1
|
Hemnes AR, Celermajer DS, D'Alto M, Haddad F, Hassoun PM, Prins KW, Naeije R, Vonk Noordegraaf A. Pathophysiology of the right ventricle and its pulmonary vascular interaction. Eur Respir J 2024; 64:2401321. [PMID: 39209482 PMCID: PMC11525331 DOI: 10.1183/13993003.01321-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
The right ventricle and its stress response is perhaps the most important arbiter of survival in patients with pulmonary hypertension of many causes. The physiology of the cardiopulmonary unit and definition of right heart failure proposed in the 2018 World Symposium on Pulmonary Hypertension have proven useful constructs in subsequent years. Here, we review updated knowledge of basic mechanisms that drive right ventricular function in health and disease, and which may be useful for therapeutic intervention in the future. We further contextualise new knowledge on assessment of right ventricular function with a focus on metrics readily available to clinicians and updated understanding of the roles of the right atrium and tricuspid regurgitation. Typical right ventricular phenotypes in relevant forms of pulmonary vascular disease are reviewed and recent studies of pharmacological interventions on chronic right ventricular failure are discussed. Finally, unanswered questions and future directions are proposed.
Collapse
Affiliation(s)
- Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David S Celermajer
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Michele D'Alto
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Francois Haddad
- Division of Cardiovascular Medicine, Stanford University and Stanford Cardiovascular Institute, Palo Alto, CA, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kurt W Prins
- Lillehei Heart Institute, Cardiovascular Division, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Anton Vonk Noordegraaf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Ichimura K, Boehm M, Andruska AM, Zhang F, Schimmel K, Bonham S, Kabiri A, Kheyfets VO, Ichimura S, Reddy S, Mao Y, Zhang T, Wang G, Santana EJ, Tian X, Essafri I, Vinh R, Tian W, Nicolls MR, Yajima S, Shudo Y, MacArthur JW, Joseph Woo Y, Metzger RJ, Spiekerkoetter E. 3D Imaging Reveals Complex Microvascular Remodeling in the Right Ventricle in Pulmonary Hypertension. Circ Res 2024; 135:60-75. [PMID: 38770652 PMCID: PMC11584150 DOI: 10.1161/circresaha.123.323546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Pathogenic concepts of right ventricular (RV) failure in pulmonary arterial hypertension focus on a critical loss of microvasculature. However, the methods underpinning prior studies did not take into account the 3-dimensional (3D) aspects of cardiac tissue, making accurate quantification difficult. We applied deep-tissue imaging to the pressure-overloaded RV to uncover the 3D properties of the microvascular network and determine whether deficient microvascular adaptation contributes to RV failure. METHODS Heart sections measuring 250-µm-thick were obtained from mice after pulmonary artery banding (PAB) or debanding PAB surgery and properties of the RV microvascular network were assessed using 3D imaging and quantification. Human heart tissues harvested at the time of transplantation from pulmonary arterial hypertension cases were compared with tissues from control cases with normal RV function. RESULTS Longitudinal 3D assessment of PAB mouse hearts uncovered complex microvascular remodeling characterized by tortuous, shorter, thicker, highly branched vessels, and overall preserved microvascular density. This remodeling process was reversible in debanding PAB mice in which the RV function recovers over time. The remodeled microvasculature tightly wrapped around the hypertrophied cardiomyocytes to maintain a stable contact surface to cardiomyocytes as an adaptation to RV pressure overload, even in end-stage RV failure. However, microvasculature-cardiomyocyte contact was impaired in areas with interstitial fibrosis where cardiomyocytes displayed signs of hypoxia. Similar to PAB animals, microvascular density in the RV was preserved in patients with end-stage pulmonary arterial hypertension, and microvascular architectural changes appeared to vary by etiology, with patients with pulmonary veno-occlusive disease displaying a lack of microvascular complexity with uniformly short segments. CONCLUSIONS 3D deep tissue imaging of the failing RV in PAB mice, pulmonary hypertension rats, and patients with pulmonary arterial hypertension reveals complex microvascular changes to preserve the microvascular density and maintain a stable microvascular-cardiomyocyte contact. Our studies provide a novel framework to understand microvascular adaptation in the pressure-overloaded RV that focuses on cell-cell interaction and goes beyond the concept of capillary rarefaction.
Collapse
MESH Headings
- Animals
- Imaging, Three-Dimensional
- Humans
- Mice
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/diagnostic imaging
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Mice, Inbred C57BL
- Male
- Heart Ventricles/physiopathology
- Heart Ventricles/diagnostic imaging
- Heart Ventricles/pathology
- Microvessels/physiopathology
- Microvessels/diagnostic imaging
- Microvessels/pathology
- Vascular Remodeling
- Pulmonary Artery/physiopathology
- Pulmonary Artery/diagnostic imaging
- Pulmonary Artery/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/diagnostic imaging
- Ventricular Function, Right
- Ventricular Remodeling
- Disease Models, Animal
- Myocytes, Cardiac/pathology
Collapse
Affiliation(s)
- Kenzo Ichimura
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine
- Cardiovascular Institute, Stanford University
| | - Mario Boehm
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University
| | - Adam M. Andruska
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine
| | - Fan Zhang
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine
| | - Katharina Schimmel
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine
- Cardiovascular Institute, Stanford University
| | - Spencer Bonham
- Department of Cardiothoracic Surgery, Stanford University
| | - Angela Kabiri
- Department of Cardiothoracic Surgery, Stanford University
| | - Vitaly O. Kheyfets
- Pediatric Critical Care Medicine, Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado
| | - Shoko Ichimura
- Department of Pediatrics, Division of Cardiology, Stanford University
| | - Sushma Reddy
- Cardiovascular Institute, Stanford University
- Department of Pediatrics, Division of Cardiology, Stanford University
| | - Yuqiang Mao
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University
| | - Tianyi Zhang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University
| | - Gordon Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University
| | - Everton J. Santana
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University
| | - Xuefei Tian
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University
| | - Ilham Essafri
- Pediatric Critical Care Medicine, Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado
| | - Ryan Vinh
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University
- VA Palo Alto Health Care System
| | - Wen Tian
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University
- VA Palo Alto Health Care System
| | - Mark R. Nicolls
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine
- Cardiovascular Institute, Stanford University
- VA Palo Alto Health Care System
| | - Shin Yajima
- Cardiovascular Institute, Stanford University
- Department of Cardiothoracic Surgery, Stanford University
| | - Yasuhiro Shudo
- Cardiovascular Institute, Stanford University
- Department of Cardiothoracic Surgery, Stanford University
| | - John W. MacArthur
- Cardiovascular Institute, Stanford University
- Department of Cardiothoracic Surgery, Stanford University
| | - Y. Joseph Woo
- Cardiovascular Institute, Stanford University
- Department of Cardiothoracic Surgery, Stanford University
| | - Ross J. Metzger
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine
- Department of Pediatrics, Division of Cardiology, Stanford University
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine
- Cardiovascular Institute, Stanford University
| |
Collapse
|
3
|
Oknińska M, Zajda K, Zambrowska Z, Grzanka M, Paterek A, Mackiewicz U, Szczylik C, Kurzyna M, Piekiełko-Witkowska A, Torbicki A, Kieda C, Mączewski M. Role of Oxygen Starvation in Right Ventricular Decompensation and Failure in Pulmonary Arterial Hypertension. JACC. HEART FAILURE 2024; 12:235-247. [PMID: 37140511 DOI: 10.1016/j.jchf.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/22/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
Right ventricular (RV) function and eventually failure determine outcome in patients with pulmonary arterial hypertension (PAH). Initially, RV responds to an increased load caused by PAH with adaptive hypertrophy; however, eventually RV failure ensues. Unfortunately, it is unclear what causes the transition from compensated RV hypertrophy to decompensated RV failure. Moreover, at present, there are no therapies for RV failure; those for left ventricular (LV) failure are ineffective, and no therapies specifically targeting RV are available. Thus there is a clear need for understanding the biology of RV failure and differences in physiology and pathophysiology between RV and LV that can ultimately lead to development of such therapies. In this paper, we discuss RV adaptation and maladaptation in PAH, with a particular focus of oxygen delivery and hypoxia as the principal drivers of RV hypertrophy and failure, and attempt to pinpoint potential sites for therapy.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Zajda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Medical Institute, Warsaw, Poland
| | - Zuzanna Zambrowska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Aleksandra Paterek
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology at ECZ-Otwock, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Kurzyna
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology at ECZ-Otwock, ERN-LUNG Member, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Adam Torbicki
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology at ECZ-Otwock, ERN-LUNG Member, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Medical Institute, Warsaw, Poland; Centre for Molecular Biophysics, UPR, CNRS 4301, Orléans CEDEX 2, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
4
|
Brizard CP, Elwood NJ, Kowalski R, Horton SB, Jones BO, Hutchinson D, Zannino D, Sheridan BJ, Butt W, Cheung MMH, Pepe S. Safety and feasibility of adjunct autologous cord blood stem cell therapy during the Norwood heart operation. J Thorac Cardiovasc Surg 2023; 166:1746-1755. [PMID: 37527726 DOI: 10.1016/j.jtcvs.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND We conducted this phase I, open-label safety and feasibility trial of autologous cord blood (CB) stem cell (CBSC) therapy via a novel blood cardioplegia-based intracoronary infusion technique during the Norwood procedure in neonates with an antenatal diagnosis of hypoplastic left heart syndrome (HLHS). CBSC therapy may support early cardiac remodeling with enhancement of right ventricle (RV) function during the critical interstage period. METHODS Clinical grade CB mononucleated cells (CBMNCs) were processed to NetCord-FACT International Standards. To maximize yield, CBSCs were not isolated from CBMNCs. CBMNCs were stored at 4 °C (no cryopreservation) for use within 3 days and delivered after each cardioplegia dose (4 × 15 mL). RESULTS Of 16 patients with antenatal diagnosis, 13 were recruited; of these 13 patients, 3 were not treated due to placental abruption (n = 1) or conditions delaying the Norwood for >4 days (n = 2) and 10 received 644.9 ± 134 × 106 CBMNCs, representing 1.5 ± 1.1 × 106 (CD34+) CBSCs. Interstage mortality was 30% (n = 3; on days 7, 25, and 62). None of the 36 serious adverse events (53% linked to 3 deaths) were related to CBMNC therapy. Cardiac magnetic resonance imaging before stage 2 (n = 5) found an RV mass index comparable to that in an exact-matched historical cohort (n = 22), with a mean RV ejection fraction of 66.2 ± 4.5% and mean indexed stroke volume of 47.4 ± 6.2 mL/m2 versus 53.5 ± 11.6% and 37.2 ± 10.3 mL/m2, respectively. All 7 survivors completed stage 2 and are alive with normal RV function (6 with ≤mild and 1 with moderate tricuspid regurgitation). CONCLUSIONS This trial demonstrated that autologous CBMNCs delivered in large numbers without prior cryopreservation via a novel intracoronary infusion technique at cardioplegic arrest during Norwood palliation on days 2 to 3 of life is feasible and safe.
Collapse
Affiliation(s)
- Christian P Brizard
- Department of Cardiac Surgery, Royal Children's Hospital, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Ngaire J Elwood
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Remi Kowalski
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Cardiology, Royal Children's Hospital, Melbourne, Australia
| | - Stephen B Horton
- Department of Cardiac Surgery, Royal Children's Hospital, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bryn O Jones
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Cardiology, Royal Children's Hospital, Melbourne, Australia
| | - Darren Hutchinson
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Cardiology, Royal Children's Hospital, Melbourne, Australia
| | - Diana Zannino
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Bennett J Sheridan
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Cardiology, Royal Children's Hospital, Melbourne, Australia; Department of Paediatric Intensive Care, Royal Children's Hospital, Melbourne, Australia
| | - Warwick Butt
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Paediatric Intensive Care, Royal Children's Hospital, Melbourne, Australia
| | - Michael M H Cheung
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of Cardiology, Royal Children's Hospital, Melbourne, Australia
| | - Salvatore Pepe
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
5
|
Zeng X, Zhao R, Wu Z, Ma Z, Cen C, Gao S, Hong W, Yao Y, Wen K, Ding S, Wang J, Lu W, Wang X, Wang T. [ 18 F] -FAPI-42 PET/CT assessment of Progressive right ventricle fibrosis under pressure overload. Respir Res 2023; 24:270. [PMID: 37932744 PMCID: PMC10626814 DOI: 10.1186/s12931-023-02565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Right heart failure (RHF) is a complication of pulmonary hypertension (PH) and increases the mortality independently of the underlying disease. However, the process of RHF development and progression is not fully understood. We aimed to develop effective approaches for early diagnosis and precise evaluation of RHF. METHODS Right ventricle (RV) pressure overload was performed via pulmonary artery banding (PAB) surgery in Sprague-Dawley (SD) rats to induce RHF. Echocardiography, right heart catheterization, histological staining, fibroblast activation protein (FAP) immunofluorescence and 18 F-labelled FAP inhibitor-42 ([18 F] -FAPI-42) positron emission tomography/computed tomography (PET/CT) were performed at day 3, week 1, 2, 4 and 8 after PAB. RNA sequencing was performed to explore molecular alterations between PAB and sham group at week 2 and week 4 after PAB respectively. RESULTS RV hemodynamic disorders were aggravated, and RV function was declined based on right heart catheterization and echocardiography at week 2, 4 and 8 after PAB. Progressive cardiac hypertrophy, fibrosis and capillary rarefaction could be observed in RV from 2 to 8 weeks after PAB. RNA sequencing indicated 80 upregulated genes and 43 downregulated genes in the RV at both week 2 and week 4 after PAB; Gene Ontology (GO) analysis revealed that fibrosis as the most significant biological process in the RV under pressure overload. Immunofluorescence indicated that FAP was upregulated in the RV from week 2 to week 8 after PAB; and [18 F] -FAPI-42 PET/CT revealed FAPI uptake was significantly higher in RV at week 2 and further increased at week 4 and 8 after PAB. CONCLUSION RV function is progressively declined with fibrosis as the most prominent molecular change after pressure overload, and [18 F] -FAPI-42 PET/CT is as sensitive and accurate as histopathology in RV fibrosis evaluation.
Collapse
Affiliation(s)
- Xiaohui Zeng
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhixiong Wu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhuoji Ma
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxian Cen
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shanshan Gao
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wanxian Hong
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanrong Yao
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kexin Wen
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shangwei Ding
- Department of Ultrasound, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinlu Wang
- Department of Nuclear Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Rischard FP, Bernardo RJ, Vanderpool RR, Kwon DH, Acharya T, Park MM, Katrynuik A, Insel M, Kubba S, Badagliacca R, Larive AB, Naeije R, Garcia JG, Beck GJ, Erzurum SC, Frantz RP, Hassoun PM, Hemnes AR, Hill NS, Horn EM, Leopold JA, Rosenzweig EB, Wilson Tang W, Wilcox JD. Classification and Predictors of Right Ventricular Functional Recovery in Pulmonary Arterial Hypertension. Circ Heart Fail 2023; 16:e010555. [PMID: 37664964 PMCID: PMC10592283 DOI: 10.1161/circheartfailure.123.010555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Normative changes in right ventricular (RV) structure and function have not been characterized in the context of treatment-associated functional recovery (RV functional recovery [RVFnRec]). The aim of this study is to assess the clinical relevance of a proposed RVFnRec definition. METHODS We evaluated 63 incident patients with pulmonary arterial hypertension by right heart catheterization and cardiac magnetic resonance imaging at diagnosis and cardiac magnetic resonance imaging and invasive cardiopulmonary exercise testing following treatment (≈11 months). Sex, age, ethnicity matched healthy control subjects (n=62) with 1-time cardiac magnetic resonance imaging and noninvasive cardiopulmonary exercise testing were recruited from the PVDOMICS (Redefining Pulmonary Hypertension through Pulmonary Vascular Disease Phenomics) project. We examined therapeutic cardiac magnetic resonance imaging changes relative to the evidence-based peak oxygen consumption (VO2peak)>15 mL/(kg·min) to define RVFnRec by receiver operating curve analysis. Afterload was measured as mean pulmonary artery pressure, resistance, compliance, and elastance. RESULTS A drop in RV end-diastolic volume of -15 mL best defined RVFnRec (area under the curve, 0.87; P=0.0001) and neared upper 95% CI RV end-diastolic volume of controls. This cutoff was met by 22 out of 63 (35%) patients which was reinforced by freedom from clinical worsening, RVFnRec 1 out of 21 (5%) versus no RVFnRec 17 out of 42, 40% (log-rank P=0.006). A therapy-associated increase of 0.8 mL/mm Hg in compliance had the best predictive value of RVFnRec (area under the curve, 0.76; [95% CI, 0.64-0.88]; P=0.001). RVFnRec patients had greater increases in stroke volume, and cardiac output at exercise. CONCLUSIONS RVFnRec defined by RV end-diastolic volume therapeutic decrease of -15 mL predicts exercise capacity, freedom from clinical worsening, and nears normalization. A therapeutic improvement of compliance is superior to other measures of afterload in predicting RVFnRec. RVFnRec is also associated with increased RV output reserve at exercise.
Collapse
Affiliation(s)
- Franz P. Rischard
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona
| | - Roberto J. Bernardo
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | | | - Tushar Acharya
- Divison of Cardiology, University of Arizona, Tucson, AZ
| | | | | | - Michael Insel
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona
| | - Saad Kubba
- Divison of Cardiology, University of Arizona, Tucson, AZ
| | - Roberto Badagliacca
- Department of Cardiovascular and Respiratory Science, Sapienza University of Rome, Rome, Italy
| | - A Brett Larive
- Department of Quantitative Health Sciences, Cleveland Clinic
| | - Robert Naeije
- Department of Pathophysiology, Free University of Brussels, Brussels, Belgium
| | | | - Gerald J Beck
- Department of Quantitative Health Sciences, Cleveland Clinic
| | | | | | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center
| | - Nicholas S Hill
- Division of Pulmonary, Critical Care, and Sleep Medicine, Tufts Medical Center
| | - Evelyn M Horn
- Perkin Heart Failure Center, Division of Cardiology, Weill Cornell Medicine
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School
| | - Erika B. Rosenzweig
- Department of Pediatrics and Medicine, Columbia University, Vegelos College of Physicians and Surgeons
| | | | | |
Collapse
|
7
|
Duan H, Wang L, Huangfu M, Li H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165:115276. [PMID: 37542852 DOI: 10.1016/j.biopha.2023.115276] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs) derived from the fermentation of carbohydrates by gut microbiota play a crucial role in regulating host physiology. Among them, acetate, propionate, and butyrate are key players in various biological processes. Recent research has revealed their significant functions in immune and inflammatory responses. For instance, butyrate reduces the development of interferon-gamma (IFN-γ) generating cells while promoting the development of regulatory T (Treg) cells. Propionate inhibits the initiation of a Th2 immune response by dendritic cells (DCs). Notably, SCFAs have an inhibitory impact on the polarization of M2 macrophages, emphasizing their immunomodulatory properties and potential for therapeutics. In animal models of asthma, both butyrate and propionate suppress the M2 polarization pathway, thus reducing allergic airway inflammation. Moreover, dysbiosis of gut microbiota leading to altered SCFA production has been implicated in prostate cancer progression. SCFAs trigger autophagy in cancer cells and promote M2 polarization in macrophages, accelerating tumor advancement. Manipulating microbiota- producing SCFAs holds promise for cancer treatment. Additionally, SCFAs enhance the expression of hypoxia-inducible factor 1 (HIF-1) by blocking histone deacetylase, resulting in increased production of antibacterial effectors and improved macrophage-mediated elimination of microorganisms. This highlights the antimicrobial potential of SCFAs and their role in host defense mechanisms. This comprehensive review provides an in-depth analysis of the latest research on the functional aspects and underlying mechanisms of SCFAs in relation to macrophage activities in a wide range of diseases, including infectious diseases and cancers. By elucidating the intricate interplay between SCFAs and macrophage functions, this review aims to contribute to the understanding of their therapeutic potential and pave the way for future interventions targeting SCFAs in disease management.
Collapse
Affiliation(s)
- Hongliang Duan
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - LiJuan Wang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Mingmei Huangfu
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Hanyang Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
8
|
Yogeswaran A, Mamazhakypov A, Schermuly RT, Weiß A. Right ventricular failure in pulmonary hypertension: recent insights from experimental models. Herz 2023; 48:285-290. [PMID: 37079028 DOI: 10.1007/s00059-023-05180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/21/2023]
Abstract
Right ventricular (RV) function is a critical determinant of the prognosis of patients with pulmonary hypertension (PH). Upon establishment of PH, RV dysfunction develops, leading to a gradual worsening of the condition over time, culminating in RV failure and premature mortality. Despite this understanding, the underlying mechanisms of RV failure remain obscure. As a result, there are currently no approved therapies specifically targeting the right ventricle. One contributing factor to the lack of RV-directed therapies is the complexity of the pathogenesis of RV failure as observed in animal models and clinical studies. In recent years, various research groups have begun utilizing multiple models, including both afterload-dependent and afterload-independent models, to investigate specific targets and pharmacological agents in RV failure. In this review, we examine various animal models of RV failure and the recent advancements made utilizing these models to study the mechanisms of RV failure and the potential efficacy of therapeutic interventions, with the ultimate goal of translating these findings into clinical practice to enhance the management of individuals with PH.
Collapse
Affiliation(s)
- Athiththan Yogeswaran
- Department of Internal Medicine, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Schubertstr. 81, 35392, Gießen, Germany
| | - Argen Mamazhakypov
- Department of Internal Medicine, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Schubertstr. 81, 35392, Gießen, Germany
| | - Ralph T Schermuly
- Department of Internal Medicine, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Schubertstr. 81, 35392, Gießen, Germany
| | - Astrid Weiß
- Department of Internal Medicine, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Schubertstr. 81, 35392, Gießen, Germany.
| |
Collapse
|
9
|
McNair BD, Shorthill SK, Bruns DR. More than just a small left ventricle: the right ventricular fibroblast and ECM in health and disease. Am J Physiol Heart Circ Physiol 2023; 325:H385-H397. [PMID: 37389951 PMCID: PMC10396282 DOI: 10.1152/ajpheart.00213.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Fibroblasts intricately organize and regulate the extracellular matrix (ECM) in cardiac health and disease. Excess deposition of ECM proteins causes fibrosis, resulting in disrupted signaling conduction and contributing to the development of arrhythmias and impaired cardiac function. Fibrosis is causally involved in cardiac failure in the left ventricle (LV). Fibrosis likely occurs in right ventricle (RV) failure, yet mechanisms remain unclear. Indeed, RV fibrosis is poorly understood with mechanisms often extrapolated from the LV to the RV. However, emerging data suggest that the LV and RV are distinct cardiac chambers and differ in regulation of the ECM and response to fibrotic stimuli. In the present review, we will discuss differences in ECM regulation in the healthy RV and LV. We will discuss the importance of fibrosis in the development of RV disease in pressure overload, inflammation, and aging. During this discussion, we will highlight mechanisms of fibrosis with respect to the synthesis of ECM proteins while acknowledging the importance of considering collagen breakdown. We will also discuss current knowledge of antifibrotic therapies in the RV and the need for additional research to help delineate the shared and distinct mechanisms of RV and LV fibrosis.
Collapse
Affiliation(s)
- Benjamin D McNair
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Samantha K Shorthill
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Danielle R Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
- Wyoming WWAMI Medical Education, Laramie, Wyoming, United States
| |
Collapse
|
10
|
Müller M, Donhauser E, Maske T, Bischof C, Dumitrescu D, Rudolph V, Klinke A. Mitochondrial Integrity Is Critical in Right Heart Failure Development. Int J Mol Sci 2023; 24:11108. [PMID: 37446287 PMCID: PMC10342493 DOI: 10.3390/ijms241311108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular processes underlying right ventricular (RV) dysfunction (RVD) and right heart failure (RHF) need to be understood to develop tailored therapies for the abatement of mortality of a growing patient population. Today, the armament to combat RHF is poor, despite the advancing identification of pathomechanistic processes. Mitochondrial dysfunction implying diminished energy yield, the enhanced release of reactive oxygen species, and inefficient substrate metabolism emerges as a potentially significant cardiomyocyte subcellular protagonist in RHF development. Dependent on the course of the disease, mitochondrial biogenesis, substrate utilization, redox balance, and oxidative phosphorylation are affected. The objective of this review is to comprehensively analyze the current knowledge on mitochondrial dysregulation in preclinical and clinical RVD and RHF and to decipher the relationship between mitochondrial processes and the functional aspects of the right ventricle (RV).
Collapse
Affiliation(s)
- Marion Müller
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Elfi Donhauser
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Tibor Maske
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Cornelius Bischof
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Daniel Dumitrescu
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Volker Rudolph
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Anna Klinke
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
11
|
Kheyfets VO, Kumar S, Heerdt PM, Ichimura K, Brown RD, Lucero M, Essafri I, Williams S, Stenmark KR, Spiekerkoetter E. Characterizing the Spatiotemporal Transcriptomic Response of the Right Ventricle to Acute Pressure Overload. Int J Mol Sci 2023; 24:9746. [PMID: 37298696 PMCID: PMC10253685 DOI: 10.3390/ijms24119746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This study analyzed microarray data of right ventricular (RV) tissue from rats exposed to pulmonary embolism to understand the initial dynamic transcriptional response to mechanical stress and compare it with experimental pulmonary hypertension (PH) models. The dataset included samples harvested from 55 rats at 11 different time points or RV locations. We performed principal component analysis (PCA) to explore clusters based on spatiotemporal gene expression. Relevant pathways were identified from fast gene set enrichment analysis using PCA coefficients. The RV transcriptomic signature was measured over several time points, ranging from hours to weeks after an acute increase in mechanical stress, and was found to be highly dependent on the severity of the initial insult. Pathways enriched in the RV outflow tracts of rats at 6 weeks after severe PE share many commonalities with experimental PH models, but the transcriptomic signature at the RV apex resembles control tissue. The severity of the initial pressure overload determines the trajectory of the transcriptomic response independent of the final afterload, but this depends on the location where the tissue is biopsied. Chronic RV pressure overload due to PH appears to progress toward similar transcriptomic endpoints.
Collapse
Affiliation(s)
- Vitaly O. Kheyfets
- Paediatric Critical Care Medicine, Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Sushil Kumar
- Paediatric Critical Care Medicine, Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Paul M. Heerdt
- Department of Anaesthesiology, Applied Hemodynamic, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kenzo Ichimura
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - R. Dale Brown
- Paediatric Critical Care Medicine, Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Melissa Lucero
- Paediatric Critical Care Medicine, Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Ilham Essafri
- Paediatric Critical Care Medicine, Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Sarah Williams
- Queensland Facility for Advanced Bioinformatics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kurt R. Stenmark
- Paediatric Critical Care Medicine, Developmental Lung Biology and CVP Research Laboratories, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Edda Spiekerkoetter
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Bekedam FT, Goumans MJ, Bogaard HJ, de Man FS, Llucià-Valldeperas A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary hypertension. Pharmacol Ther 2023; 244:108389. [PMID: 36940790 DOI: 10.1016/j.pharmthera.2023.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/19/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Right ventricular fibrosis is a stress response, predominantly mediated by cardiac fibroblasts. This cell population is sensitive to increased levels of pro-inflammatory cytokines, pro-fibrotic growth factors and mechanical stimulation. Activation of fibroblasts results in the induction of various molecular signaling pathways, most notably the mitogen-activated protein kinase cassettes, leading to increased synthesis and remodeling of the extracellular matrix. While fibrosis confers structural protection in response to damage induced by ischemia or (pressure and volume) overload, it simultaneously contributes to increased myocardial stiffness and right ventricular dysfunction. Here, we review state-of-the-art knowledge of the development of right ventricular fibrosis in response to pressure overload and provide an overview of all published preclinical and clinical studies in which right ventricular fibrosis was targeted to improve cardiac function.
Collapse
Affiliation(s)
- F T Bekedam
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - M J Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC Leiden, the Netherlands
| | - H J Bogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - F S de Man
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| | - A Llucià-Valldeperas
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Rischard FP, Bernardo RJ, Vanderpool RR, Kwon DH, Acharya T, Park MM, Katrynuik A, Insel M, Kubba S, Badagliacca R, Larive AB, Naeije R, Garcia JGN, Beck GJ, Erzurum SC, Frantz RP, Hassoun PM, Hemnes AR, Hill NS, Horn EM, Leopold JA, Rosenzweig EB, Tang WHW, Wilcox JD. Classification and Predictors of Right Ventricular Functional Recovery in Pulmonary Arterial Hypertension. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.15.23285974. [PMID: 36824981 PMCID: PMC9949192 DOI: 10.1101/2023.02.15.23285974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Background Normative changes in right ventricular (RV) structure and function have not been characterized in the context of treatment-associated functional recovery (RVFnRec). The aim of this study is to assess the clinical relevance of a proposed RVFnRec definition. Methods We evaluated 63 incident patients with PAH by right heart catheterization and cardiac MRI (CMR) at diagnosis and CMR and invasive cardiopulmonary exercise (CPET) following treatment (∼11 months). Sex, age, race/ethnicity matched healthy control subjects (n=62) with one-time CMR and non-invasive CPET were recruited from the PVDOMICS project. We examined therapeutic CMR changes relative to the evidence-based peak oxygen consumption (VO2 peak )>15mL/kg/min to define RVFnRec by receiver operating curve analysis. Afterload was measured in the as mean pulmonary artery pressure, resistance, compliance, and elastance. Results A drop in RV end-diastolic volume of -15 mL best defined RVFnRec (AUC 0.87, P=0.0001) and neared upper 95% CI RVEDV of controls. 22/63 (35%) of subjects met this cutoff which was reinforced by freedom from clinical worsening, RVFnRec 1/21 (5%) versus no RVFnRec 17/42, 40%, (log rank P=0.006). A therapy-associated increase of 0.8 mL/mmHg in compliance had the best predictive value of RVFnRec (AUC 0.76, CI 0.64-0.88, P=0.001). RVFnRec subjects had greater increases in stroke volume, and cardiac output at exercise. Conclusions RVFnRec defined by RVEDV therapeutic decrease of -15mL predicts exercise capacity, freedom from clinical worsening, and nears normalization. A therapeutic improvement of compliance is superior to other measures of afterload in predicting RVFnRec. RVFnRec is also associated with increased RV output reserve at exercise. Clinical Perspective What is new?: Right ventricular functional recovery (RVFnRec) represents a novel endpoint of therapeutic success in PAH. We define RVFnRec as treatment associated normative RV changes related to function (peak oxygen consumption). Normative RV imaging changes are compared to a well phenotyped age, sex, and race/ethnicity matched healthy control cohort from the PVDOMICS project. Previous studies have focused on RV ejection fraction improvements. However, we show that changes in RVEDV are perhaps more important in that improvements in LV function also occur. Lastly, RVFnRec is best predicted by improvements in pulmonary artery compliance versus pulmonary vascular resistance, a more often cited metric of RV afterload.What are the clinical implications?: RVFnRec represents a potential non-invasive assessment of clinical improvement and therapeutic response. Clinicians with access to cardiac MRI can obtain a limited scan (i.e., ventricular volumes) before and after treatment. Future study should examine echocardiographic correlates of RVFnRec.
Collapse
|
14
|
Jones XM, Fox R, Motawakel J, Trivedi RK. Reversal of right ventricular pressure loading improves function independent of fibrosis. J Physiol 2023; 601:397-399. [PMID: 36524593 PMCID: PMC11226194 DOI: 10.1113/jp283580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Rachel Fox
- University of California Los Angeles, United States
| | | | | |
Collapse
|
15
|
Fujioka T, Akazawa Y, Ide H, Karur GR, Bannan B, Grosse-Wortmann L, Sun M, Hui W, Slorach C, Honjo O, Friedberg MK. Reversal of right ventricular pressure loading improves biventricular function independent of fibrosis in a rabbit model of pulmonary artery banding. J Physiol 2022; 600:3689-3703. [PMID: 35801377 DOI: 10.1113/jp283165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Right ventricular (RV) pressure loading leads to RV and left ventricular (LV) dysfunction through RV hypertrophy, dilatation and fibrosis. Relief of RV pressure load improves RV function. However, the impact and mechanisms on biventricular reverse-remodelling and function are only partially characterized. We evaluated the impact of RV pressure overload relief on biventricular remodelling and function in a rabbit model of reversible pulmonary artery banding (PAB). Rabbits were randomized to three groups: (1) Sham-operated controls (n = 7); (2) PAB (NDef, n = 7); (3) PAB followed by band deflation (Def, n = 5). Sham and NDef animals were sacrificed at 6 weeks after PAB surgery. Def animals underwent PAB deflation at 6 weeks and sacrifice at 9 weeks. Biventricular geometry, function, haemodynamics, hypertrophy and fibrosis were compared between groups using echocardiography, magnetic resonance imaging, high-fidelity pressure-tipped catheters and histology. RV pressure loading caused RV dilatation, systolic dysfunction, myocyte hypertrophy and LV compression which improved after PAB deflation. RV end-diastolic pressure (RVEDP) decreased after PAB deflation, although remaining elevated vs. Sham. LV end-diastolic pressure (LVEDP) was unchanged following PAB deflation. RV and LV collagen volumes in the NDef and Def group were increased vs. Sham, whereas RV and LV collagen volumes were similar between NDef and Def groups. RV myocyte hypertrophy (r = 0.75, P < 0.001) but not collagen volume was related to RVEDP. LV myocyte hypertrophy (r = 0.58, P = 0.016) and collagen volume (r = 0.56, P = 0.031) correlated with LVEDP. In conclusion, relief of RV pressure overload improves RV and LV geometry, hypertrophy and function independent of fibrosis. The long-term implications of persistent fibrosis and increased biventricular filling pressures, even after pressure load relief, need further study. KEY POINTS: Right ventricular (RV) pressure loading in a pulmonary artery banding rabbit model is associated with RV dilatation, left ventricular (LV) compression; biventricular myocyte hypertrophy, fibrosis and dysfunction. The mechanisms and impact of RV pressure load relief on biventricular remodelling and function has not been extensively studied. Relief of RV pressure overload improves biventricular geometry in conjunction with improved RV myocyte hypertrophy and function independent of reduced fibrosis. These findings raise questions as to the importance of fibrosis as a therapeutic target.
Collapse
Affiliation(s)
- Tao Fujioka
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Yohei Akazawa
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Haruki Ide
- Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gauri Rani Karur
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Badr Bannan
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lars Grosse-Wortmann
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Mei Sun
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Wei Hui
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Cameron Slorach
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Osami Honjo
- Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, The Labatt Family Heart Centre, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Right Heart Failure in Mice Upon Pressure Overload Is Promoted by Mitochondrial Oxidative Stress. JACC Basic Transl Sci 2022; 7:658-677. [PMID: 35958691 PMCID: PMC9357563 DOI: 10.1016/j.jacbts.2022.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/22/2022]
|
17
|
Ge ZD, Boyd RM, Lantz C, Thorp EB, Forbess JM. Cardio-omentopexy requires a cardioprotective innate immune response to promote myocardial angiogenesis in mice. JTCVS OPEN 2022; 10:222-242. [PMID: 36004249 PMCID: PMC9390370 DOI: 10.1016/j.xjon.2022.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/17/2022] [Indexed: 11/09/2022]
Abstract
Objective The pedicled greater omentum, when applied onto stressed hearts using omentopexy, has been shown to be protective in humans and animals. The mechanisms underlying cardioprotection using omentopexy remain elusive. This study examined whether macrophage-mediated angiogenesis accounts for the cardioprotective effect of omentopexy in mice. Methods C57BL/6 mice were subjected to minimally invasive transverse aortic constriction for 6 weeks and subsequent cardio-omentopexy for 8 weeks. Control mice underwent the same surgical procedures without aortic constriction or cardio-omentopexy. Results Transverse aortic constriction led to left ventricular concentric hypertrophy, reduced mitral E/A ratio, increased cardiomyocyte size, and myocardial fibrosis in the mice that underwent sham cardio-omentopexy surgery. The negative effects of transverse aortic constriction were prevented by cardio-omentopexy. Myocardial microvessel density was elevated in the mice that underwent aortic constriction and sham cardio-omentopexy surgery, and cardio-omentopexy further enhanced angiogenesis. Nanostring gene array analysis uncovered the activation of angiogenesis gene networks by cardio-omentopexy. Flow cytometric analysis revealed that cardio-omentopexy triggered the accumulation of cardiac MHCIIloLyve1+TimD4+ (Major histocompatibility complex class IIlow lymphatic vessel endothelial hyaluronan receptor 1+ T cell immunoglobulin and mucin domain conataining 4+) resident macrophages at the omental-cardiac interface. Intriguingly, the depletion of macrophages with clodronate-liposome resulted in the failure of cardio-omentopexy to protect the heart and promote angiogenesis. Conclusions Cardio-omentopexy protects the heart from pressure overload-elicited left ventricular hypertrophy and dysfunction by promoting myocardial angiogenesis. Cardiac MHCIIloLyve1+TimD4+ resident macrophages play a critical role in the cardioprotective effect and angiogenesis of cardio-omentopexy. Video Abstract
Collapse
Key Words
- AXL, AXL receptor tyrosine kinase
- Akt, protein kinase B
- CD45, lymphocyte common antigen
- CD64, cluster of differentiation 64
- COP, cardio-omentopexy
- Calm1, calmodulin 1
- Cdh5, cadherin 5
- Clodro, clodronate-liposomes
- Crk, proto-oncogene c-Crk
- Ctnnb1, catenin β1
- Ctnnd1, catenin delta 1
- Cybb, cytochrome B-245 beta chain
- Cyfip1, cytoplasmic FMR1 interacting protein 1
- ECM, extracellular matrix
- F4/80, F4/80 antigen
- HCM, hypertrophic cardiomyopathy
- HSP89aa1, heat shock protein 89aa1
- Hippo, hippocampal
- Itpr2, inositol 1,4,5-trisphosphate receptor type 2
- Kdr, kinase insert domain receptor
- Kras, kirsten rat sarcoma virus
- LV, left ventricle
- Ly6Clo, lymphocyte antigen-6Clow
- Ly6G, lymphocyte antigen 6 complex locus G6D
- Lyve1, lymphatic vessel endothelial hyaluronan receptor 1
- MHCIIlo, major histocompatibility complex class IIlow
- Ncf1, neutrophil cytosolic factor 1
- Nck2, NCK adaptor protein 2
- Nckap1H, NCK-associated protein 1H
- Nos3, nitric oxide synthase 3
- PBS, phosphate-buffered saline
- PDGF, platelet-derived growth factor
- PI3K, phosphoinositide-3-kinase
- Plcg1, phospholipase Cγ1
- Plcg2, 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase γ2
- Prkaca, protein kinase cAMP-activated catalytic subunit α
- Prkacb, protein kinase cAMP-activated catalytic subunit β
- Prkca, protein kinase Cα
- Ptk2, protein tyrosine kinase 2
- Ptk2b, protein tyrosine kinase 2β
- Rac1, Rac family small GTPase 1
- Rock2, Rho associated coiled-coil containing protein kinase 2
- Src, proto-oncogene tyrosine-protein kinase Src
- TAC, transverse aortic constriction
- TGF, transforming growth factor
- TimD4, T cell immunoglobulin and mucin domain conataining 4
- VEGF-A, vascular endothelial growth factor A
- Vav1, Vav guanine nucleotide exchange factor 1
- WGA, wheat germ agglutinin
- angiogenesis
- cardiac hypertrophy
- cardio-omentopexy
- iB4, biotinylated-isolectin B4
- mTOR, mammalian target of rapamycin
- macrophages
Collapse
Affiliation(s)
- Zhi-Dong Ge
- The Heart Center and Cardiovascular-Thoracic Surgery, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Riley M. Boyd
- The Heart Center and Cardiovascular-Thoracic Surgery, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Connor Lantz
- The Heart Center and Cardiovascular-Thoracic Surgery, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Edward B. Thorp
- The Heart Center and Cardiovascular-Thoracic Surgery, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Joseph M. Forbess
- Department of Surgery, University of Maryland School of Medicine and The Children's Heart Program, University of Maryland Children's Hospital, Baltimore, Md
| |
Collapse
|
18
|
Schimmel K, Ichimura K, Reddy S, Haddad F, Spiekerkoetter E. Cardiac Fibrosis in the Pressure Overloaded Left and Right Ventricle as a Therapeutic Target. Front Cardiovasc Med 2022; 9:886553. [PMID: 35600469 PMCID: PMC9120363 DOI: 10.3389/fcvm.2022.886553] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022] Open
Abstract
Myocardial fibrosis is a remodeling process of the extracellular matrix (ECM) following cardiac stress. "Replacement fibrosis" is a term used to describe wound healing in the acute phase of an injury, such as myocardial infarction. In striking contrast, ECM remodeling following chronic pressure overload insidiously develops over time as "reactive fibrosis" leading to diffuse interstitial and perivascular collagen deposition that continuously perturbs the function of the left (L) or the right ventricle (RV). Examples for pressure-overload conditions resulting in reactive fibrosis in the LV are systemic hypertension or aortic stenosis, whereas pulmonary arterial hypertension (PAH) or congenital heart disease with right sided obstructive lesions such as pulmonary stenosis result in RV reactive fibrosis. In-depth phenotyping of cardiac fibrosis has made it increasingly clear that both forms, replacement and reactive fibrosis co-exist in various etiologies of heart failure. While the role of fibrosis in the pathogenesis of RV heart failure needs further assessment, reactive fibrosis in the LV is a pathological hallmark of adverse cardiac remodeling that is correlated with or potentially might even drive both development and progression of heart failure (HF). Further, LV reactive fibrosis predicts adverse outcome in various myocardial diseases and contributes to arrhythmias. The ability to effectively block pathological ECM remodeling of the LV is therefore an important medical need. At a cellular level, the cardiac fibroblast takes center stage in reactive fibrotic remodeling of the heart. Activation and proliferation of endogenous fibroblast populations are the major source of synthesis, secretion, and deposition of collagens in response to a variety of stimuli. Enzymes residing in the ECM are responsible for collagen maturation and cross-linking. Highly cross-linked type I collagen stiffens the ventricles and predominates over more elastic type III collagen in pressure-overloaded conditions. Research has attempted to identify pro-fibrotic drivers causing fibrotic remodeling. Single key factors such as Transforming Growth Factor β (TGFβ) have been described and subsequently targeted to test their usefulness in inhibiting fibrosis in cultured fibroblasts of the ventricles, and in animal models of cardiac fibrosis. More recently, modulation of phenotypic behaviors like inhibition of proliferating fibroblasts has emerged as a strategy to reduce pathogenic cardiac fibroblast numbers in the heart. Some studies targeting LV reactive fibrosis as outlined above have successfully led to improvements of cardiac structure and function in relevant animal models. For the RV, fibrosis research is needed to better understand the evolution and roles of fibrosis in RV failure. RV fibrosis is seen as an integral part of RV remodeling and presents at varying degrees in patients with PAH and animal models replicating the disease of RV afterload. The extent to which ECM remodeling impacts RV function and thus patient survival is less clear. In this review, we describe differences as well as common characteristics and key players in ECM remodeling of the LV vs. the RV in response to pressure overload. We review pre-clinical studies assessing the effect of anti-fibrotic drug candidates on LV and RV function and their premise for clinical testing. Finally, we discuss the mode of action, safety and efficacy of anti-fibrotic drugs currently tested for the treatment of left HF in clinical trials, which might guide development of new approaches to target right heart failure. We touch upon important considerations and knowledge gaps to be addressed for future clinical testing of anti-fibrotic cardiac therapies.
Collapse
Affiliation(s)
- Katharina Schimmel
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Kenzo Ichimura
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Sushma Reddy
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,Pediatric Cardiology, Stanford University, Stanford, CA, United States
| | - Francois Haddad
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,Cardiovascular Medicine, Stanford University, Stanford, CA, United States
| | - Edda Spiekerkoetter
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,*Correspondence: Edda Spiekerkoetter,
| |
Collapse
|
19
|
Lu M, Chen LY, Gairhe S, Mazer AJ, Anderson SA, Nelson JN, Noguchi A, Siddique MAH, Dougherty EJ, Zou Y, Johnston KA, Yu ZX, Wang H, Wang S, Sun J, Solomon SB, Vanderpool RR, Solomon MA, Danner RL, Elinoff JM. Mineralocorticoid receptor antagonist treatment of established pulmonary arterial hypertension improves interventricular dependence in the SU5416-hypoxia rat model. Am J Physiol Lung Cell Mol Physiol 2022; 322:L315-L332. [PMID: 35043674 PMCID: PMC8858673 DOI: 10.1152/ajplung.00238.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment with mineralocorticoid receptor (MR) antagonists beginning at the outset of disease, or early thereafter, prevents pulmonary vascular remodeling in preclinical models of pulmonary arterial hypertension (PAH). However, the efficacy of MR blockade in established disease, a more clinically relevant condition, remains unknown. Therefore, we investigated the effectiveness of two MR antagonists, eplerenone (EPL) and spironolactone (SPL), after the development of severe right ventricular (RV) dysfunction in the rat SU5416-hypoxia (SuHx) PAH model. Cardiac magnetic resonance imaging (MRI) in SuHx rats at the end of week 5, before study treatment, confirmed features of established disease including reduced RV ejection fraction and RV hypertrophy, pronounced septal flattening with impaired left ventricular filling and reduced cardiac index. Five weeks of treatment with either EPL or SPL improved left ventricular filling and prevented the further decline in cardiac index compared with placebo. Interventricular septal displacement was reduced by EPL whereas SPL effects were similar, but not significant. Although MR antagonists did not significantly reduce pulmonary artery pressure or vessel remodeling in SuHx rats with established disease, animals with higher drug levels had lower pulmonary pressures. Consistent with effects on cardiac function, EPL treatment tended to suppress MR and proinflammatory gene induction in the RV. In conclusion, MR antagonist treatment led to modest, but consistent beneficial effects on interventricular dependence after the onset of significant RV dysfunction in the SuHx PAH model. These results suggest that measures of RV structure and/or function may be useful endpoints in clinical trials of MR antagonists in patients with PAH.
Collapse
Affiliation(s)
- Mengyun Lu
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Li-Yuan Chen
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Salina Gairhe
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Adrien J. Mazer
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Stasia A. Anderson
- 2Animal MRI Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jasmine N.H. Nelson
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Audrey Noguchi
- 3Murine Phenotyping Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Edward J. Dougherty
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Yvette Zou
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Kathryn A. Johnston
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Zu-Xi Yu
- 4Pathology Core Facility, National Heart, Lung, and Blood
Institute, National Institutes of Health, Bethesda, Maryland
| | - Honghui Wang
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Shuibang Wang
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Junfeng Sun
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Steven B. Solomon
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Rebecca R. Vanderpool
- 6Department of Medicine and Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona
| | - Michael A. Solomon
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland,5Cardiology Branch, National Heart, Lung, and Blood
Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert L. Danner
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jason M. Elinoff
- 1Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Gordon B, González-Fernández V, Dos-Subirà L. Myocardial fibrosis in congenital heart disease. Front Pediatr 2022; 10:965204. [PMID: 36467466 PMCID: PMC9715985 DOI: 10.3389/fped.2022.965204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial fibrosis resulting from the excessive deposition of collagen fibers through the myocardium is a common histopathologic finding in a wide range of cardiovascular diseases, including congenital anomalies. Interstitial fibrosis has been identified as a major cause of myocardial dysfunction since it distorts the normal architecture of the myocardium and impairs the biological function and properties of the interstitium. This review summarizes current knowledge on the mechanisms and detrimental consequences of myocardial fibrosis in heart failure and arrhythmias, discusses the usefulness of available imaging techniques and circulating biomarkers to assess this entity and reviews the current body of evidence regarding myocardial fibrosis in the different subsets of congenital heart diseases with implications in research and treatment.
Collapse
Affiliation(s)
- Blanca Gordon
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - Víctor González-Fernández
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - Laura Dos-Subirà
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| |
Collapse
|
21
|
Karoor V, Strassheim D, Sullivan T, Verin A, Umapathy NS, Dempsey EC, Frank DN, Stenmark KR, Gerasimovskaya E. The Short-Chain Fatty Acid Butyrate Attenuates Pulmonary Vascular Remodeling and Inflammation in Hypoxia-Induced Pulmonary Hypertension. Int J Mol Sci 2021; 22:9916. [PMID: 34576081 PMCID: PMC8467617 DOI: 10.3390/ijms22189916] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive cardiovascular disorder in which local vascular inflammation leads to increased pulmonary vascular remodeling and ultimately to right heart failure. The HDAC inhibitor butyrate, a product of microbial fermentation, is protective in inflammatory intestinal diseases, but little is known regarding its effect on extraintestinal diseases, such as PH. In this study, we tested the hypothesis that butyrate is protective in a Sprague-Dawley (SD) rat model of hypoxic PH. Treatment with butyrate (220 mg/kg intake) prevented hypoxia-induced right ventricular hypertrophy (RVH), hypoxia-induced increases in right ventricular systolic pressure (RVSP), pulmonary vascular remodeling, and permeability. A reversal effect of butyrate (2200 mg/kg intake) was observed on elevated RVH. Butyrate treatment also increased the acetylation of histone H3, 25-34 kDa, and 34-50 kDa proteins in the total lung lysates of butyrate-treated animals. In addition, butyrate decreased hypoxia-induced accumulation of alveolar (mostly CD68+) and interstitial (CD68+ and CD163+) lung macrophages. Analysis of cytokine profiles in lung tissue lysates showed a hypoxia-induced upregulation of TIMP-1, CINC-1, and Fractalkine and downregulation of soluble ICAM (sICAM). The expression of Fractalkine and VEGFα, but not CINC-1, TIMP-1, and sICAM was downregulated by butyrate. In rat microvascular endothelial cells (RMVEC), butyrate (1 mM, 2 and 24 h) exhibited a protective effect against TNFα- and LPS-induced barrier disruption. Butyrate (1 mM, 24 h) also upregulated tight junctional proteins (occludin, cingulin, claudin-1) and increased the acetylation of histone H3 but not α-tubulin. These findings provide evidence of the protective effect of butyrate on hypoxic PH and suggest its potential use as a complementary treatment for PH and other cardiovascular diseases.
Collapse
Affiliation(s)
- Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
| | - Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (N.S.U.)
| | - Nagavedi S. Umapathy
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (N.S.U.)
- Center for Blood Disorders, Augusta University, Augusta, GA 30912, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Center, Aurora, CO 80045, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Denver, Denver, CO 80204, USA;
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
- Division of Critical Care Medicine, Department of Pediatrics, University of Colorado Denver, Denver, CO 80204, USA
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (V.K.); (D.S.); (T.S.); (E.C.D.); (K.R.S.)
- Division of Critical Care Medicine, Department of Pediatrics, University of Colorado Denver, Denver, CO 80204, USA
| |
Collapse
|
22
|
Boehm M, Tian X, Ali MK, Mao Y, Ichimura K, Zhao M, Kuramoto K, Dannewitz Prosseda S, Fajardo G, Dufva MJ, Qin X, Kheyfets VO, Bernstein D, Reddy S, Metzger RJ, Zamanian RT, Haddad F, Spiekerkoetter E. Improving Right Ventricular Function by Increasing BMP Signaling with FK506. Am J Respir Cell Mol Biol 2021; 65:272-287. [PMID: 33938785 PMCID: PMC8485990 DOI: 10.1165/rcmb.2020-0528oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 11/24/2022] Open
Abstract
Right ventricular (RV) function is the predominant determinant of survival in patients with pulmonary arterial hypertension (PAH). In preclinical models, pharmacological activation of BMP (bone morphogenetic protein) signaling with FK506 (tacrolimus) improved RV function by decreasing RV afterload. FK506 therapy further stabilized three patients with end-stage PAH. Whether FK506 has direct effects on the pressure-overloaded right ventricle is yet unknown. We hypothesized that increasing cardiac BMP signaling with FK506 improves RV structure and function in a model of fixed RV afterload after pulmonary artery banding (PAB). Direct cardiac effects of FK506 on the microvasculature and RV fibrosis were studied after surgical PAB in wild-type and heterozygous Bmpr2 mutant mice. RV function and strain were assessed longitudinally via cardiac magnetic resonance imaging during continuous FK506 infusion. Genetic lineage tracing of endothelial cells (ECs) was performed to assess the contribution of ECs to fibrosis. Molecular mechanistic studies were performed in human cardiac fibroblasts and ECs. In mice, low BMP signaling in the right ventricle exaggerated PAB-induced RV fibrosis. FK506 therapy restored cardiac BMP signaling, reduced RV fibrosis in a BMP-dependent manner independent from its immunosuppressive effect, preserved RV capillarization, and improved RV function and strain over the time course of disease. Endothelial mesenchymal transition was a rare event and did not significantly contribute to cardiac fibrosis after PAB. Mechanistically, FK506 required ALK1 in human cardiac fibroblasts as a BMPR2 co-receptor to reduce TGFβ1-induced proliferation and collagen production. Our study demonstrates that increasing cardiac BMP signaling with FK506 improves RV structure and function independent from its previously described beneficial effects on pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Mario Boehm
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Cardio-Pulmonary Institute, Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Xuefei Tian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Md Khadem Ali
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Yuqiang Mao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Kenzo Ichimura
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Mingming Zhao
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Kazuya Kuramoto
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Svenja Dannewitz Prosseda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Giovanni Fajardo
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Melanie J. Dufva
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado; and
- Department of Pediatrics, Section of Cardiology, Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Xulei Qin
- Cardiovascular Institute, and
- Department of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Vitaly O. Kheyfets
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado; and
- Department of Pediatrics, Section of Cardiology, Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Daniel Bernstein
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Sushma Reddy
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Ross J. Metzger
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Division of Cardiology, Department of Pediatrics
- Cardiovascular Institute, and
| | - Roham T. Zamanian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute, and
| | - Francois Haddad
- Cardiovascular Institute, and
- Department of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute, and
| |
Collapse
|
23
|
Amsallem M, Sweatt AJ, Arthur Ataam J, Guihaire J, Lecerf F, Lambert M, Ghigna MR, Ali MK, Mao Y, Fadel E, Rabinovitch M, de Jesus Perez V, Spiekerkoetter E, Mercier O, Haddad F, Zamanian RT. Targeted proteomics of right heart adaptation to pulmonary arterial hypertension. Eur Respir J 2021; 57:2002428. [PMID: 33334941 PMCID: PMC8029214 DOI: 10.1183/13993003.02428-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
No prior proteomic screening study has centred on the right ventricle (RV) in pulmonary arterial hypertension (PAH). This study investigates the circulating proteomic profile associated with right heart maladaptive phenotype (RHMP) in PAH.Plasma proteomic profiling was performed using multiplex immunoassay in 121 (discovery cohort) and 76 (validation cohort) PAH patients. The association between proteomic markers and RHMP, defined by the Mayo right heart score (combining RV strain, New York Heart Association (NYHA) class and N-terminal pro-brain natriuretic peptide (NT-proBNP)) and Stanford score (RV end-systolic remodelling index, NYHA class and NT-proBNP), was assessed by partial least squares regression. Biomarker expression was measured in RV samples from PAH patients and controls, and pulmonary artery banding (PAB) mice.High levels of hepatocyte growth factor (HGF), stem cell growth factor-β, nerve growth factor and stromal derived factor-1 were associated with worse Mayo and Stanford scores independently from pulmonary resistance or pressure in both cohorts (the validation cohort had more severe disease features: lower cardiac index and higher NT-proBNP). In both cohorts, HGF added value to the REVEAL score in the prediction of death, transplant or hospitalisation at 3 years. RV expression levels of HGF and its receptor c-Met were higher in end-stage PAH patients than controls, and in PAB mice than shams.High plasma HGF levels are associated with RHMP and predictive of 3-year clinical worsening. Both HGF and c-Met RV expression levels are increased in PAH. Assessing plasma HGF levels might identify patients at risk of heart failure who warrant closer follow-up and intensified therapy.
Collapse
Affiliation(s)
- Myriam Amsallem
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Both first authors contributed equally
| | - Andrew J. Sweatt
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Both first authors contributed equally
| | - Jennifer Arthur Ataam
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Guihaire
- Research and Innovation Laboratory, INSERM U999, Marie Lannelongue Hospital, Paris Sud Saclay University, Le Plessis Robinson, France
| | - Florence Lecerf
- Research and Innovation Laboratory, INSERM U999, Marie Lannelongue Hospital, Paris Sud Saclay University, Le Plessis Robinson, France
| | - Mélanie Lambert
- Research and Innovation Laboratory, INSERM U999, Marie Lannelongue Hospital, Paris Sud Saclay University, Le Plessis Robinson, France
| | - Maria Rosa Ghigna
- Division of Pathology, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Md Khadem Ali
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuqiang Mao
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elie Fadel
- Division of Pathology, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Marlene Rabinovitch
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vinicio de Jesus Perez
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Edda Spiekerkoetter
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Olaf Mercier
- Research and Innovation Laboratory, INSERM U999, Marie Lannelongue Hospital, Paris Sud Saclay University, Le Plessis Robinson, France
| | - Francois Haddad
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Both senior authors contributed equally
| | - Roham T. Zamanian
- Vera Moulton Wall Center at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Both senior authors contributed equally
| |
Collapse
|
24
|
Dignam JP, Scott TE, Kemp-Harper BK, Hobbs AJ. Animal models of pulmonary hypertension: Getting to the heart of the problem. Br J Pharmacol 2021; 179:811-837. [PMID: 33724447 DOI: 10.1111/bph.15444] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Despite recent therapeutic advances, pulmonary hypertension (PH) remains a fatal disease due to the development of right ventricular (RV) failure. At present, no treatments targeted at the right ventricle are available, and RV function is not widely considered in the preclinical assessment of new therapeutics. Several small animal models are used in the study of PH, including the classic models of exposure to either hypoxia or monocrotaline, newer combinational and genetic models, and pulmonary artery banding, a surgical model of pure RV pressure overload. These models reproduce selected features of the structural remodelling and functional decline seen in patients and have provided valuable insight into the pathophysiology of RV failure. However, significant reversal of remodelling and improvement in RV function remains a therapeutic obstacle. Emerging animal models will provide a deeper understanding of the mechanisms governing the transition from adaptive remodelling to a failing right ventricle, aiding the hunt for druggable molecular targets.
Collapse
Affiliation(s)
- Joshua P Dignam
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tara E Scott
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
25
|
Prisco SZ, Thenappan T, Prins KW. Treatment Targets for Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. JACC Basic Transl Sci 2020; 5:1244-1260. [PMID: 33426379 PMCID: PMC7775863 DOI: 10.1016/j.jacbts.2020.07.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/10/2023]
Abstract
Right ventricle (RV) dysfunction is the strongest predictor of mortality in pulmonary arterial hypertension (PAH), but, at present, there are no therapies directly targeting the failing RV. Although there are shared molecular mechanisms in both RV and left ventricle (LV) dysfunction, there are important differences between the 2 ventricles that may allow for the development of RV-enhancing or RV-directed therapies. In this review, we discuss the current understandings of the dysregulated pathways that promote RV dysfunction, highlight RV-enriched or RV-specific pathways that may be of particular therapeutic value, and summarize recent and ongoing clinical trials that are investigating RV function in PAH. It is hoped that development of RV-targeted therapies will improve quality of life and enhance survival for this deadly disease.
Collapse
Key Words
- FAO, fatty acid oxidation
- IPAH, idiopathic pulmonary arterial hypertension
- LV, left ventricle/ventricular
- PAH, pulmonary arterial hypertension
- PH, pulmonary hypertension
- RAAS, renin-angiotensin-aldosterone system
- RV, right ventricle/ventricular
- RVH, right ventricular hypertrophy
- SSc-PAH, systemic sclerosis-associated pulmonary arterial hypertension
- clinical trials
- miRNA/miR, micro-ribonucleic acid
- pulmonary arterial hypertension
- right ventricle
Collapse
Affiliation(s)
- Sasha Z. Prisco
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thenappan Thenappan
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kurt W. Prins
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
26
|
Klinke A, Schubert T, Müller M, Legchenko E, Zelt JGE, Shimauchi T, Napp LC, Rothman AMK, Bonnet S, Stewart DJ, Hansmann G, Rudolph V. Emerging therapies for right ventricular dysfunction and failure. Cardiovasc Diagn Ther 2020; 10:1735-1767. [PMID: 33224787 PMCID: PMC7666928 DOI: 10.21037/cdt-20-592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Therapeutic options for right ventricular (RV) dysfunction and failure are strongly limited. Right heart failure (RHF) has been mostly addressed in the context of pulmonary arterial hypertension (PAH), where it is not possible to discern pulmonary vascular- and RV-directed effects of therapeutic approaches. In part, opposing pathomechanisms in RV and pulmonary vasculature, i.e., regarding apoptosis, angiogenesis and proliferation, complicate addressing RHF in PAH. Therapy effective for left heart failure is not applicable to RHF, e.g., inhibition of adrenoceptor signaling and of the renin-angiotensin system had no or only limited success. A number of experimental studies employing animal models for PAH or RV dysfunction or failure have identified beneficial effects of novel pharmacological agents, with most promising results obtained with modulators of metabolism and reactive oxygen species or inflammation, respectively. In addition, established PAH agents, in particular phosphodiesterase-5 inhibitors and soluble guanylate cyclase stimulators, may directly address RV integrity. Promising results are furthermore derived with microRNA (miRNA) and long non-coding RNA (lncRNA) blocking or mimetic strategies, which can target microvascular rarefaction, inflammation, metabolism or fibrotic and hypertrophic remodeling in the dysfunctional RV. Likewise, pre-clinical data demonstrate that cell-based therapies using stem or progenitor cells have beneficial effects on the RV, mainly by improving the microvascular system, however clinical success will largely depend on delivery routes. A particular option for PAH is targeted denervation of the pulmonary vasculature, given the sympathetic overdrive in PAH patients. Finally, acute and durable mechanical circulatory support are available for the right heart, which however has been tested mostly in RHF with concomitant left heart disease. Here, we aim to review current pharmacological, RNA- and cell-based therapeutic options and their potential to directly target the RV and to review available data for pulmonary artery denervation and mechanical circulatory support.
Collapse
Affiliation(s)
- Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Torben Schubert
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Marion Müller
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Jason G. E. Zelt
- Division of Cardiology, University of Ottawa Heart Institute and the Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Centre de recherche de IUCPQ/Laval University, Quebec, Canada
| | - L. Christian Napp
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de recherche de IUCPQ/Laval University, Quebec, Canada
| | - Duncan J. Stewart
- Division of Cardiology, University of Ottawa Heart Institute and the Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
27
|
Brown RD, Fini MA, Stenmark KR. Band on the run: insights into right ventricular reverse remodelling. Cardiovasc Res 2020; 116:1651-1653. [PMID: 32289148 DOI: 10.1093/cvr/cvaa091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Robert D Brown
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mehdi A Fini
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|