1
|
Vasconcelos I, von Hafe M, Adão R, Leite-Moreira A, Brás-Silva C. Corticotropin-releasing hormone and obesity: From fetal life to adulthood. Obes Rev 2024; 25:e13763. [PMID: 38699883 DOI: 10.1111/obr.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 05/05/2024]
Abstract
Obesity is among the most common chronic disorders, worldwide. It is a complex disease that reflects the interactions between environmental influences, multiple genetic allelic variants, and behavioral factors. Recent developments have also shown that biological conditions in utero play an important role in the programming of energy homeostasis systems and might have an impact on obesity and metabolic disease risk. The corticotropin-releasing hormone (CRH) family of neuropeptides, as a central element of energy homeostasis, has been evaluated for its role in the pathophysiology of obesity. This review aims to summarize the relevance and effects of the CRH family of peptides in the pathophysiology of obesity spanning from fetal life to adulthood.
Collapse
Affiliation(s)
- Inês Vasconcelos
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Madalena von Hafe
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rui Adão
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Santos-Gomes J, Mendes-Ferreira P, Adão R, Maia-Rocha C, Rego B, Poels M, Saint-Martin Willer A, Masson B, Provencher S, Bonnet S, Montani D, Perros F, Antigny F, Leite-Moreira AF, Brás-Silva C. Unraveling the Impact of miR-146a in Pulmonary Arterial Hypertension Pathophysiology and Right Ventricular Function. Int J Mol Sci 2024; 25:8054. [PMID: 39125620 PMCID: PMC11311781 DOI: 10.3390/ijms25158054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary vascular resistance and right ventricle (RV) overload and failure. MicroRNA-146a (miR-146a) promotes vascular smooth muscle cell proliferation and vascular neointimal hyperplasia, both hallmarks of PAH. This study aimed to investigate the effects of miR-146a through pharmacological or genetic inhibition on experimental PAH and RV pressure overload animal models. Additionally, we examined the overexpression of miR-146a on human pulmonary artery smooth muscle cells (hPASMCs). Here, we showed that miR-146a genic expression was increased in the lungs of patients with PAH and the plasma of monocrotaline (MCT) rats. Interestingly, genetic ablation of miR-146a improved RV hypertrophy and systolic pressures in Sugen 5415/hypoxia (SuHx) and pulmonary arterial banding (PAB) mice. Pharmacological inhibition of miR-146a improved RV remodeling in PAB-wild type mice and MCT rats, and enhanced exercise capacity in MCT rats. However, overexpression of miR-146a did not affect proliferation, migration, and apoptosis in control-hPASMCs. Our findings show that miR-146a may play a significant role in RV function and remodeling, representing a promising therapeutic target for RV hypertrophy and, consequently, PAH.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Rats
- Cell Proliferation/genetics
- Disease Models, Animal
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Monocrotaline
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Vascular Remodeling/genetics
- Ventricular Function, Right
Collapse
Affiliation(s)
- Joana Santos-Gomes
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Pedro Mendes-Ferreira
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, 91190 Paris, France;
| | - Rui Adão
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- CIBER Enfermedades Respiratorias (Ciberes), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Carolina Maia-Rocha
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Beatriz Rego
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Manu Poels
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Anaïs Saint-Martin Willer
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Bastien Masson
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC G1V 4G5, Canada; (S.P.); (S.B.)
- Department of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC G1V 4G5, Canada; (S.P.); (S.B.)
- Department of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - David Montani
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, 91190 Paris, France;
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Fabrice Antigny
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France; (A.S.-M.W.); (B.M.); (D.M.); (F.A.)
- Inserm UMR-S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France
| | - Adelino F. Leite-Moreira
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre–UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.S.-G.); (P.M.-F.); (R.A.); (C.M.-R.); (B.R.); (M.P.); (A.F.L.-M.)
- Faculty of Nutrition and Food Sciences, University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
3
|
Nikitiuk BE, Rydzewska-Rosołowska A, Kakareko K, Głowińska I, Hryszko T. On Whether Ca-125 Is the Answer for Diagnosing Overhydration, Particularly in End-Stage Kidney Disease Patients-A Systematic Review. Int J Mol Sci 2024; 25:2192. [PMID: 38396869 PMCID: PMC10889175 DOI: 10.3390/ijms25042192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Overhydration (OH) is a prevalent medical problem that occurs in patients with kidney failure, but a specific marker has still not been found. Patients requiring kidney replacement therapy suffer from a water imbalance, which is correlated with mortality rates in this population. Currently, clinicians employ techniques such as bioimpedance spectroscopy (BIS) and ultrasound (USG) markers of overhydration or markers of heart and kidney function, namely NT-pro-BNP, GFR, or creatinine levels. New serum markers, including but not limited to Ca-125, galectin-3 (Gal-3), adrenomedullin (AMD), and urocortin-2 (UCN-2), are presently under research and have displayed promising results. Ca-125, which is a protein mainly used in ovarian cancer diagnoses, holds great potential to become an OH marker. It is currently being investigated by cardiologists as it corresponds to the volume status in heart failure (HF) and ventricular hypertrophy, which are also associated with OH. The need to ascertain a more precise marker of overhydration is urgent mainly because physical examinations are exceptionally inaccurate. The signs and symptoms of overhydration, such as edema or a gradual increase in body mass, are not always present, notably in patients with chronic kidney disease. Metabolic disruptions and cachexia can give a false picture of the hydration status. This review paper summarizes the existing knowledge on the assessment of a patient's hydration status, focusing specifically on kidney diseases and the role of Ca-125.
Collapse
Affiliation(s)
| | - Alicja Rydzewska-Rosołowska
- 2nd Department of Nephrology, Hypertension, and Internal Medicine with Dialysis Unit, Medical University of Bialystok, 15-276 Bialystok, Poland; (B.E.N.); (K.K.); (I.G.); (T.H.)
| | | | | | | |
Collapse
|
4
|
Zhu C, Pan L, Zhou F, Mao R, Hong Y, Wan R, Li X, Jin L, Zou H, Zhang H, Chen QM, Li S. Urocortin2 attenuates diabetic coronary microvascular dysfunction by regulating macrophage extracellular vesicles. Biochem Pharmacol 2024; 219:115976. [PMID: 38081372 DOI: 10.1016/j.bcp.2023.115976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/26/2023]
Abstract
Diabetic patients develop coronary microvascular dysfunction (CMD) and exhibit high mortality of coronary artery disease. Methylglyoxal (MGO) largely accumulates in the circulation due to diabetes. We addressed whether macrophages exposed to MGO exhibited damaging effect on the coronary artery and whether urocortin2 (UCN2) serve as protecting factors against such diabetes-associated complication. Type 2 diabetes was induced by high-fat diet and a single low-dose streptozotocin in mice. Small extracellular vesicles (sEV) derived from MGO-treated macrophages (MGO-sEV) were used to produce diabetes-like CMD. UCN2 was examined for a protective role against CMD. The involvement of arginase1 and IL-33 was tested by pharmacological inhibitor and IL-33-/- mice. MGO-sEV was capable of causing coronary artery endothelial dysfunction similar to that by diabetes. Immunocytochemistry studies of diabetic coronary arteries supported the transfer of arginase1 from macrophages to endothelial cells. Mechanism studies revealed arginase1 contributed to the impaired endothelium-dependent relaxation of coronary arteries in diabetic and MGO-sEV-treated mice. UCN2 significantly improved coronary artery endothelial function, and prevented MGO elevation in diabetic mice or enrichment of arginase1 in MGO-sEV. Diabetes caused a reduction of IL-33, which was also reversed by UCN2. IL-33-/- mice showed impaired endothelium-dependent relaxation of coronary arteries, which can be mitigated by arginase1 inhibition but can't be improved by UCN2 anymore, indicating the importance of restoring IL-33 for the protection against diabetic CMD by UCN2. Our data suggest that MGO-sEV induces CMD via shuttling arginase1 to coronary arteries. UCN2 is able to protect against diabetic CMD via modulating MGO-altered macrophage sEV cargoes.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China.
| | - Lihua Pan
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Feier Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Rongchen Mao
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yali Hong
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xu Li
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Lai Jin
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Huayiyang Zou
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Hao Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Qin M Chen
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Shengnan Li
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
5
|
Balsa A, Adão R, Brás-Silva C. Therapeutic Approaches in Pulmonary Arterial Hypertension with Beneficial Effects on Right Ventricular Function-Preclinical Studies. Int J Mol Sci 2023; 24:15539. [PMID: 37958522 PMCID: PMC10647677 DOI: 10.3390/ijms242115539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive condition that affects the pulmonary vessels, but its main prognostic factor is the right ventricle (RV) function. Many mice/rat models are used for research in PAH, but results fail to translate to clinical trials. This study reviews studies that test interventions on pulmonary artery banding (PAB), a model of isolated RV disfunction, and PH models. Multiple tested drugs both improved pulmonary vascular hemodynamics in PH models and improved RV structure and function in PAB animals. PH models and PAB animals frequently exhibited similar results (73.1% concordance). Macitentan, sildenafil, and tadalafil improved most tested pathophysiological parameters in PH models, but almost none in PAB animals. Results are frequently not consistent with other studies, possibly due to the methodology, which greatly varied. Some research groups start treating the animals immediately, and others wait up to 4 weeks from model induction. Treatment duration and choice of anaesthetic are other important differences. This review shows that many drugs currently under research for PAH have a cardioprotective effect on animals that may translate to humans. However, a uniformization of methods may increase comparability between studies and, thus, improve translation to clinical trials.
Collapse
Affiliation(s)
- André Balsa
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.B.); (R.A.)
| | - Rui Adão
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.B.); (R.A.)
- Department of Pharmacology and Toxicology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (A.B.); (R.A.)
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| |
Collapse
|
6
|
Santos‐Ribeiro D, Lecocq M, de Beukelaer M, Bouzin C, Palmai‐Pallag M, Yakoub Y, Huaux F, Horman S, Perros F, Pilette C, Godinas L. Bleomycin-induced lung injury: Revisiting an old tool to model group III PH associated with pulmonary fibrosis. Pulm Circ 2023; 13:e12177. [PMID: 36618712 PMCID: PMC9817427 DOI: 10.1002/pul2.12177] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Pulmonary hypertension (PH) is a chronic disorder of the pulmonary circulation that often associates with other respiratory diseases (i.e., group III PH), leading to worsened symptoms and prognosis, notably when combined with interstitial lung diseases such as pulmonary fibrosis (PF). PH may lead to right ventricular (RV) failure, which accounts for a substantial part of the mortality in chronic lung disease patients. The disappointing results of pulmonary arterial hypertension (PAH)-related therapies in patients with PF emphasize the need to better understand the pathophysiologic mechanisms that drive PH development and progression in this specific setting. In this work, we validated an animal model of group III PH associated with PF (PH-PF), by using bleomycin (BM) intratracheal instillation and characterizing the nature of induced lung and vascular remodeling, including the influence on RV structure and function. To our knowledge, this is the first work describing this dose of BM in Sprague Dawley rats and the effects upon the heart and lungs, using different techniques such as echocardiography, heart catheterization, and histology. Our data shows the successful implementation of a rat model that mimics combined PF-PH, with most features seen in the equivalent human disease, such as lung and arterial remodeling, increased mPAP and RV dysfunction.
Collapse
Affiliation(s)
- Diana Santos‐Ribeiro
- Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research (IREC)Université catholique de Louvain (UCL)BrusselsBelgium
| | - Marylène Lecocq
- Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research (IREC)Université catholique de Louvain (UCL)BrusselsBelgium
| | - Michele de Beukelaer
- Imaging Platform (2IP), Institute of Experimental and Clinical Research (IREC)Université catholique de Louvain (UCL)BrusselsBelgium
| | - Caroline Bouzin
- Imaging Platform (2IP), Institute of Experimental and Clinical Research (IREC)Université catholique de Louvain (UCL)BrusselsBelgium
| | - Mihaly Palmai‐Pallag
- Institute of Experimental and Clinical Research (IREC), Louvain Center for Toxicology and Applied PharmacologyUniversité catholique de Louvain (UCL)BrusselsBelgium
| | - Yousef Yakoub
- Institute of Experimental and Clinical Research (IREC), Louvain Center for Toxicology and Applied PharmacologyUniversité catholique de Louvain (UCL)BrusselsBelgium
| | - François Huaux
- Institute of Experimental and Clinical Research (IREC), Louvain Center for Toxicology and Applied PharmacologyUniversité catholique de Louvain (UCL)BrusselsBelgium
| | - Sandrine Horman
- Institute of Experimental and Clinical Research (IREC), Cardiovascular Research UnitUniversité catholique de Louvain (UCL)BrusselsBelgium
| | - Frederic Perros
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397Université Claude Bernard Lyon1Pierre‐Bénite and BronFrance
| | - Charles Pilette
- Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research (IREC)Université catholique de Louvain (UCL)BrusselsBelgium,Departmen of PneumologyCliniques Universitaires St‐LucBrusselsBelgium
| | - Laurent Godinas
- Clinical Department of Respiratory Diseases, University Hospitals and Laboratory of Respiratory Diseases & ThoracicSurgery (BREATHE), Department of Chronic Diseases & Metabolism (CHROMETA)KU Leuven—University of LeuvenLeuvenBelgium
| |
Collapse
|
7
|
Santos-Gomes J, Gandra I, Adão R, Perros F, Brás-Silva C. An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers. Front Cardiovasc Med 2022; 9:924873. [PMID: 35911521 PMCID: PMC9333554 DOI: 10.3389/fcvm.2022.924873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), also known as Group 1 Pulmonary Hypertension (PH), is a PH subset characterized by pulmonary vascular remodeling and pulmonary arterial obstruction. PAH has an estimated incidence of 15-50 people per million in the United States and Europe, and is associated with high mortality and morbidity, with patients' survival time after diagnosis being only 2.8 years. According to current guidelines, right heart catheterization is the gold standard for diagnostic and prognostic evaluation of PAH patients. However, this technique is highly invasive, so it is not used in routine clinical practice or patient follow-up. Thereby, it is essential to find new non-invasive strategies for evaluating disease progression. Biomarkers can be an effective solution for determining PAH patient prognosis and response to therapy, and aiding in diagnostic efforts, so long as their detection is non-invasive, easy, and objective. This review aims to clarify and describe some of the potential new candidates as circulating biomarkers of PAH.
Collapse
Affiliation(s)
- Joana Santos-Gomes
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Gandra
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
- Université Paris–Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Urocortins as biomarkers in cardiovascular disease. Clin Sci (Lond) 2022; 136:1-14. [PMID: 34939089 DOI: 10.1042/cs20210732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
The urocortins (Ucns) belong to the corticotropin-releasing factor (CRF) family of peptides and have multiple effects within the central nervous and the cardiovascular systems. With growing evidence indicating significant cardioprotective properties and cardiovascular actions of these peptides, the question arises as to whether the plasma profiles of the Ucns are altered in pathologic settings. While reports have shown conflicting results and findings have not been corroborated in multiple independent cohorts, it seems likely that plasma Ucn concentrations are elevated in multiple cardiovascular conditions. The degree of increase and accurate determination of circulating values of the Ucns requires further validation.
Collapse
|
9
|
Popov SV, Prokudina ES, Mukhomedzyanov AV, Naryzhnaya NV, Ma H, Zurmanova JM, der Ven PFMV, Maslov LN. Cardioprotective and Vasoprotective Effects of Corticotropin-Releasing Hormone and Urocortins: Receptors and Signaling. J Cardiovasc Pharmacol Ther 2021; 26:575-584. [PMID: 34351805 DOI: 10.1177/1074248420985301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite the recent progress in research and therapy, cardiovascular diseases are still the most common cause of death worldwide, thus new approaches are still needed. The aim of this review is to highlight the cardioprotective potential of urocortins and corticotropin-releasing hormone (CRH) and their signaling. It has been documented that urocortins and CRH reduce ischemic and reperfusion (I/R) injury, prevent reperfusion ventricular tachycardia and fibrillation, and improve cardiac contractility during reperfusion. Urocortin-induced increase in cardiac tolerance to I/R depends mainly on the activation of corticotropin-releasing hormone receptor-2 (CRHR2) and its downstream pathways including tyrosine kinase Src, protein kinase A and C (PKA, PKCε) and extracellular signal-regulated kinase (ERK1/2). It was discussed the possibility of the involvement of interleukin-6, Janus kinase-2 and signal transducer and activator of transcription 3 (STAT3) and microRNAs in the cardioprotective effect of urocortins. Additionally, phospholipase-A2 inhibition, mitochondrial permeability transition pore (MPT-pore) blockade and suppression of apoptosis are involved in urocortin-elicited cardioprotection. Chronic administration of urocortin-2 prevents the development of postinfarction cardiac remodeling. Urocortin possesses vasoprotective and vasodilator effect; the former is mediated by PKC activation and prevents an impairment of endothelium-dependent coronary vasodilation after I/R in the isolated heart, while the latter includes both cAMP and cGMP signaling and its downstream targets. As CRHR2 is expressed by both cardiomyocytes and vascular endothelial cells. Urocortins mediate both endothelium-dependent and -independent relaxation of coronary arteries.
Collapse
Affiliation(s)
- Sergey V Popov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Ekaterina S Prokudina
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Alexander V Mukhomedzyanov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Huijie Ma
- Department of Physiology, 12553Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jitka M Zurmanova
- Department of Physiology, Faculty of Science, 37740Charles University, Prague, Czech Republic
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, 9374University of Bonn, Bonn, Germany
| | - Leonid N Maslov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| |
Collapse
|
10
|
Pintalhao M, Maia-Rocha C, Castro-Chaves P, Adão R, Barros AS, Clara Martins R, Leite-Moreira A, Bettencourt P, Bras-Silva C. Urocortin-2 in Acute Heart Failure: Role as a Marker of Volume Overload and Pulmonary Hypertension. Curr Probl Cardiol 2021; 47:100860. [PMID: 33994037 DOI: 10.1016/j.cpcardiol.2021.100860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/27/2021] [Indexed: 11/17/2022]
Abstract
Urocortin (Ucn)-2 has shown promising therapeutic effects on heart failure (HF). However, there are still significant knowledge gaps regarding the role and modulation of the endogenous Ucn-2 axis in the cardiovascular system and, specifically, in acute HF. We evaluated Ucn-2 levels in admission serum samples of 80 acute HF patients and assessed their association with clinical, analytical and echocardiographic parameters. Median age was 76.5 years, and 37 patients (46%) were male. Median serum Ucn-2 was 2.3ng/mL. Ucn-2 levels were positively associated with peripheral edemas (P = 0.022), hepatomegaly (P = 0.007) and sodium retention score (ρ = 0.37, P = 0.001) and inversely correlated with inferior vena cava collapse at inspiration (ρ = -0.37, P = 0.001). Additionally, patients with higher Ucn-2 levels had a higher prevalence of right atrial dilation (P = 0.027), right ventricle dilation (P = 0.008), and higher systolic pulmonary artery pressure (ρ = 0.34, P = 0.002). Regarding analytical parameters, Ucn-2 correlated positively with log BNP (r = 0.22, P = 0.055) and inversely with uric acid (r = 0.24, P = 0.029) and total (r = -0.30, P = 0.007) and low-density lipoprotein cholesterol (r = -0.23, P = 0.038). No associations were found between Ucn-2 and age, sex or left heart structure or function. In conclusion, Circulating Ucn-2 was associated with clinical and echocardiographic markers of volume overload and pulmonary hypertension in acute HF patients.
Collapse
Affiliation(s)
- Mariana Pintalhao
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto; Alameda Prof. Hernâni Monteiro, Porto, Portugal; Cardiovascular Research Centre (UnIC), Alameda Prof. Hernâni Monteiro, Porto, Portugal; Department of Internal Medicine, São João Hospital Centre; Alameda Prof. Hernâni Monteiro, Porto, Portugal.
| | - Carolina Maia-Rocha
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto; Alameda Prof. Hernâni Monteiro, Porto, Portugal; Cardiovascular Research Centre (UnIC), Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Paulo Castro-Chaves
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto; Alameda Prof. Hernâni Monteiro, Porto, Portugal; Cardiovascular Research Centre (UnIC), Alameda Prof. Hernâni Monteiro, Porto, Portugal; Department of Internal Medicine, São João Hospital Centre; Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Rui Adão
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto; Alameda Prof. Hernâni Monteiro, Porto, Portugal; Cardiovascular Research Centre (UnIC), Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - António S Barros
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto; Alameda Prof. Hernâni Monteiro, Porto, Portugal; Cardiovascular Research Centre (UnIC), Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Rafael Clara Martins
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto; Alameda Prof. Hernâni Monteiro, Porto, Portugal; Cardiovascular Research Centre (UnIC), Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto; Alameda Prof. Hernâni Monteiro, Porto, Portugal; Cardiovascular Research Centre (UnIC), Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Paulo Bettencourt
- Cardiovascular Research Centre (UnIC), Alameda Prof. Hernâni Monteiro, Porto, Portugal; Department of Medicine, Faculty of Medicine of the University of Porto; Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Carmen Bras-Silva
- Department of Surgery and Physiology, Faculty of Medicine of the University of Porto; Alameda Prof. Hernâni Monteiro, Porto, Portugal; Cardiovascular Research Centre (UnIC), Alameda Prof. Hernâni Monteiro, Porto, Portugal
| |
Collapse
|
11
|
Jiang R, Lu XJ, Lu JF, Chen J. Characterization of ayu (Plecoglossus altivelis) urocortin: The function of an endocrine factor in monocyte/macrophage regulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103978. [PMID: 33338518 DOI: 10.1016/j.dci.2020.103978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Urocortin (UCN) is a hormone in the hypothalamic-pituitary-adrenal axis that is expressed in various immune cells. However, the function of teleost UCN in the immune system remains unclear. In this study, we cloned the cDNA sequence of UCN from ayu Plecoglossus altivelis (PaUCN). Sequence and phylogenetic tree analyses showed that PaUCN clustered within the fish UCN 1 group and was most related to the rainbow trout (Oncorhynchus mykiss) UCN. PaUCN was expressed in all tested tissues and its expression increased in the liver, spleen, head kidney, and gill upon Vibrio anguillarum infection. Mature PaUCN protein (mPaUCN) treatment affected the phagocytosis and bacterial killing of monocytes/macrophages (MO/MФ). mPaUCN reduced pro-inflammatory cytokine expression in MO/MФ, which was partially mediated via interaction with ayu interleukin-6. mPaUCN reduced bacterial load and increased the survival of V. anguillarum-infected ayu. Overall, UCN as an endocrine factor regulates the immune response of ayu after infection by activating MO/MФ, thus contributing to enhance fish survival.
Collapse
Affiliation(s)
- Rui Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
12
|
Ikenoue S, Waffarn F, Ohashi M, Tanaka M, Gillen DL, Buss C, Entringer S, Wadhwa PD. Placental Corticotrophin-Releasing Hormone is a Modulator of Fetal Liver Blood Perfusion. J Clin Endocrinol Metab 2021; 106:646-653. [PMID: 33313841 PMCID: PMC7947764 DOI: 10.1210/clinem/dgaa908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 12/26/2022]
Abstract
CONTEXT Variation in fetal liver blood flow influences fetal growth and postnatal body composition. Placental corticotrophin-releasing hormone has been implicated as a key mediator of placental-fetal perfusion. OBJECTIVE To determine whether circulating levels of placental corticotrophin-releasing hormone across gestation are associated with variations in fetal liver blood flow. DESIGN Prospective cohort study. METHODS Fetal ultrasonography was performed at 30 weeks' gestation to characterize fetal liver blood flow (quantified by subtracting ductus venosus flow from umbilical vein flow). Placental corticotrophin-releasing hormone was measured in maternal circulation at approximately 12, 20, and 30 weeks' gestation. Multiple regression analysis was used to determine the proportion of variation in fetal liver blood flow explained by placental corticotrophin-releasing hormone. Covariates included maternal age, parity, pre-pregnancy body mass index, gestational weight gain, and fetal sex. RESULTS A total of 79 uncomplicated singleton pregnancies were analyzed. Fetal liver blood flow was 68.4 ± 36.0 mL/min (mean ± SD). Placental corticotrophin-releasing hormone concentrations at 12, 20, and 30 weeks were 12.5 ± 8.1, 35.7 ± 24.5, and 247.9 ± 167.8 pg/mL, respectively. Placental corticotrophin-releasing hormone at 30 weeks, but not at 12 and 20 weeks, was significantly and positively associated with fetal liver blood flow at 30 weeks (r = 0.319; P = 0.004) and explained 10.4% of the variance in fetal liver blood flow. CONCLUSIONS Placental corticotrophin-releasing hormone in late gestation is a possible modulator of fetal liver blood flow and may constitute a biochemical marker in clinical investigations of fetal growth and body composition.
Collapse
Affiliation(s)
- Satoru Ikenoue
- Development, Health and Disease Research Program, University of California, Irvine, Irvine, CA 92697, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Feizal Waffarn
- Development, Health and Disease Research Program, University of California, Irvine, Irvine, CA 92697, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Masanao Ohashi
- Development, Health and Disease Research Program, University of California, Irvine, Irvine, CA 92697, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
- Department of Obstetrics and Gynecology, University of Miyazaki, Miyazaki, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daniel L Gillen
- Department of Statistics, University of California, Irvine, Irvine, CA, USA
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, Irvine, CA 92697, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
- Institute of Medical Psychology, Charité University Medicine, Berlin, Germany
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, Irvine, CA 92697, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
- Institute of Medical Psychology, Charité University Medicine, Berlin, Germany
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, Irvine, CA 92697, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
- Department of Obstetrics and Gynecology, University of California, Irvine, Irvine, CA, USA
- Department of Epidemiology, University of California, Irvine, Irvine, CA, USA
- Correspondence: Pathik D. Wadhwa, MD, PhD, UCI Development, Health and Disease Research Program, University of California, Irvine, 3117 Gillespie, Irvine, CA 92697, USA.
| |
Collapse
|
13
|
Pullamsetti SS, Mamazhakypov A, Weissmann N, Seeger W, Savai R. Hypoxia-inducible factor signaling in pulmonary hypertension. J Clin Invest 2021; 130:5638-5651. [PMID: 32881714 DOI: 10.1172/jci137558] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by pulmonary artery remodeling that can subsequently culminate in right heart failure and premature death. Emerging evidence suggests that hypoxia-inducible factor (HIF) signaling plays a fundamental and pivotal role in the pathogenesis of PH. This Review summarizes the regulation of HIF isoforms and their impact in various PH subtypes, as well as the elaborate conditional and cell-specific knockout mouse studies that brought the role of this pathway to light. We also discuss the current preclinical status of pan- and isoform-selective HIF inhibitors, and propose new research areas that may facilitate HIF isoform-specific inhibition as a novel therapeutic strategy for PH and right heart failure.
Collapse
Affiliation(s)
- Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL and CPI, Justus Liebig University, Giessen, Germany
| | - Argen Mamazhakypov
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Norbert Weissmann
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL and CPI, Justus Liebig University, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL and CPI, Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL and CPI, Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.,Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Mulvaney EP, Reid HM, Bialesova L, Mendes-Ferreira P, Adão R, Brás-Silva C, Kinsella BT. Efficacy of the thromboxane receptor antagonist NTP42 alone, or in combination with sildenafil, in the sugen/hypoxia-induced model of pulmonary arterial hypertension. Eur J Pharmacol 2020; 889:173658. [PMID: 33121950 DOI: 10.1016/j.ejphar.2020.173658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
NTP42 is a novel antagonist of the thromboxane A2 receptor (TP) in development for the treatment of pulmonary arterial hypertension (PAH). Recent studies demonstrated that NTP42 and TP antagonism have a role in alleviating PAH pathophysiology. However, the efficacy of NTP42 when used in combination with existing PAH therapies has not yet been investigated. Herein, the Sugen 5416/hypoxia (SuHx)-induced PAH model was employed to evaluate the efficacy of NTP42 when used alone or in dual-therapy with Sildenafil, a PAH standard-of-care. PAH was induced in rats by injection of Sugen 5416 and exposure to hypoxia for 21 days. Thereafter, animals were treated orally twice-daily for 28 days with either vehicle, NTP42 (0.05 mg/kg), Sildenafil (50 mg/kg), or NTP42+Sildenafil (0.05 mg/kg + 50 mg/kg, respectively). While Sildenafil or NTP42 mono-therapy led to non-significant reductions in the SuHx-induced rises in mean pulmonary arterial pressure (mPAP) or right ventricular systolic pressure (RSVP), combined use of NTP42+Sildenafil significantly reduced these increases in mPAP and RVSP. Detailed histologic analyses of pulmonary vessel remodelling, right ventricular hypertrophy and fibrosis demonstrated that while NTP42 and Sildenafil in mono-therapy resulted in significant benefits, NTP42+Sildenafil in dual-therapy showed an even greater benefit over either drug used alone. In summary, combined use of NTP42+Sildenafil in dual-therapy confers an even greater benefit in treating or offsetting key aetiologies underlying PAH. These findings corroborate earlier preclinical findings suggesting that, through antagonism of TP signalling, NTP42 attenuates PAH pathophysiology, positioning it as a novel therapeutic for use alone or in combination therapy regimens.
Collapse
Affiliation(s)
- Eamon P Mulvaney
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helen M Reid
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lucia Bialesova
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Pedro Mendes-Ferreira
- Department of Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, 4200-319, Porto, Portugal
| | - Rui Adão
- Department of Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, 4200-319, Porto, Portugal
| | - Carmen Brás-Silva
- Department of Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, 4200-319, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, 4200-319, Porto, Portugal
| | - B Therese Kinsella
- ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
15
|
Guo Y, Liu X, Zhang Y, Qiu H, Ouyang F, He Y. 3-Bromopyruvate ameliorates pulmonary arterial hypertension by improving mitochondrial metabolism. Life Sci 2020; 256:118009. [PMID: 32603819 DOI: 10.1016/j.lfs.2020.118009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
Abstract
AIMS Abnormal mitochondrial metabolism is an essential factor for excessive proliferation of pulmonary artery smooth muscle cells (PASMCs), which drives the pathological process of pulmonary arterial hypertension (PAH). 3-Bromopyruvate (3-BrPA) is an effective glycolytic inhibitor that improves mitochondrial metabolism, thereby repressing anomalous cell proliferation. MAIN METHODS An experimental PAH model was established by injection of monocrotaline (MCT) in male Sprague Dawley rats, following which rats were assigned to three groups: control, MCT, and 3-BrPA groups. Three days post injection of MCT, rats were treated with 3-BrPA or vehicle for 4 weeks. At the end of the study, hemodynamic data were measured to confirm PAH condition. Indicators of pulmonary arterial and right ventricular (RV) remodeling as well as the proliferative ability of PASMCs were assayed. Additionally, mitochondrial morphology and function, and antiglycolytic and antiproliferative pathways and genes were analyzed. KEY FINDINGS Treatment with 3-BrPA effectively improved pulmonary vascular remodeling and right ventricular function, inhibited PASMC proliferation, and preserved mitochondrial morphology and function. Besides, 3-BrPA treatment inhibited the PI3K/AKT/mTOR pathway and regulated the expression of antiproliferative genes in PASMCs. However, bloody ascites, bloating, and cirrhosis of organs were observed in some 3-BrPA treated rats. SIGNIFICANCE 3-BrPA acts as an important glycolytic inhibitor to improve energy metabolism and reverse the course of PAH. However, 3-BrPA is associated with side effects in MCT-induced rats, indicating that it should be caution in drug delivery dosage, and further studies are needed to evaluate this toxicological mechanism.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, China.
| | - Xiangyang Liu
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, China
| | - Yibo Zhang
- Department of Ultrasound, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, China
| | - Haihua Qiu
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, China
| | - Fan Ouyang
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, China
| | - Yi He
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, China
| |
Collapse
|
16
|
Corticotropin-Releasing Factor Family: A Stress Hormone-Receptor System's Emerging Role in Mediating Sex-Specific Signaling. Cells 2020; 9:cells9040839. [PMID: 32244319 PMCID: PMC7226788 DOI: 10.3390/cells9040839] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
No organ in the body is impervious to the effects of stress, and a coordinated response from all organs is essential to deal with stressors. A dysregulated stress response that fails to bring systems back to homeostasis leads to compromised function and ultimately a diseased state. The components of the corticotropin-releasing factor (CRF) family, an ancient and evolutionarily conserved stress hormone-receptor system, helps both initiate stress responses and bring systems back to homeostasis once the stressors are removed. The mammalian CRF family comprises of four known agonists, CRF and urocortins (UCN1–3), and two known G protein-coupled receptors (GPCRs), CRF1 and CRF2. Evolutionarily, precursors of CRF- and urocortin-like peptides and their receptors were involved in osmoregulation/diuretic functions, in addition to nutrient sensing. Both CRF and UCN1 peptide hormones as well as their receptors appeared after a duplication event nearly 400 million years ago. All four agonists and both CRF receptors show sex-specific changes in expression and/or function, and single nucleotide polymorphisms are associated with a plethora of human diseases. CRF receptors harbor N-terminal cleavable peptide sequences, conferring biased ligand properties. CRF receptors have the ability to heteromerize with each other as well as with other GPCRs. Taken together, CRF receptors and their agonists due to their versatile functional adaptability mediate nuanced responses and are uniquely positioned to orchestrate sex-specific signaling and function in several tissues.
Collapse
|
17
|
Antigny F, Mercier O, Humbert M, Sabourin J. Excitation-contraction coupling and relaxation alteration in right ventricular remodelling caused by pulmonary arterial hypertension. Arch Cardiovasc Dis 2020; 113:70-84. [DOI: 10.1016/j.acvd.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/09/2023]
|
18
|
Cardiovascular Effects of Urocortin-2: Pathophysiological Mechanisms and Therapeutic Potential. Cardiovasc Drugs Ther 2019; 33:599-613. [DOI: 10.1007/s10557-019-06895-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Stenmark KR, Graham BB. Urocortin 2: will a drug targeting both the vasculature and the right ventricle be the future of pulmonary hypertension therapy? Cardiovasc Res 2019; 114:1057-1059. [PMID: 29800416 DOI: 10.1093/cvr/cvy117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine; and
| | - Brian B Graham
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine; and.,Program in Translational Lung Research, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO 80045, USA
| |
Collapse
|
20
|
Ramjug S, Adão R, Lewis R, Coste F, de Man F, Jimenez D, Sitbon O, Delcroix M, Vonk-Noordegraaf A. Highlights from the ERS International Congress 2018: Assembly 13 - Pulmonary Vascular Diseases. ERJ Open Res 2019; 5:00202-2018. [PMID: 30895188 PMCID: PMC6421363 DOI: 10.1183/23120541.00202-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/25/2019] [Indexed: 11/29/2022] Open
Abstract
The 2018 European Respiratory Society (ERS) International Congress in Paris, France, highlighted the subject of pulmonary vascular disease (PVD). 2018 was an exciting year for the PVD community as it was the first ERS International Congress since the formation of Assembly 13, which is dedicated to PVD, pulmonary embolism and the right ventricle. This article aims to summarise the high-quality studies presented at the 2018 Congress into four subject areas: the use of risk stratification in pulmonary arterial hypertension, the molecular mechanisms and treatment of pulmonary hypertension (PH), understanding and improving the right ventricle in PH, and finally, advances in the field of acute pulmonary embolus.
Collapse
Affiliation(s)
- Sheila Ramjug
- Dept of Respiratory Medicine, Manchester University NHS Foundation Trust, Wythenshawe, UK
| | - Rui Adão
- Dept of Surgery and Physiology, Cardiovascular Research and Development Center – UnIC, Faculty of Medicine of the University of Porto, Porto, Portugal
| | | | - Florence Coste
- University Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux U1045, Bordeaux, France
| | - Frances de Man
- VU University Medical Center, Dept of Pulmonary Medicine, Amsterdam, The Netherlands
| | - David Jimenez
- Respiratory Dept, Ramon y Cajal Hospital, IRYCIS, Alcaia Henares University, Madrid, Spain
| | | | - Marion Delcroix
- Pneumology Dept, Universitarie Ziekenhuizen, Leuven, Belgium
| | | |
Collapse
|
21
|
Adão R, Mendes-Ferreira P, Maia-Rocha C, Santos-Ribeiro D, Rodrigues PG, Vidal-Meireles A, Monteiro-Pinto C, Pimentel LD, Falcão-Pires I, De Keulenaer GW, Leite-Moreira AF, Brás-Silva C. Neuregulin-1 attenuates right ventricular diastolic stiffness in experimental pulmonary hypertension. Clin Exp Pharmacol Physiol 2018; 46:255-265. [PMID: 30339273 DOI: 10.1111/1440-1681.13043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022]
Abstract
We have previously shown that treatment with recombinant human neuregulin-1 (rhNRG-1) improves pulmonary arterial hypertension (PAH) in a monocrotaline (MCT)-induced animal model, by decreasing pulmonary arterial remodelling and endothelial dysfunction, as well as by restoring right ventricular (RV) function. Additionally, rhNRG-1 treatment showed direct myocardial anti-remodelling effects in a model of pressure loading of the RV without PAH. This work aimed to study the intrinsic cardiac effects of rhNRG-1 on experimental PAH and RV pressure overload, and more specifically on diastolic stiffness, at both the ventricular and cardiomyocyte level. We studied the effects of chronic rhNRG-1 treatment on ventricular passive stiffness in RV and LV samples from MCT-induced PAH animals and in the RV from animals with compensated and decompensated RV hypertrophy, through a mild and severe pulmonary artery banding (PAB). We also measured passive tension in isolated cardiomyocytes and quantified the expression of myocardial remodelling-associated genes and calcium handling proteins. Chronic rhNRG-1 treatment decreased passive tension development in RV and LV isolated from animals with MCT-induced PAH. This decrease was associated with increased phospholamban phosphorylation, and with attenuation of the expression of cardiac maladaptive remodelling markers. Finally, we showed that rhNRG-1 therapy decreased RV remodelling and cardiomyocyte passive tension development in PAB-induced RV hypertrophy animals, without compromising cardiac function, pointing to cardiac-specific effects in both hypertrophy stages. In conclusion, we demonstrated that rhNRG-1 treatment decreased RV intrinsic diastolic stiffness, through the improvement of calcium handling and cardiac remodelling signalling.
Collapse
Affiliation(s)
- Rui Adão
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pedro Mendes-Ferreira
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carolina Maia-Rocha
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Diana Santos-Ribeiro
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Gonçalves Rodrigues
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - André Vidal-Meireles
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia Monteiro-Pinto
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luís D Pimentel
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carmen Brás-Silva
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|