrates, Genetics and Risk Factors in Patients with Atrial Fibrillation. Arrhythm Electrophysiol Rev 2021; 10:132-139. [PMID: 34777816 PMCID: PMC8576487 DOI: 10.15420/aer.2020.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Successful translation of research focussing on atrial arrhythmogenic mechanisms has potential to provide a mechanism-tailored classification and to support personalised treatment approaches in patients with AF. The clinical uptake and clinical implementation of new diagnostic techniques and treatment strategies require translational research approaches on various levels. Diagnostic translation involves the development of clinical diagnostic tools. Additionally, multidisciplinary teams are required for collaborative translation to describe genetic mechanisms, molecular pathways, electrophysiological characteristics and concomitant risk factors. In this article, current approaches for AF substrate characterisation, analysis of genes potentially involved in AF and strategies for AF risk factor assessment are summarised. The authors discuss challenges and obstacles to clinical translation and implementation into clinical practice.
Collapse
Affiliation(s)
- Dominik Linz
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, the Netherlands.,Department of Cardiology, Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Aaron Isaacs
- Department of Physiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
4
|
Benitah JP, Perrier R, Mercadier JJ, Pereira L, Gómez AM. RyR2 and Calcium Release in Heart Failure. Front Physiol 2021; 12:734210. [PMID: 34690808 PMCID: PMC8533677 DOI: 10.3389/fphys.2021.734210] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Heart Failure (HF) is defined as the inability of the heart to efficiently pump out enough blood to maintain the body's needs, first at exercise and then also at rest. Alterations in Ca2+ handling contributes to the diminished contraction and relaxation of the failing heart. While most Ca2+ handling protein expression and/or function has been shown to be altered in many models of experimental HF, in this review, we focus in the sarcoplasmic reticulum (SR) Ca2+ release channel, the type 2 ryanodine receptor (RyR2). Various modifications of this channel inducing alterations in its function have been reported. The first was the fact that RyR2 is less responsive to activation by Ca2+ entry through the L-Type calcium channel, which is the functional result of an ultrastructural remodeling of the ventricular cardiomyocyte, with fewer and disorganized transverse (T) tubules. HF is associated with an elevated sympathetic tone and in an oxidant environment. In this line, enhanced RyR2 phosphorylation and oxidation have been shown in human and experimental HF. After several controversies, it is now generally accepted that phosphorylation of RyR2 at the Calmodulin Kinase II site (S2814) is involved in both the depressed contractile function and the enhanced arrhythmic susceptibility of the failing heart. Diminished expression of the FK506 binding protein, FKBP12.6, may also contribute. While these alterations have been mostly studied in the left ventricle of HF with reduced ejection fraction, recent studies are looking at HF with preserved ejection fraction. Moreover, alterations in the RyR2 in HF may also contribute to supraventricular defects associated with HF such as sinus node dysfunction and atrial fibrillation.
Collapse
Affiliation(s)
| | | | | | | | - Ana M. Gómez
- Signaling and Cardiovascular Pathophysiology—UMR-S 1180, INSERM, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
5
|
Dries E, Bardi I, Nunez-Toldra R, Meijlink B, Terracciano CM. CaMKII inhibition reduces arrhythmogenic Ca2+ events in subendocardial cryoinjured rat living myocardial slices. J Gen Physiol 2021; 153:212078. [PMID: 33956073 PMCID: PMC8105719 DOI: 10.1085/jgp.202012737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
Spontaneous Ca2+ release (SCR) can cause triggered activity and initiate arrhythmias. Intrinsic transmural heterogeneities in Ca2+ handling and their propensity to disease remodeling may differentially modulate SCR throughout the left ventricular (LV) wall and cause transmural differences in arrhythmia susceptibility. Here, we aimed to dissect the effect of cardiac injury on SCR in different regions in the intact LV myocardium using cryoinjury on rat living myocardial slices (LMS). We studied SCR under proarrhythmic conditions using a fluorescent Ca2+ indicator and high-resolution imaging in LMS from the subendocardium (ENDO) and subepicardium (EPI). Cryoinjury caused structural remodeling, with loss in T-tubule density and an increased time of Ca2+ transients to peak after injury. In ENDO LMS, the Ca2+ transient amplitude and decay phase were reduced, while these were not affected in EPI LMS after cryoinjury. The frequency of spontaneous whole-slice contractions increased in ENDO LMS without affecting EPI LMS after injury. Cryoinjury caused an increase in foci that generates SCR in both ENDO and EPI LMS. In ENDO LMS, SCRs were more closely distributed and had reduced latencies after cryoinjury, whereas this was not affected in EPI LMS. Inhibition of CaMKII reduced the number, distribution, and latencies of SCR, as well as whole-slice contractions in ENDO LMS, but not in EPI LMS after cryoinjury. Furthermore, CaMKII inhibition did not affect the excitation–contraction coupling in cryoinjured ENDO or EPI LMS. In conclusion, we demonstrate increased arrhythmogenic susceptibility in the injured ENDO. Our findings show involvement of CaMKII and highlight the need for region-specific targeting in cardiac therapies.
Collapse
Affiliation(s)
- Eef Dries
- National Heart and Lung Institute, Imperial College London, London, UK.,Lab of Experimental Cardiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Ifigeneia Bardi
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Bram Meijlink
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
6
|
Yamakawa S, Wu D, Dasgupta M, Pedamallu H, Gupta B, Modi R, Mufti M, O'Callaghan C, Frisk M, Louch WE, Arora R, Shiferaw Y, Burrell A, Ryan J, Nelson L, Chow M, Shah SJ, Aistrup G, Zhou J, Marszalec W, Wasserstrom JA. Role of t-tubule remodeling on mechanisms of abnormal calcium release during heart failure development in canine ventricle. Am J Physiol Heart Circ Physiol 2021; 320:H1658-H1669. [PMID: 33635163 PMCID: PMC8260383 DOI: 10.1152/ajpheart.00946.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
The goal of this work was to investigate the role of t-tubule (TT) remodeling in abnormal Ca2+ cycling in ventricular myocytes of failing dog hearts. Heart failure (HF) was induced using rapid right ventricular pacing. Extensive changes in echocardiographic parameters, including left and right ventricular dilation and systolic dysfunction, diastolic dysfunction, elevated left ventricular filling pressures, and abnormal cardiac mechanics, indicated that severe HF developed. TT loss was extensive when measured as the density of total cell volume, derived from three-dimensional confocal image analysis, and significantly increased the distances in the cell interior to closest cell membrane. Changes in Ca2+ transients indicated increases in heterogeneity of Ca2+ release along the cell length. When critical properties of Ca2+ release variability were plotted as a function of TT organization, there was a complex, nonlinear relationship between impaired calcium release and decreasing TT organization below a certain threshold of TT organization leading to increased sensitivity in Ca2+ release below a TT density threshold of 1.5%. The loss of TTs was also associated with a greater incidence of triggered Ca2+ waves during rapid pacing. Finally, virtually all of these observations were replicated by acute detubulation by formamide treatment, indicating an important role of TT remodeling in impaired Ca2+ cycling. We conclude that TT remodeling itself is a major contributor to abnormal Ca2+ cycling in HF, reducing myocardial performance. The loss of TTs is also responsible for a greater incidence of triggered Ca2+ waves that may play a role in ventricular arrhythmias arising in HF.NEW & NOTEWORTHY Three-dimensional analysis of t-tubule density showed t-tubule disruption throughout the whole myocyte in failing dog ventricle. A double-linear relationship between Ca2+ release and t-tubule density displays a steeper slope at t-tubule densities below a threshold value (∼1.5%) above which there is little effect on Ca2+ release (T-tubule reserve). T-tubule loss increases incidence of triggered Ca2+ waves. Chemically induced t-tubule disruption suggests that t-tubule loss alone is a critical component of abnormal Ca2+ cycling in heart failure.
Collapse
Affiliation(s)
- Sean Yamakawa
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Daniel Wu
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mona Dasgupta
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Havisha Pedamallu
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Binita Gupta
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rishi Modi
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Maryam Mufti
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Caitlin O'Callaghan
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - William E Louch
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rishi Arora
- California State University Northridge, Los Angeles, California
| | - Yohannes Shiferaw
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amy Burrell
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Juliet Ryan
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lauren Nelson
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Madeleine Chow
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sanjiv J Shah
- The Masonic Medical Research Institute, Utica, New York
| | - Gary Aistrup
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Junlan Zhou
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William Marszalec
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | |
Collapse
|
7
|
Pfenniger A, Yoo S, Arora R. Nucleoplasmic Ca 2+: The 'Mastermind' Behind Pathological Atrial Remodeling? Circ Res 2021; 128:636-638. [PMID: 34314193 PMCID: PMC9278521 DOI: 10.1161/circresaha.121.318800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Anna Pfenniger
- Department of Medicine, Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, IL
| | - Shin Yoo
- Department of Medicine, Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, IL
| | - Rishi Arora
- Department of Medicine, Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
8
|
Abstract
Atrial fibrillation (AF) contributes to morbidity and mortality of millions of individuals. Its molecular, cellular, neurohumoral, and hemodynamic pathophysiological mechanisms are complex, and there is increasing awareness that a wide range of comorbidities can contribute to AF-promoting atrial remodeling. Moreover, recent research has highlighted that AF risk is not constant and that the temporal variation in concomitant conditions contributes to the complexity of AF dynamics. In this review, we provide an overview of fundamental AF mechanisms related to established and emerging comorbidities or risk factors and their role in the AF-promoting effects. We focus on the accumulating evidence for the relevance of temporally dynamic changes in these risk factors and the consequence for AF initiation and maintenance. Finally, we highlight the important implications for future research and clinical practice resulting from the dynamic interaction between AF risk factors and mechanisms.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Dominik Linz
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands; .,Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands; .,Department of Cardiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.,Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, 5005 Adelaide, South Australia, Australia
| | - Ulrich Schotten
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands; .,Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| |
Collapse
|
9
|
Zhao N, Li Q, Zhang K, Wang K, He R, Yuan Y, Zhang H. Heart failure-induced atrial remodelling promotes electrical and conduction alternans. PLoS Comput Biol 2020; 16:e1008048. [PMID: 32658888 PMCID: PMC7402519 DOI: 10.1371/journal.pcbi.1008048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/04/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022] Open
Abstract
Heart failure (HF) is associated with an increased propensity for atrial fibrillation (AF), causing higher mortality than AF or HF alone. It is hypothesized that HF-induced remodelling of atrial cellular and tissue properties promotes the genesis of atrial action potential (AP) alternans and conduction alternans that perpetuate AF. However, the mechanism underlying the increased susceptibility to atrial alternans in HF remains incompletely elucidated. In this study, we investigated the effects of how HF-induced atrial cellular electrophysiological (with prolonged AP duration) and tissue structural (reduced cell-to-cell coupling caused by atrial fibrosis) remodelling can have an effect on the generation of atrial AP alternans and their conduction at the cellular and one-dimensional (1D) tissue levels. Simulation results showed that HF-induced atrial electrical remodelling prolonged AP duration, which was accompanied by an increased sarcoplasmic reticulum (SR) Ca2+ content and Ca2+ transient amplitude. Further analysis demonstrated that HF-induced atrial electrical remodelling increased susceptibility to atrial alternans mainly due to the increased sarcoplasmic reticulum Ca2+-ATPase (SERCA) Ca2+ reuptake, modulated by increased phospholamban (PLB) phosphorylation, and the decreased transient outward K+ current (Ito). The underlying mechanism has been suggested that the increased SR Ca2+ content and prolonged AP did not fully recover to their previous levels at the end of diastole, resulting in a smaller SR Ca2+ release and AP in the next beat. These produced Ca2+ transient alternans and AP alternans, and further caused AP alternans and Ca2+ transient alternans through Ca2+→AP coupling and AP→Ca2+ coupling, respectively. Simulation of a 1D tissue model showed that the combined action of HF-induced ion channel remodelling and a decrease in cell-to-cell coupling due to fibrosis increased the heart tissue’s susceptibility to the formation of spatially discordant alternans, resulting in an increased functional AP propagation dispersion, which is pro-arrhythmic. These findings provide insights into how HF promotes atrial arrhythmia in association with atrial alternans. Atrial Fibrillation (AF) is the most common arrhythmia in adults, especially in the elderly, with the increased incidence of stroke being a major complication that increases morbidity and mortality. The occurrence of AF is often accompanied by heart failure (HF). AF and HF are also known to have the bidirectional relationship that AF worsens HF and HF promotes AF. HF can induce atrial remodelling, including electrical remodelling, atrial fibrosis, stretch and dilatation, and oxidative stress, in which many factors are associated with arrhythmogenic atrial alternans. HF-induced atrial remodelling varies during various stages and complications of HF, but possible mechanisms underlying their pro-susceptibility to alternans have not been completely elucidated. In this study, we investigated the effects of HF-induced atrial remodelling with prolonged action potential duration (APD) and decreased cell-to-cell coupling on susceptibility to atrial alternans. Simulation results showed that HF-induced an increase in sarcoplasmic reticulum Ca2+-ATPase (SERCA) Ca2+ reuptake caused by increased phospholamban phosphorylation and a decrease in transient outward K+ current played significant roles in the genesis of Ca2+ transient alternans and action potential alternans at the single-cell level. The HF-induced decline of cell-to-cell coupling and APD prolongation promoted the genesis of spatially discordant alternans in atrial tissue. This provides insights into how HF facilitates atrial arrhythmia in relation to atrial alternans.
Collapse
Affiliation(s)
- Na Zhao
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Kevin Zhang
- School of Medicine, Imperial College of London, United Kingdom
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Runnan He
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yongfeng Yuan
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Peng Cheng Laboratory, Shenzhen, China
- School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- * E-mail:
| |
Collapse
|
10
|
Nattel S, Heijman J, Zhou L, Dobrev D. Molecular Basis of Atrial Fibrillation Pathophysiology and Therapy: A Translational Perspective. Circ Res 2020; 127:51-72. [PMID: 32717172 PMCID: PMC7398486 DOI: 10.1161/circresaha.120.316363] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Atrial fibrillation (AF) is a highly prevalent arrhythmia, with substantial associated morbidity and mortality. There have been significant management advances over the past 2 decades, but the burden of the disease continues to increase and there is certainly plenty of room for improvement in treatment options. A potential key to therapeutic innovation is a better understanding of underlying fundamental mechanisms. This article reviews recent advances in understanding the molecular basis for AF, with a particular emphasis on relating these new insights to opportunities for clinical translation. We first review the evidence relating basic electrophysiological mechanisms to the characteristics of clinical AF. We then discuss the molecular control of factors leading to some of the principal determinants, including abnormalities in impulse conduction (such as tissue fibrosis and other extra-cardiomyocyte alterations, connexin dysregulation and Na+-channel dysfunction), electrical refractoriness, and impulse generation. We then consider the molecular drivers of AF progression, including a range of Ca2+-dependent intracellular processes, microRNA changes, and inflammatory signaling. The concept of key interactome-related nodal points is then evaluated, dealing with systems like those associated with CaMKII (Ca2+/calmodulin-dependent protein kinase-II), NLRP3 (NACHT, LRR, and PYD domains-containing protein-3), and transcription-factors like TBX5 and PitX2c. We conclude with a critical discussion of therapeutic implications, knowledge gaps and future directions, dealing with such aspects as drug repurposing, biologicals, multispecific drugs, the targeting of cardiomyocyte inflammatory signaling and potential considerations in intervening at the level of interactomes and gene-regulation. The area of molecular intervention for AF management presents exciting new opportunities, along with substantial challenges.
Collapse
Affiliation(s)
- Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- IHU Liryc and Fondation Bordeaux Université, Bordeaux, France
| | - Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Liping Zhou
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
| | - Dobromir Dobrev
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
11
|
Gussak G, Marszalec W, Yoo S, Modi R, O’Callaghan C, Aistrup GL, Cordeiro JM, Goodrow R, Kanaporis G, Blatter LA, Shiferaw Y, Arora R, Zhou J, Burrell AR, Wasserstrom JA. Triggered Ca 2+ Waves Induce Depolarization of Maximum Diastolic Potential and Action Potential Prolongation in Dog Atrial Myocytes. Circ Arrhythm Electrophysiol 2020; 13:e008179. [PMID: 32433891 PMCID: PMC7340345 DOI: 10.1161/circep.119.008179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND We have identified a novel form of abnormal Ca2+ wave activity in normal and failing dog atrial myocytes which occurs during the action potential (AP) and is absent during diastole. The goal of this study was to determine if triggered Ca2+ waves affect cellular electrophysiological properties. METHODS Simultaneous recordings of intracellular Ca2+ and APs allowed measurements of maximum diastolic potential and AP duration during triggered calcium waves (TCWs) in isolated dog atrial myocytes. Computer simulations then explored electrophysiological behavior arising from TCWs at the tissue scale. RESULTS At 3.3 to 5 Hz, TCWs occurred during the AP and often outlasted several AP cycles. Maximum diastolic potential was reduced, and AP duration was significantly prolonged during TCWs. All electrophysiological responses to TCWs were abolished by SEA0400 and ORM10103, indicating that Na-Ca exchange current caused depolarization. The time constant of recovery from inactivation of Ca2+ current was 40 to 70 ms in atrial myocytes (depending on holding potential) so this current could be responsible for AP activation during depolarization induced by TCWs. Modeling studies demonstrated that the characteristic properties of TCWs are potentially arrhythmogenic by promoting both conduction block and reentry arising from the depolarization induced by TCWs. CONCLUSIONS Triggered Ca2+ waves activate inward NCX and dramatically reduce atrial maximum diastolic potential and prolong AP duration, establishing the substrate for reentry which could contribute to the initiation and maintenance of atrial arrhythmias.
Collapse
Affiliation(s)
- Georg Gussak
- The Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern Feinberg School of Medicine, Chicago, IL
| | - William Marszalec
- The Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern Feinberg School of Medicine, Chicago, IL
| | - Shin Yoo
- The Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern Feinberg School of Medicine, Chicago, IL
| | - Rishi Modi
- The Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern Feinberg School of Medicine, Chicago, IL
| | - Caitlin O’Callaghan
- The Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern Feinberg School of Medicine, Chicago, IL
| | | | | | | | - Giedrius Kanaporis
- Department of Physiology and Biophysics, Rush University Medical School, Chicago, IL
| | - Lothar A. Blatter
- Department of Physiology and Biophysics, Rush University Medical School, Chicago, IL
| | | | - Rishi Arora
- The Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern Feinberg School of Medicine, Chicago, IL
| | - Junlan Zhou
- The Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern Feinberg School of Medicine, Chicago, IL
| | - Amy R. Burrell
- The Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern Feinberg School of Medicine, Chicago, IL
| | - J. Andrew Wasserstrom
- The Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
12
|
Shiferaw Y, Aistrup GL, Louch WE, Wasserstrom JA. Remodeling Promotes Proarrhythmic Disruption of Calcium Homeostasis in Failing Atrial Myocytes. Biophys J 2019; 118:476-491. [PMID: 31889516 DOI: 10.1016/j.bpj.2019.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 01/31/2023] Open
Abstract
It is well known that heart failure (HF) typically coexists with atrial fibrillation (AF). However, until now, no clear mechanism has been established that relates HF to AF. In this study, we apply a multiscale computational framework to establish a mechanistic link between atrial myocyte structural remodeling in HF and AF. Using a spatially distributed model of calcium (Ca) signaling, we show that disruption of the spatial relationship between L-type Ca channels (LCCs) and ryanodine receptors results in markedly increased Ca content of the sarcoplasmic reticulum (SR). This increase in SR load is due to changes in the balance between Ca entry via LCCs and Ca extrusion due to the sodium-calcium exchanger after an altered spatial relationship between these signaling proteins. Next, we show that the increased SR load in atrial myocytes predisposes these cells to subcellular Ca waves that occur during the action potential (AP) and are triggered by LCC openings. These waves are common in atrial cells because of the absence of a well-developed t-tubule system in most of these cells. This distinct spatial architecture allows for the presence of a large pool of orphaned ryanodine receptors, which can fire and sustain Ca waves during the AP. Finally, we incorporate our atrial cell model in two-dimensional tissue simulations and demonstrate that triggered wave generation in cells leads to electrical waves in tissue that tend to fractionate to form wavelets of excitation. This fractionation is driven by the underlying stochasticity of subcellular Ca waves, which perturbs AP repolarization and consequently induces localized conduction block in tissue. We outline the mechanism for this effect and argue that it may explain the propensity for atrial arrhythmias in HF.
Collapse
Affiliation(s)
- Yohannes Shiferaw
- Department of Physics, California State University, Northridge, California.
| | - Gary L Aistrup
- Department of Experimental Cardiology, Masonic Medical Research Institute, Utica, New York
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - J A Wasserstrom
- Department of Medicine (Cardiology) and The Feinberg Cardiovascular and Renal Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
13
|
Gussak G, Pfenniger A, Wren L, Gilani M, Zhang W, Yoo S, Johnson DA, Burrell A, Benefield B, Knight G, Knight BP, Passman R, Goldberger JJ, Aistrup G, Wasserstrom JA, Shiferaw Y, Arora R. Region-specific parasympathetic nerve remodeling in the left atrium contributes to creation of a vulnerable substrate for atrial fibrillation. JCI Insight 2019; 4:130532. [PMID: 31503549 DOI: 10.1172/jci.insight.130532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022] Open
Abstract
Atrial fibrillation (AF) is the most common heart rhythm disorder and a major cause of stroke. Unfortunately, current therapies for AF are suboptimal, largely because the molecular mechanisms underlying AF are poorly understood. Since the autonomic nervous system is thought to increase vulnerability to AF, we used a rapid atrial pacing (RAP) canine model to investigate the anatomic and electrophysiological characteristics of autonomic remodeling in different regions of the left atrium. RAP led to marked hypertrophy of parent nerve bundles in the posterior left atrium (PLA), resulting in a global increase in parasympathetic and sympathetic innervation throughout the left atrium. Parasympathetic fibers were more heterogeneously distributed in the PLA when compared with other left atrial regions; this led to greater fractionation and disorganization of AF electrograms in the PLA. Computational modeling revealed that heterogeneously distributed parasympathetic activity exacerbates sympathetic substrate for wave break and reentry. We further discovered that levels of nerve growth factor (NGF) were greatest in the left atrial appendage (LAA), where AF was most organized. Preferential NGF release by the LAA - likely a direct function of frequency and regularity of atrial stimulation - may have important implications for creation of a vulnerable AF substrate.
Collapse
Affiliation(s)
- Georg Gussak
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lisa Wren
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mehul Gilani
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Wenwei Zhang
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shin Yoo
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David A Johnson
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amy Burrell
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brandon Benefield
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gabriel Knight
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bradley P Knight
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rod Passman
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Gary Aistrup
- Masonic Medical Research Institute, Utica, New York, USA
| | - J Andrew Wasserstrom
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yohannes Shiferaw
- Department of Physics, California State University, Northridge, California, USA
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
14
|
Cordeiro J, Barnes A, Williams Z, Olzcyk S, Cooke A, Cordeiro J, Zeina T, Mathew R, Treat J, Aistrup G. Functional role of t-tubules on calcium transients in canine cardiac myocytes. HEART AND MIND 2019. [DOI: 10.4103/hm.hm_60_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Yoo S, Aistrup G, Shiferaw Y, Ng J, Mohler PJ, Hund TJ, Waugh T, Browne S, Gussak G, Gilani M, Knight BP, Passman R, Goldberger JJ, Wasserstrom JA, Arora R. Oxidative stress creates a unique, CaMKII-mediated substrate for atrial fibrillation in heart failure. JCI Insight 2018; 3:120728. [PMID: 30385719 DOI: 10.1172/jci.insight.120728] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/27/2018] [Indexed: 12/31/2022] Open
Abstract
The precise mechanisms by which oxidative stress (OS) causes atrial fibrillation (AF) are not known. Since AF frequently originates in the posterior left atrium (PLA), we hypothesized that OS, via calmodulin-dependent protein kinase II (CaMKII) signaling, creates a fertile substrate in the PLA for triggered activity and reentry. In a canine heart failure (HF) model, OS generation and oxidized-CaMKII-induced (Ox-CaMKII-induced) RyR2 and Nav1.5 signaling were increased preferentially in the PLA (compared with left atrial appendage). Triggered Ca2+ waves (TCWs) in HF PLA myocytes were particularly sensitive to acute ROS inhibition. Computational modeling confirmed a direct relationship between OS/CaMKII signaling and TCW generation. CaMKII phosphorylated Nav1.5 (CaMKII-p-Nav1.5 [S571]) was located preferentially at the intercalated disc (ID), being nearly absent at the lateral membrane. Furthermore, a decrease in ankyrin-G (AnkG) in HF led to patchy dropout of CaMKII-p-Nav1.5 at the ID, causing its distribution to become spatially heterogeneous; this corresponded to preferential slowing and inhomogeneity of conduction noted in the HF PLA. Computational modeling illustrated how conduction slowing (e.g., due to increase in CaMKII-p-Nav1.5) interacts with fibrosis to cause reentry in the PLA. We conclude that OS via CaMKII leads to substrate for triggered activity and reentry in HF PLA by mechanisms independent of but complementary to fibrosis.
Collapse
Affiliation(s)
- Shin Yoo
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gary Aistrup
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yohannes Shiferaw
- Department of Physics, California State University, Northridge, California, USA
| | - Jason Ng
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Trent Waugh
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Suzanne Browne
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Georg Gussak
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mehul Gilani
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bradley P Knight
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rod Passman
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeffrey J Goldberger
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - J Andrew Wasserstrom
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rishi Arora
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
16
|
Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW, Dibb KM. Calcium in the Pathophysiology of Atrial Fibrillation and Heart Failure. Front Physiol 2018; 9:1380. [PMID: 30337881 PMCID: PMC6180171 DOI: 10.3389/fphys.2018.01380] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Atrial fibrillation (AF) is commonly associated with heart failure. A bidirectional relationship exists between the two-AF exacerbates heart failure causing a significant increase in heart failure symptoms, admissions to hospital and cardiovascular death, while pathological remodeling of the atria as a result of heart failure increases the risk of AF. A comprehensive understanding of the pathophysiology of AF is essential if we are to break this vicious circle. In this review, the latest evidence will be presented showing a fundamental role for calcium in both the induction and maintenance of AF. After outlining atrial electrophysiology and calcium handling, the role of calcium-dependent afterdepolarizations and atrial repolarization alternans in triggering AF will be considered. The atrial response to rapid stimulation will be discussed, including the short-term protection from calcium overload in the form of calcium signaling silencing and the eventual progression to diastolic calcium leak causing afterdepolarizations and the development of an electrical substrate that perpetuates AF. The role of calcium in the bidirectional relationship between heart failure and AF will then be covered. The effects of heart failure on atrial calcium handling that promote AF will be reviewed, including effects on both atrial myocytes and the pulmonary veins, before the aspects of AF which exacerbate heart failure are discussed. Finally, the limitations of human and animal studies will be explored allowing contextualization of what are sometimes discordant results.
Collapse
Affiliation(s)
- Nathan C. Denham
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | - Katharine M. Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Shiferaw Y, Aistrup GL, Wasserstrom JA. Synchronization of Triggered Waves in Atrial Tissue. Biophys J 2018; 115:1130-1141. [PMID: 30195941 DOI: 10.1016/j.bpj.2018.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/31/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022] Open
Abstract
When an atrial cell is paced rapidly, calcium (Ca) waves can form on the cell boundary and propagate to the cell interior. These waves are referred to as "triggered waves" because they are initiated by Ca influx from the L-type Ca channel and occur during the action potential. However, the consequences of triggered waves in atrial tissue are not known. Here, we develop a phenomenological model of Ca cycling in atrial myocytes that accounts for the formation of triggered waves. Using this model, we show that a fundamental requirement for triggered waves to induce abnormal electrical activity in tissue is that these waves must be synchronized over large populations of cells. This is partly because triggered waves induce a long action potential duration (APD) followed by a short APD. Thus, if these events are not synchronized between cells, then they will on average cancel and have minimal effects on the APD in tissue. Using our computational model, we identify two distinct mechanisms for triggered wave synchronization. The first relies on cycle length (CL) variability, which can prolong the CL at a given beat. In cardiac tissue, we show that CL prolongation leads to a substantial amplification of APD because of the synchronization of triggered waves. A second synchronization mechanism applies in a parameter regime in which the cell exhibits stochastic alternans in which a triggered wave fires, on average, only every other beat. In this scenario, we identify a slow synchronization mechanism that relies on the bidirectional feedback between the APD in tissue and triggered wave initiation. On large cables, this synchronization mechanism leads to spatially discordant APD alternans with spatial variations on a scale of hundreds of cells. We argue that these spatial patterns can potentially serve as an arrhythmogenic substrate for the initiation of atrial fibrillation.
Collapse
Affiliation(s)
- Yohannes Shiferaw
- Department of Physics, California State University, Northridge, California.
| | - Gary L Aistrup
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, New York
| | - John A Wasserstrom
- Department of Medicine (Cardiology) and The Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|