1
|
Peng J, Tang S, Huang L, Fang Y. Protective role of TRPM7 knockdown in ulcerative colitis via blocking NLRP3 inflammasome-mediated pyroptosis. Prostaglandins Other Lipid Mediat 2024; 175:106904. [PMID: 39260818 DOI: 10.1016/j.prostaglandins.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Transient receptor potential melastatin 7 (TRPM7) has been emerged as a potent drug target for immunomodulation with ion conductance and kinase activities. The research is projected to characterize the influences of TRPM7 on the course of ulcerative colitis (UC) and dissect the latent response mechanisms. The in vivo murine model and in vitro cell model of UC were both stimulated by DSS. RT-qPCR and western blotting tested the abundance of TRPM7. Colonic damage was estimated by Hematoxylin-eosin staining, calculation of colon length, measurement of DAI and MPO assay kit. CCK-8 method and TUNEL staining severally ascertained cell activity and apoptosis. ELISA method assayed the inflammatory levels and relevant assay kits determined oxidative stress levels. FITC-dextran flux, immunohistochemistry, TEER as well as western blotting evaluated intestinal barrier function. Immunofluorescence staining and western blotting appraised NLR family pyrin domain containing 3 (NLRP3)-dependent pyroptosis. Depleted TRPM7 retarded inflammation, oxidative damage as well as intestinal barrier damage both in vitro and in vivo. TRPM7 reduction repressed the pyroptosis mediated by NLRP3 inflammasome. NLRP3 agonist nigericin partly abolished the protection elicited by TRPM7 silencing against inflammation, oxidative damage as well as intestinal barrier damage in vitro. Collectively, TRPM7 deletion might possess the therapeutic potential in UC, the working mechanism of which might involve the inactivation of NLRP3-dependent pyroptosis.
Collapse
Affiliation(s)
- Jinzhen Peng
- Department of gastroenterology, Shaoguan First People's Hospital, Shaoguan 512000, PR China
| | - Shuai Tang
- Department of gastroenterology, Shaoguan First People's Hospital, Shaoguan 512000, PR China
| | - Lifang Huang
- Department of Blood Transfusion, Shaoguan First People's Hospital, Shaoguan 512000, PR China
| | - Ye Fang
- Department of Spinal Bone Disease Surgery, Shaoguan First People's Hospital, Shaoguan 512000, PR China.
| |
Collapse
|
2
|
Feng Y, Gao M, Xu X, Liu H, Lu K, Song Z, Yu J, Liu X, Han X, Li L, Qiu L, Qian Z, Zhou S, Zhang H, Wang X. Elevated serum magnesium levels prompt favourable outcomes in cancer patients treated with immune checkpoint blockers. Eur J Cancer 2024; 213:115069. [PMID: 39489925 DOI: 10.1016/j.ejca.2024.115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Magnesium deficiency influences the activation and cytotoxicity of immune cells. Nevertheless, whether serum magnesium levels influence the clinical outcomes of immune checkpoint blockers (ICBs) treatment still remains ambiguous. There is an urgent need for clinical research to elucidate the relationship between serum magnesium levels and the outcomes of ICB therapy. Such insights could offer new perspectives on immunotherapy for cancer. METHODS A multi-center retrospective study involving in pan-cancer patients treated with ICBs at three large cancer centers from August 2012 to May 2023 was conducted. The primary objective was to assess the correlation between serum magnesium levels and therapeutic response in patients receiving ICBs, and further evaluate the associations between serum magnesium levels and progression-free survival (PFS) and overall survival (OS). RESULTS A total of 1441 patients treated with ICBs, including 1042 with lung cancer, 270 with esophageal cancer, and 129 with Hodgkin lymphoma, were enrolled in this study. We found that patients with elevated serum magnesium levels exhibited a favourable response to ICBs treatment. The optimal cut-off point for serum magnesium level (0.79 mmol/L) was applied for stratifying patients into distinct groups. In the three tumor cohorts, patients in high magnesium level group (Mg2+ ≥ 0.79 mmol/L) had longer PFS and OS than those in low magnesium level group (Mg2+ < 0.79 mmol/L). Univariate and multivariate analyses confirmed that the serum Mg2+ level serves as an independent prognostic factor for cancer patients receiving ICBs therapy. CONCLUSION Our multi-center study demonstrated that among patients receiving ICBs therapy, those with elevated serum magnesium levels exhibit significantly better clinical outcomes than those with low serum magnesium levels. Further prospective validation studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Yingfang Feng
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Meng Gao
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China; The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, China
| | - Xiyue Xu
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hengqi Liu
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Ke Lu
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China; Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Zheng Song
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Jingwei Yu
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Xia Liu
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Xue Han
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Lanfang Li
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Lihua Qiu
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Zhengzi Qian
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Shiyong Zhou
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China
| | - Huilai Zhang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China.
| | - Xianhuo Wang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine / Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin 300060, China.
| |
Collapse
|
3
|
Hussein AA, Ahmed NA, Sakr HI, Atia T, Ahmed OM. Omentin roles in physiology and pathophysiology: an up-to-date comprehensive review. Arch Physiol Biochem 2024; 130:800-813. [PMID: 37994431 DOI: 10.1080/13813455.2023.2283685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Omentin (intelectin) was first detected in the visceral omental adipose tissue. It has mainly two isoforms, omentin-1 and -2, with isoform-1 being the main form in human blood. It possesses insulin-sensitizing, anti-inflammatory, anti-atherogenic, cardio-protective, and oxidative stress-decreasing effects. Omentin's cardiovascular protective actions are caused by the improved endothelial cell survival and function, increased endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) bioavailability, enhanced vascular smooth muscle cells (VSMCs) relaxation with reduced proliferation, decreased inflammation, and suppressed oxidative stress. Omentin may also have a potential role in different cancer types and rheumatic diseases. Thus, omentin is an excellent therapeutic target in many diseases, including diabetes mellitus (DM), metabolic syndrome (MetS), cardiovascular diseases (CVDs), inflammatory diseases, and cancer. This review demonstrates the physiological functions of omentin in ameliorating insulin resistance (IR), vascular function, and inflammation and its possible share in managing obesity-linked diseases, such as metabolic disorders, DM, and cardiovascular conditions.
Collapse
Affiliation(s)
- Aida A Hussein
- Zoology Department, Physiology Division, Faculty of Science, Suez University, Suez, Egypt
| | - Noha A Ahmed
- Department of Zoology, Physiology Division, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Hader I Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Osama M Ahmed
- Department of Zoology, Physiology Division, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
4
|
Zhang X, Tian H, Xie C, Yang Y, Li P, Cheng J. The role and mechanism of vascular wall cell ion channels in vascular fibrosis remodeling. Channels (Austin) 2024; 18:2418128. [PMID: 39425532 PMCID: PMC11492694 DOI: 10.1080/19336950.2024.2418128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Fibrosis is usually the final pathological state of many chronic inflammatory diseases and may lead to organ malfunction. Excessive deposition of extracellular matrix (ECM) molecules is a characteristic of most fibrotic tissues. The blood vessel wall contains three layers of membrane structure, including the intima, which is composed of endothelial cells; the media, which is composed of smooth muscle cells; and the adventitia, which is formed by the interaction of connective tissue and fibroblasts. The occurrence and progression of vascular remodeling are closely associated with cardiovascular diseases, and vascular remodeling can alter the original structure and function of the blood vessel. Dysregulation of the composition of the extracellular matrix in blood vessels leads to the continuous advancement of vascular stiffening and fibrosis. Vascular fibrosis reaction leads to excessive deposition of the extracellular matrix in the vascular adventitia, reduces vessel compliance, and ultimately alters key aspects of vascular biomechanics. The pathogenesis of fibrosis in the vasculature and strategies for its reversal have become interesting and important challenges. Ion channels are widely expressed in the cardiovascular system; they regulate blood pressure, maintain cardiovascular function homeostasis, and play important roles in ion transport, cell differentiation, proliferation. In blood vessels, different types of ion channels in fibroblasts, smooth muscle cells and endothelial cells may be relevant mediators of the development of fibrosis in organs or tissues. This review discusses the known roles of ion channels in vascular fibrosis remodeling and discusses potential therapeutic targets for regulating remodeling and repair after vascular injury.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Hai Tian
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Cheng Xie
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Jun Cheng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Hu F, Lin C. TRPM2 knockdown attenuates myocardial apoptosis and promotes autophagy in HFD/STZ-induced diabetic mice via regulating the MEK/ERK and mTORC1 signaling pathway. Mol Cell Biochem 2024; 479:3307-3328. [PMID: 38308007 PMCID: PMC11511773 DOI: 10.1007/s11010-024-04926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a major complication of diabetes. Transient receptor potential melastatin 2 (TRPM2) activity increases in diabetic oxidative stress state, and it is involved in myocardial damage and repair. We explore the protective effect of TRPM2 knockdown on the progression of DCM. A type 2 diabetes animal model was established in C57BL/6N mice by long-term high-fat diet (HFD) feeding combined with a single injection of 100-mg/kg streptozotocin (STZ). Genetic knockdown of TRPM2 in heart was accomplished by the intravenous injection via the tail vein of adeno-associated virus type 9 carrying TRPM2 shRNA. Neonatal rat ventricular myocytes was exposed to 45 mM of high-glucose (HG) stimulation for 72 h in vitro to mimic the in vivo conditions. Western blot, real-time quantitative PCR (RT-qPCR), immunohistochemistry and fluorescence, electron, CCK-8, and flow cytometry were used to evaluate the phenotype of cardiac inflammation, fibrosis, apoptosis, and autophagy. Mice with HFD/STZ-induced diabetes exhibited systolic and diastolic dysfunction, as demonstrated by increased myocardial apoptosis and autophagy inhibition in the heart. Compared to control group, the protein expression of TRPM2, bax, cleaved caspase-3, and P62 was significantly elevated, and the protein expression of bcl-2 and LC3-II was significantly decreased in the myocardial tissues of the HFD/STZ-induced diabetes group. Knockdown of TRPM2 significantly reversed the HFD/STZ-induced myocardial apoptosis and autophagy inhibition. TRPM2 silencing attenuated HG-induced apoptosis and autophagy inhibition in primary cardiomyocytes via regulating the MEK/ERK mTORC1 signaling pathway. TRPM2 knockdown attenuates hyperglycemia-induced myocardial apoptosis and promotes autophagy in HFD/STZ-induced diabetic mice or HG-stimulated cardiomyocytes via regulating the MEK/ERK and mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Feng Hu
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| | - Chaoyang Lin
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| |
Collapse
|
6
|
Wang X, Chen X, Wang Y, He X, Li L, Wang X, Huang Y, Fan G, Ni J. Astragaloside IV alleviates inflammation and improves myocardial metabolism in heart failure mice with preserved ejection fraction. Front Pharmacol 2024; 15:1467132. [PMID: 39640484 PMCID: PMC11618538 DOI: 10.3389/fphar.2024.1467132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) has grown to become the dominant form of heart failure worldwide. However, no unequivocally effective treatment for HFpEF has been identified in clinical trials. In this study, we report that Astragaloside IV (AS-IV) can be used to treat HFpEF. Methods Mice were fed on a high-fat diet and given 0.5 g/L L-NAME (in drinking water) for 10 weeks to establish the HFpEF model. After 10th weeks, the HFpEF mice were given 10 mg/kg empagliflozin, 10 mg/kg AS-IV, or 20 mg/kg AS-IV for 4 weeks. The echocardiography, blood pressure, hemodynamics, heart failure biomarkers, collagen deposition and fibrosis, histopathology, and inflammation in HFpEF mice were evaluated. Metabolic profiling based on NMR measurements was also performed. Myocardial glucose and fatty acid metabolism were evaluated. Results AS-IV improves cardiac function and myocardial remodeling in HFpEF mice. AS-IV attenuates systemic inflammatory infiltration and myocardial inflammation levels in HFpEF mice by decreasing the expression of plasma inflammatory markers GDF15, CRP, IL1RL1, and MCP-1, NLRP3, IL-1β, Caspase-1, and IL-6 in the myocardium of HFpEF mice. Metabolomic analysis suggested that AS-IV improved cardiac glucose and fatty acid metabolism in HFpEF mice. Further studies showed that AS-IV significantly improved Complex I activity, increased ATP production, and elevated plasma NAD + levels; AS-IV also significantly improved pyruvate dehydrogenase activity and decreased pyruvate and lactate accumulation, thereby improving glucose metabolism in the hearts of HFpEF mice. Conclusion These results provide novel evidence that Astragaloside IV alleviates inflammation and improves myocardial metabolism in HFpEF mice.
Collapse
Affiliation(s)
- Xiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinting Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuting Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyu He
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuting Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Tang Y, Chu C, Bu S, Sun Q, Liu A, Xie J, Qiao S, Huang L, Wang H. Integrated multi-omics profiling landscape of organising pneumonia. Clin Transl Med 2024; 14:e1782. [PMID: 39083563 PMCID: PMC11290555 DOI: 10.1002/ctm2.1782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Organising pneumonia (OP) is one of the most common and lethal diseases in the category of interstitial pneumonia, along with lung cancer. Reprogramming of lipid metabolism is a newly recognized hallmark of many diseases including cancer, cardiovascular disorders, as well as liver fibrosis and sclerosis. Increased levels of ceramides composed of sphingosine and fatty acid, are implicated in the development of both acute and chronic lung diseases. However, their pathophysiological significance in OP is unclear. The aim of this study was to investigate the role of lipid metabolism reprogramming in OP, focusing on inflammation and fibrosis. METHODS Comprehensive multi-omics profiling approaches, including single-cell RNA sequencing, Visium CytAssist spatial transcriptomics, proteomics, metabolomics and mass spectrometry, were employed to analyze the tissues. OP mice model was utilized and molecular mechanisms were investigated in macrophages. RESULTS The results revealed a significant association between OP and lipid metabolism reprogramming, characterized by an abnormal expression of several genes related to lipid metabolism, including CD36, SCD1, and CES1 mainly in macrophages. CD36 deficiency in alveolar macrophages, led to an increased expression of C16/24 ceramides that accumulated in mitochondria, resulting in mitophagy or mitochondrial dysfunction. The number of alveolar macrophages in OP was significantly reduced, which was probably due to the ferroptosis signaling pathway involving GSH/SLC3A2/GPX4 through CD36 downregulation in OP. Furthermore, macrophage secretion of DPP7 and FABP4 influenced epithelial cell fibrosis. CONCLUSIONS CD36 inhibited the ferroptosis pathway involving SLC3A2/GPX4 in alveolar macrophages of OP tissue by regulating lipid metabolism, thus representing a new anti-ferroptosis and anti-fibrosis effect of CD36 mediated, at least in part, by ceramides. HIGHLIGHTS Our findings reveal a significant association between organising pneumonia and lipid metabolism reprogramming and will make a substantial contribution to the understanding of the mechanism of organising pneumonia in patients.
Collapse
Affiliation(s)
- Ying Tang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Cuilin Chu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Siyuan Bu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
- Shaanxi University of Chinese MedicineXianyangChina
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Airan Liu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Sen Qiao
- Assisted Reproduction CenterNorthwest Women's and Children's HospitalXi'anChina
| | - Lingyan Huang
- Department of PathologicalGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Hongmei Wang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
- Shaanxi University of Chinese MedicineXianyangChina
| |
Collapse
|
8
|
Touyz RM, de Baaij JHF, Hoenderop JGJ. Magnesium Disorders. N Engl J Med 2024; 390:1998-2009. [PMID: 38838313 DOI: 10.1056/nejmra1510603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Affiliation(s)
- Rhian M Touyz
- From the Research Institute of McGill University Health Centre, Departments of Medicine and Family Medicine, McGill University, Montreal (R.M.T.); and the Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands (J.H.F.B., J.G.J.H.)
| | - Jeroen H F de Baaij
- From the Research Institute of McGill University Health Centre, Departments of Medicine and Family Medicine, McGill University, Montreal (R.M.T.); and the Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands (J.H.F.B., J.G.J.H.)
| | - Joost G J Hoenderop
- From the Research Institute of McGill University Health Centre, Departments of Medicine and Family Medicine, McGill University, Montreal (R.M.T.); and the Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands (J.H.F.B., J.G.J.H.)
| |
Collapse
|
9
|
Chubanov V, Köttgen M, Touyz RM, Gudermann T. TRPM channels in health and disease. Nat Rev Nephrol 2024; 20:175-187. [PMID: 37853091 DOI: 10.1038/s41581-023-00777-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Different cell channels and transporters tightly regulate cytoplasmic levels and the intraorganelle distribution of cations. Perturbations in these processes lead to human diseases that are frequently associated with kidney impairment. The family of melastatin-related transient receptor potential (TRPM) channels, which has eight members in mammals (TRPM1-TRPM8), includes ion channels that are highly permeable to divalent cations, such as Ca2+, Mg2+ and Zn2+ (TRPM1, TRPM3, TRPM6 and TRPM7), non-selective cation channels (TRPM2 and TRPM8) and monovalent cation-selective channels (TRPM4 and TRPM5). Three family members contain an enzymatic protein moiety: TRPM6 and TRPM7 are fused to α-kinase domains, whereas TRPM2 is linked to an ADP-ribose-binding NUDT9 homology domain. TRPM channels also function as crucial cellular sensors involved in many physiological processes, including mineral homeostasis, blood pressure, cardiac rhythm and immunity, as well as photoreception, taste reception and thermoreception. TRPM channels are abundantly expressed in the kidney. Mutations in TRPM genes cause several inherited human diseases, and preclinical studies in animal models of human disease have highlighted TRPM channels as promising new therapeutic targets. Here, we provide an overview of this rapidly evolving research area and delineate the emerging role of TRPM channels in kidney pathophysiology.
Collapse
Affiliation(s)
- Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| | - Michael Köttgen
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Rhian M Touyz
- Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| |
Collapse
|
10
|
Nie X, Xie R, Fan J, Wang DW. LncRNA MIR217HG aggravates pressure-overload induced cardiac remodeling by activating miR-138/THBS1 pathway. Life Sci 2024; 336:122290. [PMID: 38013141 DOI: 10.1016/j.lfs.2023.122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
AIM Cardiac hypertrophy and fibrosis are associated with cardiac remodeling and heart failure. We have previously shown that miRNA-217, embedded within the third intron of MIR217HG, aggravates pressure overload-induced cardiac hypertrophy by targeting phosphatase and tensin homolog. However, whether the MIR217HG transcript itself plays a role in cardiac remodeling remains unknown. METHODS Real-time PCR assays and RNA in situ hybridization were performed to detect MIR217HG expression. Lentiviruses and adeno-associated viruses with a cardiac-specific promoter (cTnT) were used to control MIR217HG expression in vitro and in vivo. Transverse aortic constriction (TAC) surgery was performed to develop cardiac remodeling models. Cardiac structure and function were analyzed using echocardiography and invasive pressure-volume analysis. KEY FINDINGS MIR217HG expression was increased in patients with heart failure. MIR217HG overexpression aggravated pressure-overload-induced myocyte hypertrophy and fibrosis both in vivo and in vitro, whereas MIR217HG knockdown reversed these phenotypes. Mechanistically, MIR217HG increased THBS1 expression by sponging miR-138. MiR-138 recognized the 3'UTR of THBS1 and repressed THBS1 expression in the absence of MIR217HG. Silencing THBS1 expression reversed MIR217HG-induced cardiac hypertrophy and remodeling. CONCLUSION MIR217HG acts as a potent inducer of cardiac remodeling that may contribute to heart failure by activating the miR-138/THBS1 pathway.
Collapse
Affiliation(s)
- Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Rong Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
11
|
Wu Q, Yao Q, Hu T, Yu J, Jiang K, Wan Y, Tang Q. Dapagliflozin protects against chronic heart failure in mice by inhibiting macrophage-mediated inflammation, independent of SGLT2. Cell Rep Med 2023; 4:101334. [PMID: 38118414 PMCID: PMC10772464 DOI: 10.1016/j.xcrm.2023.101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/06/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
The specific mechanism of sodium-glucose cotransporter 2 (SGLT2) inhibitor in heart failure (HF) needs to be elucidated. In this study, we use SGLT2-global-knockout (KO) mice to assess the mechanism of SGLT2 inhibitor on HF. Dapagliflozin ameliorates both myocardial infarction (MI)- and transverse aortic constriction (TAC)-induced HF. Global SGLT2 deficiency does not exert protection against adverse remodeling in both MI- and TAC-induced HF models. Dapagliflozin blurs MI- and TAC-induced HF phenotypes in SGLT2-KO mice. Dapagliflozin causes major changes in cardiac fibrosis and inflammation. Based on single-cell RNA sequencing, dapagliflozin causes significant differences in the gene expression profile of macrophages and fibroblasts. Moreover, dapagliflozin directly inhibits macrophage inflammation, thereby suppressing cardiac fibroblasts activation. The cardio-protection of dapagliflozin is blurred in mice treated with a C-C chemokine receptor type 2 antagonist. Taken together, the protective effects of dapagliflozin against HF are independent of SGLT2, and macrophage inhibition is the main target of dapagliflozin against HF.
Collapse
Affiliation(s)
- Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, P.R. China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, P.R. China
| | - Tongtong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, P.R. China
| | - Jiabin Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, P.R. China
| | - Kebing Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, P.R. China
| | - Ying Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, P.R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, P.R. China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, P.R. China.
| |
Collapse
|
12
|
Yin S, Zhao Y, Chen F, Zhong Z, Lu Q, Li H, Zhang Y. DNA Sensor-Based Strategy to Visualize the TRPM7 mRNA-Mg 2+ Signaling Pathway in Cancer Cells. Anal Chem 2023; 95:18107-18113. [PMID: 38019640 DOI: 10.1021/acs.analchem.3c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Technological advances and methodological innovations in cell signaling pathway analysis will facilitate progress in understanding biological processes, intervening in diseases, and screening drugs. In this work, an elaborate strategy for visualizing and monitoring the transient receptor potential melastatin 7 (TRPM7)-Mg2+ signaling pathway in living cells was constructed through the logical analysis of upstream mRNA and downstream molecules by two individual DNA sensors. The DNA sensors are constructed by modifying the dye-labeled DNA sequences on the surface of gold nanoparticles. By hybridizing with upstream mRNA, Cy5-modified DNA sensor 1 can detect and silence it simultaneously, outputting a red fluorescence signal. When the upstream mRNA is silenced, the concentration of downstream molecules of Mg2+ will be affected and down-regulated. The FAM-modified DNA sensor 2 detects this change and emits a green fluorescence as a signal. Therefore, the dynamic information on TRPM7 mRNA and the Mg2+-mediated signaling pathway can be successfully obtained by fluorescence imaging methods. Furthermore, the TRPM7 mRNA-Mg2+ signaling pathway also affects cell activity and migratory function through cell scratching and other experiments. More importantly, the proposed sensor also shows potential for screening signaling pathway inhibitors. Our work provides a simple and general strategy for the visualization of signaling pathways, which helps to understand the changes in the physiological activities of cancer cells and the causes of carcinogenesis and is crucial for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Shuhang Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yang Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Feng Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Zijie Zhong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qiujun Lu
- College of Biological and Chemical Engineering, Changsha University, Changsha, Hunan 410022, China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
13
|
Suzuki S, Wakano C, Monteilh-Zoller MK, Cullen AJ, Fleig A, Penner R. Cannabigerolic Acid (CBGA) Inhibits the TRPM7 Ion Channel Through its Kinase Domain. FUNCTION 2023; 5:zqad069. [PMID: 38162115 PMCID: PMC10757070 DOI: 10.1093/function/zqad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Cannabinoids are a major class of compounds produced by the plant Cannabis sativa. Previous work has demonstrated that the main cannabinoids cannabidiol (CBD) and tetrahydrocannabinol (THC) can have some beneficial effects on pain, inflammation, epilepsy, and chemotherapy-induced nausea and vomiting. While CBD and THC represent the two major plant cannabinoids, some hemp varieties with enzymatic deficiencies produce mainly cannabigerolic acid (CBGA). We recently reported that CBGA has a potent inhibitory effect on both Store-Operated Calcium Entry (SOCE) via inhibition of Calcium Release-Activated Calcium (CRAC) channels as well as currents carried by the channel-kinase TRPM7. Importantly, CBGA prevented kidney damage and suppressed mRNA expression of inflammatory cytokines through inhibition of these mechanisms in an acute nephropathic mouse model. In the present study, we investigate the most common major and minor cannabinoids to determine their potential efficacy on TRPM7 channel function. We find that approximately half of the tested cannabinoids suppress TRPM7 currents to some degree, with CBGA having the strongest inhibitory effect on TRPM7. We determined that the CBGA-mediated inhibition of TRPM7 requires a functional kinase domain, is sensitized by both intracellular Mg⋅ATP and free Mg2+ and reduced by increases in intracellular Ca2+. Finally, we demonstrate that CBGA inhibits native TRPM7 channels in a B lymphocyte cell line. In conclusion, we demonstrate that CBGA is the most potent cannabinoid in suppressing TRPM7 activity and possesses therapeutic potential for diseases in which TRPM7 is known to play an important role such as cancer, stroke, and kidney disease.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | - Clay Wakano
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | | | - Aaron J Cullen
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
| | - Andrea Fleig
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
- University of Hawaii Cancer Center, 651 Ilalo St., Honolulu, HI 96813, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI 96813, USA
| | - Reinhold Penner
- Center for Biomedical Research, The Queen’s Medical Center, 1301 Punchbowl St., Honolulu, HI 96813, USA
- University of Hawaii Cancer Center, 651 Ilalo St., Honolulu, HI 96813, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI 96813, USA
| |
Collapse
|
14
|
Rios FJ, Sarafian RD, Camargo LL, Montezano AC, Touyz RM. Recent Advances in Understanding the Mechanistic Role of Transient Receptor Potential Ion Channels in Patients With Hypertension. Can J Cardiol 2023; 39:1859-1873. [PMID: 37865227 DOI: 10.1016/j.cjca.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023] Open
Abstract
The transient receptor potential (TRP) channel superfamily is a group of nonselective cation channels that function as cellular sensors for a wide range of physical, chemical, and environmental stimuli. According to sequence homology, TRP channels are categorized into 6 subfamilies: TRP canonical, TRP vanilloid, TRP melastatin, TRP ankyrin, TRP mucolipin, and TRP polycystin. They are widely expressed in different cell types and tissues and have essential roles in various physiological and pathological processes by regulating the concentration of ions (Ca2+, Mg2+, Na+, and K+) and influencing intracellular signalling pathways. Human data and experimental models indicate the importance of TRP channels in vascular homeostasis and hypertension. Furthermore, TRP channels have emerged as key players in oxidative stress and inflammation, important in the pathophysiology of cardiovascular diseases, including hypertension. In this review, we present an overview of the TRP channels with a focus on their role in hypertension. In particular, we highlight mechanisms activated by TRP channels in vascular smooth muscle and endothelial cells and discuss their contribution to processes underlying vascular dysfunction in hypertension.
Collapse
Affiliation(s)
- Francisco J Rios
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Raquel D Sarafian
- Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo, Brazil
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Wu X, Lv Y, Li Z, Yang Z. Serelaxin Inhibits Lipopolysaccharide-induced Inflammatory Response in Cardiac Fibroblasts by Activating Peroxisome Proliferator-activated Receptor-γ and Suppressing the Nuclear Factor-Kappa B Signaling Pathway. J Cardiovasc Pharmacol 2023; 82:201-211. [PMID: 37418294 PMCID: PMC10473033 DOI: 10.1097/fjc.0000000000001447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023]
Abstract
ABSTRACT Serelaxin (sRLX) has an inhibitory effect on fibrosis. However, whether the antifibrotic effects of sRLX are achieved by inhibiting the inflammatory response has not been clarified. This study aimed to investigate the role of sRLX in lipopolysaccharide (LPS)-induced inflammation in cardiac fibroblasts and elucidate the underlying mechanisms. Cardiac fibroblasts were isolated from adult rat hearts. The effect of sRLX on the inhibition of the inflammatory response after LPS induction was examined. Cell viability was measured by MMT assay. Cell proliferation was determined using the Cell Counting Kit-8. The levels of inflammatory cytokines IL-1β, IL-6, TNF-α, and IL-10 were measured using an enzyme-linked immunosorbent assay. The mRNA levels of α-smooth muscle actin (α-SMA), collagen I/III, MMP-2, MMP-9, IL-1β, IL-6, TNF-α, IL-10, IκBα, p-IκBα, p65 subunit of nuclear factor-kappa B (NF-κB), and peroxisome proliferator-activated receptor-γ (PPAR-γ) were assessed by real-time quantitative PCR. The protein levels of α-SMA, collagen I/III, MMP-2, MMP-9, IκBα, p-IκBα, p65, p-p65, and PPAR-γ were examined by western blotting. sRLX inhibited LPS-induced IL-1β, IL-6, TNF-α, α-SMA, and collagen I/III, and elevated the expression of IL-10, MMP-2, and MMP-9. Moreover, LPS-induced activation of NF-κB pathway was suppressed by sRLX treatment. Further studies showed that sRLX did not significantly increase the expression of PPAR-γ mRNA and protein, but activated PPAR-γ activity, and the PPAR-γ inhibitor GW9662 reversed the inhibitory effect of sRLX on IL-1β, IL-6, and TNF-α production. These results suggest that sRLX alleviates cardiac fibrosis by stimulating PPAR-γ through a ligand-independent mechanism that subsequently abolish the expression of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xueping Wu
- Departments of Anatomy, Histology and Embryology; and
| | - Yehui Lv
- Departments of Anatomy, Histology and Embryology; and
| | - Zhihong Li
- Departments of Anatomy, Histology and Embryology; and
| | - Zhifang Yang
- Physiology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
16
|
Yang L, Yang P, Lip GYH, Ren J. Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends Pharmacol Sci 2023; 44:573-585. [PMID: 37500296 DOI: 10.1016/j.tips.2023.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Copper (Cu) homeostasis is gaining increasing attention in human health as both Cu overload and deficiency evokes pathological changes including cardiovascular diseases (CVDs). Cu supplementation, nanocarriers, and chelators have all exhibited therapeutic promise in some human diseases, although how Cu dyshomeostasis and cuproptosis, a novel form of regulated cell death, contribute to CVD pathology remains elusive. Here, we discuss Cu dyshomeostasis and the potential role of cuproptosis in various CVDs. We evaluate underlying cellular mechanisms, aiming to provide some insights regarding the utility of targeting Cu dyshomeostasis and cuproptosis as a novel strategy in the management of CVDs.
Collapse
Affiliation(s)
- Lifang Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, Shaanxi, China
| | - Pingping Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, Shaanxi, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Deng W, Ren G, Luo J, Gao S, Huang W, Liu W, Ye S. TRPM7 mediates endoplasmic reticulum stress and ferroptosis in sepsis-induced myocardial injury. J Bioenerg Biomembr 2023; 55:207-217. [PMID: 37264258 DOI: 10.1007/s10863-023-09968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel, was significantly upregulated in the blood of patients with sepsis. This study focuses on the preliminary exploration of the probable regulatory mechanism of TRPM7 in sepsis-induced myocardial injury (SIMI). HL-1 cardiac muscle cell line was treated with lipopolysaccharide (LPS) to mimic SIMI in vitro, and TRPM7 level was assessed. The impacts of TRPM7 knockdown on cellular inflammation response, oxidative stress, apoptosis, endoplasmic reticulum (ER) stress, and ferroptosis were identified. In order to explore the mechanism, ER stress agonist tunicamycin (TM) or ferroptosis inducer erastin was applied to treat HL-1 cells. The influences of TM and erastin on the aforementioned aspects were evaluated. TRPM7 was elevated in response to LPS stimulation, and its knockdown reduced the secretion of inflammatory factors and oxidative stress degree. Moreover, TRPM7 knockdown significantly suppressed cell apoptosis, ER stress, and ferroptosis. TM and erastin reversed the functions of TRPM7 knockdown, indicating ER stress and ferroptosis mediated in the regulation of TRPM7. This research proposes the possibility of TRPM7 as a marker or target for SIMI, and provides theoretical support for follow-up research.
Collapse
Affiliation(s)
- Wenlong Deng
- Department of Emergency, SSL Central Hospital of Dongguan City, 1 Xianglong Road, Dongguan, 523326, Guangdong, People's Republic of China
| | - Guobin Ren
- Department of Emergency, SSL Central Hospital of Dongguan City, 1 Xianglong Road, Dongguan, 523326, Guangdong, People's Republic of China
| | - Jiajing Luo
- Department of Emergency, SSL Central Hospital of Dongguan City, 1 Xianglong Road, Dongguan, 523326, Guangdong, People's Republic of China
| | - She Gao
- Department of Emergency, SSL Central Hospital of Dongguan City, 1 Xianglong Road, Dongguan, 523326, Guangdong, People's Republic of China
| | - Weihong Huang
- Department of Emergency, SSL Central Hospital of Dongguan City, 1 Xianglong Road, Dongguan, 523326, Guangdong, People's Republic of China
| | - Weitao Liu
- Department of Emergency, SSL Central Hospital of Dongguan City, 1 Xianglong Road, Dongguan, 523326, Guangdong, People's Republic of China.
| | - Shupei Ye
- Department of Emergency, SSL Central Hospital of Dongguan City, 1 Xianglong Road, Dongguan, 523326, Guangdong, People's Republic of China.
| |
Collapse
|
18
|
Yang X, Cheng K, Wang LY, Jiang JG. The role of endothelial cell in cardiac hypertrophy: Focusing on angiogenesis and intercellular crosstalk. Biomed Pharmacother 2023; 163:114799. [PMID: 37121147 DOI: 10.1016/j.biopha.2023.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
Cardiac hypertrophy is characterized by cardiac structural remodeling, fibrosis, microvascular rarefaction, and chronic inflammation. The heart is structurally organized by different cell types, including cardiomyocytes, fibroblasts, endothelial cells, and immune cells. These cells highly interact with each other by a number of paracrine or autocrine factors. Cell-cell communication is indispensable for cardiac development, but also plays a vital role in regulating cardiac response to damage. Although cardiomyocytes and fibroblasts are deemed as key regulators of hypertrophic stimulation, other cells, including endothelial cells, also exert important effects on cardiac hypertrophy. More particularly, endothelial cells are the most abundant cells in the heart, which make up the basic structure of blood vessels and are widespread around other cells in the heart, implicating the great and inbuilt advantage of intercellular crosstalk. Cardiac microvascular plexuses are essential for transport of liquids, nutrients, molecules and cells within the heart. Meanwhile, endothelial cell-mediated paracrine signals have multiple positive or negative influences on cardiac hypertrophy. However, a comprehensive discussion of these influences and consequences is required. This review aims to summarize the basic function of endothelial cells in angiogenesis, with an emphasis on angiogenic molecules under hypertrophic conditions. The secondary objective of the research is to fully discuss the key molecules involved in the intercellular crosstalk and the endothelial cell-mediated protective or detrimental effects on other cardiac cells. This review provides a more comprehensive understanding of the overall role of endothelial cells in cardiac hypertrophy and guides the therapeutic approaches and drug development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xing Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China
| | - Kun Cheng
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Lu-Yun Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| | - Jian-Gang Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| |
Collapse
|
19
|
Jiménez-Dinamarca I, Prado Y, Tapia P, Gatica S, Alt C, Lin CP, Reyes-Martínez C, Feijóo CG, Aravena C, González-Canacer A, Correa S, Varela D, Cabello-Verrugio C, Simon F. Disseminated intravascular coagulation phenotype is regulated by the TRPM7 channel during sepsis. Biol Res 2023; 56:8. [PMID: 36869357 PMCID: PMC9983216 DOI: 10.1186/s40659-023-00419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Sepsis is an uncontrolled inflammatory response against a systemic infection that results in elevated mortality, mainly induced by bacterial products known as endotoxins, producing endotoxemia. Disseminated intravascular coagulation (DIC) is frequently observed in septic patients and is associated with organ failure and death. Sepsis activates endothelial cells (ECs), promoting a prothrombotic phenotype contributing to DIC. Ion channel-mediated calcium permeability participates in coagulation. The transient reception potential melastatin 7 (TRPM7) non-selective divalent cation channel that also contains an α-kinase domain, which is permeable to divalent cations including Ca2+, regulates endotoxin-stimulated calcium permeability in ECs and is associated with increased mortality in septic patients. However, whether endothelial TRPM7 mediates endotoxemia-induced coagulation is not known. Therefore, our aim was to examine if TRPM7 mediates coagulation during endotoxemia. RESULTS The results showed that TRPM7 regulated endotoxin-induced platelet and neutrophil adhesion to ECs, dependent on the TRPM7 ion channel activity and by the α-kinase function. Endotoxic animals showed that TRPM7 mediated neutrophil rolling on blood vessels and intravascular coagulation. TRPM7 mediated the increased expression of the adhesion proteins, von Willebrand factor (vWF), intercellular adhesion molecule 1 (ICAM-1), and P-selectin, which were also mediated by the TRPM7 α-kinase function. Notably, endotoxin-induced expression of vWF, ICAM-1 and P-selectin were required for endotoxin-induced platelet and neutrophil adhesion to ECs. Endotoxemic rats showed increased endothelial TRPM7 expression associated with a procoagulant phenotype, liver and kidney dysfunction, increased death events and an increased relative risk of death. Interestingly, circulating ECs (CECs) from septic shock patients (SSPs) showed increased TRPM7 expression associated with increased DIC scores and decreased survival times. Additionally, SSPs with a high expression of TRPM7 in CECs showed increased mortality and relative risk of death. Notably, CECs from SSPs showed significant results from the AUROC analyses for predicting mortality in SSPs that were better than the Acute Physiology and Chronic Health Evaluation II (APACHE II) and the Sequential Organ Failure Assessment (SOFA) scores. CONCLUSIONS Our study demonstrates that sepsis-induced DIC is mediated by TRPM7 in ECs. TRPM7 ion channel activity and α-kinase function are required by DIC-mediated sepsis-induced organ dysfunction and its expression are associated with increased mortality during sepsis. TRPM7 appears as a new prognostic biomarker to predict mortality associated to DIC in SSPs, and as a novel target for drug development against DIC during infectious inflammatory diseases.
Collapse
Affiliation(s)
- Ivanka Jiménez-Dinamarca
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile.,Millennium Institute On Immunology and Immunotherapy, Santiago, Chile
| | - Pablo Tapia
- Unidad de Paciente Crítico Adulto, Hospital Clínico La Florida, Santiago, Chile
| | - Sebastian Gatica
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile.,Millennium Institute On Immunology and Immunotherapy, Santiago, Chile
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Cristian Reyes-Martínez
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Carmen G Feijóo
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Cristobal Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Alejandra González-Canacer
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Simón Correa
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Diego Varela
- Programa de Fisiología Y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Millennium Institute On Immunology and Immunotherapy, Santiago, Chile. .,Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile. .,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile. .,Millennium Institute On Immunology and Immunotherapy, Santiago, Chile. .,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
20
|
Pugliese NR, Pellicori P, Filidei F, De Biase N, Maffia P, Guzik TJ, Masi S, Taddei S, Cleland JGF. Inflammatory pathways in heart failure with preserved left ventricular ejection fraction: implications for future interventions. Cardiovasc Res 2023; 118:3536-3555. [PMID: 36004819 PMCID: PMC9897694 DOI: 10.1093/cvr/cvac133] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
Many patients with symptoms and signs of heart failure have a left ventricular ejection fraction ≥50%, termed heart failure with preserved ejection fraction (HFpEF). HFpEF is a heterogeneous syndrome mainly affecting older people who have many other cardiac and non-cardiac conditions that often cast doubt on the origin of symptoms, such as breathlessness, or signs, such as peripheral oedema, rendering them neither sensitive nor specific to the diagnosis of HFpEF. Currently, management of HFpEF is mainly directed at controlling symptoms and treating comorbid conditions such as hypertension, atrial fibrillation, anaemia, and coronary artery disease. HFpEF is also characterized by a persistent increase in inflammatory biomarkers. Inflammation may be a key driver of the development and progression of HFpEF and many of its associated comorbidities. Detailed characterization of specific inflammatory pathways may provide insights into the pathophysiology of HFpEF and guide its future management. There is growing interest in novel therapies specifically designed to target deregulated inflammation in many therapeutic areas, including cardiovascular disease. However, large-scale clinical trials investigating the effectiveness of anti-inflammatory treatments in HFpEF are still lacking. In this manuscript, we review the role of inflammation in HFpEF and the possible implications for future trials.
Collapse
Affiliation(s)
| | - Pierpaolo Pellicori
- Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, Glasgow G12 8QQ, UK
| | - Francesco Filidei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Nicolò De Biase
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples 80138, Italy
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Internal and Agricultural Medicine, Jagiellonian University, Collegium Medicum, Krakow 31-008, Poland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - John G F Cleland
- Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
21
|
Liu Q, Li S, Qiu Y, Zhang J, Rios FJ, Zou Z, Touyz RM. Cardiovascular toxicity of tyrosine kinase inhibitors during cancer treatment: Potential involvement of TRPM7. Front Cardiovasc Med 2023; 10:1002438. [PMID: 36818331 PMCID: PMC9936099 DOI: 10.3389/fcvm.2023.1002438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are a class of membrane spanning cell-surface receptors that transmit extracellular signals through the membrane to trigger diverse intracellular signaling through tyrosine kinases (TKs), and play important role in cancer development. Therapeutic approaches targeting RTKs such as vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor (PDGFR), and TKs, such as c-Src, ABL, JAK, are widely used to treat human cancers. Despite favorable benefits in cancer treatment that prolong survival, these tyrosine kinase inhibitors (TKIs) and monoclonal antibodies targeting RTKs are also accompanied by adverse effects, including cardiovascular toxicity. Mechanisms underlying TKI-induced cardiovascular toxicity remain unclear. The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme consisting of a membrane-based ion channel and intracellular α-kinase. TRPM7 is a cation channel that regulates transmembrane Mg2+ and Ca2+ and is involved in a variety of (patho)physiological processes in the cardiovascular system, contributing to hypertension, cardiac fibrosis, inflammation, and atrial arrhythmias. Of importance, we and others demonstrated significant cross-talk between TRPM7, RTKs, and TK signaling in different cell types including vascular smooth muscle cells (VSMCs), which might be a link between TKIs and their cardiovascular effects. In this review, we summarize the implications of RTK inhibitors (RTKIs) and TKIs in cardiovascular toxicities during anti-cancer treatment, with a focus on the potential role of TRPM7/Mg2+ as a mediator of RTKI/TKI-induced cardiovascular toxicity. We also describe the important role of TRPM7 in cancer development and cardiovascular diseases, and the interaction between TRPM7 and RTKs, providing insights for possible mechanisms underlying cardiovascular disease in cancer patients treated with RTKI/TKIs.
Collapse
Affiliation(s)
- Qing Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suyao Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuran Qiu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayu Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Francisco J. Rios
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Zhiguo Zou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Zhiguo Zou ✉
| | - Rhian M. Touyz
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada,*Correspondence: Rhian M. Touyz ✉
| |
Collapse
|
22
|
Mirbod SM, Khanahmad H, Amerizadeh A, Amirpour A, Mirbod SM, Zaker E. Viewpoints on the Role of Transient Receptor Potential Melastatin Channels in Cardiovascular System and Disease: A Systematic Review. Curr Probl Cardiol 2023; 48:101012. [PMID: 34644560 DOI: 10.1016/j.cpcardiol.2021.101012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/04/2023]
Abstract
Transient receptor potential (TRP) family play critical roles in cardiovascular system. TRPM family as largest TRP subfamily is non-voltage Ca2+-activated selective channels which has 8 members. This study aimed to discuss the role of TRPM family in cardiovascular system and diseases. Systematic search was performed covering PubMed, ISI Web of Science, and Google Scholar from inception until June 2021 using related keywords and Mesh terms for English studies with human, animal and in-vitro subjects. Finally 10 studies were selected for data extraction. Reviewing the articles showed that TRPM2, TRPM4, TRPM5, TRPM6 and TRPM7 play important roles in cardiovascular system and diseases. TRPM2 could be activated by reactive oxygen species (ROS) and effects on cardiac injury and cardiac fibrosis. TRPM7 and TRPM6 also have been reported to be associated with cardiac fibrosis and atrial fibrosis development respectively. TRPM4 channels contributed to resting membrane potential of cerebral artery smooth muscle cells and atrial contraction. TRPM5 channels are bitter taste sensors and prevent high salt intake and consequently high blood pressure due to the high salt intake. In conclusion based on the proof of the effectiveness of some members of TRPM family in the cardiovascular system, research on other members of this channel group seems to be useful and necessary to find their possible connection to the cardiovascular system.
Collapse
Affiliation(s)
| | - Hossein Khanahmad
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Amerizadeh
- Department of Cardiology, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Department of Physiology, Cardiovascular Research Institute, Isfahan University of Medical sciences, Isfahan, Iran
| | - Afshin Amirpour
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Mojgan Mirbod
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Zaker
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Adipose-specific deletion of the cation channel TRPM7 inhibits TAK1 kinase-dependent inflammation and obesity in male mice. Nat Commun 2023; 14:491. [PMID: 36717580 PMCID: PMC9887063 DOI: 10.1038/s41467-023-36154-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Chronic inflammation of white adipose tissue is a key link between obesity and the associated metabolic syndrome. Transient receptor potential melastatin-like 7 (TRPM7) is known to be related to inflammation; however, the role of TRPM7 in adipocyte phenotype and function in obesity remains unclear. Here, we observe that the activation of adipocyte TRPM7 plays an essential role in pro-inflammatory responses. Adult male mice are used in our experiments. Adipocyte-specific deficiency in TRPM7 attenuates the pro-inflammatory phenotype, improves glucose homeostasis, and suppresses weight gain in mice fed a high-fat diet. Mechanistically, the pro-inflammatory effect of TRPM7 is dependent on Ca2+ signaling. Ca2+ influx initiated by TRPM7 enhances transforming growth factor-β activated kinase 1 activation via the co-regulation of calcium/calmodulin-dependent protein kinase II and tumor necrosis factor receptor-associated factor 6, leading to exacerbated nuclear factor kappa B signaling. Additionally, obese mice treated with TRPM7 inhibitor are protected against obesity and insulin resistance. Our results demonstrate TRPM7 as a factor in the development of adipose inflammation that regulates insulin sensitivity in obesity.
Collapse
|
24
|
Yamanaka T, Ueki T, Mase M, Inoue K. Arbitrary Ca 2+ regulation for endothelial nitric oxide, NFAT and NF-κB activities by an optogenetic approach. Front Pharmacol 2023; 13:1076116. [PMID: 36703743 PMCID: PMC9871596 DOI: 10.3389/fphar.2022.1076116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Modern western dietary habits and low physical activity cause metabolic abnormalities and abnormally elevated levels of metabolites such as low-density lipoprotein, which can lead to immune cell activation, and inflammatory reactions, and atherosclerosis. Appropriate stimulation of vascular endothelial cells can confer protective responses against inflammatory reactions and atherosclerotic conditions. This study aims to determine whether a designed optogenetic approach is capable of affecting functional changes in vascular endothelial cells and to evaluate its potential for therapeutic regulation of vascular inflammatory responses in vitro. We employed a genetically engineered, blue light-activated Ca2+ channel switch molecule that utilizes an endogenous store-operated calcium entry system and induces intracellular Ca2+ influx through blue light irradiation and observed an increase in intracellular Ca2+ in vascular endothelial cells. Ca2+-dependent activation of the nuclear factor of activated T cells and nitric oxide production were also detected. Microarray analysis of Ca2+-induced changes in vascular endothelial cells explored several genes involved in cellular contractility and inflammatory responses. Indeed, there was an increase in the gene expression of molecules related to anti-inflammatory and vasorelaxant effects. Thus, a combination of human blue light-activated Ca2+ channel switch 2 (hBACCS2) and blue light possibly attenuates TNFα-induced inflammatory NF-κB activity. We propose that extrinsic cellular Ca2+ regulation could be a novel approach against vascular inflammation.
Collapse
Affiliation(s)
- Tomoyasu Yamanaka
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,*Correspondence: Koichi Inoue,
| |
Collapse
|
25
|
Humeres C, Venugopal H, Frangogiannis NG. The Role of Mechanosensitive Signaling Cascades in Repair and Fibrotic Remodeling of the Infarcted Heart. CARDIAC AND VASCULAR BIOLOGY 2023:61-100. [DOI: 10.1007/978-3-031-23965-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Xing C, Bao L, Li W, Fan H. Progress on role of ion channels of cardiac fibroblasts in fibrosis. Front Physiol 2023; 14:1138306. [PMID: 36969589 PMCID: PMC10033868 DOI: 10.3389/fphys.2023.1138306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac fibrosis is defined as excessive deposition of extracellular matrix (ECM) in pathological conditions. Cardiac fibroblasts (CFs) activated by injury or inflammation differentiate into myofibroblasts (MFs) with secretory and contractile functions. In the fibrotic heart, MFs produce ECM which is composed mainly of collagen and is initially involved in maintaining tissue integrity. However, persistent fibrosis disrupts the coordination of excitatory contractile coupling, leading to systolic and diastolic dysfunction, and ultimately heart failure. Numerous studies have demonstrated that both voltage- and non-voltage-gated ion channels alter intracellular ion levels and cellular activity, contributing to myofibroblast proliferation, contraction, and secretory function. However, an effective treatment strategy for myocardial fibrosis has not been established. Therefore, this review describes the progress made in research related to transient receptor potential (TRP) channels, Piezo1, Ca2+ release-activated Ca2+ (CRAC) channels, voltage-gated Ca2+ channels (VGCCs), sodium channels, and potassium channels in myocardial fibroblasts with the aim of providing new ideas for treating myocardial fibrosis.
Collapse
|
27
|
Xu X, Deng R, Zou L, Pan X, Sheng Z, Xu D, Gan T. Sevoflurane participates in the protection of rat renal ischemia-reperfusion injury by down-regulating the expression of TRPM7. Immun Inflamm Dis 2023; 11:e753. [PMID: 36705408 PMCID: PMC9803933 DOI: 10.1002/iid3.753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION To investigate the protective effect of sevoflurane preconditioning on renal ischemia-reperfusion injury (renalischemiareperfusionmodel, RIRI) and its related mechanism. METHODS Eighty healthy adult male SD rats were randomly divided into control group (Sham group), model group (RIRI group), sevoflurane pretreatment group (Sev group) and TRPM7 inhibitor combined with sevoflurane pretreatment group (T + Sev group), 20 animals in each group. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of renal tissue, and the levels of creatinine and urea nitrogen in each group were detected. Deoxyribonucleic acid terminal transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect renal cell apoptosis, and Western blottingwas used to detect the expression of apoptotic proteins cleaved-caspase-3, bax, Bcl-2, and TRPM7 in renal tissue; Detection of oxidative stress-related index levels in renal tissue and levels of inflammatory factors in renal tissue and serum. RESULTS Compared with the Sham group, the renal tissue pathological damage was aggravated, the levels of creatinine and blood urea nitrogen were increased, and the apoptosis was increased in the RIR group and the Sev group. Death, malondialdehyde (MDA) levels and inflammatory factors were increased, and superoxide dismutase (SOD) levels were decreased (all p < .05); The scores, apoptosis rate, MDA level, and relative expression of inflammatory factor levels were decreased, and SOD levels were increased (all p < .05). Compared with the Sev group, the renal tissue pathological damage in the T + Sev group was aggravated, creatinine, blood urea nitrogen levels increased, apoptosis increased, apoptosis-related proteins cleaved-caspase-3, bax, Bcl-2 showed increased apoptosis, malondialdehyde (MDA) levels, inflammatory factor levels increased, ultrahigh The levels of oxide dismutase (SOD) were decreased (all p < .05). CONCLUSIONS Therefore, we believe that sevoflurane is involved in the protection of rat renal ischemia-reperfusion injury by downregulating the expression of TRPM7.
Collapse
Affiliation(s)
- Xudong Xu
- Department of AnesthesiologyChangzhou Hospital of Traditional Chinese MedicineChangzhouJiangsuChina
| | - Rongrong Deng
- Department of AnesthesiologyChangzhou Hospital of Traditional Chinese MedicineChangzhouJiangsuChina
| | - Lu Zou
- Department of AnesthesiologyChangzhou Hospital of Traditional Chinese MedicineChangzhouJiangsuChina
| | - Xiaoyan Pan
- Department of AnesthesiologyChangzhou Hospital of Traditional Chinese MedicineChangzhouJiangsuChina
| | - Zhifeng Sheng
- Department of AnesthesiologyChangzhou Hospital of Traditional Chinese MedicineChangzhouJiangsuChina
| | - Da Xu
- Department of AnesthesiologyChangzhou Hospital of Traditional Chinese MedicineChangzhouJiangsuChina
| | - Tingting Gan
- Department of AnesthesiologyChangzhou Hospital of Traditional Chinese MedicineChangzhouJiangsuChina
| |
Collapse
|
28
|
Oost LJ, Tack CJ, de Baaij JHF. Hypomagnesemia and Cardiovascular Risk in Type 2 Diabetes. Endocr Rev 2022; 44:357-378. [PMID: 36346820 PMCID: PMC10166267 DOI: 10.1210/endrev/bnac028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Hypomagnesemia is tenfold more common in individuals with type 2 diabetes (T2D), compared to the healthy population. Factors that are involved in this high prevalence are low Mg2+ intake, gut microbiome composition, medication use and presumably genetics. Hypomagnesemia is associated with insulin resistance, which subsequently increases the risk to develop T2D or deteriorates glycaemic control in existing diabetes. Mg2+ supplementation decreases T2D associated features like dyslipidaemia and inflammation; which are important risk factors for cardiovascular disease (CVD). Epidemiological studies have shown an inverse association between serum Mg2+ and the risk to develop heart failure (HF), atrial fibrillation (AF) and microvascular disease in T2D. The potential protective effect of Mg2+ on HF and AF may be explained by reduced oxidative stress, fibrosis and electrical remodeling in the heart. In microvascular disease, Mg2+ reduces the detrimental effects of hyperglycemia and improves endothelial dysfunction. Though, clinical studies assessing the effect of long-term Mg2+ supplementation on CVD incidents are lacking and gaps remain on how Mg2+ may reduce CVD risk in T2D. Despite the high prevalence of hypomagnesemia in people with T2D, routine screening of Mg2+ deficiency to provide Mg2+ supplementation when needed is not implemented in clinical care as sufficient clinical evidence is lacking. In conclusion, hypomagnesemia is common in people with T2D and is both involved as cause, probably through molecular mechanisms leading to insulin resistance, and consequence and is prospectively associated with development of HF, AF and microvascular complications. Whether long-term supplementation of Mg2+ is beneficial, however, remains to be determined.
Collapse
Affiliation(s)
- Lynette J Oost
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Gwanyanya A, Mubagwa K. Emerging role of transient receptor potential (TRP) ion channels in cardiac fibroblast pathophysiology. Front Physiol 2022; 13:968393. [PMID: 36277180 PMCID: PMC9583832 DOI: 10.3389/fphys.2022.968393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibroblasts make up a major proportion of non-excitable cells in the heart and contribute to the cardiac structural integrity and maintenance of the extracellular matrix. During myocardial injury, fibroblasts can be activated to trans-differentiate into myofibroblasts, which secrete extracellular matrix components as part of healing, but may also induce cardiac fibrosis and pathological cardiac structural and electrical remodeling. The mechanisms regulating such cellular processes still require clarification, but the identification of transient receptor potential (TRP) channels in cardiac fibroblasts could provide further insights into the fibroblast-related pathophysiology. TRP proteins belong to a diverse superfamily, with subgroups such as the canonical (TRPC), vanilloid (TRPV), melastatin (TRPM), ankyrin (TRPA), polycystin (TRPP), and mucolipin (TRPML). Several TRP proteins form non-selective channels that are permeable to cations like Na+ and Ca2+ and are activated by various chemical and physical stimuli. This review highlights the role of TRP channels in cardiac fibroblasts and the possible underlying signaling mechanisms. Changes in the expression or activity of TRPs such as TRPCs, TRPVs, TRPMs, and TRPA channels modulate cardiac fibroblasts and myofibroblasts, especially under pathological conditions. Such TRPs contribute to cardiac fibroblast proliferation and differentiation as well as to disease conditions such as cardiac fibrosis, atrial fibrillation, and fibroblast metal toxicity. Thus, TRP channels in fibroblasts represent potential drug targets in cardiac disease.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Asfree Gwanyanya,
| | - Kanigula Mubagwa
- Department of Cardiovascular Sciences, K U Leuven, Leuven, Belgium
- Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, Democratic Republic of Congo
| |
Collapse
|
30
|
Lin J, Liu C, Xu J, Li S, Dai D, Zhang L, Yonghui P. Circ_0021155 can participate in the phenotypic transformation of human vascular smooth muscle cells via the miR-4459/TRPM7 axis. Biochem Biophys Res Commun 2022; 630:133-142. [PMID: 36155059 DOI: 10.1016/j.bbrc.2022.08.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
The phenotypic transformation of vascular smooth muscle cells (VSMCs) plays a key role in the pathological process of atherosclerosis (AS), and TRPM7 is involved in this process. In this study, we verified whether circRNAs participate in the phenotypic transformation of VSMCs by regulating TRPM7 in AS. The RNA-sequencing data of atherosclerosis were downloaded and analysed from the GEO database. Only hsa_circ_0021155 related to TRPM7 was differentially expressed in AS. circRNA distribution and expression were observed via FISH and PCR. CCK8, scratch test and Transwell assay were used to observe the proliferation and migration of cells. Western blot was performed to examine changes in α-actin, calponin, SMMHC and TRPM7 proteins. The expression of hsa_circ_0021155 against has-miR-4459/miR-3689c was verified via PCR. The ceRNA relationship of TPRM7-miR4459-circ0021155 was verified via dual luciferase assay, and the effects of miR4459 mimic/inhibitor on the proliferation of cells were further observed. The expression of hsa_circ_0021155 and OX-LDL was increased in VSMCs. hsa_circ_0021155 promoted the expression of TRPM7 and inhibited the protein expression of α-actin, calponin and SMMHC. In addition, it promoted the proliferation and migration of cells and inhibited the expression of miR-3689c and miR-4459 but did not affect miR-4756-5p. The dual luciferase assay showed that circ0021155-miR4459-TRPM7 mRNA was highly compatible and could be mutually regulated by a ceRNA network. In conclusion, hsa_circ_0021155 regulates the proliferation, migration and phenotype transformation of VSMCs induced by OX-LDL via the miR-4459/TRPM7 axis. hsa_circ_0021155 and TRPM7 may offer novel therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- Jinghan Lin
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No.23 Postal Street, Nangang District, Harbin, China.
| | - Chang Liu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No.23 Postal Street, Nangang District, Harbin, China.
| | - Jing Xu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No.23 Postal Street, Nangang District, Harbin, China.
| | - Shuang Li
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No.23 Postal Street, Nangang District, Harbin, China.
| | - Dawei Dai
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No.23 Postal Street, Nangang District, Harbin, China.
| | - Liming Zhang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No.23 Postal Street, Nangang District, Harbin, China.
| | - Pan Yonghui
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No.23 Postal Street, Nangang District, Harbin, China.
| |
Collapse
|
31
|
Gao X, Kuo CW, Main A, Brown E, Rios FJ, Camargo LDL, Mary S, Wypijewski K, Gök C, Touyz RM, Fuller W. Palmitoylation regulates cellular distribution of and transmembrane Ca flux through TrpM7. Cell Calcium 2022; 106:102639. [PMID: 36027648 DOI: 10.1016/j.ceca.2022.102639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022]
Abstract
The bifunctional cation channel/kinase TrpM7 is ubiquitously expressed and regulates embryonic development and pathogenesis of several common diseases. The TrpM7 integral membrane ion channel domain regulates transmembrane movement of divalent cations, and its kinase domain controls gene expression via histone phosphorylation. Mechanisms regulating TrpM7 are elusive. It exists in two populations in the cell: at the cell surface where it controls divalent cation fluxes, and in intracellular vesicles where it controls zinc uptake and release. Here we report that TrpM7 is palmitoylated at a cluster of cysteines at the C terminal end of its Trp domain. Palmitoylation controls the exit of TrpM7 from the endoplasmic reticulum and the distribution of TrpM7 between cell surface and intracellular pools. Using the Retention Using Selective Hooks (RUSH) system, we demonstrate that palmitoylated TrpM7 traffics from the Golgi to the surface membrane whereas non-palmitoylated TrpM7 is sequestered in intracellular vesicles. We identify the Golgi-resident enzyme zDHHC17 and surface membrane-resident enzyme zDHHC5 as responsible for palmitoylating TrpM7 and find that TrpM7-mediated transmembrane calcium uptake is significantly reduced when TrpM7 is not palmitoylated. The closely related channel/kinase TrpM6 is also palmitoylated on the C terminal side of its Trp domain. Our findings demonstrate that palmitoylation controls ion channel activity of TrpM7 and that TrpM7 trafficking is dependant on its palmitoylation. We define a new mechanism for post translational modification and regulation of TrpM7 and other Trps.
Collapse
Affiliation(s)
- Xing Gao
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Chien-Wen Kuo
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Alice Main
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Elaine Brown
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Francisco J Rios
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Livia De Lucca Camargo
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Sheon Mary
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Krzysztof Wypijewski
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Caglar Gök
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rhian M Touyz
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - William Fuller
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| |
Collapse
|
32
|
Touyz RM. TRPV4 Channel-Regulated Microdomains Define a New Paradigm in Hypertension. Circulation 2022; 146:565-568. [PMID: 35969652 DOI: 10.1161/circulationaha.122.060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rhian M Touyz
- Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Hiraishi K, Kurahara LH, Ishikawa K, Go T, Yokota N, Hu Y, Fujita T, Inoue R, Hirano K. Potential of the TRPM7 channel as a novel therapeutic target for pulmonary arterial hypertension. J Smooth Muscle Res 2022; 58:50-62. [PMID: 35944979 PMCID: PMC9364263 DOI: 10.1540/jsmr.58.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an intractable vascular disease characterized by
a progressive increase in pulmonary vascular resistance caused by pulmonary vascular
remodeling, which ultimately leads to right-sided heart failure. PAH remains incurable,
despite the development of PAH-targeted therapeutics centered on pulmonary artery
relaxants. It is necessary to identify the target molecules that contribute to pulmonary
artery remodeling. Transient receptor potential (TRP) channels have been suggested to
modulate pulmonary artery remodeling. Our study focused on the transient receptor
potential ion channel subfamily M, member 7, or the TRPM7 channel, which modulates
endothelial-to-mesenchymal transition and smooth muscle proliferation in the pulmonary
artery. In this review, we summarize the role and expression profile of TRPM7 channels in
PAH progression and discuss TRPM7 channels as possible therapeutic targets. In addition,
we discuss the therapeutic effect of a Chinese herbal medicine, Ophiocordyceps
sinensis (OCS), on PAH progression, which partly involves TRPM7 inhibition.
Collapse
Affiliation(s)
- Keizo Hiraishi
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.,Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Kaori Ishikawa
- Department of General Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tetsuhiko Go
- Department of General Thoracic Surgery, Faculty of Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Naoya Yokota
- Department of General Thoracic Surgery, Faculty of Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yaopeng Hu
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Takayuki Fujita
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Ryuji Inoue
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
34
|
Long M, Zhu X, Wei X, Zhao D, Jiang L, Li C, Jin D, Miao C, Du Y. Magnesium in renal fibrosis. Int Urol Nephrol 2022; 54:1881-1889. [PMID: 35060008 DOI: 10.1007/s11255-022-03118-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Renal fibrosis (RF) is the main pathological feature of chronic kidney disease (CKD). The main focus of research on treatment for CKD is to develop strategies that delay or prevent RF from progressing to end-stage renal disease (ESRD). Inflammation and oxidative stress occur during all stages of CKD. The magnesium cation (Mg2+) can reduce inflammation and oxidative stress, regulate apoptosis, and improve RF, and magnesium-based therapies are promising new treatments that can prevent RF. We reviewed the current evidence on the effects of magnesium in RF and examined the possible mechanism of magnesium in delaying RF. METHODS We searched PubMed, Web of Science, and EMBASE for articles on magnesium and fibrosis, with a focus on magnesium and RF. RESULTS Inflammation, oxidative stress, and apoptosis are related to the occurrence of CKD. Previous research showed that Mg2+ inhibits the differentiation of inflammatory cells, down-regulates the production of inflammatory cytokines, reduces inflammation, and reduces the production of reactive oxygen species (ROS) and oxidative stress. In addition, Mg2+ also regulates apoptosis and protects renal tubular function. Magnesium may also regulate TRPM6/7, promote the secretion of klotho protein and improve renal fibrosis. Therefore, Mg2+ can protect the kidney from damage and slow down the progression of RF through many molecular and cellular effects. Some of the anti-fibrotic effects of Mg2+ may be related to its antagonism of intracellular Ca2+. CONCLUSION Magnesium may prevent the progression of renal fibrosis and delay CKD by reducing renal inflammation and oxidative stress, and by regulating fibrosis-related signaling pathways and cytokines.
Collapse
Affiliation(s)
- Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Dan Zhao
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Lili Jiang
- Physical Examination Center, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Chenhao Li
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Die Jin
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Changxiu Miao
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
35
|
An L, Li J, Liu B, Hui J, Zhang Q, Zhang X, Wang Q. Knockdown of TRPM7 attenuates apoptosis and inflammation in neonatal necrotizing enterocolitis model cell IEC-6 via modulating TLR4/NF-κB and MEK/ERK pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:947-953. [PMID: 36159330 PMCID: PMC9464344 DOI: 10.22038/ijbms.2022.62113.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Neonatal necrotizing enterocolitis (NEC) is the most common gastrointestinal critical illness in neonatal infants. TRPM7 reportedly plays a role in human inflammatory bowel disease (IBD) and colorectal cancer, but the role of TRPM7 in the pathogenesis of NEC remains vague. MATERIALS AND METHODS The expression of TRPM7 was determined in intestinal tissues of NEC patients and lipopolysaccharide (LPS)-induced IEC-6 cells. Subsequently, a loss-of-function assay was performed to assess the effects of TRPM7 on cell apoptosis and inflammatory response in IEC-6 cells after LPS induction. Furthermore, the modulation of TRPM7 on TLR4/NF-κB and MEK/ERK signaling pathways was validated. RESULTS The expression of TRPM7 was higher in the intestinal tissues of NEC patients compared with the normal human intestinal tissues. Moreover, the expression level of TRPM7 was elevated in LPS stimulation IEC-6 cells. Knockdown of TRPM7 enhanced cell viability and suppressed apoptosis, accompanied by the decreased Bax/Bcl-1 ratio and cleaved-caspase3 expression in LPS-induced IEC-6 cells. Additionally, TRPM7 silencing attenuated LPS-induced expressions and secretions of proinflammatory cytokines. Mechanistically, TRPM7 knockdown inhibited the TLR4/NF-κB activation, while enhancing the MEK/ERK activation in LPS-treated IEC-6 cells. Overexpression of TLR4 or inhibition of MEK attenuated the inhibitory effects of TRPM7 knockdown on LPS-induced apoptosis and inflammation in IEC-6 cells. CONCLUSION Knockdown of TRPM7 attenuated LPS-induced IEC-6 cell apoptosis and inflammation by modulating TLR4/NF-κB and MEK/ERK pathways.
Collapse
Affiliation(s)
- Lu An
- Department of Pathology, Xi’an Children’s Hospital, Xi’an 710003, Shaanxi Province, China
| | - Juan Li
- Department of Pathology, Xi’an Children’s Hospital, Xi’an 710003, Shaanxi Province, China
| | - Bing Liu
- Department of Pathology, Xi’an Children’s Hospital, Xi’an 710003, Shaanxi Province, China
| | - Junpeng Hui
- Department of Pathology, Xi’an Children’s Hospital, Xi’an 710003, Shaanxi Province, China
| | - Qiang Zhang
- Department of Pathology, Xi’an Children’s Hospital, Xi’an 710003, Shaanxi Province, China
| | - Xin Zhang
- Department of Pathology, Xi’an Children’s Hospital, Xi’an 710003, Shaanxi Province, China
| | - Qi Wang
- Department of Neonatal Surgery, Xi’an Children’s Hospital, Xi’an 710003, Shaanxi Province, China,Corresponding author: Qi Wang. Department of Neonatal Surgery, Xi’an Children’s Hospital, No. 69, Xijuyuan Lane, Lianhu District, Xi’an 710003, Shaanxi Province, China.
| |
Collapse
|
36
|
TRPM7 deficiency exacerbates cardiovascular and renal damage induced by aldosterone-salt. Commun Biol 2022; 5:746. [PMID: 35882956 PMCID: PMC9325869 DOI: 10.1038/s42003-022-03715-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Hyperaldosteronism causes cardiovascular disease as well as hypomagnesemia. Mechanisms are ill-defined but dysregulation of TRPM7, a Mg2+-permeable channel/α-kinase, may be important. We examined the role of TRPM7 in aldosterone-dependent cardiovascular and renal injury by studying aldosterone-salt treated TRPM7-deficient (TRPM7+/Δkinase) mice. Plasma/tissue [Mg2+] and TRPM7 phosphorylation were reduced in vehicle-treated TRPM7+/Δkinase mice, effects recapitulated in aldosterone-salt-treated wild-type mice. Aldosterone-salt treatment exaggerated vascular dysfunction and amplified cardiovascular and renal fibrosis, with associated increased blood pressure in TRPM7+/Δkinase mice. Tissue expression of Mg2+-regulated phosphatases (PPM1A, PTEN) was downregulated and phosphorylation of Smad3, ERK1/2, and Stat1 was upregulated in aldosterone-salt TRPM7-deficient mice. Aldosterone-induced phosphorylation of pro-fibrotic signaling was increased in TRPM7+/Δkinase fibroblasts, effects ameliorated by Mg2+ supplementation. TRPM7 deficiency amplifies aldosterone-salt-induced cardiovascular remodeling and damage. We identify TRPM7 downregulation and associated hypomagnesemia as putative molecular mechanisms underlying deleterious cardiovascular and renal effects of hyperaldosteronism. Deficiency of the Mg2+-permeable channel/α-kinase TRPM7 in mice increases susceptibility to cardiovascular and renal fibrosis induced by aldosterone and salt.
Collapse
|
37
|
Zeitlmayr S, Zierler S, Staab-Weijnitz CA, Dietrich A, Geiger F, Horgen FD, Gudermann T, Breit A. TRPM7 restrains plasmin activity and promotes transforming growth factor-β1 signaling in primary human lung fibroblasts. Arch Toxicol 2022; 96:2767-2783. [PMID: 35864199 PMCID: PMC9302958 DOI: 10.1007/s00204-022-03342-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Sustained exposure of the lung to various environmental or occupational toxins may eventually lead to pulmonary fibrosis, a devastating disease with no cure. Pulmonary fibrosis is characterized by excessive deposition of extracellular matrix (ECM) proteins such as fibronectin and collagens. The peptidase plasmin degrades the ECM, but protein levels of the plasmin activator inhibitor-1 (PAI-1) are increased in fibrotic lung tissue, thereby dampening plasmin activity. Transforming growth factor-β1 (TGF-β1)-induced activation of SMAD transcription factors promotes ECM deposition by enhancing collagen, fibronectin and PAI-1 levels in pulmonary fibroblasts. Hence, counteracting TGF-β1-induced signaling is a promising approach for the therapy of pulmonary fibrosis. Transient receptor potential cation channel subfamily M Member 7 (TRPM7) supports TGF-β1-promoted SMAD signaling in T-lymphocytes and the progression of fibrosis in kidney and heart. Thus, we investigated possible effects of TRPM7 on plasmin activity, ECM levels and TGF-β1 signaling in primary human pulmonary fibroblasts (pHPF). We found that two structurally unrelated TRPM7 blockers enhanced plasmin activity and reduced fibronectin or PAI-1 protein levels in pHPF under basal conditions. Further, TRPM7 blockade strongly inhibited fibronectin and collagen deposition induced by sustained TGF-β1 stimulation. In line with these data, inhibition of TRPM7 activity diminished TGF-β1-triggered phosphorylation of SMAD-2, SMAD-3/4-dependent reporter activation and PAI-1 mRNA levels. Overall, we uncover TRPM7 as a novel supporter of TGF-β1 signaling in pHPF and propose TRPM7 blockers as new candidates to control excessive ECM levels under pathophysiological conditions conducive to pulmonary fibrosis.
Collapse
Affiliation(s)
- Sarah Zeitlmayr
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany.,Faculty of Medicine, Johannes Kepler University, Life Science Park, Huemerstraße 3-5, 4020, Linz, Austria
| | - Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Zentrum München GmbH, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Fabienne Geiger
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, LMU Munich, Goethestrasse 33, 80336, Munich, Germany.
| |
Collapse
|
38
|
Franken GAC, Huynen MA, Martínez-Cruz LA, Bindels RJM, de Baaij JHF. Structural and functional comparison of magnesium transporters throughout evolution. Cell Mol Life Sci 2022; 79:418. [PMID: 35819535 PMCID: PMC9276622 DOI: 10.1007/s00018-022-04442-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022]
Abstract
Magnesium (Mg2+) is the most prevalent divalent intracellular cation. As co-factor in many enzymatic reactions, Mg2+ is essential for protein synthesis, energy production, and DNA stability. Disturbances in intracellular Mg2+ concentrations, therefore, unequivocally result in delayed cell growth and metabolic defects. To maintain physiological Mg2+ levels, all organisms rely on balanced Mg2+ influx and efflux via Mg2+ channels and transporters. This review compares the structure and the function of prokaryotic Mg2+ transporters and their eukaryotic counterparts. In prokaryotes, cellular Mg2+ homeostasis is orchestrated via the CorA, MgtA/B, MgtE, and CorB/C Mg2+ transporters. For CorA, MgtE, and CorB/C, the motifs that form the selectivity pore are conserved during evolution. These findings suggest that CNNM proteins, the vertebrate orthologues of CorB/C, also have Mg2+ transport capacity. Whereas CorA and CorB/C proteins share the gross quaternary structure and functional properties with their respective orthologues, the MgtE channel only shares the selectivity pore with SLC41 Na+/Mg2+ transporters. In eukaryotes, TRPM6 and TRPM7 Mg2+ channels provide an additional Mg2+ transport mechanism, consisting of a fusion of channel with a kinase. The unique features these TRP channels allow the integration of hormonal, cellular, and transcriptional regulatory pathways that determine their Mg2+ transport capacity. Our review demonstrates that understanding the structure and function of prokaryotic magnesiotropic proteins aids in our basic understanding of Mg2+ transport.
Collapse
Affiliation(s)
- G A C Franken
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - M A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L A Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - R J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - J H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
39
|
Hu X, Chen M, Cao X, Yuan X, Zhang F, Ding W. TGF-β-Containing Small Extracellular Vesicles From PM2.5-Activated Macrophages Induces Cardiotoxicity. Front Cardiovasc Med 2022; 9:917719. [PMID: 35872905 PMCID: PMC9304575 DOI: 10.3389/fcvm.2022.917719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
Numerous epidemiological and experimental studies have demonstrated that the exposure to fine particulate matter (aerodynamic diameter <2.5 μm, PM2.5) was closely associated with cardiovascular morbidity and mortality. Our previous studies revealed that PM2.5 exposure induced cardiac dysfunction and fibrosis. However, the corresponding underlying mechanism remains largely unaddressed. Here, PM2.5-induced cardiotoxicity is presented to directly promote collagen deposition in cardiomyocytes through the transforming growth factor-β (TGF-β)-containing small extracellular vesicles (sEV). The sEV transition may play an important role in PM2.5-induced cardiac fibrosis. Firstly, long-term PM2.5 exposure can directly induce cardiac fibrosis and increase the level of serum sEV. Secondly, PM2.5 can directly activate macrophages and increase the release of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and TGF-β-containing sEV. Thirdly, TGF-β-containing sEV increases the expression of α-smooth muscle actin (α-SMA), collagen I, and collagen III in mouse cardiac muscle HL-1 cells. Finally, TGF-β-containing sEV released from PM2.5-treated macrophages can increase collagen through the activation of the TGF-β-Smad2/3 signaling pathway in HL-1 cells from which some fibroblasts involved in cardiac fibrosis are thought to originate. These findings suggest that TGF-β-containing sEV from PM2.5-activated macrophages play a critical role in the process of increasing cardiac collagen content via activating the TGF-β-Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Xiaoqi Hu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Mo Chen
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Cao
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Yuan
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Fang Zhang
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wenjun Ding
| |
Collapse
|
40
|
Shi Z, He Z, Wang DW. CYP450 Epoxygenase Metabolites, Epoxyeicosatrienoic Acids, as Novel Anti-Inflammatory Mediators. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123873. [PMID: 35744996 PMCID: PMC9230517 DOI: 10.3390/molecules27123873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/25/2022]
Abstract
Inflammation plays a crucial role in the initiation and development of a wide range of systemic illnesses. Epoxyeicosatrienoic acids (EETs) are derived from arachidonic acid (AA) metabolized by CYP450 epoxygenase (CYP450) and are subsequently hydrolyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs), which are merely biologically active. EETs possess a wide range of established protective effects on many systems of which anti-inflammatory actions have gained great interest. EETs attenuate vascular inflammation and remodeling by inhibiting activation of endothelial cells and reducing cross-talk between inflammatory cells and blood vessels. EETs also process direct and indirect anti-inflammatory properties in the myocardium and therefore alleviate inflammatory cardiomyopathy and cardiac remodeling. Moreover, emerging studies show the substantial roles of EETs in relieving inflammation under other pathophysiological environments, such as diabetes, sepsis, lung injuries, neurodegenerative disease, hepatic diseases, kidney injury, and arthritis. Furthermore, pharmacological manipulations of the AA-CYP450-EETs-sEH pathway have demonstrated a contribution to the alleviation of numerous inflammatory diseases, which highlight a therapeutic potential of drugs targeting this pathway. This review summarizes the progress of AA-CYP450-EETs-sEH pathway in regulation of inflammation under different pathological conditions and discusses the existing challenges and future direction of this research field.
Collapse
Affiliation(s)
- Zeqi Shi
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
| | - Zuowen He
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| | - Dao Wen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| |
Collapse
|
41
|
Szczepaniak P, Siedlinski M, Hodorowicz-Zaniewska D, Nosalski R, Mikolajczyk TP, Dobosz AM, Dikalova A, Dikalov S, Streb J, Gara K, Basta P, Krolczyk J, Sulicka-Grodzicka J, Jozefczuk E, Dziewulska A, Saju B, Laksa I, Chen W, Dormer J, Tomaszewski M, Maffia P, Czesnikiewicz-Guzik M, Crea F, Dobrzyn A, Moslehi J, Grodzicki T, Harrison DG, Guzik TJ. Breast cancer chemotherapy induces vascular dysfunction and hypertension through NOX4 dependent mechanism. J Clin Invest 2022; 132:149117. [PMID: 35617030 PMCID: PMC9246378 DOI: 10.1172/jci149117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease is the major cause of morbidity and mortality in breast cancer survivors. Chemotherapy contributes to this risk. We aimed to define the mechanisms of long-term vascular dysfunction caused by neoadjuvant chemotherapy (NACT) and identify novel therapeutic targets.We studied arteries from postmenopausal women who had undergone breast cancer treatment using docetaxel, doxorubicin and cyclophosphamide (NACT), and women with no history of such treatment matched for key clinical parameters. Mechanisms were explored in wild-type and Nox4-/- mice and human microvascular endothelial cells.Endothelium-dependent vasodilatation is severely impaired in patients after NACT, while endothelium-independent responses remain normal. This was mimicked by 24-hour exposure of arteries to NACT agents ex-vivo. When applied individually, only docetaxel impaired endothelial function in human vessels. Mechanistic studies showed that NACT increased inhibitory eNOS phosphorylation of threonine 495 in a ROCK-dependent manner and augmented vascular superoxide and hydrogen peroxide production and NADPH oxidase activity. Docetaxel increased expression of NADPH oxidase NOX4 in endothelial and smooth muscle cells and NOX2 in the endothelium. NOX4 increase in human arteries may be mediated epigenetically by diminished DNA methylation of the NOX4 promoter. Docetaxel induced endothelial dysfunction and hypertension in mice. These were prevented in Nox4-/- and by pharmacological inhibition of Nox4 or Rock.Commonly used chemotherapeutic agents, and in particular, docetaxel, alter vascular function by promoting inhibitory phosphorylation of eNOS and enhancing ROS production by NADPH oxidases.
Collapse
Affiliation(s)
- Piotr Szczepaniak
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Mateusz Siedlinski
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | | | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tomasz P Mikolajczyk
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna Dikalova
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - Sergey Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - Joanna Streb
- Department of Oncology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Katarzyna Gara
- Department of Surgery, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Pawel Basta
- Department of Gynecology and Gynecological Oncology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Jaroslaw Krolczyk
- Department of Internal Medicine and Gerontology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | | | - Ewelina Jozefczuk
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Anna Dziewulska
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Blessy Saju
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Iwona Laksa
- Department of Oncology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Wei Chen
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - John Dormer
- Department of Cellular Pathology, University Hospitals of Leicester, Leicester, United Kingdom
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Marta Czesnikiewicz-Guzik
- Department of Periodontology and Oral Sciences Research Group, University of Glasgow, Glasgow, United Kingdom
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, University of the Sacred Heart, Rome, Italy
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Javid Moslehi
- University of California San Fransisco, San Francisco, United States of America
| | - Tomasz Grodzicki
- Department of Internal Medicine and Gerontology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
42
|
Souza Bomfim GH, Niemeyer BA, Lacruz RS, Lis A. On the Connections between TRPM Channels and SOCE. Cells 2022; 11:1190. [PMID: 35406753 PMCID: PMC8997886 DOI: 10.3390/cells11071190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Plasma membrane protein channels provide a passageway for ions to access the intracellular milieu. Rapid entry of calcium ions into cells is controlled mostly by ion channels, while Ca2+-ATPases and Ca2+ exchangers ensure that cytosolic Ca2+ levels ([Ca2+]cyt) are maintained at low (~100 nM) concentrations. Some channels, such as the Ca2+-release-activated Ca2+ (CRAC) channels and voltage-dependent Ca2+ channels (CACNAs), are highly Ca2+-selective, while others, including the Transient Receptor Potential Melastatin (TRPM) family, have broader selectivity and are mostly permeable to monovalent and divalent cations. Activation of CRAC channels involves the coupling between ORAI1-3 channels with the endoplasmic reticulum (ER) located Ca2+ store sensor, Stromal Interaction Molecules 1-2 (STIM1/2), a pathway also termed store-operated Ca2+ entry (SOCE). The TRPM family is formed by 8 members (TRPM1-8) permeable to Mg2+, Ca2+, Zn2+ and Na+ cations, and is activated by multiple stimuli. Recent studies indicated that SOCE and TRPM structure-function are interlinked in some instances, although the molecular details of this interaction are only emerging. Here we review the role of TRPM and SOCE in Ca2+ handling and highlight the available evidence for this interaction.
Collapse
Affiliation(s)
- Guilherme H. Souza Bomfim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Barbara A. Niemeyer
- Department of Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany;
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
43
|
Liu Y, Miao J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients 2022; 14:nu14030700. [PMID: 35277059 PMCID: PMC8838622 DOI: 10.3390/nu14030700] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/02/2023] Open
Abstract
Copper is an essential trace metal element that significantly affects human physiology and pathology by regulating various important biological processes, including mitochondrial oxidative phosphorylation, iron mobilization, connective tissue crosslinking, antioxidant defense, melanin synthesis, blood clotting, and neuron peptide maturation. Increasing lines of evidence obtained from studies of cell culture, animals, and human genetics have demonstrated that dysregulation of copper metabolism causes heart disease, which is the leading cause of mortality in the US. Defects of copper homeostasis caused by perturbed regulation of copper chaperones or copper transporters or by copper deficiency resulted in various types of heart disease, including cardiac hypertrophy, heart failure, ischemic heart disease, and diabetes mellitus cardiomyopathy. This review aims to provide a timely summary of the effects of defective copper homeostasis on heart disease and discuss potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China;
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
44
|
Kim W, Park S, Kwon W, Kim D, Park JK, Han JE, Cho GJ, Han SH, Sung Y, Yi JK, Kim MO, Ryoo ZY, Choi SK. Suppression of transient receptor potential melastatin 7 regulates pluripotency, proliferation, and differentiation of mouse embryonic stem cells via mechanistic target of rapamycin-extracellular signal-regulated kinase activation. J Cell Biochem 2021; 123:547-567. [PMID: 34958137 DOI: 10.1002/jcb.30199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/06/2022]
Abstract
Mouse embryonic stem cells (mESCs) are a widely used model for their diverse availability in studying early embryonic development and their application in regenerative treatment of various intractable diseases. Transient receptor potential melastatin 7 (Trpm7) regulates Ca2+ as a nonselective ion channel and is essential for early embryonic development; however, the precise role of Trpm7 in mESCs has not been clearly elucidated. In this study, we showed that the inhibition of Trpm7 affects the pluripotency and self-renewal of mESCs. We found that short hairpin RNA (shRNA)-mediated suppression of Trpm7 resulted in decreased expression of transcriptional regulators, Oct4 and Sox2, which maintain stemness in mESCs. In addition, Trpm7 knockdown led to alterations in the basic properties of mESCs, such as decreased proliferation, cell cycle arrest at the G0/G1 phase, and increased apoptosis. Furthermore, embryoid body (EB) formation and teratoma formation assays revealed abnormal regulation of differentiation due to Trpm7 knockdown, including the smaller size of EBs, elevated ectodermal differentiation, and diminished endodermal and mesodermal differentiation. We found that EB Day 7 samples displayed decreased intracellular Ca2+ levels compared to those of the scrambled group. Finally, we identified that these alterations induced by Trpm7 knockdown occurred due to decreased phosphorylation of mechanistic target of rapamycin (mTOR) and subsequent activation of extracellular signal-regulated kinase (ERK) in mESCs. Our findings suggest that Trpm7 could be a novel regulator for maintaining stemness and modulating the differentiation of mESCs.
Collapse
Affiliation(s)
- Wansoo Kim
- Core Protein Resources Center, DGIST, Daegu, South Korea.,School of Life Science, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu, South Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, South Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Wookbong Kwon
- Core Protein Resources Center, DGIST, Daegu, South Korea.,Division of Biotechnology, DGIST, Daegu, South Korea
| | - Daehwan Kim
- Core Protein Resources Center, DGIST, Daegu, South Korea.,School of Life Science, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu, South Korea
| | - Jin-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Gil-Jae Cho
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Se-Hyeon Han
- Department of News-team, SBS (Seoul Broadcasting System), Seoul, South Korea.,School of Media Communication, Hanyang University, Seoul, South Korea
| | - Yonghun Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Jun-Koo Yi
- Gyeongbuk Livestock Research Institute, Yeongju, South Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, South Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu, South Korea
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, South Korea.,Division of Biotechnology, DGIST, Daegu, South Korea
| |
Collapse
|
45
|
Du Preez S, Cabanas H, Staines D, Marshall-Gradisnik S. Potential Implications of Mammalian Transient Receptor Potential Melastatin 7 in the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10708. [PMID: 34682454 PMCID: PMC8535478 DOI: 10.3390/ijerph182010708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022]
Abstract
The transient receptor potential (TRP) superfamily of ion channels is involved in the molecular mechanisms that mediate neuroimmune interactions and activities. Recent advancements in neuroimmunology have identified a role for TRP cation channels in several neuroimmune disorders including amyotropic lateral sclerosis, multiple sclerosis, and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS is a debilitating disorder with an obscure aetiology, hence considerable examination of its pathobiology is warranted. Dysregulation of TRP melastatin (TRPM) subfamily members and calcium signalling processes are implicated in the neurological, immunological, cardiovascular, and metabolic impairments inherent in ME/CFS. In this review, we present TRPM7 as a potential candidate in the pathomechanism of ME/CFS, as TRPM7 is increasingly recognized as a key mediator of physiological and pathophysiological mechanisms affecting neurological, immunological, cardiovascular, and metabolic processes. A focused examination of the biochemistry of TRPM7, the role of this protein in the aforementioned systems, and the potential of TRPM7 as a molecular mechanism in the pathophysiology of ME/CFS will be discussed in this review. TRPM7 is a compelling candidate to examine in the pathobiology of ME/CFS as TRPM7 fulfils several key roles in multiple organ systems, and there is a paucity of literature reporting on its role in ME/CFS.
Collapse
Affiliation(s)
- Stanley Du Preez
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast 4215, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast 4215, Australia
| | - Helene Cabanas
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
- Institut de Recherche Saint Louis, Université de Paris, INSERM U944 and CNRS UMR 7212, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
| |
Collapse
|
46
|
Liang HY, Chen Y, Wei X, Ma GG, Ding J, Lu C, Zhou RP, Hu W. Immunomodulatory functions of TRPM7 and its implications in autoimmune diseases. Immunology 2021; 165:3-21. [PMID: 34558663 DOI: 10.1111/imm.13420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
An autoimmune disease is an inappropriate response to one's tissues due to a break in immune tolerance and exposure to self-antigens. It often leads to structural and functional damage to organs and systemic disorders. To date, there are no effective interventions to prevent the progression of autoimmune diseases. Hence, there is an urgent need for new treatment targets. TRPM7 is an enzyme-coupled, transient receptor ion channel of the subfamily M that plays a vital role in pathologic and physiologic conditions. While TRPM7 is constitutively activated under certain conditions, it can regulate cell migration, polarization, proliferation and cytokine secretion. However, a growing body of evidence highlights the critical role of TRPM7 in autoimmune diseases, including rheumatoid arthritis, multiple sclerosis and diabetes. Herein, we present (a) a review of the channel kinase properties of TRPM7 and its pharmacological properties, (b) discuss the role of TRPM7 in immune cells (neutrophils, macrophages, lymphocytes and mast cells) and its upstream immunoreactive substances, and (c) highlight TRPM7 as a potential therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Hong-Yu Liang
- The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Gang-Gang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
47
|
Negri S, Faris P, Moccia F. Reactive Oxygen Species and Endothelial Ca 2+ Signaling: Brothers in Arms or Partners in Crime? Int J Mol Sci 2021; 22:ijms22189821. [PMID: 34575985 PMCID: PMC8465413 DOI: 10.3390/ijms22189821] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) controls virtually all endothelial cell functions and is, therefore, crucial to maintain cardiovascular homeostasis. An aberrant elevation in endothelial can indeed lead to severe cardiovascular disorders. Likewise, moderate amounts of reactive oxygen species (ROS) induce intracellular Ca2+ signals to regulate vascular functions, while excessive ROS production may exploit dysregulated Ca2+ dynamics to induce endothelial injury. Herein, we survey how ROS induce endothelial Ca2+ signals to regulate vascular functions and, vice versa, how aberrant ROS generation may exploit the Ca2+ handling machinery to promote endothelial dysfunction. ROS elicit endothelial Ca2+ signals by regulating inositol-1,4,5-trisphosphate receptors, sarco-endoplasmic reticulum Ca2+-ATPase 2B, two-pore channels, store-operated Ca2+ entry (SOCE), and multiple isoforms of transient receptor potential (TRP) channels. ROS-induced endothelial Ca2+ signals regulate endothelial permeability, angiogenesis, and generation of vasorelaxing mediators and can be exploited to induce therapeutic angiogenesis, rescue neurovascular coupling, and induce cancer regression. However, an increase in endothelial [Ca2+]i induced by aberrant ROS formation may result in endothelial dysfunction, inflammatory diseases, metabolic disorders, and pulmonary artery hypertension. This information could pave the way to design alternative treatments to interfere with the life-threatening interconnection between endothelial ROS and Ca2+ signaling under multiple pathological conditions.
Collapse
|
48
|
Calpain-Mediated Mitochondrial Damage: An Emerging Mechanism Contributing to Cardiac Disease. Cells 2021; 10:cells10082024. [PMID: 34440793 PMCID: PMC8392834 DOI: 10.3390/cells10082024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Calpains belong to the family of calcium-dependent cysteine proteases expressed ubiquitously in mammals and many other organisms. Activation of calpain is observed in diseased hearts and is implicated in cardiac cell death, hypertrophy, fibrosis, and inflammation. However, the underlying mechanisms remain incompletely understood. Recent studies have revealed that calpains target and impair mitochondria in cardiac disease. The objective of this review is to discuss the role of calpains in mediating mitochondrial damage and the underlying mechanisms, and to evaluate whether targeted inhibition of mitochondrial calpain is a potential strategy in treating cardiac disease. We expect to describe the wealth of new evidence surrounding calpain-mediated mitochondrial damage to facilitate future mechanistic studies and therapy development for cardiac disease.
Collapse
|
49
|
Andriulė I, Pangonytė D, Almanaitytė M, Patamsytė V, Kuprytė M, Karčiauskas D, Mubagwa K, Mačianskienė R. Evidence for the expression of TRPM6 and TRPM7 in cardiomyocytes from all four chamber walls of the human heart. Sci Rep 2021; 11:15445. [PMID: 34326388 PMCID: PMC8322396 DOI: 10.1038/s41598-021-94856-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
The expression of the channels-enzymes TRPM6 and TRPM7 in the human heart remains poorly defined, and TRPM6 is generally considered not to be expressed in cardiomyocytes. We examined their expression at protein and mRNA levels using right atrial samples resected from patients (n = 72) with or without ischemic heart disease (IHD) and samples from all chamber walls of explanted human hearts (n = 9). TRPM6 and TRPM7 proteins were detected using immunofluorescence on isolated cardiomyocytes, ELISA on tissue homogenates, and immunostaining of cardiac tissue, whereas their mRNAs were detected by RT-qPCR. Both TRPM6 and TRPM7 were present in all chamber walls, with TRPM7 being more abundant. TRPM6 was co-expressed with TRPM7. The expression levels were dependent on cell incubation conditions (presence or absence of divalent cations, pH of the extracellular milieu, presence of TRP channel inhibitors 2-aminoethoxydiphenyl-borate and carvacrol). These drugs reduced TRPM7 immunofluorescence but increased that of TRPM6. TRPM6 and TRPM7 expression was increased in tissues from IHD patients. This is the first demonstration of the presence and co-expression of TRPM6 and TRPM7 in cardiomyocytes from all chamber walls of the human heart. The increased TRPM6 and TRPM7 expression in IHD suggests that the chanzymes are involved in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Inga Andriulė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dalia Pangonytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mantė Almanaitytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vaiva Patamsytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Milda Kuprytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius Karčiauskas
- Department of Cardiac, Thoracic and Vascular Surgery, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kanigula Mubagwa
- Department of Cardiovascular Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, DR, Congo
| | - Regina Mačianskienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
50
|
Fibrosis, the Bad Actor in Cardiorenal Syndromes: Mechanisms Involved. Cells 2021; 10:cells10071824. [PMID: 34359993 PMCID: PMC8307805 DOI: 10.3390/cells10071824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiorenal syndrome is a term that defines the complex bidirectional nature of the interaction between cardiac and renal disease. It is well established that patients with kidney disease have higher incidence of cardiovascular comorbidities and that renal dysfunction is a significant threat to the prognosis of patients with cardiac disease. Fibrosis is a common characteristic of organ injury progression that has been proposed not only as a marker but also as an important driver of the pathophysiology of cardiorenal syndromes. Due to the relevance of fibrosis, its study might give insight into the mechanisms and targets that could potentially be modulated to prevent fibrosis development. The aim of this review was to summarize some of the pathophysiological pathways involved in the fibrotic damage seen in cardiorenal syndromes, such as inflammation, oxidative stress and endoplasmic reticulum stress, which are known to be triggers and mediators of fibrosis.
Collapse
|