1
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Omori K, Takada A, Toyomasu Y, Tawara I, Shintoku C, Imanaka-Yoshida K, Sakuma H, Nomoto Y. Expression of Tenascin-C Is Upregulated in the Early Stages of Radiation Pneumonitis/Fibrosis in a Novel Mouse Model. Curr Issues Mol Biol 2024; 46:9674-9685. [PMID: 39329927 PMCID: PMC11430349 DOI: 10.3390/cimb46090575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
The lung is a major dose-limiting organ for radiation therapy (RT) for cancer in the thoracic region, and the clarification of radiation-induced lung damage (RILD) is important. However, there have been few reports containing a detailed comparison of radiographic images with the pathological findings of radiation pneumonitis (RP)/radiation fibrosis (RF). We recently reported the upregulated expression of tenascin-C (TNC), an inflammation-associated extracellular matrix molecule, in surgically resected lung tissue, and elevated serum levels were elevated in a RILD patient. Therefore, we have developed a novel mouse model of partial lung irradiation and studied it with special attention paid to the computed tomography (CT) images and immunohistological findings. The right lungs of mice (BALB/c) were irradiated locally at 30 Gy/1fr, and the following two groups were created. In Group 1, sequential CT was performed to confirm the time-dependent changes in RILD. In Group 2, the CT images and histopathological findings of the lung were compared. RP findings were detected histologically at 16 weeks after irradiation; they were also observed on the CT images from 20 weeks. The immunostaining of TNC was observed before the appearance of RP on the CT images. The findings suggest that TNC could be an inflammatory marker preceding lung fibrosis.
Collapse
Affiliation(s)
- Kazuki Omori
- Department of Radiology, Mie University Hospital, Tsu 514-8507, Mie, Japan; (K.O.); (Y.T.); (H.S.); (Y.N.)
| | - Akinori Takada
- Department of Radiology, Mie University Hospital, Tsu 514-8507, Mie, Japan; (K.O.); (Y.T.); (H.S.); (Y.N.)
| | - Yutaka Toyomasu
- Department of Radiology, Mie University Hospital, Tsu 514-8507, Mie, Japan; (K.O.); (Y.T.); (H.S.); (Y.N.)
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Hospital, Tsu 514-8507, Mie, Japan;
| | - Chihiro Shintoku
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (C.S.); (K.I.-Y.)
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (C.S.); (K.I.-Y.)
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, Tsu 514-8507, Mie, Japan; (K.O.); (Y.T.); (H.S.); (Y.N.)
| | - Yoshihito Nomoto
- Department of Radiology, Mie University Hospital, Tsu 514-8507, Mie, Japan; (K.O.); (Y.T.); (H.S.); (Y.N.)
| |
Collapse
|
3
|
An C, Shao F, Long C, Zhang Y, Nie W, Zeng R, Dou Z, Zhao Y, Lin Y, Zhang S, Zhang L, Ren C, Zhang Y, Zhou G, Wang H, Liu J. Local delivery of stem cell spheroids with protein/polyphenol self-assembling armor to improve myocardial infarction treatment via immunoprotection and immunoregulation. Biomaterials 2024; 307:122526. [PMID: 38513434 DOI: 10.1016/j.biomaterials.2024.122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Stem cell therapies have shown great potential for treating myocardial infarction (MI) but are limited by low cell survival and compromised functionality due to the harsh microenvironment at the disease site. Here, we presented a Mesenchymal stem cell (MSC) spheroid-based strategy for MI treatment by introducing a protein/polyphenol self-assembling armor coating on the surface of cell spheroids, which showed significantly enhanced therapeutic efficacy by actively manipulating the hostile pathological MI microenvironment and enabling versatile functionality, including protecting the donor cells from host immune clearance, remodeling the ROS microenvironment and stimulating MSC's pro-healing paracrine secretion. The underlying mechanism was elucidated, wherein the armor protected to prolong MSCs residence at MI site, and triggered paracrine stimulation of MSCs towards immunoregulation and angiogenesis through inducing hypoxia to provoke glycolysis in stem cells. Furthermore, local delivery of coated MSC spheroids in MI rat significantly alleviated local inflammation and subsequent fibrosis via mediation macrophage polarization towards pro-healing M2 phenotype and improved cardiac function. In general, this study provided critical insight into the enhanced therapeutic efficacy of stem cell spheroids coated with a multifunctional armor. It potentially opens up a new avenue for designing immunomodulatory treatment for MI via stem cell therapy empowered by functional biomaterials.
Collapse
Affiliation(s)
- Chuanfeng An
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, PR China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Fei Shao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Canling Long
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China
| | - Yujie Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Wen Nie
- Department of Prosthodontics, College and Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, PR China
| | - Rui Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Zhenzhen Dou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Yuan Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China
| | - Yuanyuan Lin
- School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Lijun Zhang
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116024, PR China
| | - Changle Ren
- Faculty of Medicine, Dalian University of Technology, Dalian, 116023, PR China; Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian, 116044, PR China
| | - Yang Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, PR China; School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China.
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, PR China.
| |
Collapse
|
4
|
Zhu N, Li T, Bai Y, Sun J, Guo J, Yuan H, Shan Z. Targeting myocardial inflammation: investigating the therapeutic potential of atrial natriuretic peptide in atrial fibrosis. Mol Biol Rep 2024; 51:506. [PMID: 38622341 PMCID: PMC11018689 DOI: 10.1007/s11033-024-09393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Atrial Fibrillation (AF), a prevalent arrhythmic condition, is intricately associated with atrial fibrosis, a major pathological contributor. Central to the development of atrial fibrosis is myocardial inflammation. This study focuses on Atrial Natriuretic Peptide (ANP) and its role in mitigating atrial fibrosis, aiming to elucidate the specific mechanisms by which ANP exerts its effects, with an emphasis on fibroblast dynamics. METHODS AND RESULTS The study involved forty Sprague-Dawley rats, divided into four groups: control, Angiotensin II (Ang II), Ang II + ANP, and ANP only. The administration of 1 µg/kg/min Ang II was given to Ang II and Ang II + ANP groups, while both Ang II + ANP and ANP groups received 0.1 µg/kg/min ANP intravenously for a duration of 14 days. Cardiac fibroblasts were used for in vitro validation of the proposed mechanisms. The study observed that rats in the Ang II and Ang II + ANP groups showed an increase in blood pressure and a decrease in body weight, more pronounced in the Ang II group. Diastolic dysfunction, a characteristic of the Ang II group, was alleviated by ANP. Additionally, ANP significantly reduced Ang II-induced atrial fibrosis, myofibroblast proliferation, collagen overexpression, macrophage infiltration, and the elevated expression of Interleukin 6 (IL-6) and Tenascin-C (TN-C). Transcriptomic sequencing indicated enhanced PI3K/Akt signaling in the Ang II group. Furthermore, in vitro studies showed that ANP, along with the PI3K inhibitor LY294002, effectively reduced PI3K/Akt pathway activation and the expression of TN-C, collagen-I, and collagen-III, which were induced by Ang II. CONCLUSIONS The study demonstrates ANP's potential in inhibiting myocardial inflammation and reducing atrial fibrosis. Notably, ANP's effect in countering atrial fibrosis seems to be mediated through the suppression of the Ang II-induced PI3K/Akt-Tenascin-C signaling pathway. These insights enhance our understanding of AF pathogenesis and position ANP as a potential therapeutic agent for treating atrial fibrosis.
Collapse
Affiliation(s)
- Nana Zhu
- Graduate School, Medical School of Chinese PLA, Beijing, China
| | - Tianlun Li
- Graduate School, Medical School of Chinese PLA, Beijing, China
| | - Yili Bai
- Southern Medical Branch, Chinese PLA General Hospital, Beijing, China
| | - Jiao Sun
- Graduate School, Medical School of Chinese PLA, Beijing, China
| | - Jianping Guo
- Department of Cardiovascular Medicine, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hongtao Yuan
- Department of Cardiovascular Medicine, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhaoliang Shan
- Department of Cardiovascular Medicine, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Liu X, Chen B, Chen J, Wang X, Dai X, Li Y, Zhou H, Wu LM, Liu Z, Yang Y. A Cardiac-Targeted Nanozyme Interrupts the Inflammation-Free Radical Cycle in Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308477. [PMID: 37985164 DOI: 10.1002/adma.202308477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Severe systemic inflammation following myocardial infarction (MI) is a major cause of patient mortality. MI-induced inflammation can trigger the production of free radicals, which in turn ultimately leads to increased inflammation in cardiac lesions (i.e., inflammation-free radicals cycle), resulting in heart failure and patient death. However, currently available anti-inflammatory drugs have limited efficacy due to their weak anti-inflammatory effect and poor accumulation at the cardiac site. Herein, a novel Fe-Cur@TA nanozyme is developed for targeted therapy of MI, which is generated by coordinating Fe3+ and anti-inflammatory drug curcumin (Cur) with further modification of tannic acid (TA). Such Fe-Cur@TA nanozyme exhibits excellent free radicals scavenging and anti-inflammatory properties by reducing immune cell infiltration, promoting macrophage polarization toward the M2-like phenotype, suppressing inflammatory cytokine secretion, and blocking the inflammatory free radicals cycle. Furthermore, due to the high affinity of TA for cardiac tissue, Fe-Cur@TA shows an almost tenfold greater in cardiac retention and uptake than Fe-Cur. In mouse and preclinical beagle dog MI models, Fe-Cur@TA nanozyme preserves cardiac function and reduces scar size, suggesting promising potential for clinical translation in cardiovascular disease.
Collapse
Affiliation(s)
- Xueliang Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Binghua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuan Wang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinfeng Dai
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuqing Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huayuan Zhou
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Nishikawa T, Shiba M, Ikeda Y, Ohta-Ogo K, Kondo T, Tabata T, Oka T, Shioyama W, Yamamoto H, Yasui T, Higuchi Y, Ishibashi-Ueda H, Honma K, Izumi C, Higo S, Hatakeyama K, Sakata Y, Fujita M. Tenascin-C as a potential marker for immunohistopathology of doxorubicin-induced cardiomyopathy. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead104. [PMID: 37908440 PMCID: PMC10613965 DOI: 10.1093/ehjopen/oead104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/09/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023]
Abstract
Aims Doxorubicin is used in classical chemotherapy for several cancer types. Doxorubicin-induced cardiomyopathy (DOX-CM) is a critical issue among cancer patients. However, differentiating the diagnosis of DOX-CM from that of other cardiomyopathies is difficult. Therefore, in this study, we aimed to determine novel histopathological characteristics to diagnose DOX-CM. Methods and results Twelve consecutive patients with DOX-CM who underwent cardiac histopathological examination in two medical centres were included. Twelve patients with dilated cardiomyopathy, who were matched with DOX-CM patients in terms of age, sex, and left ventricular ejection fraction, formed the control group. Another control group comprised five consecutive patients with cancer therapy-related cardiac dysfunction induced by tyrosine kinase inhibitors or vascular endothelial growth factor inhibitors were the controls. The positive area of tenascin-C, number of infiltrating macrophages, and presence of p62- and ubiquitin-positive cardiomyocytes were evaluated. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used for in vitro investigation. The myocardium exhibited significantly greater tenascin-C-positive area and macrophage number in the DOX-CM group than in the control groups (P < 0.01). The tenascin-C-positive area correlated with the number of both CD68- and CD163-positive cells (r = 0.748 and r = 0.656, respectively). Immunostaining for p62 was positive in 10 (83%) patients with DOX-CM. Furthermore, western blotting analysis revealed significant increase in tenascin-C levels in hiPSC-CMs upon doxorubicin treatment (P < 0.05). Conclusion The combined histopathological assessment for tenascin-C, macrophages, and p62/ubiquitin may serve as a novel tool for the diagnosis of DOX-CM. Doxorubicin may directly affect the expression of tenascin-C in the myocardium.
Collapse
Affiliation(s)
- Tatsuya Nishikawa
- Department of Onco-Cardiology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka City, Osaka 541-8567, Japan
- Department of Cardiovascular Medicine, Akashi Medical Center, Hyogo, Japan
| | - Mikio Shiba
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Cardiovascular Division, Osaka Police Hospital, Osaka, Japan
| | - Yoshihiko Ikeda
- Department of Pathology, National Cerebral and Cardiovascular Center, 6-1, Kishibeshinmachi, Suita, Osaka 564-8565, Japan
| | - Keiko Ohta-Ogo
- Department of Pathology, National Cerebral and Cardiovascular Center, 6-1, Kishibeshinmachi, Suita, Osaka 564-8565, Japan
| | - Takumi Kondo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomoka Tabata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toru Oka
- Department of Onco-Cardiology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka City, Osaka 541-8567, Japan
- Onco-Cardiology Unit, Department of Internal Medicine, Saitama Cancer Center, Saitama, Japan
| | - Wataru Shioyama
- Department of Internal Medicine, Division of Cardiovascular Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Hironori Yamamoto
- Department of Onco-Cardiology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka City, Osaka 541-8567, Japan
| | - Taku Yasui
- Department of Onco-Cardiology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka City, Osaka 541-8567, Japan
| | | | - Hatsue Ishibashi-Ueda
- Department of Pathology, National Cerebral and Cardiovascular Center, 6-1, Kishibeshinmachi, Suita, Osaka 564-8565, Japan
- Department of Pathology, Hokusetsu General Hospital, Takatsuki, Osaka, Japan
| | - Keiichiro Honma
- Department of Pathology, Osaka International Cancer Institute, Osaka, Japan
| | - Chisato Izumi
- Department of Heart Failure and Transplantation, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, 6-1, Kishibeshinmachi, Suita, Osaka 564-8565, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masashi Fujita
- Department of Onco-Cardiology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka City, Osaka 541-8567, Japan
| |
Collapse
|
7
|
Rondeaux J, Groussard D, Renet S, Tardif V, Dumesnil A, Chu A, Di Maria L, Lemarcis T, Valet M, Henry JP, Badji Z, Vézier C, Béziau-Gasnier D, Neele AE, de Winther MPJ, Guerrot D, Brand M, Richard V, Durand E, Brakenhielm E, Fraineau S. Ezh2 emerges as an epigenetic checkpoint regulator during monocyte differentiation limiting cardiac dysfunction post-MI. Nat Commun 2023; 14:4461. [PMID: 37491334 PMCID: PMC10368741 DOI: 10.1038/s41467-023-40186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
Epigenetic regulation of histone H3K27 methylation has recently emerged as a key step during alternative immunoregulatory M2-like macrophage polarization; known to impact cardiac repair after Myocardial Infarction (MI). We hypothesized that EZH2, responsible for H3K27 methylation, could act as an epigenetic checkpoint regulator during this process. We demonstrate for the first time an ectopic EZH2, and putative, cytoplasmic inactive localization of the epigenetic enzyme, during monocyte differentiation into M2 macrophages in vitro as well as in immunomodulatory cardiac macrophages in vivo in the post-MI acute inflammatory phase. Moreover, we show that pharmacological EZH2 inhibition, with GSK-343, resolves H3K27 methylation of bivalent gene promoters, thus enhancing their expression to promote human monocyte repair functions. In line with this protective effect, GSK-343 treatment accelerated cardiac inflammatory resolution preventing infarct expansion and subsequent cardiac dysfunction in female mice post-MI in vivo. In conclusion, our study reveals that pharmacological epigenetic modulation of cardiac-infiltrating immune cells may hold promise to limit adverse cardiac remodeling after MI.
Collapse
Affiliation(s)
- Julie Rondeaux
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | | | - Sylvanie Renet
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Virginie Tardif
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Anaïs Dumesnil
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Alphonse Chu
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - Léa Di Maria
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Théo Lemarcis
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Manon Valet
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Jean-Paul Henry
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Zina Badji
- CHU Rouen, Department of Cardiology, F-76000, Rouen, France
| | - Claire Vézier
- CHU Rouen, Department of Cardiology, F-76000, Rouen, France
| | | | - Annette E Neele
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Dominique Guerrot
- Univ Rouen Normandie, Inserm EnVI UMR 1096, CHU Rouen, Department of Nephrology, F-76000, Rouen, France
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - Vincent Richard
- Univ Rouen Normandie, Inserm EnVI UMR 1096, CHU Rouen, Department of Pharmacology, F-76000, Rouen, France
| | - Eric Durand
- Univ Rouen Normandie, Inserm EnVI UMR 1096, CHU Rouen, Department of Cardiology, F-76000, Rouen, France
| | - Ebba Brakenhielm
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Sylvain Fraineau
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France.
| |
Collapse
|
8
|
Matsui K, Torii S, Hara S, Maruyama K, Arai T, Imanaka-Yoshida K. Tenascin-C in Tissue Repair after Myocardial Infarction in Humans. Int J Mol Sci 2023; 24:10184. [PMID: 37373332 DOI: 10.3390/ijms241210184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Adverse ventricular remodeling after myocardial infarction (MI) is progressive ventricular dilatation associated with heart failure for weeks or months and is currently regarded as the most critical sequela of MI. It is explained by inadequate tissue repair due to dysregulated inflammation during the acute stage; however, its pathophysiology remains unclear. Tenascin-C (TNC), an original member of the matricellular protein family, is highly up-regulated in the acute stage after MI, and a high peak in its serum level predicts an increased risk of adverse ventricular remodeling in the chronic stage. Experimental TNC-deficient or -overexpressing mouse models have suggested the diverse functions of TNC, particularly its pro-inflammatory effects on macrophages. The present study investigated the roles of TNC during human myocardial repair. We initially categorized the healing process into four phases: inflammatory, granulation, fibrogenic, and scar phases. We then immunohistochemically examined human autopsy samples at the different stages after MI and performed detailed mapping of TNC in human myocardial repair with a focus on lymphangiogenesis, the role of which has recently been attracting increasing attention as a mechanism to resolve inflammation. The direct effects of TNC on human lymphatic endothelial cells were also assessed by RNA sequencing. The results obtained support the potential roles of TNC in the regulation of macrophages, sprouting angiogenesis, the recruitment of myofibroblasts, and the early formation of collagen fibrils during the inflammatory phase to the early granulation phase of human MI. Lymphangiogenesis was observed after the expression of TNC was down-regulated. In vitro results revealed that TNC modestly down-regulated genes related to nuclear division, cell division, and cell migration in lymphatic endothelial cells, suggesting its inhibitory effects on lymphatic endothelial cells. The present results indicate that TNC induces prolonged over-inflammation by suppressing lymphangiogenesis, which may be one of the mechanisms underlying adverse post-infarct remodeling.
Collapse
Affiliation(s)
- Kenta Matsui
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Sota Torii
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Shigeru Hara
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 3-52 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| |
Collapse
|
9
|
Jian Y, Zhou X, Shan W, Chen C, Ge W, Cui J, Yi W, Sun Y. Crosstalk between macrophages and cardiac cells after myocardial infarction. Cell Commun Signal 2023; 21:109. [PMID: 37170235 PMCID: PMC10173491 DOI: 10.1186/s12964-023-01105-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/18/2023] [Indexed: 05/13/2023] Open
Abstract
Cardiovascular diseases, such as myocardial infarction (MI), are a leading cause of death worldwide. Acute MI (AMI) inflicts massive injury to the coronary microcirculation, causing large-scale cardiomyocyte death due to ischemia and hypoxia. Inflammatory cells such as monocytes and macrophages migrate to the damaged area to clear away dead cells post-MI. Macrophages are pleiotropic cells of the innate immune system, which play an essential role in the initial inflammatory response that occurs following MI, inducing subsequent damage and facilitating recovery. Besides their recognized role within the immune response, macrophages participate in crosstalk with other cells (including cardiomyocytes, fibroblasts, immune cells, and vascular endothelial cells) to coordinate post-MI processes within cardiac tissue. Macrophage-secreted exosomes have recently attracted increasing attention, which has led to a more elaborate understanding of macrophage function. Currently, the functional roles of macrophages in the microenvironment of the infarcted heart, particularly with regard to their interaction with surrounding cells, remain unclear. Understanding the specific mechanisms that mediate this crosstalk is essential in treating MI. In this review, we discuss the origin of macrophages, changes in their distribution post-MI, phenotypic and functional plasticity, as well as the specific signaling pathways involved, with a focus on the crosstalk with other cells in the heart. Thus, we provide a new perspective on the treatment of MI. Further in-depth research is required to elucidate the mechanisms underlying crosstalk between macrophages and other cells within cardiac tissue for the identification of potential therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Yuhong Jian
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng Chen
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Ge
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
10
|
Gschwandtner M, Gammage AN, Deligne C, Mies LFM, Domaingo A, Murdamoothoo D, Loustau T, Schwenzer A, Derler R, Carapito R, Koch M, Mörgelin M, Orend G, Kungl AJ, Midwood KS. Investigating Chemokine-Matrix Networks in Breast Cancer: Tenascin-C Sets the Tone for CCL2. Int J Mol Sci 2023; 24:8365. [PMID: 37176074 PMCID: PMC10179296 DOI: 10.3390/ijms24098365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Bidirectional dialogue between cellular and non-cellular components of the tumor microenvironment (TME) drives cancer survival. In the extracellular space, combinations of matrix molecules and soluble mediators provide external cues that dictate the behavior of TME resident cells. Often studied in isolation, integrated cues from complex tissue microenvironments likely function more cohesively. Here, we study the interplay between the matrix molecule tenascin-C (TNC) and chemokine CCL2, both elevated in and associated with the progression of breast cancer and playing key roles in myeloid immune responses. We uncover a correlation between TNC/CCL2 tissue levels in HER2+ breast cancer and examine the physical and functional interactions of these molecules in a murine disease model with tunable TNC levels and in in vitro cellular and cell-free models. TNC supported sustained CCL2 synthesis, with chemokine binding to TNC via two distinct domains. TNC dominated the behavior of tumor-resident myeloid cells; CCL2 did not impact macrophage survival/activation whilst TNC facilitated an immune suppressive macrophage phenotype that was not dependent on or altered by CCL2 co-expression. Together, these data map new binding partners within the TME and demonstrate that whilst the matrix exerts transcriptional control over the chemokine, each plays a distinct role in subverting anti-tumoral immunity.
Collapse
Affiliation(s)
| | - Anís N. Gammage
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Claire Deligne
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Linda F. M. Mies
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Alissa Domaingo
- Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Devardarssen Murdamoothoo
- INSERM U1109-MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, 67091 Strasbourg, France
- University of Strasbourg, 67091 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67091 Strasbourg, France
- INSERM U1109, The Tumor Microenvironment Group, 67091 Strasbourg, France
| | - Thomas Loustau
- INSERM U1109-MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, 67091 Strasbourg, France
- University of Strasbourg, 67091 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67091 Strasbourg, France
- INSERM U1109, The Tumor Microenvironment Group, 67091 Strasbourg, France
| | - Anja Schwenzer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Rupert Derler
- Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Raphael Carapito
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67091 Strasbourg, France
- Laboratoire d’ImmunoRhumatologie Moléculaire, GENOMAX Platform, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, ITI TRANSPLANTEX NG, Université de Strasbourg, 67091 Strasbourg, France
| | - Manuel Koch
- Institute for Dental Research and Oral, Musculoskeletal Research, Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | | | - Gertraud Orend
- INSERM U1109-MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, 67091 Strasbourg, France
- University of Strasbourg, 67091 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67091 Strasbourg, France
- INSERM U1109, The Tumor Microenvironment Group, 67091 Strasbourg, France
| | - Andreas J. Kungl
- Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
11
|
Xiao W, Chen M, Zhou W, Ding L, Yang Z, Shao L, Li J, Chen W, Shen Z. An immunometabolic patch facilitates mesenchymal stromal/stem cell therapy for myocardial infarction through a macrophage-dependent mechanism. Bioeng Transl Med 2023; 8:e10471. [PMID: 37206202 PMCID: PMC10189442 DOI: 10.1002/btm2.10471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have emerged as a promising approach against myocardial infarction. Due to hostile hyperinflammation, however, poor retention of transplanted cells seriously impedes their clinical applications. Proinflammatory M1 macrophages, which rely on glycolysis as their main energy source, aggravate hyperinflammatory response and cardiac injury in ischemic region. Here, we showed that the administration of an inhibitor of glycolysis, 2-deoxy-d-glucose (2-DG), blocked the hyperinflammatory response within the ischemic myocardium and subsequently extended effective retention of transplanted MSCs. Mechanistically, 2-DG blocked the proinflammatory polarization of macrophages and suppressed the production of inflammatory cytokines. Selective macrophage depletion abrogated this curative effect. Finally, to avoid potential organ toxicity caused by systemic inhibition of glycolysis, we developed a novel chitosan/gelatin-based 2-DG patch that directly adhered to the infarcted region and facilitated MSC-mediated cardiac healing with undetectable side effects. This study pioneered the application of an immunometabolic patch in MSC-based therapy and provided insights into the therapeutic mechanism and advantages of this innovative biomaterial.
Collapse
Affiliation(s)
- Weizhang Xiao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular ScienceSuzhou Medical College of Soochow UniversitySuzhouChina
- Department of Cardiothoracic SurgeryAffiliated Hospital and Medical School of Nantong UniversityNantongChina
| | - Ming Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular ScienceSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Wenjing Zhou
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular ScienceSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Liang Ding
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular ScienceSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular ScienceSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular ScienceSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Jingjing Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular ScienceSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Weiqian Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular ScienceSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular ScienceSuzhou Medical College of Soochow UniversitySuzhouChina
| |
Collapse
|
12
|
Cheng H, Li L, Xue J, Ma J, Ge J. TNC Accelerates Hypoxia-Induced Cardiac Injury in a METTL3-Dependent Manner. Genes (Basel) 2023; 14:591. [PMID: 36980863 PMCID: PMC10048594 DOI: 10.3390/genes14030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cardiac fibrosis and cardiomyocyte apoptosis are reparative processes after myocardial infarction (MI), which results in cardiac remodeling and heart failure at last. Tenascin-C (TNC) consists of four distinct domains, which is a large multimodular glycoprotein of the extracellular matrix. It is also a key regulator of proliferation and apoptosis in cardiomyocytes. As a significant m6A regulator, METTL3 binds m6A sites in mRNA to control its degradation, maturation, stabilization, and translation. Whether METTL3 regulates the occurrence and development of myocardial infarction through the m6A modification of TNC mRNA deserves our study. Here, we have demonstrated that overexpression of METTL3 aggravated cardiac dysfunction and cardiac fibrosis after 4 weeks after MI. Moreover, we also demonstrated that TNC resulted in cardiac fibrosis and cardiomyocyte apoptosis after MI. Mechanistically, METTL3 led to enhanced m6A levels of TNC mRNA and promoted TNC mRNA stability. Then, we mutated one m6A site "A" to "T", and the binding ability of METTL3 was reduced. In conclusion, METTL3 is involved in cardiac fibrosis and cardiomyocyte apoptosis by increasing m6A levels of TNC mRNA and may be a promising target for the therapy of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Linnan Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junqiang Xue
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Jianying Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
13
|
Zhang M, Wang C, Wang R, Xu J, Wang Z, Yan J, Cai Y, Li L, Huo Y, Dong S. Adenosine kinase promotes post-infarction cardiac repair by epigenetically maintaining reparative macrophage phenotype. J Mol Cell Cardiol 2023; 174:88-100. [PMID: 36473288 PMCID: PMC10420407 DOI: 10.1016/j.yjmcc.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022]
Abstract
Pro-inflammatory and reparative macrophages are crucial in clearing necrotic myocardium and promoting cardiac repair after myocardial infarction (MI), respectively. Extracellular adenosine has been demonstrated to modulate macrophage polarization through adenosine receptors. However, the role of intracellular adenosine in macrophage polarization has not been explored and adenosine kinase (ADK) is a major enzyme regulating intracellular adenosine levels. Here, we aimed to elucidate the role of ADK in macrophage polarization and its subsequent impact on MI. We demonstrated that ADK was upregulated in bone marrow-derived macrophages (BMDMs) after IL-4 treatment and was highly expressed in the infarct area at day 7 post-MI, especially in macrophages. Compared with wild-type mice, myeloid-specific Adk knockout mice showed increased infarct size, limited myofibroblast differentiation, reduced collagen deposition and more severe cardiac dysfunction after MI, which was related to impaired reparative macrophage phenotype in MI tissue. We found that ADK deletion or inhibition significantly decreased the expression of reparative genes, such as Arg1, Ym1, Fizz1, and Cd206 in BMDMs after IL-4 treatment. The increased intracellular adenosine due to Adk deletion inhibited transmethylation reactions and decreased the trimethylation of H3K4 in BMDMs after IL-4 treatment. Mechanistically, we demonstrated that Adk deletion suppressed reparative macrophage phenotype through decreased IRF4 expression, which resulted from reduced levels of H3K4me3 on the Irf4 promotor. Together, our study reveals that ADK exerts a protective effect against MI by promoting reparative macrophage polarization through epigenetic mechanisms.
Collapse
Affiliation(s)
- Min Zhang
- Department of Cardiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Caiping Wang
- Department of Cardiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Rongning Wang
- Department of Cardiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Jiean Xu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhefeng Wang
- Department of Cardiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Jianlong Yan
- Department of Cardiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Yongfeng Cai
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Liangping Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Institute of Clinical Oncology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, GA 30912, United States
| | - Shaohong Dong
- Department of Cardiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China.
| |
Collapse
|
14
|
Zhang MQ, Wang CC, Pang XB, Shi JZ, Li HR, Xie XM, Wang Z, Zhang HD, Zhou YF, Chen JW, Han ZY, Zhao LL, He YY. Role of macrophages in pulmonary arterial hypertension. Front Immunol 2023; 14:1152881. [PMID: 37153557 PMCID: PMC10154553 DOI: 10.3389/fimmu.2023.1152881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary vascular disease characterized by progressive pulmonary artery pressure elevation, increased pulmonary vascular resistance and ultimately right heart failure. Studies have demonstrated the involvement of multiple immune cells in the development of PAH in patients with PAH and in experimental PAH. Among them, macrophages, as the predominant inflammatory cells infiltrating around PAH lesions, play a crucial role in exacerbating pulmonary vascular remodeling in PAH. Macrophages are generally polarized into (classic) M1 and (alternative) M2 phenotypes, they accelerate the process of PAH by secreting various chemokines and growth factors (CX3CR1, PDGF). In this review we summarize the mechanisms of immune cell action in PAH, as well as the key factors that regulate the polarization of macrophages in different directions and their functional changes after polarization. We also summarize the effects of different microenvironments on macrophages in PAH. The insight into the interactions between macrophages and other cells, chemokines and growth factors may provide important clues for the development of new, safe and effective immune-targeted therapies for PAH.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Chen-Chen Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xiao-Bin Pang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Jun-Zhuo Shi
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hao-Ran Li
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xin-Mei Xie
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Zhe Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hong-Da Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Feng Zhou
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Ji-Wang Chen
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Zhi-Yan Han
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Lu-Ling Zhao
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| |
Collapse
|
15
|
Wang Y, Wang G, Liu H. Tenascin-C: A Key Regulator in Angiogenesis during Wound Healing. Biomolecules 2022; 12:1689. [PMID: 36421704 PMCID: PMC9687801 DOI: 10.3390/biom12111689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Injury repair is a complex physiological process in which multiple cells and molecules are involved. Tenascin-C (TNC), an extracellular matrix (ECM) glycoprotein, is essential for angiogenesis during wound healing. This study aims to provide a comprehensive review of the dynamic changes and functions of TNC throughout tissue regeneration and to present an up-to-date synthesis of the body of knowledge pointing to multiple mechanisms of TNC at different restoration stages. (2) Methods: A review of the PubMed database was performed to include all studies describing the pathological processes of damage restoration and the role, structure, expression, and function of TNC in post-injury treatment; (3) Results: In this review, we first introduced the construction and expression signature of TNC. Then, the role of TNC during the process of damage restoration was introduced. We highlight the temporal heterogeneity of TNC levels at different restoration stages. Furthermore, we are surprised to find that post-injury angiogenesis is dynamically consistent with changes in TNC. Finally, we discuss the strategies for TNC in post-injury treatment. (4) Conclusions: The dynamic expression of TNC has a significant impact on angiogenesis and healing wounds and counters many negative aspects of poorly healing wounds, such as excessive inflammation, ischemia, scarring, and wound infection.
Collapse
Affiliation(s)
- Yucai Wang
- Department of Orthopaedic Surgery, Tangdu Hospital, AirForce Medical University, Xi’an 710000, China
| | - Guangfu Wang
- Vasculocardiology Department, The Fourth People’s Hospital of Jinan, Jinan 250000, China
| | - Hao Liu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
16
|
Kong Ho S, Leu HB, Wu CC, Yeh HI, Yin WH, Lin TH, Chang KC, Wang JH, Tseng WK, Chen JW, Wu YW. The prognostic significance of the presence of tenascin-C in patients with stable coronary heart disease. Clin Chim Acta 2022; 535:68-74. [PMID: 35963306 DOI: 10.1016/j.cca.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND We investigated the prognostic value of tenascin-C in patients with stable coronary heart disease. METHODS A total of 666 patients were enrolled and followed for 72 months. The primary outcome was a composite of cardiac events. The secondary outcomes were all-cause death, cardiovascular death, acute myocardial infarction (AMI), and heart failure hospitalization. RESULTS The area under the curve of tenascin-C to discriminate the occurrence of composite cardiac events was 70 % (95 % CI: 64.2 % to 75.8 %), and the corresponding optimal cutoff value was 19.91 ng/ml. A higher concentration of tenascin-C was associated with a greater risk of composite cardiac events (P trend < 0.001). Similar results were observed in all-cause death, AMI, and heart failure hospitalization. CONCLUSION Tenascin-C was found to be an independent predictor of total cardiovascular events in patients with stable coronary heart disease at 72 months, and also for all-cause death, AMI, and heart failure hospitalization.
Collapse
Affiliation(s)
- Sing Kong Ho
- Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hsin-Bang Leu
- Institute of Clinical Medicine and Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chau-Chung Wu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Medical Education & Bioethics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-I Yeh
- Cardiovascular Division, Department of Internal Medicine, MacKay Memorial Hospital, Mackay Medical College, New Taipei City, Taiwan
| | - Wei-Hsian Yin
- Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital and Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ji-Hung Wang
- Department of Cardiology, Buddhist Tzu-Chi General Hospital, Tzu-Chi University, Hualien, Taiwan
| | - Wei-Kung Tseng
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan; Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Jaw-Wen Chen
- Institute of Clinical Medicine and Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Yen-Wen Wu
- Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| |
Collapse
|
17
|
Altinbas A, Holmes JA, Salloum S, Lidofsky A, Alatrakchi N, Somsouk M, Hunt P, Deeks S, Chew KW, Lauer G, Kruger A, Lin W, Chung RT. LOXL-2 and TNC-C are markers of liver fibrogenesis in HCV/HIV-, HIV- and HCV-infected patients. Biomark Med 2022; 16:839-846. [PMID: 35786977 PMCID: PMC9437769 DOI: 10.2217/bmm-2021-0596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/27/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Lysil oxidase like enzyme-2 (LOXL-2) and TNC-C play important roles in organ fibrosis. We assessed circulating LOXL-2 and TNC-C levels and their relationship to fibrosis severity in HIV- and/or HCV-infected individuals. Methods: Healthy controls (n = 22), HIV mono- (n = 15), HCV mono- (n = 52) and HCV/HIV-co-infected (n = 92) subjects were included. Results: LOXL-2 and TNC-C levels were significantly higher in HCV mono- and HCV/HIV-co-infected individuals with F0 compared to healthy controls. In addition, in HCV/HIV-co-infected individuals, LOXL-2 levels were higher in intermediate fibrosis compared to no/mild fibrosis. Conclusion: In HCV/HIV-co-infected study participants, both LOXL-2 and TNC-C were significantly higher in intermediate fibrosis compared to no/mild fibrosis, but did not further increase with advanced fibrosis. Furthermore, both markers were elevated among HCV/HIV-positive individuals with mild/no fibrosis.
Collapse
Affiliation(s)
- Akif Altinbas
- Department of Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacinta A Holmes
- Department of Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shadi Salloum
- Department of Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anna Lidofsky
- Department of Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nadia Alatrakchi
- Department of Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ma Somsouk
- Department of Medicine, University of California San Francisco, School of Medicine, San Francisco, CA 94143, USA
| | - Peter Hunt
- Department of Medicine, University of California San Francisco, School of Medicine, San Francisco, CA 94143, USA
| | - Steven Deeks
- Department of Medicine, University of California San Francisco, School of Medicine, San Francisco, CA 94143, USA
| | - Kara W Chew
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Georg Lauer
- Department of Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA 02114, USA
| | - Annie Kruger
- Department of Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA 02114, USA
| | - Wenyu Lin
- Department of Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA 02114, USA
| | - Raymond T Chung
- Department of Medicine, Harvard Medical School & Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
18
|
Yang M, Xiong J, Zou Q, Wang X, Hu K, Zhao Q. Sinapic Acid Attenuated Cardiac Remodeling After Myocardial Infarction by Promoting Macrophage M2 Polarization Through the PPARγ Pathway. Front Cardiovasc Med 2022; 9:915903. [PMID: 35898278 PMCID: PMC9309384 DOI: 10.3389/fcvm.2022.915903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Macrophage polarization is an important regulatory mechanism of ventricular remodeling. Studies have shown that sinapic acid (SA) exerts an anti-inflammatory effect. However, the effect of SA on macrophages is still unclear. Objectives The purpose of the study was to investigate the role of SA in macrophage polarization and ventricular remodeling after myocardial infarction (MI). Methods An MI model was established by ligating the left coronary artery. The rats with MI were treated with SA for 1 or 4 weeks after MI. The effect of SA on bone marrow-derived macrophages (BMDMs) was also observed in vitro. Results Cardiac systolic dysfunction was significantly improved after SA treatment. SA reduced MCP-1 and CCR2 expression and macrophage infiltration. SA decreased the levels of the inflammatory factors TNF-α, IL-1α, IL-1β, and iNOS and increased the levels of the M2 macrophage markers CD206, Arg-1, IL-10, Ym-1, Fizz-1, and TGF-β at 1 week after MI. SA significantly increased CD68+/CD206+ macrophage infiltration. Myocardial interstitial fibrosis and MMP-2 and MMP-9 levels were decreased, and the sympathetic nerve marker TH and nerve sprouting marker GAP43 were suppressed after SA treatment at 4 weeks after MI. The PPARγ level was notably upregulated after SA treatment. In vitro, SA also increased the expression of PPARγ mRNA in BMDMs and IL-4-treated BMDMs in a concentration-dependent manner. SA enhanced Arg1 and IL-10 expression in BMDMs, and the PPARγ antagonist GW9662 attenuated M2 macrophage marker expression. Conclusions Our results demonstrated that SA attenuated structural and neural remodeling by promoting macrophage M2 polarization via PPARγ activation after MI.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Xiong
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Qingyan Zhao
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Ke Hu
| |
Collapse
|
19
|
The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat Rev Nephrol 2022; 18:545-557. [PMID: 35788561 DOI: 10.1038/s41581-022-00590-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Kidney fibrosis, characterized by excessive deposition of extracellular matrix (ECM) that leads to tissue scarring, is the final common outcome of a wide variety of chronic kidney diseases. Rather than being distributed uniformly across the kidney parenchyma, renal fibrotic lesions initiate at certain focal sites in which the fibrogenic niche is formed in a spatially confined fashion. This niche provides a unique tissue microenvironment that is orchestrated by a specialized ECM network consisting of de novo-induced matricellular proteins. Other structural elements of the fibrogenic niche include kidney resident and infiltrated inflammatory cells, extracellular vesicles, soluble factors and metabolites. ECM proteins in the fibrogenic niche recruit soluble factors including WNTs and transforming growth factor-β from the extracellular milieu, creating a distinctive profibrotic microenvironment. Studies using decellularized ECM scaffolds from fibrotic kidneys show that the fibrogenic niche autonomously promotes fibroblast proliferation, tubular injury, macrophage activation and endothelial cell depletion, pathological features that recapitulate key events in the pathogenesis of chronic kidney disease. The concept of the fibrogenic niche represents a paradigm shift in understanding of the mechanism of kidney fibrosis that could lead to the development of non-invasive biomarkers and novel therapies not only for chronic kidney disease, but also for fibrotic diseases of other organs.
Collapse
|
20
|
Bartlett B, Ludewick HP, Verma S, Corrales-Medina VF, Waterer G, Lee S, Dwivedi G. Cardiovascular changes after pneumonia in a dual disease mouse model. Sci Rep 2022; 12:11124. [PMID: 35778475 PMCID: PMC9249762 DOI: 10.1038/s41598-022-15507-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Residual inflammation in cardiovascular organs is thought to be one of the catalysts for the increased risk of cardiovascular complications seen following pneumonia. To test this hypothesis, we investigated changes in plaque characteristics and inflammatory features in ApoE-/- mouse aorta and heart following pneumonia. Male ApoE-/- mice were fed a high fat diet for 8 weeks before intranasal inoculation with either Streptococcus pneumoniae serotype 4 (test group) or phosphate buffered saline (control group). Mice were sacrificed at 2-, 7- and 28-days post-challenge. Changes in plaque burden and characteristics in aortic root and thoracic aorta were characterized by Oil red O and Trichrome stains. Inflammatory changes were investigated by FDG-PET imaging and immunofluorescence staining. We found TIGR4-infected mice present with increased plaque presence in the aortic root and thoracic aorta at 2- and 28-days post-inoculation, respectively. Aortic wall remodelling was also more pronounced in mice challenged with pneumococci at 28 days post-inoculation. Aortic root plaques of infected mice had reduced collagen and smooth muscle cells, consistent with an unstable plaque phenotype. Pneumonia alters plaque burden, plaque characteristics, and aortic wall remodelling in ApoE-/- mice. These effects caused by Streptococcus pneumoniae TIGR4, may contribute to the increased risk of cardiovascular complications seen in survivors of this infection.
Collapse
Affiliation(s)
- Benjamin Bartlett
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Australia
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Herbert P Ludewick
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Australia
| | - Shipra Verma
- Department of Nuclear Medicine, PET CT and Radionuclide Therapy, Fiona Stanley Hospital, Murdoch, WA, Australia
- Department of Geriatric Medicine, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Vicente F Corrales-Medina
- Department of Medicine, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Grant Waterer
- School of Medicine, University of Western Australia, Perth, WA, Australia
- Royal Perth Hospital, Perth, WA, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Australia
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Australia
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Australia.
- School of Medicine, University of Western Australia, Perth, WA, Australia.
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, WA, Australia.
- Harry Perkins Institute of Medical Research and Fiona Stanley Hospital, The University of Western Australia, Perth, Australia.
| |
Collapse
|
21
|
Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem 2022; 298:101530. [PMID: 34953859 PMCID: PMC8784641 DOI: 10.1016/j.jbc.2021.101530] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Various forms of fibrosis, comprising tissue thickening and scarring, are involved in 40% of deaths across the world. Since the discovery of scarless functional healing in fetuses prior to a certain stage of development, scientists have attempted to replicate scarless wound healing in adults with little success. While the extracellular matrix (ECM), fibroblasts, and inflammatory mediators have been historically investigated as separate branches of biology, it has become increasingly necessary to consider them as parts of a complex and tightly regulated system that becomes dysregulated in fibrosis. With this new paradigm, revisiting fetal scarless wound healing provides a unique opportunity to better understand how this highly regulated system operates mechanistically. In the following review, we navigate the four stages of wound healing (hemostasis, inflammation, repair, and remodeling) against the backdrop of adult versus fetal wound healing, while also exploring the relationships between the ECM, effector cells, and signaling molecules. We conclude by singling out recent findings that offer promising leads to alter the dynamics between the ECM, fibroblasts, and inflammation to promote scarless healing. One factor that promises to be significant is fibroblast heterogeneity and how certain fibroblast subpopulations might be predisposed to scarless healing. Altogether, reconsidering fetal wound healing by examining the interplay of the various factors contributing to fibrosis provides new research directions that will hopefully help us better understand and address fibroproliferative diseases, such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis.
Collapse
Affiliation(s)
- Leandro Moretti
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jack Stalfort
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas Harrison Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Abebayehu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
22
|
Trinh K, Julovi SM, Rogers NM. The Role of Matrix Proteins in Cardiac Pathology. Int J Mol Sci 2022; 23:ijms23031338. [PMID: 35163259 PMCID: PMC8836004 DOI: 10.3390/ijms23031338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) and ECM-regulatory proteins mediate structural and cell-cell interactions that are crucial for embryonic cardiac development and postnatal homeostasis, as well as organ remodeling and repair in response to injury. These proteins possess a broad functionality that is regulated by multiple structural domains and dependent on their ability to interact with extracellular substrates and/or cell surface receptors. Several different cell types (cardiomyocytes, fibroblasts, endothelial and inflammatory cells) within the myocardium elaborate ECM proteins, and their role in cardiovascular (patho)physiology has been increasingly recognized. This has stimulated robust research dissecting the ECM protein function in human health and disease and replicating the genetic proof-of-principle. This review summarizes recent developments regarding the contribution of ECM to cardiovascular disease. The clear importance of this heterogeneous group of proteins in attenuating maladaptive repair responses provides an impetus for further investigation into these proteins as potential pharmacological targets in cardiac diseases and beyond.
Collapse
Affiliation(s)
- Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sohel M. Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
23
|
Gremlich S, Cremona TP, Yao E, Chabenet F, Fytianos K, Roth-Kleiner M, Schittny JC. Tenascin-C: Friend or Foe in Lung Aging? Front Physiol 2021; 12:749776. [PMID: 34777012 PMCID: PMC8578707 DOI: 10.3389/fphys.2021.749776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Lung aging is characterized by lung function impairment, ECM remodeling and airspace enlargement. Tenascin-C (TNC) is a large extracellular matrix (ECM) protein with paracrine and autocrine regulatory functions on cell migration, proliferation and differentiation. This matricellular protein is highly expressed during organogenesis and morphogenetic events like injury repair, inflammation or cancer. We previously showed that TNC deficiency affected lung development and pulmonary function, but little is known about its role during pulmonary aging. In order to answer this question, we characterized lung structure and physiology in 18 months old TNC-deficient and wild-type (WT) mice. Mice were mechanically ventilated with a basal and high tidal volume (HTV) ventilation protocol for functional analyses. Additional animals were used for histological, stereological and molecular biological analyses. We observed that old TNC-deficient mice exhibited larger lung volume, parenchymal volume, total airspace volume and septal surface area than WT, but similar mean linear intercept. This was accompanied by an increase in proliferation, but not apoptosis or autophagy markers expression throughout the lung parenchyma. Senescent cells were observed in epithelial cells of the conducting airways and in alveolar macrophages, but equally in both genotypes. Total collagen content was doubled in TNC KO lungs. However, basal and HTV ventilation revealed similar respiratory physiological parameters in both genotypes. Smooth muscle actin (α-SMA) analysis showed a faint increase in α-SMA positive cells in TNC-deficient lungs, but a marked increase in non-proliferative α-SMA + desmin + cells. Major TNC-related molecular pathways were not up- or down-regulated in TNC-deficient lungs as compared to WT; only minor changes in TLR4 and TGFβR3 mRNA expression were observed. In conclusion, TNC-deficient lungs at 18 months of age showed exaggerated features of the normal structural lung aging described to occur in mice between 12 and 18 months of age. Correlated to the increased pulmonary function parameters previously observed in young adult TNC-deficient lungs and described to occur in normal lung aging between 3 and 6 months of age, TNC might be an advantage in lung aging.
Collapse
Affiliation(s)
- Sandrine Gremlich
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Eveline Yao
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Farah Chabenet
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kleanthis Fytianos
- Department for BioMedical Research, University of Bern, Bern, Switzerland.,Division of Pulmonary Medicine, University of Bern, Bern, Switzerland
| | - Matthias Roth-Kleiner
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
24
|
M1 Bone Marrow-Derived Macrophage-Derived Extracellular Vesicles Inhibit Angiogenesis and Myocardial Regeneration Following Myocardial Infarction via the MALAT1/MicroRNA-25-3p/CDC42 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9959746. [PMID: 34745428 PMCID: PMC8570847 DOI: 10.1155/2021/9959746] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022]
Abstract
Myocardial infarction (MI) is a severe cardiovascular disease. Some M1 macrophage-derived extracellular vesicles (EVs) are involved in the inhibition of angiogenesis and acceleration dysfunction during MI. However, the potential mechanism of M1 phenotype bone marrow-derived macrophages- (BMMs-) EVs (M1-BMMs-EVs) in MI is largely unknown. This study sought to investigate whether M1-BMMs-EVs increased CDC42 expression and activated the MEK/ERK pathway by carrying lncRNA MALAT1 and competitively binding to miR-25-3p, thus inhibiting angiogenesis and myocardial regeneration after MI. After EV treatment, the cardiac function, infarct size, fibrosis, angiogenesis, and myocardial regeneration of MI mice and the viability, proliferation and angiogenesis of oxygen-glucose deprivation- (OGD-) treated myocardial microvascular endothelial cells (MMECs) were assessed. MALAT1 expression in MI mice, cells, and EVs was detected. MALAT1 downstream microRNAs (miRs), genes, and pathways were predicted and verified. MALAT1 and miR-25-3p were intervened to evaluate EV effects on OGD-treated cells. In MI mice, EV treatment aggravated MI and inhibited angiogenesis and myocardial regeneration. In OGD-treated cells, EV treatment suppressed cell viability, proliferation, and angiogenesis. MALAT1 was highly expressed in MI mice, OGD-treated MMECs, M1-BMMs, and EVs. Silencing MALAT1 weakened the inhibition of EV treatment on OGD-treated cells. MALAT1 sponged miR-25-3p to upregulate CDC42. miR-25-3p overexpression promoted OGD-treated cell viability, proliferation, and angiogenesis. The MEK/ERK pathway was activated after EV treatment. Collectively, M1-BMMs-EVs inhibited angiogenesis and myocardial regeneration following MI via the MALAT1/miR-25-3p/CDC42 axis and the MEK/ERK pathway activation.
Collapse
|
25
|
Martins-Marques T. Connecting different heart diseases through intercellular communication. Biol Open 2021; 10:bio058777. [PMID: 34494646 PMCID: PMC8443862 DOI: 10.1242/bio.058777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Well-orchestrated intercellular communication networks are pivotal to maintaining cardiac homeostasis and to ensuring adaptative responses and repair after injury. Intracardiac communication is sustained by cell-cell crosstalk, directly via gap junctions (GJ) and tunneling nanotubes (TNT), indirectly through the exchange of soluble factors and extracellular vesicles (EV), and by cell-extracellular matrix (ECM) interactions. GJ-mediated communication between cardiomyocytes and with other cardiac cell types enables electrical impulse propagation, required to sustain synchronized heart beating. In addition, TNT-mediated organelle transfer has been associated with cardioprotection, whilst communication via EV plays diverse pathophysiological roles, being implicated in angiogenesis, inflammation and fibrosis. Connecting various cell populations, the ECM plays important functions not only in maintaining the heart structure, but also acting as a signal transducer for intercellular crosstalk. Although with distinct etiologies and clinical manifestations, intercellular communication derailment has been implicated in several cardiac disorders, including myocardial infarction and hypertrophy, highlighting the importance of a comprehensive and integrated view of complex cell communication networks. In this review, I intend to provide a critical perspective about the main mechanisms contributing to regulate cellular crosstalk in the heart, which may be considered in the development of future therapeutic strategies, using cell-based therapies as a paradigmatic example. This Review has an associated Future Leader to Watch interview with the author.
Collapse
Affiliation(s)
- Tania Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
26
|
Anti-Inflammatory Effect of Curcumin on the Mouse Model of Myocardial Infarction through Regulating Macrophage Polarization. Mediators Inflamm 2021; 2021:9976912. [PMID: 34462629 PMCID: PMC8403049 DOI: 10.1155/2021/9976912] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammation causes tissue damage and promotes ventricular remodeling after myocardial infarction (MI), and the infiltration and polarization of macrophages play an important role in regulating inflammation post-MI. Here, we investigated the anti-inflammatory function of curcumin after MI and studied its relationship with macrophage polarization. In vivo, curcumin not only attenuated ventricular remodeling 3 months after MI but also suppressed inflammation during the first 7 days post-MI. Importantly, the results of qPCR and immunochemistry showed that curcumin decreased M1 (iNOS, CCL2, and CD86) but increased M2 macrophage (Arg1, CD163, and CD206) marker expression in the myocardium of MI mice during the first 7 days post-MI. And flow cytometry analysis indicated that curcumin suppressed M1 (CD45+Gr-1-CD11b+iNOS+ cells) but enhanced M2 macrophage (CD45+Gr-1-CD11b+Arg+ cells) expansion in the myocardium of MI mice during the first 7 days post-MI. In vitro, curcumin decreased LPS/IFNγ-elevated M1 macrophage marker (iNOS and CD86) expression and the proportion of M1 macrophages (iNOS+F4/80+ cells) but increased LPS/IFNγ-suppressed M2 macrophage marker (Arg1 and CD206) expression and the proportion of M2 macrophages (Arg1+F4/80+ cells). In addition, curcumin modulates M1/M2 macrophage polarization partly via AMPK. In conclusion, curcumin suppressed the MI-induced inflammation by modulating macrophage polarization partly via the AMPK pathway.
Collapse
|
27
|
Direct in vivo reprogramming with non-viral sequential targeting nanoparticles promotes cardiac regeneration. Biomaterials 2021; 276:121028. [PMID: 34293701 DOI: 10.1016/j.biomaterials.2021.121028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022]
Abstract
microRNA-mediated direct cardiac reprogramming, directly converts fibroblasts into induced cardiomyocyte-like cells (iCMs), which holds great promise in cardiac regeneration therapy. However, effective approaches to deliver therapeutic microRNA into cardiac fibroblasts (CFs) to induce in vivo cardiac reprogramming remain to be explored. Herein, a non-viral biomimetic system to directly reprogram CFs for cardiac regeneration after myocardial injury was developed by coating FH peptide-modified neutrophil-mimicking membranes on mesoporous silicon nanoparticles (MSNs) loaded with microRNA1, 133, 208, and 499 (miR Combo). Through utilizing the natural inflammation-homing ability of neutrophil membrane protein and FH peptide's high affinity to tenascin-C (TN-C) produced by CFs, this nanoparticle could realize sequential targeting to CFs in the injured heart and precise intracellular delivery of miRCombo, which induced reprogramming resident CFs into iCMs. In a mouse model of myocardial ischemia/reperfusion injury, intravenous injection of the nanoparticles successfully delivered miRCombo into fibroblasts and led to efficient reprogramming, resulting in improved cardiac function and attenuated fibrosis. This delivery system is minimally invasive and bio-safe, providing a proof-of-concept for biomimetic and sequential targeting nanomedicine delivery system for microRNA-mediated reprogramming therapy in multiple diseases.
Collapse
|
28
|
Deficiency of tenascin-C attenuated cardiac injury by inactivating TLR4/NLRP3/caspase-1 pathway after myocardial infarction. Cell Signal 2021; 86:110084. [PMID: 34271086 DOI: 10.1016/j.cellsig.2021.110084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Inflammation and pyroptosis play a deleterious role in cardiac dysfunction after myocardial infarction (MI). NLRP3/caspase-1 is a well-established axis in pyroptosis and inflammation. In this study, we examined the effects of TN-C on pyroptosis through NLRP3 is unclear. We constructed 18 TN-C-knockout and 38 WT male mice model and divided into WT sham (n = 16), WT MI (n = 22), TNKO sham (n = 6), TNKO MI (n = 12). Elisa, immunostaining, TTC, qPCR, CCK8, flow cytometry, and western blot, echocardiographic, TUNEL staining technologies were applied. Here, we found a positive correlation between TN-C and NLRP3 in heart tissue via the GEPIA database (r = 0.52, p < 0.05). The findings indicate that TN-C was elevated and peaked on the fifth day after MI. TN-C deficiency alleviated cardiac dysfunction (LVEF, FS, LVIDd, and LVIDs) and cardiomyocyte death. Though the intracellular levels of pyroptosis-related cytokine caspase-1, cleaved caspase-1, NLRP3, IL-18, IL-1β were upregulated both in MI and H2O2 stimulation, knockout of TN-C resisted such injury and alleviated cardiac pyroptosis, which further decreased IL-6, TNF-α, MCP-1 expression. TN-C knockdown inhibited TLR4 expression, reduces the release of downstream factors by inactivating the TLR4/NF-kB pathway, while protects the cardiomyocytes. And TLR4 inhibitor TAK-242 significantly reduced NLRP3 expression levels after MI. We demonstrated for the first time a direct link between MI-induced TN-C upregulation and caspase-1-dependent cardiomyocyte pyroptosis, a process mediated, at least in part, by TLR4/NF-kB/NLRP3 and IL-18, IL-1β signaling pathways. These findings provide new insights into the role of TN-C in post-MI cardiomyocytes' pyroptosis and inflammation.
Collapse
|
29
|
Imanaka-Yoshida K. Tenascin-C in Heart Diseases-The Role of Inflammation. Int J Mol Sci 2021; 22:ijms22115828. [PMID: 34072423 PMCID: PMC8198581 DOI: 10.3390/ijms22115828] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Tenascin-C (TNC) is a large extracellular matrix (ECM) glycoprotein and an original member of the matricellular protein family. TNC is transiently expressed in the heart during embryonic development, but is rarely detected in normal adults; however, its expression is strongly up-regulated with inflammation. Although neither TNC-knockout nor -overexpressing mice show a distinct phenotype, disease models using genetically engineered mice combined with in vitro experiments have revealed multiple significant roles for TNC in responses to injury and myocardial repair, particularly in the regulation of inflammation. In most cases, TNC appears to deteriorate adverse ventricular remodeling by aggravating inflammation/fibrosis. Furthermore, accumulating clinical evidence has shown that high TNC levels predict adverse ventricular remodeling and a poor prognosis in patients with various heart diseases. Since the importance of inflammation has attracted attention in the pathophysiology of heart diseases, this review will focus on the roles of TNC in various types of inflammatory reactions, such as myocardial infarction, hypertensive fibrosis, myocarditis caused by viral infection or autoimmunity, and dilated cardiomyopathy. The utility of TNC as a biomarker for the stratification of myocardial disease conditions and the selection of appropriate therapies will also be discussed from a clinical viewpoint.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Mie University Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
30
|
Albacete-Albacete L, Sánchez-Álvarez M, Del Pozo MA. Extracellular Vesicles: An Emerging Mechanism Governing the Secretion and Biological Roles of Tenascin-C. Front Immunol 2021; 12:671485. [PMID: 33981316 PMCID: PMC8107694 DOI: 10.3389/fimmu.2021.671485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
ECM composition and architecture are tightly regulated for tissue homeostasis. Different disorders have been associated to alterations in the levels of proteins such as collagens, fibronectin (FN) or tenascin-C (TnC). TnC emerges as a key regulator of multiple inflammatory processes, both during physiological tissue repair as well as pathological conditions ranging from tumor progression to cardiovascular disease. Importantly, our current understanding as to how TnC and other non-collagen ECM components are secreted has remained elusive. Extracellular vesicles (EVs) are small membrane-bound particles released to the extracellular space by most cell types, playing a key role in cell-cell communication. A broad range of cellular components can be transported by EVs (e.g. nucleic acids, lipids, signalling molecules and proteins). These cargoes can be transferred to target cells, potentially modulating their function. Recently, several extracellular matrix (ECM) proteins have been characterized as bona fide EV cargoes, exosomal secretion being particularly critical for TnC. EV-dependent ECM secretion might underpin diseases where ECM integrity is altered, establishing novel concepts in the field such as ECM nucleation over long distances, and highlighting novel opportunities for diagnostics and therapeutic intervention. Here, we review recent findings and standing questions on the molecular mechanisms governing EV–dependent ECM secretion and its potential relevance for disease, with a focus on TnC.
Collapse
Affiliation(s)
- Lucas Albacete-Albacete
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Angel Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
31
|
Yonebayashi S, Tajiri K, Hara M, Saito H, Suzuki N, Sakai S, Kimura T, Sato A, Sekimoto A, Fujita S, Okamoto R, Schwartz RJ, Yoshida T, Imanaka-Yoshida K. Generation of Transgenic Mice that Conditionally Overexpress Tenascin-C. Front Immunol 2021; 12:620541. [PMID: 33763067 PMCID: PMC7982461 DOI: 10.3389/fimmu.2021.620541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/10/2021] [Indexed: 02/05/2023] Open
Abstract
Tenascin-C (TNC) is an extracellular matrix glycoprotein that is expressed during embryogenesis. It is not expressed in normal adults, but is up-regulated under pathological conditions. Although TNC knockout mice do not show a distinct phenotype, analyses of disease models using TNC knockout mice combined with in vitro experiments revealed the diverse functions of TNC. Since high TNC levels often predict a poor prognosis in various clinical settings, we developed a transgenic mouse that overexpresses TNC through Cre recombinase-mediated activation. Genomic walking showed that the transgene was integrated into and truncated the Atp8a2 gene. While homozygous transgenic mice showed a severe neurological phenotype, heterozygous mice were viable, fertile, and did not exhibit any distinct abnormalities. Breeding hemizygous mice with Nkx2.5 promoter-Cre or α-myosin heavy chain promoter Cre mice induced the heart-specific overexpression of TNC in embryos and adults. TNC-overexpressing mouse hearts did not have distinct histological or functional abnormalities. However, the expression of proinflammatory cytokines/chemokines was significantly up-regulated and mortality rates during the acute stage after myocardial infarction were significantly higher than those of the controls. Our novel transgenic mouse may be applied to investigations on the role of TNC overexpression in vivo in various tissue/organ pathologies using different Cre donors.
Collapse
Affiliation(s)
- Saori Yonebayashi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mari Hara
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan.,Research Center for Matrix Biology, Mie University, Tsu, Japan
| | - Hiromitsu Saito
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, Tsu, Japan
| | - Noboru Suzuki
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, Tsu, Japan
| | - Satoshi Sakai
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Taizo Kimura
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akiyo Sekimoto
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Satoshi Fujita
- Department of Cardiology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Ryuji Okamoto
- Department of Cardiology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan.,Research Center for Matrix Biology, Mie University, Tsu, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan.,Research Center for Matrix Biology, Mie University, Tsu, Japan
| |
Collapse
|
32
|
Deligne C, Midwood KS. Macrophages and Extracellular Matrix in Breast Cancer: Partners in Crime or Protective Allies? Front Oncol 2021; 11:620773. [PMID: 33718177 PMCID: PMC7943718 DOI: 10.3389/fonc.2021.620773] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Solid cancers such as breast tumors comprise a collection of tumor, stromal and immune cells, embedded within a network of tumor-specific extracellular matrix. This matrix is associated with tumor aggression, treatment failure, chemo- and radio-resistance, poor survival and metastasis. Recent data report an immunomodulatory role for the matrix in cancer, via the creation of niches that control the migration, localization, phenotype and function of tumor-infiltrating immune cells, ultimately contributing to escape of immune surveillance. Macrophages are crucial components of the immune infiltrate in tumors; they are associated with a poor prognosis in breast cancer and contribute to shaping the anti-tumor immune response. We and others have described how matrix molecules commonly upregulated within the tumor stroma, such as tenascin-C, fibronectin and collagen, exert a complex influence over macrophage behavior, for example restricting or enhancing their infiltration into the tumor, and driving their polarization towards or away from a pro-tumoral phenotype, and how in turn macrophages can modify matrix production in the tumor to favor tumor growth and metastasis. Targeting specific domains of matrix molecules to reinstate an efficient anti-tumor immune response, and effectively control tumor growth and spread, is emerging as a promising field offering a new angle for cancer therapy. Here, we review current knowledge on the interactions between tumor-associated macrophages and matrix molecules that occur within the tumor microenvironment of breast cancer, and discuss how these pathways can be targeted for new immunotherapies for hard to treat, desmoplastic tumors.
Collapse
Affiliation(s)
- Claire Deligne
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Tajiri K, Yonebayashi S, Li S, Ieda M. Immunomodulatory Role of Tenascin-C in Myocarditis and Inflammatory Cardiomyopathy. Front Immunol 2021; 12:624703. [PMID: 33692798 PMCID: PMC7938317 DOI: 10.3389/fimmu.2021.624703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence suggests that the breakdown of immune tolerance plays an important role in the development of myocarditis triggered by cardiotropic microbial infections. Genetic deletion of immune checkpoint molecules that are crucial for maintaining self-tolerance causes spontaneous myocarditis in mice, and cancer treatment with immune checkpoint inhibitors can induce myocarditis in humans. These results suggest that the loss of immune tolerance results in myocarditis. The tissue microenvironment influences the local immune dysregulation in autoimmunity. Recently, tenascin-C (TN-C) has been found to play a role as a local regulator of inflammation through various molecular mechanisms. TN-C is a nonstructural extracellular matrix glycoprotein expressed in the heart during early embryonic development, as well as during tissue injury or active tissue remodeling, in a spatiotemporally restricted manner. In a mouse model of autoimmune myocarditis, TN-C was detectable before inflammatory cell infiltration and myocytolysis became histologically evident; it was strongly expressed during active inflammation and disappeared with healing. TN-C activates dendritic cells to generate pathogenic autoreactive T cells and forms an important link between innate and acquired immunity.
Collapse
Affiliation(s)
- Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Saori Yonebayashi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Siqi Li
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
34
|
Zhou Y, Ma XY, Han JY, Yang M, Lv C, Shao Y, Wang YL, Kang JY, Wang QY. Metformin regulates inflammation and fibrosis in diabetic kidney disease through TNC/TLR4/NF-κB/miR-155-5p inflammatory loop. World J Diabetes 2021; 12:19-46. [PMID: 33520106 PMCID: PMC7807255 DOI: 10.4239/wjd.v12.i1.19] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is significantly increasing worldwide, and the incidence of its complications is also on the rise. One of the main complications of T2DM is diabetic kidney disease (DKD). The glomerular filtration rate (GFR) and urinary albumin creatinine ratio (UACR) increase in the early stage. As the disease progresses, UACR continue to rise and GFR begins to decline until end-stage renal disease appears. At the same time, DKD will also increase the incidence and mortality of cardiovascular and cerebrovascular diseases. At present, the pathogenesis of DKD is not very clear. Therefore, exploration of the pathogenesis of DKD to find a treatment approach, so as to delay the development of DKD, is essential to improve the prognosis of DKD.
AIM To detect the expression of tenascin-C (TNC) in the serum of T2DM patients, observe the content of TNC in the glomerulus of DKD rats, and detect the expression of TNC on inflammatory and fibrotic factors in rat mesangial cells (RMCs) cultured under high glucose condition, in order to explore the specific molecular mechanism of TNC in DKD and bring a new direction for the treatment of DKD.
METHODS The expression level of TNC in the serum of diabetic patients was detected by enzyme-linked immunosorbent assay (ELISA), the protein expression level of TNC in the glomerular area of DKD rats was detected by immunohistochemistry, and the expression level of TNC in the rat serum was detected by ELISA. Rat glomerular mesangial cells were cultured. Following high glucose stimulation, the expression levels of related proteins and mRNA were detected by Western blot and polymerase chain reaction, respectively.
RESULTS ELISA results revealed an increase in the serum TNC level in patients with T2DM. Increasing UACR and hypertension significantly increased the expression of TNC (P < 0.05). TNC expression was positively correlated with glycosylated haemoglobin (HbA1c) level, body mass index, systolic blood pressure, and UACR (P < 0.05). Immunohistochemical staining showed that TNC expression in the glomeruli of rats with streptozotocin-induced diabetes was significantly increased compared with normal controls (P < 0.05). Compared with normal rats, serum level of TNC in diabetic rats was significantly increased (P < 0.05), which was positively correlated with urea nitrogen and urinary creatinine (P < 0.05). The levels of TNC, Toll-like receptor-4 (TLR4), phosphorylated nuclear factor-κB p65 protein (Ser536) (p-NF-κB p65), and miR-155-5p were increased in RMCs treated with high glucose (P < 0.05). The level of TNC protein peaked 24 h after high glucose stimulation (P < 0.05). After TNC knockdown, the levels of TLR4, p-NF-κB p65, miR-155-5p, connective tissue growth factor (CTGF), and fibronectin (FN) were decreased, revealing that TNC regulated miR-155-5p expression through the TLR4/NF-κB p65 pathway, thereby regulating inflammation (NF-κB p65) and fibrosis (CTGF and FN) in individuals with DKD. In addition, metformin treatment may relive the processes of inflammation and fibrosis in individuals with DKD by reducing the levels of the TNC, p-NF-κB p65, CTGF, and FN proteins.
CONCLUSION TNC can promote the occurrence and development of DKD. Interfering with the TNC/TLR4/NF-κB p65/miR-155-5p pathway may become a new target for DKD treatment.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Xiao-Yu Ma
- Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Jin-Yu Han
- Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Min Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Chuan Lv
- Department of Endocrinology, The People’s Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Ying Shao
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Yi-Li Wang
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Jia-Yi Kang
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Qiu-Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
35
|
Neutrophil Elastase Deficiency Ameliorates Myocardial Injury Post Myocardial Infarction in Mice. Int J Mol Sci 2021; 22:ijms22020722. [PMID: 33450865 PMCID: PMC7828348 DOI: 10.3390/ijms22020722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are recruited into the heart at an early stage following a myocardial infarction (MI). These secrete several proteases, one of them being neutrophil elastase (NE), which promotes inflammatory responses in several disease models. It has been shown that there is an increase in NE activity in patients with MI; however, the role of NE in MI remains unclear. Therefore, the present study aimed to investigate the role of NE in the pathogenesis of MI in mice. NE expression peaked on day 1 in the infarcted hearts. In addition, NE deficiency improved survival and cardiac function post-MI, limiting fibrosis in the noninfarcted myocardium. Sivelestat, an NE inhibitor, also improved survival and cardiac function post-MI. Flow cytometric analysis showed that the numbers of heart-infiltrating neutrophils and inflammatory macrophages (CD11b+F4/80+CD206low cells) were significantly lower in NE-deficient mice than in wild-type (WT) mice. At the border zone between intact and necrotic areas, the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells was lower in NE-deficient mice than in WT mice. Western blot analyses revealed that the expression levels of insulin receptor substrate 1 and phosphorylation of Akt were significantly upregulated in NE-knockout mouse hearts, indicating that NE deficiency might improve cardiac survival by upregulating insulin/Akt signaling post-MI. Thus, NE may enhance myocardial injury by inducing an excessive inflammatory response and suppressing Akt signaling in cardiomyocytes. Inhibition of NE might serve as a novel therapeutic target in the treatment of MI.
Collapse
|
36
|
Frangogiannis NG, Kovacic JC. Extracellular Matrix in Ischemic Heart Disease, Part 4/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2219-2235. [PMID: 32354387 DOI: 10.1016/j.jacc.2020.03.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Myocardial ischemia and infarction, both in the acute and chronic phases, are associated with cardiomyocyte loss and dramatic changes in the cardiac extracellular matrix (ECM). It has long been appreciated that these changes in the cardiac ECM result in altered mechanical properties of ischemic or infarcted myocardial segments. However, a growing body of evidence now clearly demonstrates that these alterations of the ECM not only affect the structural properties of the ischemic and post-infarct heart, but they also play a crucial and sometimes direct role in mediating a range of biological pathways, including the orchestration of inflammatory and reparative processes, as well as the pathogenesis of adverse remodeling. This final part of a 4-part JACC Focus Seminar reviews the evidence on the role of the ECM in relation to the ischemic and infarcted heart, as well as its contribution to cardiac dysfunction and adverse clinical outcomes.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York.
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute and St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
37
|
Yonebayashi S, Tajiri K, Li S, Sato A. Tenascin-C: an emerging prognostic biomarker in diabetes. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1699. [PMID: 33490211 PMCID: PMC7812241 DOI: 10.21037/atm-2020-116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Saori Yonebayashi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Siqi Li
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
38
|
Xiao Z, Kong B, Yang H, Dai C, Fang J, Qin T, Huang H. Key Player in Cardiac Hypertrophy, Emphasizing the Role of Toll-Like Receptor 4. Front Cardiovasc Med 2020; 7:579036. [PMID: 33324685 PMCID: PMC7725871 DOI: 10.3389/fcvm.2020.579036] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptor 4 (TLR4), a key pattern recognition receptor, initiates the innate immune response and leads to chronic and acute inflammation. In the past decades, accumulating evidence has implicated TLR4-mediated inflammatory response in regulation of myocardium hypertrophic remodeling, indicating that regulation of the TLR4 signaling pathway may be an effective strategy for managing cardiac hypertrophy's pathophysiology. Given TLR4's significance, it is imperative to review the molecular mechanisms and roles underlying TLR4 signaling in cardiac hypertrophy. Here, we comprehensively review the current knowledge of TLR4-mediated inflammatory response and its interaction ligands and co-receptors, as well as activation of various intracellular signaling. We also describe the associated roles in promoting immune cell infiltration and inflammatory mediator secretion, that ultimately cause cardiac hypertrophy. Finally, we provide examples of some of the most promising drugs and new technologies that have the potential to attenuate TLR4-mediated inflammatory response and prevent or reverse the ominous cardiac hypertrophy outcomes.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hongjie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chang Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jin Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tianyou Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
39
|
Yonebayashi S, Tajiri K, Murakoshi N, Xu D, Li S, Feng D, Okabe Y, Yuan Z, Song Z, Aonuma K, Shibuya A, Aonuma K, Ieda M. MAIR-II deficiency ameliorates cardiac remodelling post-myocardial infarction by suppressing TLR9-mediated macrophage activation. J Cell Mol Med 2020; 24:14481-14490. [PMID: 33140535 PMCID: PMC7753988 DOI: 10.1111/jcmm.16070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages are fundamental components of inflammation in post‐myocardial infarction (MI) and contribute to adverse cardiac remodelling and heart failure. However, the regulatory mechanisms in macrophage activation have not been fully elucidated. Previous studies showed that myeloid‐associated immunoglobulin–like receptor II (MAIR‐II) is involved in inflammatory responses in macrophages. However, its role in MI is unknown. Thus, this study aimed to determine a novel role and mechanism of MAIR‐II in MI. We first identified that MAIR‐II–positive myeloid cells were abundant from post‐MI days 3 to 5 in infarcted hearts of C57BL/6J (WT) mice induced by permanent left coronary artery ligation. Compared to WT, MAIR‐II–deficient (Cd300c2−/−) mice had longer survival, ameliorated cardiac remodelling, improved cardiac function and smaller infarct sizes. Moreover, we detected lower pro‐inflammatory cytokine and fibrotic gene expressions in Cd300c2−/−‐infarcted hearts. These mice also had less infiltrating pro‐inflammatory macrophages following MI. To elucidate a novel molecular mechanism of MAIR‐II, we considered macrophage activation by Toll‐like receptor (TLR) 9–mediated inflammation. In vitro, we observed that Cd300c2−/− bone marrow–derived macrophages stimulated by a TLR9 agonist expressed less pro‐inflammatory cytokines compared to WT. In conclusion, MAIR‐II may enhance inflammation via TLR9‐mediated macrophage activation in MI, leading to adverse cardiac remodelling and poor prognosis.
Collapse
Affiliation(s)
- Saori Yonebayashi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Dongzhu Xu
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Siqi Li
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Duo Feng
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuta Okabe
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Zixun Yuan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Zonghu Song
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuhiro Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Kazutaka Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
40
|
Tenascin-C Function in Glioma: Immunomodulation and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:149-172. [PMID: 32845507 DOI: 10.1007/978-3-030-48457-6_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
First identified in the 1980s, tenascin-C (TNC) is a multi-domain extracellular matrix glycoprotein abundantly expressed during the development of multicellular organisms. TNC level is undetectable in most adult tissues but rapidly and transiently induced by a handful of pro-inflammatory cytokines in a variety of pathological conditions including infection, inflammation, fibrosis, and wound healing. Persistent TNC expression is associated with chronic inflammation and many malignancies, including glioma. By interacting with its receptor integrin and a myriad of other binding partners, TNC elicits context- and cell type-dependent function to regulate cell adhesion, migration, proliferation, and angiogenesis. TNC operates as an endogenous activator of toll-like receptor 4 and promotes inflammatory response by inducing the expression of multiple pro-inflammatory factors in innate immune cells such as microglia and macrophages. In addition, TNC drives macrophage differentiation and polarization predominantly towards an M1-like phenotype. In contrast, TNC shows immunosuppressive function in T cells. In glioma, TNC is expressed by tumor cells and stromal cells; high expression of TNC is correlated with tumor progression and poor prognosis. Besides promoting glioma invasion and angiogenesis, TNC has been found to affect the morphology and function of tumor-associated microglia/macrophages in glioma. Clinically, TNC can serve as a biomarker for tumor progression; and TNC antibodies have been utilized as an adjuvant agent to deliver anti-tumor drugs to target glioma. A better mechanistic understanding of how TNC impacts innate and adaptive immunity during tumorigenesis and tumor progression will open new therapeutic avenues to treat brain tumors and other malignancies.
Collapse
|
41
|
Imanaka-Yoshida K, Tawara I, Yoshida T. Tenascin-C in cardiac disease: a sophisticated controller of inflammation, repair, and fibrosis. Am J Physiol Cell Physiol 2020; 319:C781-C796. [PMID: 32845719 DOI: 10.1152/ajpcell.00353.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tenascin-C (TNC) is a large extracellular matrix glycoprotein classified as a matricellular protein that is generally upregulated at high levels during physiological and pathological tissue remodeling and is involved in important biological signaling pathways. In the heart, TNC is transiently expressed at several important steps during embryonic development and is sparsely detected in normal adult heart but is re-expressed in a spatiotemporally restricted manner under pathological conditions associated with inflammation, such as myocardial infarction, hypertensive cardiac fibrosis, myocarditis, dilated cardiomyopathy, and Kawasaki disease. Despite its characteristic and spatiotemporally restricted expression, TNC knockout mice develop a grossly normal phenotype. However, various disease models using TNC null mice combined with in vitro experiments have revealed many important functions for TNC and multiple molecular cascades that control cellular responses in inflammation, tissue repair, and even myocardial regeneration. TNC has context-dependent diverse functions and, thus, may exert both harmful and beneficial effects in damaged hearts. However, TNC appears to deteriorate adverse ventricular remodeling by proinflammatory and profibrotic effects in most cases. Its specific expression also makes TNC a feasible diagnostic biomarker and target for molecular imaging to assess inflammation in the heart. Several preclinical studies have shown the utility of TNC as a biomarker for assessing the prognosis of patients and selecting appropriate therapy, particularly for inflammatory heart diseases.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| |
Collapse
|
42
|
Guan BF, Dai XF, Huang QB, Zhao D, Shi JL, Chen C, Zhu Y, Ai F. Icariside II ameliorates myocardial ischemia and reperfusion injury by attenuating inflammation and apoptosis through the regulation of the PI3K/AKT signaling pathway. Mol Med Rep 2020; 22:3151-3160. [PMID: 32945440 PMCID: PMC7453495 DOI: 10.3892/mmr.2020.11396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Icariside II (ICAII) is a bioflavonoid compound which has demonstrated anti-oxidative, anti-inflammatory and anti-apoptotic biological activities. However, to the best of our knowledge, whether ICAII can alleviate myocardial ischemia and reperfusion injury (MIRI) remains unknown. The aim of the present study was to determine whether ICAII exerted a protective effect on MIRI and to investigate the potential underlying mechanism of action. A rat MIRI model was established by ligation of the left anterior descending coronary artery for 30 min, followed by a 24 h reperfusion. Pretreatment with ICAII with or without a PI3K/AKT inhibitor was administered at the beginning of reperfusion. Morphological and histological analyses were detected using hematoxylin and eosin staining; the infarct size was measured using Evans blue and 2,3,5-triphenyltetrazolium chloride staining; and plasma levels of lactate dehydrogenase (LDH) and creatine kinase-myocardial band (CK-MB) were analyzed using commercialized assay kits. In addition, the cardiac function was evaluated by echocardiography and the levels of cardiomyocyte apoptosis were determined using a TUNEL staining. The protein expression levels of Bax, Bcl-2, cleaved caspase-3, interleukin-6, tumor necrosis factor-α, PI3K, phosphorylated (p)-PI3K, AKT and p-AKT were analyzed using western blotting analysis. ICAII significantly reduced the infarct size, decreased the release of LDH and CK-MB and improved the cardiac function induced by IR injury. Moreover, ICAII pretreatment significantly inhibited myocardial apoptosis and the inflammatory response. ICAII also upregulated the expression levels of p-PI3K and p-AKT. However, the protective effects of ICAII were abolished by an inhibitor (LY294002) of the PI3K/AKT signaling pathway. In conclusion, the findings of the present study suggested that ICAII may mitigate MIRI by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bing-Feng Guan
- Department of Cardiothoracic, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiao-Feng Dai
- Department of Cardiothoracic, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Qi-Bin Huang
- Department of Cardiothoracic, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Di Zhao
- Department of Cardiothoracic, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jin-Long Shi
- Department of Cardiothoracic, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Cheng Chen
- Department of Cardiothoracic, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yan Zhu
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
43
|
Fujita M, Sasada M, Iyoda T, Fukai F. Involvement of Integrin-Activating Peptides Derived from Tenascin-C in Cancer Aggression and New Anticancer Strategy Using the Fibronectin-Derived Integrin-Inactivating Peptide. Molecules 2020; 25:E3239. [PMID: 32708610 PMCID: PMC7396993 DOI: 10.3390/molecules25143239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Matricellular proteins, which exist in association with the extracellular matrix (ECM) and ECM protein molecules, harbor functional sites within their molecular structures. These functional sites are released through proteolytic cleavage by inflammatory proteinases, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), and the peptides containing these functional sites have unique biological activities that are often not detected in the parent molecules. We previously showed that tenascin-C (TNC) and plasma fibronectin (pFN), examples of matricellular proteins, have cryptic bioactive sites that have opposite effects on cell adhesion to the ECM. A peptide containing the bioactive site of TNC, termed TNIIIA2, which is highly released at sites of inflammation and in the tumor microenvironment (TME), has the ability to potently and persistently activate β1-integrins. In the opposite manner, the peptide FNIII14 containing the bioactive site of pFN has the ability to inactivate β1-integrins. This review highlights that peptide TNIIIA2 can act as a procancer factor and peptide FNIII14 can act as an anticancer agent, based on the regulation on β1-integrin activation. Notably, the detrimental effects of TNIIIA2 can be inhibited by FNIII14. These findings open the possibility for new therapeutic strategies based on the inactivation of β1-integrin by FNIII14.
Collapse
Affiliation(s)
- Motomichi Fujita
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
| | - Manabu Sasada
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan
| | - Takuya Iyoda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Doori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
| |
Collapse
|
44
|
Deligne C, Murdamoothoo D, Gammage AN, Gschwandtner M, Erne W, Loustau T, Marzeda AM, Carapito R, Paul N, Velazquez-Quesada I, Mazzier I, Sun Z, Orend G, Midwood KS. Matrix-Targeting Immunotherapy Controls Tumor Growth and Spread by Switching Macrophage Phenotype. Cancer Immunol Res 2020; 8:368-382. [PMID: 31941671 DOI: 10.1158/2326-6066.cir-19-0276] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/23/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
The interplay between cancer cells and immune cells is a key determinant of tumor survival. Here, we uncovered how tumors exploit the immunomodulatory properties of the extracellular matrix to create a microenvironment that enables their escape from immune surveillance. Using orthotopic grafting of mammary tumor cells in immunocompetent mice and autochthonous models of breast cancer, we discovered how tenascin-C, a matrix molecule absent from most healthy adult tissues but expressed at high levels and associated with poor patient prognosis in many solid cancers, controls the immune status of the tumor microenvironment. We found that, although host-derived tenascin-C promoted immunity via recruitment of proinflammatory, antitumoral macrophages, tumor-derived tenascin-C subverted host defense by polarizing tumor-associated macrophages toward a pathogenic, immune-suppressive phenotype. Therapeutic monoclonal antibodies that blocked tenascin-C activation of Toll-like receptor 4 reversed this phenotypic switch in vitro and reduced tumor growth and lung metastasis in vivo, providing enhanced benefit in combination with anti-PD-L1 over either treatment alone. Combined tenascin-C:macrophage gene-expression signatures delineated a significant survival benefit in people with breast cancer. These data revealed a new approach to targeting tumor-specific macrophage polarization that may be effective in controlling the growth and spread of breast tumors.
Collapse
Affiliation(s)
- Claire Deligne
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Devadarssen Murdamoothoo
- University of Strasbourg, INSERM U1109, MN3T and The Tumor Microenvironment Laboratory, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Anís N Gammage
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Martha Gschwandtner
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - William Erne
- University of Strasbourg, INSERM U1109, MN3T and The Tumor Microenvironment Laboratory, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Thomas Loustau
- University of Strasbourg, INSERM U1109, MN3T and The Tumor Microenvironment Laboratory, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Anna M Marzeda
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, GENOMAX platform, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Nicodème Paul
- Laboratoire d'ImmunoRhumatologie Moléculaire, GENOMAX platform, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Inés Velazquez-Quesada
- University of Strasbourg, INSERM U1109, MN3T and The Tumor Microenvironment Laboratory, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Imogen Mazzier
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Zhen Sun
- University of Strasbourg, INSERM U1109, MN3T and The Tumor Microenvironment Laboratory, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Gertraud Orend
- University of Strasbourg, INSERM U1109, MN3T and The Tumor Microenvironment Laboratory, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
45
|
Yang Y, Ma L, Song M, Li X, He F, Wang C, Chen M, Zhou J, Mei C. The role of the complement factor B-arginase-polyamine molecular axis in uremia-induced cardiac remodeling in mice. Eur J Immunol 2019; 50:220-233. [PMID: 31777959 DOI: 10.1002/eji.201948227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 01/19/2023]
Abstract
The role of complement system in heart diseases is controversial. Besides, the mechanisms by which complement components participate in cardiac remodeling (CR) and heart failure during uremia are unclear. In this study, 5/6 nephrectomy was performed to adult mice to establish the uremic model and CR deteriorated over the course of uremia. Although complement pathways were not further activated over the course of the disease, soluble complement factor B (CFB) was upregulated at post-nephrectomy day 90 (PNx90) compared with PNx30. Further, CFB notably deteriorated CR in uremic mice but this effect was reversed by depletion of macrophages with liposomal clodronate. In vivo and in vitro CFB upregulated arginase 1 (ARG1) expression, increased ARG1 enzymatic activity, and stimulated the syntheses of ornithine, leading to polyamine overproduction in macrophages. Putrescine, an important polyamine, promoted cardiac fibroblast proliferation and collagen production, resulting in progressive CR. In vivo the inhibition of ARG1 activity with Nω -hydroxyl-l-arginine remarkably improved the general survival rates, inhibited the infiltration of cardiac fibroblasts, and alleviated progression of CR in uremic mice. Taken together, the CFB-ARG1-putrescine axis is related to progression of CR and ARG1 hyperactivity in macrophages may provide a novel therapeutic target against the heart injury in uremia.
Collapse
Affiliation(s)
- Yang Yang
- Kidney Therapeutic Center of the Chinese People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Lu Ma
- Kidney Therapeutic Center of the Chinese People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Minghui Song
- Kidney Therapeutic Center of the Chinese People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Xiaomeng Li
- Ultrasonic Department, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Fagui He
- Kidney Therapeutic Center of the Chinese People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Chao Wang
- Kidney Therapeutic Center of the Chinese People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Meihan Chen
- Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, the Second Military Medical University, Shanghai, China
| | - Jie Zhou
- Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, the Second Military Medical University, Shanghai, China
| | - Changlin Mei
- Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, the Second Military Medical University, Shanghai, China
| |
Collapse
|
46
|
Gómez-Mendoza DP, Marques FD, Melo-Braga MN, Sprenger RR, Sinisterra RD, Kjeldsen F, Santos RA, Verano-Braga T. Angiotensin-(1-7) oral treatment after experimental myocardial infarction leads to downregulation of CXCR4. J Proteomics 2019; 208:103486. [DOI: 10.1016/j.jprot.2019.103486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 11/27/2022]
|
47
|
Abstract
The ECM (extracellular matrix) network plays a crucial role in cardiac homeostasis, not only by providing structural support, but also by facilitating force transmission, and by transducing key signals to cardiomyocytes, vascular cells, and interstitial cells. Changes in the profile and biochemistry of the ECM may be critically implicated in the pathogenesis of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. The patterns of molecular and biochemical ECM alterations in failing hearts are dependent on the type of underlying injury. Pressure overload triggers early activation of a matrix-synthetic program in cardiac fibroblasts, inducing myofibroblast conversion, and stimulating synthesis of both structural and matricellular ECM proteins. Expansion of the cardiac ECM may increase myocardial stiffness promoting diastolic dysfunction. Cardiomyocytes, vascular cells and immune cells, activated through mechanosensitive pathways or neurohumoral mediators may play a critical role in fibroblast activation through secretion of cytokines and growth factors. Sustained pressure overload leads to dilative remodeling and systolic dysfunction that may be mediated by changes in the interstitial protease/antiprotease balance. On the other hand, ischemic injury causes dynamic changes in the cardiac ECM that contribute to regulation of inflammation and repair and may mediate adverse cardiac remodeling. In other pathophysiologic conditions, such as volume overload, diabetes mellitus, and obesity, the cell biological effectors mediating ECM remodeling are poorly understood and the molecular links between the primary insult and the changes in the matrix environment are unknown. This review article discusses the role of ECM macromolecules in heart failure, focusing on both structural ECM proteins (such as fibrillar and nonfibrillar collagens), and specialized injury-associated matrix macromolecules (such as fibronectin and matricellular proteins). Understanding the role of the ECM in heart failure may identify therapeutic targets to reduce geometric remodeling, to attenuate cardiomyocyte dysfunction, and even to promote myocardial regeneration.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|