1
|
Kattih B, Fischer A, Muhly-Reinholz M, Tombor L, Nicin L, Cremer S, Zeiher AM, John D, Abplanalp WT, Dimmeler S. Inhibition of miR-92a normalizes vascular gene expression and prevents diastolic dysfunction in heart failure with preserved ejection fraction. J Mol Cell Cardiol 2025; 198:89-98. [PMID: 39592091 DOI: 10.1016/j.yjmcc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a major public health burden with increasing prevalence but only few effective therapies. Endothelial dysfunction and inflammation are identified as pathophysiological drivers of HFpEF disease progression. MicroRNAs are increasingly recognized as key regulators of these pathological processes, while antimiR-based therapies have been emerged as promising therapeutics in mice and humans. Therefore, we tested whether miR-92a-3p inhibition is a promising therapeutic intervention to target HFpEF in vivo. By injection of locked nucleic acid (LNA)-based antimiR (LNA-92a) weekly, we demonstrate that inhibition of miR-92a-3p attenuates the development of diastolic dysfunction and left atrial dilation following experimental induction of HFpEF in mice. Indeed, LNA-92a depleted miR-92a-3p expression in the myocardium and peripheral blood, and derepressed predicted target genes in a cell type-specific manner. Furthermore, cell-type specific efficacy of LNA-92a treatment was assessed by single-nuclear RNA sequencing of HFpEF hearts either treated with LNA-92a or LNA-Control. Endothelial cells of LNA-92a treated mice showed normalized vascular gene expression and reduced gene signatures associated with endothelial-mesenchymal transition. CONCLUSION: This study demonstrates that LNA-based antimiR-92a is an effective therapeutic strategy to target diastolic dysfunction and left atrial dilation in HFpEF.
Collapse
Affiliation(s)
- Badder Kattih
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Ariane Fischer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marion Muhly-Reinholz
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Lukas Tombor
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Luka Nicin
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sebastian Cremer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Andreas M Zeiher
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany
| | - David John
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Wesley Tyler Abplanalp
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
2
|
D’Amato A, Prosperi S, Severino P, Myftari V, Correale M, Perrone Filardi P, Badagliacca R, Fedele F, Vizza CD, Palazzuoli A. MicroRNA and Heart Failure: A Novel Promising Diagnostic and Therapeutic Tool. J Clin Med 2024; 13:7560. [PMID: 39768484 PMCID: PMC11728316 DOI: 10.3390/jcm13247560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Heart failure (HF) has a multifaceted and complex pathophysiology. Beyond neurohormonal, renin-angiotensin-aldosterone system, and adrenergic hyperactivation, a role for other pathophysiological determinants is emerging. Genetic and epigenetic factors are involved in this syndrome. In many maladaptive processes, the role of microRNAs (miRNAs) has been recently demonstrated. MiRNAs are small endogenous non-coding molecules of RNA involved in gene expression regulation, and they play a pivotal role in intercellular communication, being involved in different biological and pathophysiological processes. MiRNAs can modulate infarct area size, cardiomyocytes restoration, collagen deposition, and macrophage polarization. MiRNAs may be considered as specific biomarkers of hypertrophy and fibrosis. MiRNAs have been proposed as a therapeutical tool because their administration can contrast with myocardial pathophysiological remodeling leading to HF. Antimir and miRNA mimics are small oligonucleotides which may be administered in several manners and may be able to regulate the expression of specific and circulating miRNAs. Studies on animal models and on healthy humans demonstrate that these molecules are well tolerated and effective, opening the possibility of a therapeutic use of miRNAs in cases of HF. The application of miRNAs for diagnosis, prognostic stratification, and therapy fits in with the new concept of a personalized and tailored approach to HF.
Collapse
Affiliation(s)
- Andrea D’Amato
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Silvia Prosperi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Vincenzo Myftari
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Michele Correale
- Cardiothoracic Department, ‘Policlinico Riuniti’ University Hospital, 71100 Foggia, Italy
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University, 80131 Naples, Italy;
| | - Roberto Badagliacca
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | | | - Carmine Dario Vizza
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Alberto Palazzuoli
- Cardio Thoracic and Vascular Department, ‘S. Maria alle Scotte Hospital’, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
3
|
Samani SL, Barlow SC, Freeburg LA, Catherwood GM, Churillo AM, Jones TL, Altomare D, Ji H, Shtutman M, Zile MR, Shazly T, Spinale FG. Heart failure with preserved ejection fraction in pigs causes shifts in posttranscriptional checkpoints. Am J Physiol Heart Circ Physiol 2024; 327:H1272-H1285. [PMID: 39240258 PMCID: PMC11560071 DOI: 10.1152/ajpheart.00551.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Left ventricular pressure overload (LVPO) can lead to heart failure with a preserved ejection fraction (HFpEF) and LV chamber stiffness (LV Kc) is a hallmark. This project tested the hypothesis that the development of HFpEF due to an LVPO stimulus will alter posttranscriptional regulation, specifically microRNAs (miRs). LVPO was induced in pigs (n = 9) by sequential ascending aortic cuff and age- and weight-matched pigs (n = 6) served as controls. LV function was measured by echocardiography and LV Kc by speckle tracking. LV myocardial miRs were quantified using an 84-miR array. Treadmill testing and natriuretic peptide-A (NPPA) mRNA levels in controls and LVPO were performed (n = 10, n = 9, respectively). LV samples from LVPO and controls (n = 6, respectively) were subjected to RNA sequencing. LV mass and Kc increased by over 40% with LVPO (P < 0.05). A total of 30 miRs shifted with LVPO of which 11 miRs correlated to LV Kc (P < 0.05) that mapped to functional domains relevant to Kc such as fibrosis and calcium handling. LVPO resulted in reduced exercise tolerance (oxygen saturation, respiratory effort) and NPPA mRNA levels increased by fourfold (P < 0.05). RNA analysis identified several genes that mapped to specific miRs that were altered with LVPO. In conclusion, a specific set of miRs are changed in a large animal model consistent with the HFpEF phenotype, were related to LV stiffness properties, and several miRs mapped to molecular pathways that may hold relevance in terms of prognosis and therapeutic targets.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is an ever-growing cause for the HF burden. HFpEF is particularly difficult to treat as the mechanisms responsible for this specific form of HF are poorly understood. Using a relevant large animal model, this study uncovered a unique molecular signature with the development of HFpEF that regulates specific biological pathways relevant to the progression of this ever-growing cause of HF.
Collapse
Affiliation(s)
- Stephanie L Samani
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
- Columbia Veteran Affairs Health Care System, Columbia, South Carolina, United States
| | - Shayne C Barlow
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Lisa A Freeburg
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
- Columbia Veteran Affairs Health Care System, Columbia, South Carolina, United States
| | - Grayson M Catherwood
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
- Columbia Veteran Affairs Health Care System, Columbia, South Carolina, United States
| | - Traci L Jones
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - Diego Altomare
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States
| | - Hao Ji
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States
| | - Michael Shtutman
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States
| | - Michael R Zile
- Division of Cardiology, Ralph H. Johnson Department of Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Tarek Shazly
- College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, United States
| | - Francis G Spinale
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, United States
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, South Carolina, United States
- Columbia Veteran Affairs Health Care System, Columbia, South Carolina, United States
| |
Collapse
|
4
|
D'Italia G, Schroen B, Cosemans JMEM. Commonalities of platelet dysfunction in heart failure with preserved ejection fraction and underlying comorbidities. ESC Heart Fail 2024. [PMID: 39375979 DOI: 10.1002/ehf2.15090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by a lack of a specific targeted treatment and a complex, partially unexplored pathophysiology. Common comorbidities associated with HFpEF are hypertension, atrial fibrillation, obesity and diabetes. These comorbidities, combined with advanced age, play a crucial role in the initiation and development of the disease through the promotion of systemic inflammation and consequent changes in cardiac phenotype. In this context, we suggest platelets as important players due to their emerging role in vascular inflammation. This review provides an overview of the role of platelets in HFpEF and its associated comorbidities, including hypertension, atrial fibrillation, obesity and diabetes mellitus, as well as the impact of age and sex on platelet function. These major HFpEF-associated comorbidities present alterations in platelet behaviour and in features linked to platelet size, content and reactivity. The resulting dysfunctional platelets can contribute to further increase inflammation, oxidative stress and endothelial dysfunction, suggesting an active role of these cells in the initiation and progression of HFpEF. Recent evidence shows that reduced platelet count and elevated mean platelet volume are associated with worsening heart failure in HFpEF patients. However, the specific mechanisms by which platelets contribute to HFpEF development and progression are still largely unexplored, with only a few studies investigating platelet function in HFpEF. We discuss the limited yet significant body of research investigating platelet function in HFpEF, emphasizing the need for more comprehensive studies. Additionally, we explore the potential mechanisms through which platelets may influence HFpEF, such as their interactions with the vascular endothelium and the secretion of bioactive molecules like cytokines, chemokines and RNA molecules. These interactions and secretions may play a role in modulating vascular inflammation and contributing to the pathophysiological landscape of HFpEF. The review underscores the necessity for future research to elucidate the precise contributions of platelets to HFpEF, aiming to potentially identify novel therapeutic targets and improve patient outcomes. The evidence presented herein supports the hypothesis that platelets are not merely passive bystanders but active participants in the pathophysiology of HFpEF and its comorbidities.
Collapse
Affiliation(s)
- Giorgia D'Italia
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Vrabie AM, Totolici S, Delcea C, Badila E. Biomarkers in Heart Failure with Preserved Ejection Fraction: A Perpetually Evolving Frontier. J Clin Med 2024; 13:4627. [PMID: 39200768 PMCID: PMC11355893 DOI: 10.3390/jcm13164627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents a complex clinical syndrome, often very difficult to diagnose using the available tools. As the global burden of this disease is constantly growing, surpassing the prevalence of heart failure with reduced ejection fraction, during the last few years, efforts have focused on optimizing the diagnostic and prognostic pathways using an immense panel of circulating biomarkers. After the paradigm of HFpEF development emerged more than 10 years ago, suggesting the impact of multiple comorbidities on myocardial structure and function, several phenotypes of HFpEF have been characterized, with an attempt to find an ideal biomarker for each distinct pathophysiological pathway. Acknowledging the limitations of natriuretic peptides, hundreds of potential biomarkers have been evaluated, some of them demonstrating encouraging results. Among these, soluble suppression of tumorigenesis-2 reflecting myocardial remodeling, growth differentiation factor 15 as a marker of inflammation and albuminuria as a result of kidney dysfunction or, more recently, several circulating microRNAs have proved their incremental value. As the number of emerging biomarkers in HFpEF is rapidly expanding, in this review, we aim to explore the most promising available biomarkers linked to key pathophysiological mechanisms in HFpEF, outlining their utility for diagnosis, risk stratification and population screening, as well as their limitations.
Collapse
Affiliation(s)
- Ana-Maria Vrabie
- Cardio-Thoracic Pathology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.T.); (C.D.); (E.B.)
- Cardiology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Stefan Totolici
- Cardio-Thoracic Pathology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.T.); (C.D.); (E.B.)
- Cardiology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Caterina Delcea
- Cardio-Thoracic Pathology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.T.); (C.D.); (E.B.)
- Cardiology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Elisabeta Badila
- Cardio-Thoracic Pathology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.T.); (C.D.); (E.B.)
- Cardiology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
6
|
Honeycutt D, Schmidt-Trucksäss A, Brink M, Kränkel N, Kröpfl JM. Letter to the editor: fasting decreases expression of microRNAs linked to endothelial pathophysiology in mononuclear cells of healthy subjects. Apoptosis 2024; 29:935-937. [PMID: 38642320 DOI: 10.1007/s10495-024-01971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
This study explores how 14-15 h fasting or acute exercise affects immune cell epigenetics, specifically focusing on miRNAs in mononuclear cells. Findings suggest fasting significantly impacts microRNAs associated with endothelial metabolism compared to exercise, but does not directly connect these changes to cell apoptosis or autophagy. This enhances comprehension of cellular self-consumption under health-promoting interventions.
Collapse
Affiliation(s)
- Denise Honeycutt
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise, and Health, Sport and Exercise Medicine, University of Basel, Grosse Allee 6, Basel, 4052, Switzerland
| | - Marijke Brink
- Department of Biomedicine, Cardiobiology, University Hospital Basel and University of Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Nicolle Kränkel
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Friede Springer - Centre of Cardiovascular Prevention @ Charité, Charité - University Medicine Berlin, Berlin, Germany
| | - Julia M Kröpfl
- Department of Sport, Exercise, and Health, Sport and Exercise Medicine, University of Basel, Grosse Allee 6, Basel, 4052, Switzerland.
| |
Collapse
|
7
|
Di Fiore V, Cappelli F, Del Punta L, De Biase N, Armenia S, Maremmani D, Lomonaco T, Biagini D, Lenzi A, Mazzola M, Tricò D, Masi S, Mengozzi A, Pugliese NR. Novel Techniques, Biomarkers and Molecular Targets to Address Cardiometabolic Diseases. J Clin Med 2024; 13:2883. [PMID: 38792427 PMCID: PMC11122330 DOI: 10.3390/jcm13102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are interrelated and multifactorial conditions, including arterial hypertension, type 2 diabetes, heart failure, coronary artery disease, and stroke. Due to the burden of cardiovascular morbidity and mortality associated with CMDs' increasing prevalence, there is a critical need for novel diagnostic and therapeutic strategies in their management. In clinical practice, innovative methods such as epicardial adipose tissue evaluation, ventricular-arterial coupling, and exercise tolerance studies could help to elucidate the multifaceted mechanisms associated with CMDs. Similarly, epigenetic changes involving noncoding RNAs, chromatin modulation, and cellular senescence could represent both novel biomarkers and targets for CMDs. Despite the promising data available, significant challenges remain in translating basic research findings into clinical practice, highlighting the need for further investigation into the complex pathophysiology underlying CMDs.
Collapse
Affiliation(s)
- Valerio Di Fiore
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Federica Cappelli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Lavinia Del Punta
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Nicolò De Biase
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Silvia Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Davide Maremmani
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (T.L.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (T.L.)
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (T.L.)
| | - Matteo Mazzola
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Nicola Riccardo Pugliese
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| |
Collapse
|
8
|
Zhang T, Lv J, Liu ZY, Lei QL, Jiang ZF, Sun XX, Yue X, Li X, Zhu KL, Yang YK, Luo L, Cao X. P2X7 receptor is essential for ST36-attenuated cardiac fibrosis upon beta-adrenergic insult. Purinergic Signal 2024:10.1007/s11302-024-10009-y. [PMID: 38676825 DOI: 10.1007/s11302-024-10009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
P2X7 receptor (P2X7R) plays an important role in modulating inflammation and fibrosis, but information is limited whether Zusanli (ST36) can inhibit inflammation and fibrosis by regulating P2X7R. Isoprenaline at 5 mg/kg was subcutaneously injected to wild-type and P2X7R knockout mice for 7 days, while treatment groups received electroacupuncture (EA) stimulation at ST36 for 7 sessions. Following 7-session treatment, Masson's trichrome staining was performed to assess the fibrosis. Morphology, electrocardiogram, and echocardiography were carried out to evaluate the cardiac function and structure. Western blotting, hematoxylin and eosin staining, immunohistochemistry, and biochemical analysis of inflammatory cytokine and transmission electron microscopy were carried out to characterize the effect of ST36 on inflammation. P2X7R was overexpressed in ISO-treated mice. EA at ST36, but not at non-points, reduced ISO-induced cardiac fibrosis, increases in HW/BW, R+S wave relative to mice in ISO groups. In addition, EA at ST36 downregulated ISO-upregulated P2X7R and NLRP3 in ventricle. Moreover, EA reduced cytokines of IL-1β, IL-6, and IL-18 in serum, and inhibited foam cell gathering, inflammatory cell infiltration, and autophagy. However, EA at ST36 failed to attenuate the cardiac fibrosis and hypertrophy in P2X7R knockout mice. In conclusion, EA at ST36 attenuated ISO-induced fibrosis possibly via P2X7R.
Collapse
Affiliation(s)
- Ting Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Jing Lv
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Zhong-Yue Liu
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Qiu-Lian Lei
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Ze-Fei Jiang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Xiao-Xiang Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Xing Yue
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Xuan Li
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ke-Li Zhu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Yun-Kuan Yang
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Ling Luo
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China.
| | - Xin Cao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
9
|
Marketou M, Kontaraki J, Zacharis E, Maragkoudakis S, Fragkiadakis K, Kampanieris E, Plevritaki A, Savva E, Malikides O, Chlouverakis G, Kochiadakis G. Peripheral Blood MicroRNA-21 as a Predictive Biomarker for Heart Failure With Preserved Ejection Fraction in Old Hypertensives. Am J Hypertens 2024; 37:298-305. [PMID: 37976292 DOI: 10.1093/ajh/hpad109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a major health issue with high morbidity and mortality. The epidemiology and the factors that cause HFpEF have not been fully clarified, while accurate predictive biomarkers are lacking. Our aim was to determine whether levels of microRNA-21 (miR-21) in peripheral blood monocytes, which play a critical role in many pathophysiological pathways of hypertensive heart disease, can predict the occurrence of HFpEF in older hypertensives, as well as the associated mortality and morbidity. METHODS We enrolled 151 elderly patients >60 years old with essential hypertension but without HF at baseline. miRs expression levels in peripheral blood mononuclear cells had been quantified by real-time reverse transcription polymerase chain reaction. RESULTS During a median follow-up of 8.2 years, 56 patients (37%) had an event. Levels of miR-21 in peripheral mononuclear blood cells proved to be significantly associated with the occurrence of HFpEF. More specifically, the median HFpEF-free period was 110 months for those with miR-21 >2.1 and 114 months for those with miR-21 <2.1. In addition, multivariate analysis showed that miR-21 (hazard ratio 11.14), followed by hemoglobin (Hg) (hazard ratio 0.56 for Hg >13.6 g/dl, a 45% risk reduction), were independent and the most significant predictors of HFpEF events. CONCLUSIONS miR-21 levels in peripheral blood monocytes are associated with the development of future HFpEF. Our findings may alter the risk models of HFpEF and support the rationale for further research into the modulation of miRs as biomarkers and treatment targets for HFpEF.
Collapse
Affiliation(s)
- Maria Marketou
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
- Cardiology Department, School of Medicine, University of Crete, Crete, Greece
| | - Joanna Kontaraki
- Cardiology Department, School of Medicine, University of Crete, Crete, Greece
| | - Evangelos Zacharis
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
| | | | | | | | | | - Eirini Savva
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
| | | | - Gregory Chlouverakis
- Division of Biostatistics, School of Medicine, University of Crete, Crete, Greece
| | - George Kochiadakis
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
- Cardiology Department, School of Medicine, University of Crete, Crete, Greece
| |
Collapse
|
10
|
Li X, Sun M, Wang Z, Sun S, Wang Y. Recent advances in mechanistic studies of heart failure with preserved ejection fraction and its comorbidities-Role of microRNAs. Eur J Clin Invest 2024; 54:e14130. [PMID: 38071416 DOI: 10.1111/eci.14130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/22/2023] [Accepted: 11/11/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a multifaceted syndrome with a complex aetiology commonly associated with comorbidities such as diabetes mellitus, obesity, hypertension and renal disease. Various diseases induce systemic, chronic and low-grade inflammation; microvascular dysfunction; metabolic stress; tissue ischemia; and fibrosis, leading to HFpEF. An effective treatment for HFpEF is lacking, largely owing to its pathophysiological heterogeneity. Recent studies have revealed that microRNAs (miRNAs) play crucial roles in regulating the pathogenesis of HFpEF and its comorbidities. METHODS This narrative review included original articles and reviews published over the past 20 years found through 'PubMed' and 'Web of Science'. The search terms included "HFpEF," "MicroRNAs," "comorbidities," "Microvascular Dysfunction (MVD)," "inflammation," "pathophysiology," "endothelial dysfunction," "energy metabolism abnormalities" "cardiac fibrosis" and "treatment." RESULTS Inflammation, MVD, abnormal energy metabolism, myocardial hypertrophy and myocardial fibrosis are important pathophysiological mechanisms underlying HFpEF. As gene expression regulators, miRNAs may contribute to the pathophysiology of HFpEF and are expected to serve in the stratification of patients with HFpEF and as prognostic indicators for monitoring treatment responses. CONCLUSIONS A customized strategy based on miRNAs has emerged as an effective treatment for HFpEF. In this review, we discuss recent research surrounding miRNAs and HFpEF and propose potential miRNA targets for the pathophysiology of HFpEF and its comorbidities. Although current research concerning miRNAs and their therapeutic potential is in its early stages, miRNA-based diagnostics and therapeutics hold great promise in the future.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Min Sun
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Zhe Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Siming Sun
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Stoicescu L, Crişan D, Morgovan C, Avram L, Ghibu S. Heart Failure with Preserved Ejection Fraction: The Pathophysiological Mechanisms behind the Clinical Phenotypes and the Therapeutic Approach. Int J Mol Sci 2024; 25:794. [PMID: 38255869 PMCID: PMC10815792 DOI: 10.3390/ijms25020794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is an increasingly frequent form and is estimated to be the dominant form of HF. On the other hand, HFpEF is a syndrome with systemic involvement, and it is characterized by multiple cardiac and extracardiac pathophysiological alterations. The increasing prevalence is currently reaching epidemic levels, thereby making HFpEF one of the greatest challenges facing cardiovascular medicine today. Compared to HF with reduced ejection fraction (HFrEF), the medical attitude in the case of HFpEF was a relaxed one towards the disease, despite the fact that it is much more complex, with many problems related to the identification of physiopathogenetic mechanisms and optimal methods of treatment. The current medical challenge is to develop effective therapeutic strategies, because patients suffering from HFpEF have symptoms and quality of life comparable to those with reduced ejection fraction, but the specific medication for HFrEF is ineffective in this situation; for this, we must first understand the pathological mechanisms in detail and correlate them with the clinical presentation. Another important aspect of HFpEF is the diversity of patients that can be identified under the umbrella of this syndrome. Thus, before being able to test and develop effective therapies, we must succeed in grouping patients into several categories, called phenotypes, depending on the pathological pathways and clinical features. This narrative review critiques issues related to the definition, etiology, clinical features, and pathophysiology of HFpEF. We tried to describe in as much detail as possible the clinical and biological phenotypes recognized in the literature in order to better understand the current therapeutic approach and the reason for the limited effectiveness. We have also highlighted possible pathological pathways that can be targeted by the latest research in this field.
Collapse
Affiliation(s)
- Laurențiu Stoicescu
- Internal Medicine Department, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (L.S.); or (D.C.); or (L.A.)
- Cardiology Department, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Dana Crişan
- Internal Medicine Department, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (L.S.); or (D.C.); or (L.A.)
- Internal Medicine Department, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania
| | - Lucreţia Avram
- Internal Medicine Department, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (L.S.); or (D.C.); or (L.A.)
- Internal Medicine Department, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
12
|
Alves PKN, Schauer A, Augstein A, Männel A, Barthel P, Joachim D, Friedrich J, Prieto ME, Moriscot AS, Linke A, Adams V. Leucine Supplementation Improves Diastolic Function in HFpEF by HDAC4 Inhibition. Cells 2023; 12:2561. [PMID: 37947639 PMCID: PMC10648219 DOI: 10.3390/cells12212561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome associated with a high morbidity and mortality rate. Leucine supplementation has been demonstrated to attenuate cardiac dysfunction in animal models of cachexia and heart failure with reduced ejection fraction (HFrEF). So far, no data exist on leucine supplementation on cardiac function in HFpEF. Thus, the current study aimed to investigate the effect of leucine supplementation on myocardial function and key signaling pathways in an established HFpEF rat model. Female ZSF1 rats were randomized into three groups: Control (untreated lean rats), HFpEF (untreated obese rats), and HFpEF_Leu (obese rats receiving standard chow enriched with 3% leucine). Leucine supplementation started at 20 weeks of age after an established HFpEF was confirmed in obese rats. In all animals, cardiac function was assessed by echocardiography at baseline and throughout the experiment. At the age of 32 weeks, hemodynamics were measured invasively, and myocardial tissue was collected for assessment of mitochondrial function and for histological and molecular analyses. Leucine had already improved diastolic function after 4 weeks of treatment. This was accompanied by improved hemodynamics and reduced stiffness, as well as by reduced left ventricular fibrosis and hypertrophy. Cardiac mitochondrial respiratory function was improved by leucine without alteration of the cardiac mitochondrial content. Lastly, leucine supplementation suppressed the expression and nuclear localization of HDAC4 and was associated with Protein kinase A activation. Our data show that leucine supplementation improves diastolic function and decreases remodeling processes in a rat model of HFpEF. Beneficial effects were associated with HDAC4/TGF-β1/Collagenase downregulation and indicate a potential use in the treatment of HFpEF.
Collapse
Affiliation(s)
- Paula Ketilly Nascimento Alves
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil;
| | - Antje Schauer
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Antje Augstein
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Anita Männel
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Peggy Barthel
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Dirk Joachim
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Janet Friedrich
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Maria-Elisa Prieto
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Anselmo Sigari Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil;
| | - Axel Linke
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Volker Adams
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| |
Collapse
|
13
|
Yakusheva A, Slater A, Payrastre B, Garcia C, D'Italia G, Allan H, Cosemans JMEM, Harper M, Gawaz M, Armstrong P, Troitiño S, Trivigno SMG, Naik UP, Senis YA. Illustrated Abstracts of the 5 th EUPLAN International Conference. Res Pract Thromb Haemost 2023; 7:102140. [PMID: 37867586 PMCID: PMC10589886 DOI: 10.1016/j.rpth.2023.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
These illustrated capsules have been prepared by some speakers of State-of-the-Art talks and of original investigations, presented at the 5th European Platelet Network (EUPLAN) International Conference, which was held at the Università degli Studi di Milano (Italy) on September 28-30, 2022. The programme featured various state-of-the-art lectures and a selection of oral presentations covering a broad range of topics in platelet and megakaryocyte biology, from basic science to recent advances in clinical studies. As usual, the meeting brought together senior scientists and trainees in an informal atmosphere to discuss platelet science in person.
Collapse
Affiliation(s)
- Alexandra Yakusheva
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK, B15 2SQ
| | - Bernard Payrastre
- Inserm U1297, I2MC, 1 Avenue J. Poulhes, 31432 Toulouse cedex 4, France
| | - Cédric Garcia
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Giorgia D'Italia
- Maastricht University, Universiteitssingel 50, Maastricht, The Netherlands
| | - Harriet Allan
- Blizard Institute, Queen Mary University of London, London
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | - Meinrad Gawaz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany
| | - Paul Armstrong
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Sara Troitiño
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | | | - Ulhas P Naik
- Cardeza Center for Hemostasis, Thrombosis and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia USA 19107
| | - Yotis A Senis
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| |
Collapse
|
14
|
Linggui Qihua Decoction Inhibits Atrial Fibrosis by Regulating TGF- β1/Smad2/3 Signal Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:3764316. [PMID: 36820397 PMCID: PMC9938776 DOI: 10.1155/2023/3764316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/03/2022] [Accepted: 01/21/2023] [Indexed: 02/13/2023]
Abstract
Myocardial fibrosis is a critical factor in the development of heart failure with preserved ejection fraction (HFpEF). Linggui Qihua decoction (LGQHD) is an experienced formula, which has been proven to be effective on HFpEF in clinical and in experiments. Objective. This study aimed to observe the effect of LGQHD on HFpEF and its underlying mechanism. Methods. Spontaneously hypertensive rats (SHR) were induced with high-glucose and high-fat to establish HFpEF models and were treated with LGQHD for 8 weeks. The heart structure was detected by echocardiography, and the histopathological changes of the myocardium were observed by hematoxylin-eosin (HE) and Masson staining. Reverse transcription PCR (RT-PCR) and western blot were used to detect mRNA and protein expression of the target gene in rat myocardium. Results. In this study, LGQHD improved cardiac morphology and atrial fibrosis in HfpEF rats, decreased tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA expression, up-regulated matrix metalloproteinase-9 (MMP-9) mRNA expression, and inhibited the expression of angiotensin II (Ang II), angiotensin II type 1 receptor (AT1), transforming growth factor β1 (TGF-β1), Smad2/3 mRNA, and protein in myocardial tissue of HFpEF rats. Conclusion. LGQHD can suppress atrial fibrosis in HFpEF by modulating the TGF-β1/Smad2/3 pathway.
Collapse
|
15
|
Monda VM, Gentile S, Porcellati F, Satta E, Fucili A, Monesi M, Strollo F. Heart Failure with Preserved Ejection Fraction and Obstructive Sleep Apnea: A Novel Paradigm for Additional Cardiovascular Benefit of SGLT2 Inhibitors in Subjects With or Without Type 2 Diabetes. Adv Ther 2022; 39:4837-4846. [PMID: 36112311 PMCID: PMC9525351 DOI: 10.1007/s12325-022-02310-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 01/30/2023]
Abstract
After examining the complex interplay between heart failure (HF) in its various clinical forms, metabolic disorders like nonalcoholic fatty liver disease (NAFLD), and obstructive sleep apnea (OSA) syndrome, in this mini-review we described possible favorable effects of sodium-glucose cotransporter 2 inhibitors (SGLT2is) on HF with preserved (i.e., ≥ 50%) ejection fraction (HFpEF) through enhanced cardiorenal function and visceral-subcutaneous body fat redistribution. In greater detail, on the basis of pathophysiological mechanisms underlying OSA onset and the direct positive SGLT2i effect on renal function benefiting chronic kidney disease, we emphasized the promising role of SGLT2is in prevention, rehabilitation, and treatment of patients with OSA regardless of coexisting type 2 diabetes (T2DM). Indeed, SGLT2is enhance lipolysis and fatty acid beta-oxidation. These phenomena might prevent OSA by reducing the size of visceral and subcutaneous adipose tissue and, as proven in humans and animals with T2DM, counteract NAFLD onset and progression. The aforementioned mechanisms may represent an additional SGLT2i cardioprotective effect in terms of HFpEF prevention in patients with OSA, whose NAFLD prevalence is estimated to be over 50%.
Collapse
Affiliation(s)
| | - Sandro Gentile
- Department of Precision Medicine, Campania University “Luigi Vanvitelli”, Naples, Italy
- Nefrocenter Research Network, Cava dé Tirreni, Italy
| | - Francesca Porcellati
- Section of Internal Medicine, Endocrinology and Metabolism, Department of Medicine, Perugia University School of Medicine, Perugia, Italy
| | - Ersilia Satta
- Polyspecialistic Nephrologic Center CNP Srl, Fratta Maggiore, Italy
- Nefrocentre Research Network, Cava dé Tirreni, Italy
| | | | | | - Felice Strollo
- Department of Endocrinology and Diabetes, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
16
|
Eltelbany M, Shah P, deFilippi C. Biomarkers in HFpEF for Diagnosis, Prognosis, and Biological Phenotyping. Curr Heart Fail Rep 2022; 19:412-424. [PMID: 36197625 DOI: 10.1007/s11897-022-00578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The heterogeneity of heart failure with preserved ejection fraction (HFpEF) is responsible for the limited success of broad management strategies. The role of biomarkers has been evolving helping to provide insight into the diversity of pathophysiology, prognosis, and potential targets for treatments. We will review the role of traditional and novel biomarkers in diagnosing, prognosticating, and evolving the management of patients with HFpEF. As circulating biomarker discovery rapidly evolves, we will explore technology for new biomarker discovery with examples of successful implementation. RECENT FINDINGS Besides cardiac-specific biomarkers (natriuretic peptides and troponin), other novel nonspecific biomarkers increasingly identify the diversity of pathophysiological mechanisms of HFpEF including inflammation, fibrosis, and renal dysfunction. Newer approaches have provided increasing granularity providing opportunities to integrate large amounts of information from proteomics and genomics as biomarkers of interest in HFpEF. HFpEF has been marked with failure of many medications to show benefit, whether measuring single targeted biomarkers or broader targeted discovery proteomics or genomic circulating biomarkers are providing increasing opportunities to better understand and manage HFpEF patients.
Collapse
Affiliation(s)
- Moemen Eltelbany
- Inova Heart and Vascular Institute, Suite 1225, 3300, Gallows Rd, Falls Church, VA, 22042, USA
| | - Palak Shah
- Inova Heart and Vascular Institute, Suite 1225, 3300, Gallows Rd, Falls Church, VA, 22042, USA
| | - Christopher deFilippi
- Inova Heart and Vascular Institute, Suite 1225, 3300, Gallows Rd, Falls Church, VA, 22042, USA.
| |
Collapse
|
17
|
Ambrosini S, Gorica E, Mohammed SA, Costantino S, Ruschitzka F, Paneni F. Epigenetic remodeling in heart failure with preserved ejection fraction. Curr Opin Cardiol 2022; 37:219-226. [PMID: 35275888 PMCID: PMC9415220 DOI: 10.1097/hco.0000000000000961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In this review, we critically address the role of epigenetic processing and its therapeutic modulation in heart failure with preserved ejection fraction (HFpEF). RECENT FINDINGS HFpEF associates with a poor prognosis and the identification of novel molecular targets and therapeutic approaches are in high demand. Emerging evidence indicates a key involvement of epigenetic signals in the regulation of transcriptional programs underpinning features of HFpEF. The growing understanding of chromatin dynamics has led to the development of selective epigenetic drugs able to reset transcriptional changes thus delaying or preventing the progression toward HFpEF. Epigenetic information in the setting of HFpEF can be employed to: (i) dissect novel epigenetic networks and chromatin marks contributing to HFpEF; (ii) unveil circulating and cell-specific epigenetic biomarkers; (iii) build predictive models by using computational epigenetics and deep machine learning; (iv) develop new chromatin modifying drugs for personalized management of HFpEF. SUMMARY Acquired epigenetic signatures during the lifetime can contribute to derail molecular pathways involved in HFpEF. A scrutiny investigation of the individual epigenetic landscape will offer opportunities to develop personalized epigenetic biomarkers and therapies to fight HFpEF in the decades to come.
Collapse
Affiliation(s)
- Samuele Ambrosini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Era Gorica
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Tourki B, Halade GV. Heart Failure Syndrome With Preserved Ejection Fraction Is a Metabolic Cluster of Non-resolving Inflammation in Obesity. Front Cardiovasc Med 2021; 8:695952. [PMID: 34409075 PMCID: PMC8367012 DOI: 10.3389/fcvm.2021.695952] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an emerging disease with signs of nonresolving inflammation, endothelial dysfunction, and multiorgan defects. Moreover, based on the clinical signs and symptoms and the rise of the obesity epidemic, the number of patients developing HFpEF is increasing. From recent molecular and cellular studies, it becomes evident that HFpEF is not a single and homogenous disease but a cluster of heterogeneous pathophysiology with aging at the base of the pyramid. Obesity superimposed on aging drives the number of inflammatory pathways that intersect with metabolic dysfunction and suboptimal inflammation. Here, we compiled information on obesity-directed macrophage dysfunction that coincide with metabolic defects. Obesity-associated proinflammatory stimuli facilitates heart and interorgan inflammation in HFpEF. Furthermore, diversified mechanisms that drive heart failure urge the need of studying pervasive and unresolved inflammation in animal models to understand HFpEF. A broad and system-based approach will help to study major translational aspects of HFpEF, since no single animal model recapitulates all signs of differential HFpEF stages in the clinical setting. Here, we covered experimental models that target HFpEF and emphasized the advances observed with formyl peptide 2 (FPR2) receptor, a prime sensor that is important in inflammation-resolution signaling. Dysfunction of FPR2 led to the development of spontaneous obesity, impaired macrophage function, and triggered kidney fibrosis, providing evidence of multiorgan defects in HFpEF in an obesogenic aging experimental model.
Collapse
Affiliation(s)
- Bochra Tourki
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, FL, United States
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, FL, United States
| |
Collapse
|
19
|
Ambrosino P, Papa A, Buonauro A, Mosella M, Calcaterra I, Spedicato GA, Maniscalco M, Di Minno MND. Clinical assessment of endothelial function in heart failure with preserved ejection fraction: A meta-analysis with meta-regressions. Eur J Clin Invest 2021; 51:e13552. [PMID: 33749828 DOI: 10.1111/eci.13552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Endothelial dysfunction is a key mechanism in the development of cardiac remodelling and diastolic dysfunction in heart failure with preserved ejection fraction (HFpEF). Flow-mediated (FMD) and nitrate-mediated dilation (NMD) are noninvasive methods to assess endothelial function. We performed a meta-analysis evaluating the impact of HFpEF on FMD and NMD. METHODS PubMed, Web of Science, Scopus and EMBASE databases were systematically searched according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Differences were expressed as mean difference (MD) with 95% confidence intervals (95%CI). The random effects method was used. RESULTS A total of seven studies were included in the final analysis, 7 with data on FMD (326 HFpEF patients and 417 controls) and 3 on NMD (185 HFpEF patients and 271 controls). Compared to controls, HFpEF patients showed significantly lower FMD (MD: -1.929; 95%CI: -2.770, -1.088; P < .0001) and NMD values (MD: -2.795; 95%CI: -3.876, -1.715; P < .0001). Sensitivity analyses substantially confirmed results. Meta-regression models showed that increasing differences in E/A ratio (Z-score: -2.002; P = .045), E/E' ratio (Z-score: -2.181; P = .029) and left atrial diameter (Z-score: -1.951; P = .050) were linked to higher differences in FMD values between cases and controls. CONCLUSIONS Impaired endothelial function can be documented in HFpEF, with the possibility of a direct association between the severity of diastolic and endothelial dysfunction. Targeting endothelial dysfunction through pharmacological and rehabilitation strategies may represent an attractive therapeutic option.
Collapse
Affiliation(s)
| | - Antimo Papa
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | | | - Marco Mosella
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Ilenia Calcaterra
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | | | | | | |
Collapse
|
20
|
Myocardial Tissue Characterization in Heart Failure with Preserved Ejection Fraction: From Histopathology and Cardiac Magnetic Resonance Findings to Therapeutic Targets. Int J Mol Sci 2021; 22:ijms22147650. [PMID: 34299270 PMCID: PMC8304780 DOI: 10.3390/ijms22147650] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome responsible for high mortality and morbidity rates. It has an ever growing social and economic impact and a deeper knowledge of molecular and pathophysiological basis is essential for the ideal management of HFpEF patients. The association between HFpEF and traditional cardiovascular risk factors is known. However, myocardial alterations, as well as pathophysiological mechanisms involved are not completely defined. Under the definition of HFpEF there is a wide spectrum of different myocardial structural alterations. Myocardial hypertrophy and fibrosis, coronary microvascular dysfunction, oxidative stress and inflammation are only some of the main pathological detectable processes. Furthermore, there is a lack of effective pharmacological targets to improve HFpEF patients' outcomes and risk factors control is the primary and unique approach to treat those patients. Myocardial tissue characterization, through invasive and non-invasive techniques, such as endomyocardial biopsy and cardiac magnetic resonance respectively, may represent the starting point to understand the genetic, molecular and pathophysiological mechanisms underlying this complex syndrome. The correlation between histopathological findings and imaging aspects may be the future challenge for the earlier and large-scale HFpEF diagnosis, in order to plan a specific and effective treatment able to modify the disease's natural course.
Collapse
|
21
|
Hamdani N, Costantino S, Mügge A, Lebeche D, Tschöpe C, Thum T, Paneni F. Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. Eur Heart J 2021; 42:1940-1958. [PMID: 36282124 DOI: 10.1093/eurheartj/ehab197] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Described as the 'single largest unmet need in cardiovascular medicine', heart failure with preserved ejection fraction (HFpEF) remains an untreatable disease currently representing 65% of new heart failure diagnoses. HFpEF is more frequent among women and associates with a poor prognosis and unsustainable healthcare costs. Moreover, the variability in HFpEF phenotypes amplifies complexity and difficulties in the approach. In this perspective, unveiling novel molecular targets is imperative. Epigenetic modifications-defined as changes of DNA, histones, and non-coding RNAs (ncRNAs)-represent a molecular framework through which the environment modulates gene expression. Epigenetic signals acquired over the lifetime lead to chromatin remodelling and affect transcriptional programmes underlying oxidative stress, inflammation, dysmetabolism, and maladaptive left ventricular remodelling, all conditions predisposing to HFpEF. The strong involvement of epigenetic signalling in this setting makes the epigenetic information relevant for diagnostic and therapeutic purposes in patients with HFpEF. The recent advances in high-throughput sequencing, computational epigenetics, and machine learning have enabled the identification of reliable epigenetic biomarkers in cardiovascular patients. Contrary to genetic tools, epigenetic biomarkers mirror the contribution of environmental cues and lifestyle changes and their reversible nature offers a promising opportunity to monitor disease states. The growing understanding of chromatin and ncRNAs biology has led to the development of several Food and Drug Administration approved 'epidrugs' (chromatin modifiers, mimics, anti-miRs) able to prevent transcriptional alterations underpinning left ventricular remodelling and HFpEF. In the present review, we discuss the importance of clinical epigenetics as a new tool to be employed for a personalized management of HFpEF.
Collapse
Affiliation(s)
- Nazha Hamdani
- Institute of Physiology, Ruhr University, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr University, Bochum, Germany.,Department of Cardiology, St-Josef Hospital, Ruhr University, Bochum, Germany.,Clinical Pharmacology, Ruhr University, Bochum, Germany
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren CH-8952, Switzerland
| | - Andreas Mügge
- Molecular and Experimental Cardiology, Ruhr University, Bochum, Germany.,Department of Cardiology, St-Josef Hospital, Ruhr University, Bochum, Germany
| | - Djamel Lebeche
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY 10029, USA.,Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Medicine, Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover 30625, Germany
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren CH-8952, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
22
|
Zhou L, Guo Z, Wang B, Wu Y, Li Z, Yao H, Fang R, Yang H, Cao H, Cui Y. Risk Prediction in Patients With Heart Failure With Preserved Ejection Fraction Using Gene Expression Data and Machine Learning. Front Genet 2021; 12:652315. [PMID: 33828587 PMCID: PMC8019773 DOI: 10.3389/fgene.2021.652315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has become a major health issue because of its high mortality, high heterogeneity, and poor prognosis. Using genomic data to classify patients into different risk groups is a promising method to facilitate the identification of high-risk groups for further precision treatment. Here, we applied six machine learning models, namely kernel partial least squares with the genetic algorithm (GA-KPLS), the least absolute shrinkage and selection operator (LASSO), random forest, ridge regression, support vector machine, and the conventional logistic regression model, to predict HFpEF risk and to identify subgroups at high risk of death based on gene expression data. The model performance was evaluated using various criteria. Our analysis was focused on 149 HFpEF patients from the Framingham Heart Study cohort who were classified into good-outcome and poor-outcome groups based on their 3-year survival outcome. The results showed that the GA-KPLS model exhibited the best performance in predicting patient risk. We further identified 116 differentially expressed genes (DEGs) between the two groups, thus providing novel therapeutic targets for HFpEF. Additionally, the DEGs were enriched in Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways related to HFpEF. The GA-KPLS-based HFpEF model is a powerful method for risk stratification of 3-year mortality in HFpEF patients.
Collapse
Affiliation(s)
- Liye Zhou
- Division of Health Management, School of Management, Shanxi Medical University, Taiyuan, China
| | - Zhifei Guo
- Division of Health Management, School of Management, Shanxi Medical University, Taiyuan, China
| | - Bijue Wang
- Division of Health Management, School of Management, Shanxi Medical University, Taiyuan, China
| | - Yongqing Wu
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhi Li
- Department of Hematology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongmei Yao
- Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruiling Fang
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Haitao Yang
- Division of Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Hongyan Cao
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Major Disease Risk Assessment, Shanxi Medical University, Taiyuan, China
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
23
|
Wu Y, Wang H, Li Z, Cheng J, Fang R, Cao H, Cui Y. Subtypes identification on heart failure with preserved ejection fraction via network enhancement fusion using multi-omics data. Comput Struct Biotechnol J 2021; 19:1567-1578. [PMID: 33868594 PMCID: PMC8039555 DOI: 10.1016/j.csbj.2021.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 11/24/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is associated with multiple etiologic and pathophysiologic factors. HFpEF leads to significant cardiovascular morbidity and mortality. There are various reasons that fail to identify effective therapeutic interventions for HFpEF, primarily due to its clinical heterogeneity causing significant difficulties in determining physiologic and prognostic implications for this syndrome. Thus, identifying clinical subtypes using multi-omics data has great implications for efficient treatment and prognosis of HFpEF patients. Here we proposed to integrate mRNA, DNA methylation and microRNA (miRNA) expression data of HFpEF with a similarity network fusion (SNF) method following a network enhancement (ne-SNF) denoising technique to form a fused network. A spectral clustering method was then used to obtain clusters of patient subtypes. Experiments on HFpEF datasets demonstrated that ne-SNF significantly outperforms single data subtype analysis and other integrated methods. The identified subgroups were shown to have statistically significant differences in survival. Two HFpEF subtypes were defined: a high-risk group (16.8%) and a low-risk group (83.2%). The 5-year mortality rates were 63.3% and 33.0% for the high- and low-risk group, respectively. After adjusting for the effects of clinical covariates, HFpEF patients in the high-risk group were 2.43 times more likely to die than the low-risk group. A total of 157 differentially expressed (DE) mRNAs, 2199 abnormal methylations and 121 DE miRNAs were identified between two subtypes. They were also enriched in many HFpEF-related biological processes or pathways. The ne-SNF method provides a novel pipeline for subtype identification in integrated analysis of multi-omics data.
Collapse
Affiliation(s)
- Yongqing Wu
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Huihui Wang
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Zhi Li
- Department of Hematology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Jinfang Cheng
- Department of Cardiology, Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Ruiling Fang
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Hongyan Cao
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.,Shanxi Provincial Key Laboratory of Major Disease Risk Assessment, Taiyuan, Shanxi 030001, PR China
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
24
|
Li Y, Deng S, Wang X, Huang W, Chen J, Robbins N, Mu X, Essandoh K, Peng T, Jegga AG, Rubinstein J, Adams DE, Wang Y, Peng J, Fan GC. Sectm1a deficiency aggravates inflammation-triggered cardiac dysfunction through disruption of LXRα signalling in macrophages. Cardiovasc Res 2021; 117:890-902. [PMID: 32170929 PMCID: PMC8453795 DOI: 10.1093/cvr/cvaa067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 01/03/2023] Open
Abstract
AIMS Cardiac dysfunction is a prevalent comorbidity of disrupted inflammatory homeostasis observed in conditions such as sepsis (acute) or obesity (chronic). Secreted and transmembrane protein 1a (Sectm1a) has previously been implicated to regulate inflammatory responses, yet its role in inflammation-associated cardiac dysfunction is virtually unknown. METHODS AND RESULTS Using the CRISPR/Cas9 system, we generated a global Sectm1a-knockout (KO) mouse model and observed significantly increased mortality and cardiac injury after lipopolysaccharide (LPS) injection, when compared with wild-type (WT) control. Further analysis revealed significantly increased accumulation of inflammatory macrophages in hearts of LPS-treated KO mice. Accordingly, ablation of Sectm1a remarkably increased inflammatory cytokines levels both in vitro [from bone marrow-derived macrophages (BMDMs)] and in vivo (in serum and myocardium) after LPS challenge. RNA-sequencing results and bioinformatics analyses showed that the most significantly down-regulated genes in KO-BMDMs were modulated by LXRα, a nuclear receptor with robust anti-inflammatory activity in macrophages. Indeed, we identified that the nuclear translocation of LXRα was disrupted in KO-BMDMs when treated with GW3965 (LXR agonist), resulting in higher levels of inflammatory cytokines, compared to GW3965-treated WT-cells. Furthermore, using chronic inflammation model of high-fat diet (HFD) feeding, we observed that infiltration of inflammatory monocytes/macrophages into KO-hearts were greatly increased and accordingly, worsened cardiac function, compared to WT-HFD controls. CONCLUSION This study defines Sectm1a as a new regulator of inflammatory-induced cardiac dysfunction through modulation of LXRα signalling in macrophages. Our data suggest that augmenting Sectm1a activity may be a potential therapeutic approach to resolve inflammation and associated cardiac dysfunction.
Collapse
Affiliation(s)
- Yutian Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Shan Deng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Jing Chen
- Division of Biomedical Informatics, Cincinnati Children’s Hospital, Cincinnati, OH 45267, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Nathan Robbins
- Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Xingjiang Mu
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Kobina Essandoh
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Tianqing Peng
- Critical Illness Research, Lawson Health Research Institute, London, ON N6A 4G5, Canada
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital, Cincinnati, OH 45267, USA
| | - Jack Rubinstein
- Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - David E Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Jiangtong Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| |
Collapse
|
25
|
Langlo KAR, Silva GJJ, Overrein TS, Adams V, Wisløff U, Dalen H, Rolim N, Hallan SI. Circulating microRNAs May Serve as Biomarkers for Hypertensive Emergency End-Organ Injuries and Address Underlying Pathways in an Animal Model. Front Cardiovasc Med 2021; 7:626699. [PMID: 33644125 PMCID: PMC7906971 DOI: 10.3389/fcvm.2020.626699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 11/20/2022] Open
Abstract
There is an incomplete understanding of the underlying pathophysiology in hypertensive emergencies, where severely elevated blood pressure causes acute end-organ injuries, as opposed to the long-term manifestations of chronic hypertension. Furthermore, current biomarkers are unable to detect early end-organ injuries like hypertensive encephalopathy and renal thrombotic microangiopathy. We hypothesized that circulating microRNAs (c-miRs) could identify acute and chronic complications of severe hypertension, and that combinations of c-miRs could elucidate important pathways involved. We studied the diagnostic accuracy of 145 c-miRs in Dahl salt-sensitive rats fed either a low-salt (N = 20: 0.3% NaCl) or a high-salt (N = 60: 8% NaCl) diet. Subclinical hypertensive encephalopathy and thrombotic microangiopathy were diagnosed by histopathology. In addition, heart failure with preserved ejection fraction was evaluated with echocardiography and N-terminal pro-brain natriuretic peptide; and endothelial dysfunction was studied using acetylcholine-induced aorta ring relaxation. Systolic blood pressure increased severely in animals on a high-salt diet (high-salt 205 ± 20 mm Hg vs. low-salt 152 ± 18 mm Hg, p < 0.001). Partial least squares discriminant analysis revealed 68 c-miRs discriminating between animals with and without hypertensive emergency complications. Twenty-nine c-miRs were strongly associated with hypertensive encephalopathy, 24 c-miRs with thrombotic microangiopathy, 30 c-miRs with heart failure with preserved ejection fraction, and 28 c-miRs with endothelial dysfunction. Hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction were associated with deviations in many of the same c-miRs, whereas endothelial dysfunction was associated with a different set of c-miRs. Several of these c-miRs demonstrated fair to good diagnostic accuracy for a composite outcome of hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction in receiver-operating-curve analyses (area-under-curve 0.75–0.88). Target prediction revealed an enrichment of genes related to several pathways relevant for cardiovascular disease (e.g., mucin type O-glycan biosynthesis, MAPK, Wnt, Hippo, and TGF-beta signaling). C-miRs could potentially serve as biomarkers of severe hypertensive end-organ injuries and elucidate important pathways involved.
Collapse
Affiliation(s)
- Knut Asbjørn Rise Langlo
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Nephrology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gustavo Jose Justo Silva
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tina Syvertsen Overrein
- Division of Pathology and Medical Genetics, Department of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Volker Adams
- Department of Cardiology, Heart Center Dresden, TU Dresden, Dresden, Germany
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,School of Human Movement & Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Håvard Dalen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Natale Rolim
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stein Ivar Hallan
- Department of Nephrology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
26
|
Clinical Phenotypes and Age-Related Differences in Presentation, Treatment, and Outcome of Heart Failure with Preserved Ejection Fraction: A Vietnamese Multicenter Research. Cardiol Res Pract 2021; 2021:4587678. [PMID: 33628487 PMCID: PMC7884182 DOI: 10.1155/2021/4587678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) is a rising health problem with heterogeneous presentation and no evidence-based treatment. While Southeast Asia reported the highest mortality and morbidity among Asian population, little is known about the Vietnamese population, including patient characteristics, prescribing pattern and mortality rate. Methods We conducted an observational study on 477 patients diagnosed with HFpEF from seven hospitals in Southern Vietnam from January 2019 to December 2019. Results Mean age was 67.6 (40.9% < 65 years). 62.3% were female. 82.4% were diagnosed within 5 years. Dyspnea, congestion, and hypoperfusion on admission were noted in 63.9%, 48.8%, and 4.6% of the patients, respectively. Median ejection fraction was 63%. Valvular heart disease (VHD) was the leading cause of heart failure (35.9%). 78.6% had at least two comorbidities, mostly hypertension (68.6%). 30.6% of the patients were hospitalized, with a median stay of 7.0 (4.0–10.0) days and inhospital mortality of 4.8%. Older patients (≥65 years) were more likely to be females (OR = 1.52); had multimorbid conditions (OR = 3.14), including hypertension (OR = 4.28), diabetes (OR = 1.73), coronary artery disease (CAD) (OR = 2.50), dyslipidemia (OR = 1.94), and chronic kidney disease (OR = 2.44); and were more frequently prescribed statin (OR = 3.15). Younger individuals (<65 years) were associated with higher mineralocorticoid antagonist uptake (OR = 0.52) and VHD (OR = 0,40). Prescription rate for renin-angiotensin-aldosterone system inhibitor, beta blocker, mineralocorticoid antagonist, and loop diuretic was 72.5%, 59.1%, 43.0%, and 60.6%, respectively. Four phenotypes were identified, including the lean/elderly/multimorbid; congestive/metabolic; CAD-induced; and younger/atrial fibrillation (AF)/VHD. The novel phenotype “younger/AF/VHD” exhibited high symptom burden and poor functional capacity despite being the youngest and least multimorbid. The “lean/elderly/multimorbid” phenotype demonstrated the highest symptom severity and inhospital mortality. Conclusions Our research highlights a younger, predominantly female population with high disease burden. The four novelly identified phenotypes provide contemporary and pragmatic insights into a phenotype-guided approach, exclusively targeting the Vietnamese population.
Collapse
|
27
|
Rosch S, Rommel KP, Scholz M, Thiele H, Lurz P. Transcriptomic Research in Heart Failure with Preserved Ejection Fraction: Current State and Future Perspectives. Card Fail Rev 2020; 6:e24. [PMID: 33042584 PMCID: PMC7539142 DOI: 10.15420/cfr.2019.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasing in incidence and has a higher prevalence compared with heart failure with reduced ejection fraction. So far, no effective treatment of HFpEF is available, due to its complex underlying pathophysiology and clinical heterogeneity. This article aims to provide an overview and a future perspective of transcriptomic biomarker research in HFpEF. Detailed characterisation of the HFpEF phenotype and its underlying molecular pathomechanisms may open new perspectives regarding early diagnosis, improved prognostication, new therapeutic targets and tailored therapies accounting for patient heterogeneity, which may improve quality of life. A combination of cross-sectional and longitudinal study designs with sufficiently large sample sizes are required to support this concept.
Collapse
Affiliation(s)
- Sebastian Rosch
- Department of Cardiology, Heart Center Leipzig at University of Leipzig Leipzig, Germany
| | - Karl-Philipp Rommel
- Department of Cardiology, Heart Center Leipzig at University of Leipzig Leipzig, Germany
| | - Markus Scholz
- Institute of Medical Informatics, Statistics and Epidemiology, Leipzig University Leipzig, Germany.,Leipzig Research Center for Civilization Diseases (LIFE), Leipzig University Leipzig, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig Leipzig, Germany
| | - Philipp Lurz
- Department of Cardiology, Heart Center Leipzig at University of Leipzig Leipzig, Germany
| |
Collapse
|
28
|
Florijn BW, Valstar GB, Duijs JMGJ, Menken R, Cramer MJ, Teske AJ, Ghossein-Doha C, Rutten FH, Spaanderman MEA, den Ruijter HM, Bijkerk R, van Zonneveld AJ. Sex-specific microRNAs in women with diabetes and left ventricular diastolic dysfunction or HFpEF associate with microvascular injury. Sci Rep 2020; 10:13945. [PMID: 32811874 PMCID: PMC7435264 DOI: 10.1038/s41598-020-70848-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Left ventricular diastolic dysfunction (LVDD) and heart failure with preserved ejection fraction (HFpEF) are microcirculation defects following diabetes mellitus (DM). Unrecognized HFpEF is more prevalent in women with diabetes compared to men with diabetes and therefore sex-specific diagnostic strategies are needed. Previously, we demonstrated altered plasma miRs in DM patients with microvascular injury [defined by elevated plasma Angiopoietin-2 (Ang-2) levels]. This study hypothesized the presence of sex-differences in plasma miRs and Ang-2 in diabetic (female) patients with LVDD or HFpEF. After a pilot study, we assessed 16 plasma miRs in patients with LVDD (n = 122), controls (n = 244) and female diabetic patients (n = 10). Subsequently, among these miRs we selected and measured plasma miR-34a, -224 and -452 in diabetic HFpEF patients (n = 53) and controls (n = 52). In LVDD patients, miR-34a associated with Ang-2 levels (R2 0.04, R = 0.21, p = 0.001, 95% CI 0.103–0.312), with plasma levels being diminished in patients with DM, while women with an eGFR < 60 ml/min and LVDD had lower levels of miR-34a, -224 and -452 compared to women without an eGFR < 60 ml/min without LVDD. In diabetic HFpEF women (n = 28), plasma Ang-2 levels and the X-chromosome located miR-224/452 cluster increased compared to men. We conclude that plasma miR-34a, -224 and -452 display an association with the microvascular injury marker Ang-2 and are particularly targeted to women with LVDD or HFpEF.
Collapse
Affiliation(s)
- Barend W Florijn
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands. .,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Gideon B Valstar
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jacques M G J Duijs
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Roxana Menken
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Maarten J Cramer
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Arco J Teske
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Chahinda Ghossein-Doha
- Department of Obstetrics and Gynecology, Research School GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frans H Rutten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Marc E A Spaanderman
- Department of Obstetrics and Gynecology, Research School GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Hester M den Ruijter
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
29
|
Adamczak DM, Oduah MT, Kiebalo T, Nartowicz S, Bęben M, Pochylski M, Ciepłucha A, Gwizdała A, Lesiak M, Straburzyńska-Migaj E. Heart Failure with Preserved Ejection Fraction-a Concise Review. Curr Cardiol Rep 2020; 22:82. [PMID: 32648130 PMCID: PMC7347676 DOI: 10.1007/s11886-020-01349-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review Heart failure with preserved ejection fraction (HFpEF) is a relatively new disease entity used in medical terminology; however, both the number of patients and its clinical significance are growing. HFpEF used to be seen as a mild condition; however, the symptoms and quality of life of the patients are comparable to those with reduced ejection fraction. The disease is much more complex than previously thought. In this article, information surrounding the etiology, diagnosis, prognosis, and possible therapeutic options of HFpEF are reviewed and summarized. Recent Findings It has recently been proposed that heart failure (HF) is rather a heterogeneous syndrome with a spectrum of overlapping and distinct characteristics. HFpEF itself can be distilled into different phenotypes based on the underlying biology. The etiological factors of HFpEF are unclear; however, systemic low-grade inflammation and microvascular damage as a consequence of comorbidities associated with endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis are considered to play a crucial role in the pathogenesis of a disease. The H2FPEF score and the HFpEF nomogram are recently validated highly sensitive tools employed for risk assessment of subclinical heart failure. Summary Despite numerous studies, there is still no evidence-based pharmacotherapy for HFpEF and the mortality and morbidity associated with HFpEF remain high. A better understanding of the etiological factors, the impact of comorbidities, the phenotypes of the disease, and implementation of machine learning algorithms may play a key role in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Daria M Adamczak
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland.
| | - Mary-Tiffany Oduah
- Center for Medical Education in English, Poznan University of Medical Sciences, Poznan, Poland
| | - Thomas Kiebalo
- Center for Medical Education in English, Poznan University of Medical Sciences, Poznan, Poland
| | - Sonia Nartowicz
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Bęben
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Mateusz Pochylski
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Ciepłucha
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland
| | - Adrian Gwizdała
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland
| | - Maciej Lesiak
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland
| | - Ewa Straburzyńska-Migaj
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland
| |
Collapse
|
30
|
Pierce JD, Shen Q, Vacek J, Rahman FK, Krueger KJ, Gupta B, Hiebert JB. Potential use of ubiquinol and d-ribose in patients with heart failure with preserved ejection fraction. Ann Med Surg (Lond) 2020; 55:77-80. [PMID: 32477499 PMCID: PMC7251495 DOI: 10.1016/j.amsu.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 11/27/2022] Open
Abstract
•Manuscript Highlights.•HFpEF is associated with reduced ATP production in the myocardium.•Ubiquinol and d-ribose both contribute to the generation of myocardial ATP.•Both ubiquinol and d-ribose are being studied as supplemental treatments for patients with HFpEF.
Collapse
Affiliation(s)
- Janet D. Pierce
- School of Nursing, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Qiuhua Shen
- School of Nursing, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - James Vacek
- The University of Kansas Health System, 4000 Cambridge St, Kansas City, KS, 66160, USA
| | - Faith K. Rahman
- School of Nursing, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Kathryn J. Krueger
- School of Nursing, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Bhanu Gupta
- The University of Kansas Health System, 4000 Cambridge St, Kansas City, KS, 66160, USA
| | - John B. Hiebert
- School of Nursing, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| |
Collapse
|
31
|
Abstract
Heart failure is a growing health problem resulting in the decreased life expectancy of patients and severely increased the healthcare burden. Penetrating research on the pathogenesis and regulation mechanism of heart failure is important for treatment of heart failure. Epicardial adipose tissue (EAT) has been demonstrated as not only a dynamic organ with biological functions but also an inert lipid store with regulating systemic metabolism. EAT mediates physiological and pathophysiological processes of heart failure by regulating adipogenesis, cardiac remodeling, insulin resistance, cardiac output, and renin angiotensin aldosterone system (RAAS). Moreover, EAT secretes a wide range of adipokines, adrenomedullin, adiponectin, and miRNAs through paracrine, endocrine, and vasocrine pathways, which involve in various extracellular and intracellular mechanism of cardiac-related cells in the progress of cardiovascular disease especially in heart failure. Nevertheless, mechanisms and roles of EAT on heart failure are barely summarized. Understanding the regulating mechanisms of EAT on heart failure may give rise to novel therapeutic targets and will open up innovative strategies to myocardial injury as well as in heart failure.
Collapse
Affiliation(s)
- Ying Song
- Xiamen Cardiovascular Hospital, Xiamen University, No. 2999 Jinshan Road, Xiamen, 361015, Fujian, China.,Xiamen Branch of Zhongshan Hospital, Fudan University, Xiamen, 361015, Fujian, China
| | - Fei Song
- Xiamen Cardiovascular Hospital, Xiamen University, No. 2999 Jinshan Road, Xiamen, 361015, Fujian, China
| | - Chan Wu
- Xiamen Cardiovascular Hospital, Xiamen University, No. 2999 Jinshan Road, Xiamen, 361015, Fujian, China
| | - Yi-Xiang Hong
- Xiamen Cardiovascular Hospital, Xiamen University, No. 2999 Jinshan Road, Xiamen, 361015, Fujian, China
| | - Gang Li
- Xiamen Cardiovascular Hospital, Xiamen University, No. 2999 Jinshan Road, Xiamen, 361015, Fujian, China.
| |
Collapse
|
32
|
Brown SK, Sheikh AM, Guzik TJ. Cardiovascular Research at the frontier of biomedical science. Cardiovasc Res 2020; 116:e83-e86. [PMID: 32406499 DOI: 10.1093/cvr/cvaa119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sarah K Brown
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, Glasgow G12 8TA, UK
| | - Adam M Sheikh
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, Glasgow G12 8TA, UK
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
33
|
Ben-Nun D, Buja LM, Fuentes F. Prevention of heart failure with preserved ejection fraction (HFpEF): reexamining microRNA-21 inhibition in the era of oligonucleotide-based therapeutics. Cardiovasc Pathol 2020; 49:107243. [PMID: 32629211 DOI: 10.1016/j.carpath.2020.107243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for 50% of cases of heart failure, which is the most common cause of hospitalization in US patients over the age of 65. HFpEF pathogenesis is increasingly believed to be due to pathological hypertrophy and fibrosis of the myocardium that may be a result of systemic inflammation from comorbid conditions such as hypertension, diabetes mellitus, chronic obstructive pulmonary disease, anemia, chronic kidney disease and others. It is believed that oxidative stress triggers a process of pathological hypertrophy and fibrosis in cardiac endothelial cells, which leads to increased left ventricle filling pressures and, eventually, symptoms of heart failure. Numerous recent major clinical trials that have examined various therapies aimed at improving mortality in HFpEF have emerged empty-handed and thus the search for effective management strategies continues. Over the last several years, there have been many new developments in the field of antisense oligonucleotide-based therapeutics, which involves using noncoding nucleic acid particles such as microRNA and small interfering RNA to repress the expression of specific messenger RNA. In this article, we review the concept of using oligonucleotide-based therapeutics to prevent or treat HFpEF by targeting a specific microRNA that has been implicated in the pathogenesis of myocardial fibrosis and hypertrophy, microRNA-21 (miR-21). We review the various evidence that implicates miR-21 in the process of myocardial fibrosis and discuss recent attempts to use antimiR-21 compounds to prevent fibrosis. We also discuss proposed methods for screening patients at high risk for HFpEF for diastolic dysfunction in order to determine which patients.
Collapse
Affiliation(s)
- David Ben-Nun
- Tel Aviv University Sackler Faculty of Medicine, Sackler Faculty of Medicine, NY St..., 69978 Tel Aviv, Israel.
| | - L Maximilian Buja
- The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Francisco Fuentes
- The University of Texas Health Science Center at Houston, McGovern Medical School
| |
Collapse
|
34
|
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) represents half of HF patients, who are more likely older, women, and hypertensive. Mortality rates in HFpEF are higher compared with age- and comorbidity-matched non-HF controls and lower than in HF with reduced ejection fraction (HFrEF); the majority (50-70%) are cardiovascular (CV) deaths. Among CV deaths, sudden death (SD) (~ 35%) and HF-death (~ 20%) are the leading cardiac modes of death; however, proportionally, CV deaths, SD, and HF-deaths are lower in HFpEF, while non-CV deaths constitute a higher proportion of deaths in HFpEF (30-40%) than in HFrEF (~ 15%). Importantly, the underlying mechanism of SD has not been clearly elucidated and non-arrhythmic SD may be more prominent in HFpEF than in HFrEF. Furthermore, there is no specific strategy for identifying high-risk patients, probably due to wide heterogeneity in presentation and pathophysiology of HFpEF and a plethora of comorbidities in this population. Thus, the management of HFpEF remains problematic due to paucity of data on the clinical benefits of current therapies, which focus on symptom relief and reduction of HF-hospitalization by controlling fluid retention and managing risk-factors and comorbidities. Matching a specific pathophysiology or mode of death with available and novel therapies may improve outcomes in HFpEF. However, this still remains an elusive target, as we need more information on determinants of SD. Implantable cardioverter-defibrillators (ICDs) have changed the landscape of SD prevention in HFrEF; if ICDs are to be applied to HFpEF, there must be a coordinated effort to identify and select high-risk patients.
Collapse
|
35
|
Zach V, Bähr FL, Edelmann F. Suppression of Tumourigenicity 2 in Heart Failure With Preserved Ejection Fraction. Card Fail Rev 2020; 6:1-7. [PMID: 32257387 PMCID: PMC7111301 DOI: 10.15420/cfr.2019.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Heart failure (HF), with steadily increasing incidence rates and mortality in an ageing population, represents a major challenge. Evidence suggests that more than half of all patients with a diagnosis of HF suffer from HF with preserved ejection fraction (HFpEF). Emerging novel biomarkers to improve and potentially guide the treatment of HFpEF are the subject of discussion. One of these biomarkers is suppression of tumourigenicity 2 (ST2), a member of the interleukin (IL)-1 receptor family, binding to IL-33. Its two main isoforms – soluble ST2 (sST2) and transmembrane ST2 (ST2L) – show opposite effects in cardiovascular diseases. While the ST2L/IL-33 interaction is considered as being cardioprotective, sST2 antagonises this beneficial effect by competing for binding to IL-33. Recent studies show that elevated levels of sST2 are associated with increased mortality in HF with reduced ejection fraction. Nevertheless, the significance of sST2 in HFpEF remains uncertain. This article aims to give an overview of the current evidence on sST2 in HFpEF with an emphasis on prognostic value, clinical association and interaction with HF treatment. The authors conclude that sST2 is a promising biomarker in HFpEF. However, further research is needed to fully understand underlying mechanisms and ultimately assess its full value.
Collapse
Affiliation(s)
- Veronika Zach
- Department of Internal Medicine and Cardiology, Charité University Medicine Berlin Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin, Germany
| | - Felix Lucas Bähr
- Department of Internal Medicine and Cardiology, Charité University Medicine Berlin Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin, Germany
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Charité University Medicine Berlin Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin, Germany.,Berlin Institute of Health Berlin, Germany
| |
Collapse
|
36
|
Antoniades C, Condorelli G. Scientists on the Spot: non-coding RNAs and heart failure. Cardiovasc Res 2019; 115:e164-e165. [PMID: 31596469 DOI: 10.1093/cvr/cvz243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Gianluigi Condorelli
- Department of Cardiovascular Medicine, Istituto Clinico Humanitas, via Manzoni 56, Rozzano, Milan, Italy
| |
Collapse
|
37
|
Stefil M, Manzano L, Montero-PéRez-Barquero M, Coats AJS, Flather M. New horizons in management of heart failure in older patients. Age Ageing 2019; 49:16-19. [PMID: 31697342 DOI: 10.1093/ageing/afz122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 11/12/2022] Open
Abstract
Heart failure has a high prevalence in older populations, is a common and growing cause for hospital admission and carries a high risk of morbidity and mortality. Important co-morbidities in older patients with heart failure include atrial fibrillation, renal impairment, hypertension and anaemia. Diagnosing and managing heart failure in older patients are complicated due to atypical presentations, co-morbidities and a relative lack of evidence for commonly used treatments in younger patients. The growing epidemic of heart failure is also under-recognised and resourced in most health systems. Despite potential differences, we recommend that the basic approach to manage heart failure patients with an ejection fraction (EF) of <40% should be the same in older and younger. These treatments need to be started at low doses and titrated slowly along with the management of co-morbidities. Older patients with EF 40-49% can be treated in a similar manner to those with <40%, while the treatment of those with EF ≥50% is pragmatic in nature based on symptom control and management of co-morbidities although the evidence base for these recommendations is lacking. Overall management must be holistic and continuous based on the patient's social circumstances and ongoing needs. Finally, there is an urgent need for more research, evidence and resources directed towards older populations with heart failure to improve their care and the quality of life.
Collapse
Affiliation(s)
- Maria Stefil
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Luis Manzano
- Servicio de Medicina Interna, Hospital Universitario Ramón y Cajal, Universidad de Alcalá (IRYCIS), Madrid, Spain
| | | | | | - Marcus Flather
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| |
Collapse
|
38
|
D'Amario D, Migliaro S, Borovac JA, Restivo A, Vergallo R, Galli M, Leone AM, Montone RA, Niccoli G, Aspromonte N, Crea F. Microvascular Dysfunction in Heart Failure With Preserved Ejection Fraction. Front Physiol 2019; 10:1347. [PMID: 31749710 PMCID: PMC6848263 DOI: 10.3389/fphys.2019.01347] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an increasingly studied entity accounting for 50% of all diagnosed heart failure and that has claimed its own dignity being markedly different from heart failure with reduced EF in terms of etiology and natural history (Graziani et al., 2018). Recently, a growing body of evidence points the finger toward microvascular dysfunction as the major determinant of the pathological cascade that justifies clinical manifestations (Crea et al., 2017). The high burden of comorbidities such as metabolic syndrome, hypertension, atrial fibrillation, chronic kidney disease, obstructive sleep apnea, and similar, could lead to a systemic inflammatory state that impacts the physiology of the endothelium and the perivascular environment, engaging complex molecular pathways that ultimately converge to myocardial fibrosis, stiffening, and dysfunction (Paulus and Tschope, 2013). These changes could even self-perpetrate with a positive feedback where hypoxia and locally released inflammatory cytokines trigger interstitial fibrosis and hypertrophy (Ohanyan et al., 2018). Identifying microvascular dysfunction both as the cause and the maintenance mechanism of this condition has opened the field to explore specific pharmacological targets like nitric oxide (NO) pathway, sarcomeric titin, transforming growth factor beta (TGF-β) pathway, immunomodulators or adenosine receptors, trying to tackle the endothelial impairment that lies in the background of this syndrome (Graziani et al., 2018;Lam et al., 2018). Yet, many questions remain, and the new data collected still lack a translation to improved treatment strategies. To further elaborate on this tangled and exponentially growing topic, we will review the evidence favoring a microvasculature-driven etiology of this condition, its clinical correlations, the proposed diagnostic workup, and the available/hypothesized therapeutic options to address microvascular dysfunction in the failing heart.
Collapse
Affiliation(s)
- Domenico D'Amario
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Stefano Migliaro
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| | - Attilio Restivo
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Rocco Vergallo
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mattia Galli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Maria Leone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Rocco A Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giampaolo Niccoli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Nadia Aspromonte
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
39
|
Hiebert JB, Vacek J, Shah Z, Rahman F, Pierce JD. Use of speckle tracking to assess heart failure with preserved ejection fraction. J Cardiol 2019; 74:397-402. [PMID: 31303358 PMCID: PMC6764910 DOI: 10.1016/j.jjcc.2019.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/23/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) currently represents approximately 50% of heart failure (HF) cases in the USA and is increasingly recognized as a leading cause of morbidity and mortality. Recent data suggest that the prevalence of HFpEF relative to HF with reduced ejection fraction (HFrEF) is increasing at a rate of 1% per year. With an aging population and increasing risk factors such as hypertension, obesity, and diabetes mellitus, HFpEF will soon be the most prevalent HF phenotype. Two-dimensional speckle-tracking echocardiography (STE) has been used to diagnose HFpEF specifically by focusing on the longitudinal systolic function of the left ventricle (LV). Yet there are many patients with HFpEF in whom there are no differences in LV global longitudinal systolic strain, but there are changes in left atrial function and structure. There are several proposed pathophysiological mechanisms for HFpEF such as endothelial dysfunction, interactions among proteins, signaling pathways, and myocardial bioenergetics. Yet only one specific therapy, mineralocorticoid receptor antagonist, spironolactone, is recommended as a treatment for patients with HFpEF. However, spironolactone does not address many of the pathophysiologic changes that occur in HFpEF, thus new novel therapeutic agents are needed. With the limited available therapies, clinicians should use STE to assess for the presence of this syndrome in their patients to provide effective diagnosis and management.
Collapse
Affiliation(s)
- John B Hiebert
- University of Kansas, School of Nursing, Kansas City, KS, USA
| | - James Vacek
- Clinical Cardiology and Cardiovascular Research, Department of Cardiovascular Diseases, The University of Kansas Health System, Kansas City, KS, USA
| | - Zubair Shah
- The University of Kansas Health System, Kansas City, KS, USA
| | - Faith Rahman
- University of Kansas, School of Nursing, Kansas City, KS, USA.
| | - Janet D Pierce
- Department of Molecular and Integrative Physiology, University of Kansas, School of Nursing, Kansas City, KS, USA
| |
Collapse
|
40
|
sST2 as a value-added biomarker in heart failure. Clin Chim Acta 2019; 501:120-130. [PMID: 31678574 DOI: 10.1016/j.cca.2019.10.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023]
Abstract
Soluble suppression of tumorigenicity-2 (sST2) is a biomarker widely investigated during the last few years. Its role has become clear in pathological conditions such as fibrosis and inflammation. From translational research to laboratory medicine, considerable efforts have been made to elucidate the features of sST2 biomarker and to consider its contribution to HF management. In this review, we summarized the results from recent works concerning sST2, and particularly we focused on the interest of sST2 in conditions for which classical biomarkers value interpretation is misleading. Indeed, despite other HF biomarkers, sST2 was proved to be independent from common comorbidities such as renal dysfunction and hypertension. Thus, sST2 showed promise for a combined strategy with natriuretic peptides, mainly for specific categories of patients. Particular attention was paid to findings on sST2 in HF with preserved ejection fraction (HFpEF), a form of HF for which reliable and specific biomarkers are awaited. Finally, a place is reserved to sST2 kinetics from basal to follow up values in order to improve clinical decision making and to customize patient treatments.
Collapse
|
41
|
An Automatic Approach Using ELM Classifier for HFpEF Identification Based on Heart Sound Characteristics. J Med Syst 2019; 43:285. [DOI: 10.1007/s10916-019-1415-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 12/28/2022]
|
42
|
miR-451 Silencing Inhibited Doxorubicin Exposure-Induced Cardiotoxicity in Mice. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1528278. [PMID: 31355248 PMCID: PMC6637715 DOI: 10.1155/2019/1528278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022]
Abstract
Oxidative stress and cardiomyocytes apoptosis were closely involved in the pathological process of doxorubicin- (Dox-) induced cardiac injury. MicroRNA-451 (miR-451) was mainly expressed in cardiomyocytes. However, the role of miR-451 in Dox-induced cardiac injury remained unclear. Our study aimed to investigate the effect of miR-451 on Dox-induced cardiotoxicity in mice. We established a Dox-induced cardiotoxicity model in the mice and manipulated miR-451 expression in the heart using a miR-451 inhibitor, which was injected every other day beginning at one day before Dox injection. Oxidative stress and apoptosis in the hearts were evaluated. miR-451 levels were significantly increased in Dox-treated mice or cardiomyocytes. miR-451 inhibition attenuated Dox-induced whole-body wasting and heart atrophy, reduced cardiac injury, restored cardiac function, and improved cardiomyocyte contractile function. Moreover, miR-451 inhibition reduced oxidative stress and cardiomyocytes apoptosis in vivo and in vitro. miR-451 inhibition increased the expression of calcium binding protein 39 (Cab39) and activated adenosine monophosphate activated protein kinase (AMPK) signaling pathway. A specific inhibitor of AMPK abolished the protection provided by miR-451 inhibition against cell injury in vitro. In conclusion, miR-451 inhibition protected against Dox-induced cardiotoxicity via activation of AMPK signaling pathway.
Collapse
|
43
|
Gevaert AB, Boen JRA, Segers VF, Van Craenenbroeck EM. Heart Failure With Preserved Ejection Fraction: A Review of Cardiac and Noncardiac Pathophysiology. Front Physiol 2019; 10:638. [PMID: 31191343 PMCID: PMC6548802 DOI: 10.3389/fphys.2019.00638] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the largest unmet clinical needs in 21st-century cardiology. It is a complex disorder resulting from the influence of several comorbidities on the endothelium. A derangement in nitric oxide bioavailability leads to an intricate web of physiological abnormalities in the heart, blood vessels, and other organs. In this review, we examine the contribution of cardiac and noncardiac factors to the development of HFpEF. We zoom in on recent insights on the role of comorbidities and microRNAs in HFpEF. Finally, we address the potential of exercise training, which is currently the only available therapy to improve aerobic capacity and quality of life in HFpEF patients. Unraveling the underlying mechanisms responsible for this improvement could lead to new biomarkers and therapeutic targets for HFpEF.
Collapse
Affiliation(s)
- Andreas B Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium.,Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Jente R A Boen
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium.,Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Vincent F Segers
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium.,Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Emeline M Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium.,Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
44
|
Small HY. Recognizing young investigators at Frontiers in Cardiovascular Biology 2018. Cardiovasc Res 2018; 114:e53-e55. [PMID: 29800378 DOI: 10.1093/cvr/cvy102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Heather Y Small
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | | |
Collapse
|