1
|
Aldaihani R, Heath LS. Investigating the nature of prokaryotic genomic island locations within a genome. PLoS One 2024; 19:e0301172. [PMID: 38696408 PMCID: PMC11065298 DOI: 10.1371/journal.pone.0301172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/12/2024] [Indexed: 05/04/2024] Open
Abstract
Horizontal gene transfer (HGT) is a powerful evolutionary force that considerably shapes the structure of prokaryotic genomes and is associated with genomic islands (GIs). A GI is a DNA segment composed of transferred genes that can be found within a prokaryotic genome, obtained through HGT. Much research has focused on detecting GIs in genomes, but here we pursue a new course, which is identifying possible preferred locations of GIs in the prokaryotic genome. Here, we identify the locations of the GIs within prokaryotic genomes to examine patterns in those locations. Prokaryotic GIs were analyzed according to the genome structure that they are located in, whether it be a circular or a linear genome. The analytical investigations employed are: (1) studying the GI locations in relation to the origin of replication (oriC); (2) exploring the distances between GIs; and (3) determining the distribution of GIs across the genomes. For each of the investigations, the analysis was performed on all of the GIs in the data set. Moreover, to void bias caused by the distribution of the genomes represented, the GIs in one genome from each species and the GIs of the most frequent species are also analyzed. Overall, the results showed that there are preferred sites for the GIs in the genome. In the linear genomes, these sites are usually located in the oriC region and terminus region, while in the circular genomes, they are located solely in the terminus region. These results also showed that the distance distribution between the GIs is almost exponential, which proves that GIs have preferred sites within genomes. The oriC and termniuns are preferred sites for the GIs and a possible natural explanation for this could be connected to the content of the oriC region. Moreover, the content of the GIs in terms of its protein families was studied and the results demonstrated that the majority of frequent protein families are close to identical in each section.
Collapse
Affiliation(s)
- Reem Aldaihani
- Department of Computer Science, Kuwait University, Kuwait City, State of Kuwait, Kuwait
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
2
|
Suo Z, Cummings DA, Puri AW, Schaefer AL, Greenberg EP. A Mesorhizobium japonicum quorum sensing circuit that involves three linked genes and an unusual acyl-homoserine lactone signal. mBio 2023; 14:e0101023. [PMID: 37227303 PMCID: PMC10470506 DOI: 10.1128/mbio.01010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/26/2023] Open
Abstract
Members of the genus Mesorhizobium, which are core components of the rhizosphere and specific symbionts of legume plants, possess genes for acyl-homoserine lactone (AHL) quorum sensing (QS). Here we show Mesorhizobium japonicum MAFF 303099 (formerly M. loti) synthesizes and responds to N-[(2E, 4E)-2,4-dodecadienoyl] homoserine lactone (2E, 4E-C12:2-HSL). We show that the 2E, 4E-C12:2-HSL QS circuit involves one of four luxR-luxI-type genes found in the sequenced genome of MAFF 303099. We refer to this circuit, which appears to be conserved among Mesorhizobium species, as R1-I1. We show that two other Mesorhizobium strains also produce 2E, 4E-C12:2-HSL. The 2E, 4E-C12:2-HSL is unique among known AHLs in its arrangement of two trans double bonds. The R1 response to 2E, 4E-C12:2-HSL is extremely selective in comparison with other LuxR homologs, and the trans double bonds appear critical for R1 signal recognition. Most well-studied LuxI-like proteins use S-adenosylmethionine and an acyl-acyl carrier protein as substrates for synthesis of AHLs. Others that form a subgroup of LuxI-type proteins use acyl-coenzyme A substrates rather than acyl-acyl carrier proteins. I1 clusters with the acyl-coenzyme A-type AHL synthases. We show that a gene linked to the I1 AHL synthase is involved in the production of the QS signal. The discovery of the unique I1 product enforces the view that further study of acyl-coenzyme A-dependent LuxI homologs will expand our knowledge of AHL diversity. The involvement of an additional enzyme in AHL generation leads us to consider this system a three-component QS circuit. IMPORTANCE We report a Mesorhizobium japonicum quorum sensing (QS) system involving a novel acyl-homoserine lactone (AHL) signal. This system is known to be involved in root nodule symbiosis with host plants. The chemistry of the newly described QS signal indicated that there may be a dedicated cellular enzyme involved in its synthesis in addition to the types known for production of other AHLs. Indeed, we report that an additional gene is required for synthesis of the unique signal, and we propose that this is a three-component QS circuit as opposed to the canonical two-component AHL QS circuits. The signaling system is exquisitely selective. The selectivity may be important when this species resides in the complex microbial communities around host plants and may make this system useful in various synthetic biology applications of QS circuits.
Collapse
Affiliation(s)
- Zehui Suo
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Dale A. Cummings
- Department of Chemistry and the Henry Eyring Center for Cell and Genomes Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Aaron W. Puri
- Department of Chemistry and the Henry Eyring Center for Cell and Genomes Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Amy L. Schaefer
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - E. Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Wang Y, Yang F, Zhu PF, Khan A, Xie ZP, Staehelin C. Use of the rhizobial type III effector gene nopP to improve Agrobacterium rhizogenes-mediated transformation of Lotus japonicus. PLANT METHODS 2021; 17:66. [PMID: 34162409 PMCID: PMC8220826 DOI: 10.1186/s13007-021-00764-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Protocols for Agrobacterium rhizogenes-mediated hairy root transformation of the model legume Lotus japonicus have been established previously. However, little efforts were made in the past to quantify and improve the transformation efficiency. Here, we asked whether effectors (nodulation outer proteins) of the nodule bacterium Sinorhizobium sp. NGR234 can promote hairy root transformation of L. japonicus. The co-expressed red fluorescent protein DsRed1 was used for visualization of transformed roots and for estimation of the transformation efficiency. RESULTS Strong induction of hairy root formation was observed when A. rhizogenes strain LBA9402 was used for L. japonicus transformation. Expression of the effector gene nopP in L. japonicus roots resulted in a significantly increased transformation efficiency while nopL, nopM, and nopT did not show such an effect. In nopP expressing plants, more than 65% of the formed hairy roots were transgenic as analyzed by red fluorescence emitted by co-transformed DsRed1. A nodulation experiment indicated that nopP expression did not obviously affect the symbiosis between L. japonicus and Mesorhizobium loti. CONCLUSION We have established a novel protocol for hairy root transformation of L. japonicus. The use of A. rhizogenes LBA9402 carrying a binary vector containing DsRed1 and nopP allowed efficient formation and identification of transgenic roots.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, East Campus, Guangzhou, 510006, China
| | - Feng Yang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, East Campus, Guangzhou, 510006, China
| | - Peng-Fei Zhu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, East Campus, Guangzhou, 510006, China
| | - Asaf Khan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, East Campus, Guangzhou, 510006, China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, East Campus, Guangzhou, 510006, China.
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, East Campus, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Biochemical and structural characterization of the BioZ enzyme engaged in bacterial biotin synthesis pathway. Nat Commun 2021; 12:2056. [PMID: 33824341 PMCID: PMC8024396 DOI: 10.1038/s41467-021-22360-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/12/2021] [Indexed: 01/07/2023] Open
Abstract
Biotin is an essential micro-nutrient across the three domains of life. The paradigm earlier step of biotin synthesis denotes "BioC-BioH" pathway in Escherichia coli. Here we report that BioZ bypasses the canonical route to begin biotin synthesis. In addition to its origin of Rhizobiales, protein phylogeny infers that BioZ is domesticated to gain an atypical role of β-ketoacyl-ACP synthase III. Genetic and biochemical characterization demonstrates that BioZ catalyzes the condensation of glutaryl-CoA (or ACP) with malonyl-ACP to give 5'-keto-pimeloyl ACP. This intermediate proceeds via type II fatty acid synthesis (FAS II) pathway, to initiate the formation of pimeloyl-ACP, a precursor of biotin synthesis. To further explore molecular basis of BioZ activity, we determine the crystal structure of Agrobacterium tumefaciens BioZ at 1.99 Å, of which the catalytic triad and the substrate-loading tunnel are functionally defined. In particular, we localize that three residues (S84, R147, and S287) at the distant bottom of the tunnel might neutralize the charge of free C-carboxyl group of the primer glutaryl-CoA. Taken together, this study provides molecular insights into the BioZ biotin synthesis pathway.
Collapse
|
5
|
Massot F, Gkorezis P, Van Hamme J, Marino D, Trifunovic BS, Vukovic G, d'Haen J, Pintelon I, Giulietti AM, Merini L, Vangronsveld J, Thijs S. Isolation, Biochemical and Genomic Characterization of Glyphosate Tolerant Bacteria to Perform Microbe-Assisted Phytoremediation. Front Microbiol 2021; 11:598507. [PMID: 33519737 PMCID: PMC7840833 DOI: 10.3389/fmicb.2020.598507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
The large-scale use of the herbicide glyphosate leads to growing ecotoxicological and human health concerns. Microbe-assisted phytoremediation arises as a good option to remove, contain, or degrade glyphosate from soils and waterbodies, and thus avoid further spreading to non-target areas. To achieve this, availability of plant-colonizing, glyphosate-tolerant and -degrading strains is required and at the same time, it must be linked to plant-microorganism interaction studies focusing on a substantive ability to colonize the roots and degrade or transform the herbicide. In this work, we isolated bacteria from a chronically glyphosate-exposed site in Argentina, evaluated their glyphosate tolerance using the minimum inhibitory concentration assay, their in vitro degradation potential, their plant growth-promotion traits, and performed whole genome sequencing to gain insight into the application of a phytoremediation strategy to remediate glyphosate contaminated agronomic soils. Twenty-four soil and root-associated bacterial strains were isolated. Sixteen could grow using glyphosate as the sole source of phosphorous. As shown in MIC assay, some strains tolerated up to 10000 mg kg–1 of glyphosate. Most of them also demonstrated a diverse spectrum of in vitro plant growth-promotion traits, confirmed in their genome sequences. Two representative isolates were studied for their root colonization. An isolate of Ochrobactrum haematophilum exhibited different colonization patterns in the rhizoplane compared to an isolate of Rhizobium sp. Both strains were able to metabolize almost 50% of the original glyphosate concentration of 50 mg l–1 in 9 days. In a microcosms experiment with Lotus corniculatus L, O. haematophilum performed better than Rhizobium, with 97% of glyphosate transformed after 20 days. The results suggest that L. corniculatus in combination with to O. haematophilum can be adopted for phytoremediation of glyphosate on agricultural soils. An effective strategy is presented of linking the experimental data from the isolation of tolerant bacteria with performing plant-bacteria interaction tests to demonstrate positive effects on the removal of glyphosate from soils.
Collapse
Affiliation(s)
- Francisco Massot
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín, Argentina
| | - Panagiotis Gkorezis
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Damian Marino
- Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), La Plata, Argentina
| | | | - Gorica Vukovic
- Department of Phytomedicine, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Jan d'Haen
- Institute for Materials Research (IMO-IMEC), Hasselt University, Diepenbeek, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Ana María Giulietti
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín, Argentina
| | | | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
6
|
Bamba M, Aoki S, Kajita T, Setoguchi H, Watano Y, Sato S, Tsuchimatsu T. Massive rhizobial genomic variation associated with partner quality in Lotus-Mesorhizobium symbiosis. FEMS Microbiol Ecol 2020; 96:5917975. [PMID: 33016310 DOI: 10.1093/femsec/fiaa202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/29/2020] [Indexed: 11/14/2022] Open
Abstract
Variation in partner quality is commonly observed in diverse cooperative relationships, despite the theoretical prediction that selection favoring high-quality partners should eliminate such variation. Here, we investigated how genetic variation in partner quality could be maintained in the nitrogen-fixing mutualism between Lotus japonicus and Mesorhizobium bacteria. We reconstructed de novo assembled full-genome sequences from nine rhizobial symbionts, finding massive variation in the core genome and the similar symbiotic islands, indicating recent horizontal gene transfer (HGT) of the symbiosis islands into diverse Mesorhizobium lineages. A cross-inoculation experiment using 9 sequenced rhizobial symbionts and 15 L. japonicus accessions revealed extensive quality variation represented by plant growth phenotypes, including genotype-by-genotype interactions. Variation in quality was not associated with the presence/absence variation in known symbiosis-related genes in the symbiosis island; rather, it showed significant correlation with the core genome variation. Given the recurrent HGT of the symbiosis islands into diverse Mesorhizobium strains, local Mesorhizobium communities could serve as a major source of variation for core genomes, which might prevent variation in partner quality from fixing, even in the presence of selection favoring high-quality partners. These findings highlight the novel role of HGT of symbiosis islands in maintaining partner quality variation in the legume-rhizobia symbiosis.
Collapse
Affiliation(s)
- Masaru Bamba
- Department of Biology (Frontier Science Program), Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.,Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Seishiro Aoki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, The University of the Ryukyus, 870 Uehara, Taketomi-cho, Yaeyama-gun, Okinawa 907-1541, Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Takashi Tsuchimatsu
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Chikoti YF, Duangkhet M, Chungopast S, Tajima S, Ma JF, Nomura M. Effect of ferritin on nitrogen fixation in Lotus japonicus nodules under various iron concentrations. JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153247. [PMID: 32768683 DOI: 10.1016/j.jplph.2020.153247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
In the nitrogen fixation process, iron plays a vital role by being part of many symbiotic proteins, such as nitrogenase and leghemoglobin, in an active symbiosis. Excess or insufficient iron in active nitrogen fixation negatively affects the entire process. In Lotus japonicus nodules, ferritin is expressed at the initial stages of nodule development and increases at the nodule senescence stage to mobilize iron release during that stage. In this study, we investigated the effects of overexpressing and suppressing ferritin on nitrogen fixation. Acetylene reduction activity revealed that nitrogen fixation is affected by the overexpression of ferritin at high iron concentrations, but at low iron concentrations, higher nitrogen fixation was observed in ferritin-suppressed plants. qRT-PCR data indicated that suppression of ferritin in nodules induces antioxidant genes, such as superoxide dismutase, dehydroascorbate reductase and ascorbate peroxidase, to detoxify reactive oxygen species. Our data suggest that suppressing ferritin in the nodules is effective for higher nitrogen fixation under iron deficient conditions. Overaccumulated ferritin in nodule is effective under the higher iron conditions, such as senescence state.
Collapse
Affiliation(s)
| | - Mallika Duangkhet
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Sirinapa Chungopast
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Faculty of Agriculture Kamphaeng-saen, Kasetsart University Kamphaeng-saen Campus, Nakorn Pathom, 73140, Thailand
| | - Shigeyuki Tajima
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Mika Nomura
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
8
|
Bamba M, Aoki S, Kajita T, Setoguchi H, Watano Y, Sato S, Tsuchimatsu T. Exploring Genetic Diversity and Signatures of Horizontal Gene Transfer in Nodule Bacteria Associated with Lotus japonicus in Natural Environments. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1110-1120. [PMID: 30880586 DOI: 10.1094/mpmi-02-19-0039-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To investigate the genetic diversity and understand the process of horizontal gene transfer (HGT) in nodule bacteria associated with Lotus japonicus, we analyzed sequences of three housekeeping and five symbiotic genes using samples from a geographically wide range in Japan. A phylogenetic analysis of the housekeeping genes indicated that L. japonicus in natural environments was associated with diverse lineages of Mesorhizobium spp., whereas the sequences of symbiotic genes were highly similar between strains, resulting in remarkably low nucleotide diversity at both synonymous and nonsynonymous sites. Guanine-cytosine content values were lower in symbiotic genes, and relative frequencies of recombination between symbiotic genes were also lower than those between housekeeping genes. An analysis of molecular variance showed significant genetic differentiation among populations in both symbiotic and housekeeping genes. These results confirm that the Mesorhizobium genes required for symbiosis with L. japonicus behave as a genomic island (i.e., a symbiosis island) and suggest that this island has spread into diverse genomic backgrounds of Mesorhizobium via HGT events in natural environments. Furthermore, our data compilation revealed that the genetic diversity of symbiotic genes in L. japonicus-associated symbionts was among the lowest compared with reports of other species, which may be related to the recent population expansion proposed in Japanese populations of L. japonicus.
Collapse
Affiliation(s)
- Masaru Bamba
- Department of Biology (Frontier Science Program), Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Seishiro Aoki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, the University of Ryukyus, 870 Uehara, Taketomi-cho, Yaeyama-gun, Okinawa 907-1541, Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshidanihonmatsu-cho, Sakyo-ku, Kyoto 606-8501 Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | | |
Collapse
|
9
|
traG Gene Is Conserved across Mesorhizobium spp. Able to Nodulate the Same Host Plant and Expressed in Response to Root Exudates. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3715271. [PMID: 30834262 PMCID: PMC6374801 DOI: 10.1155/2019/3715271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/09/2019] [Indexed: 11/22/2022]
Abstract
Evidences for an involvement of the bacterial type IV secretion system (T4SS) in the symbiotic relationship between rhizobia and legumes have been pointed out by several recent studies. However, information regarding this secretion system in Mesorhizobium is still very scarce. The aim of the present study was to investigate the phylogeny and expression of the traG gene, which encodes a substrate receptor of the T4SS. In addition, the occurrence and genomic context of this and other T4SS genes, namely, genes from tra/trb and virB/virD4 complexes, were also analyzed in order to unveil the structural and functional organization of T4SS in mesorhizobia. The location of the T4SS genes in the symbiotic region of the analyzed rhizobial genomes, along with the traG phylogeny, suggests that T4SS genes could be horizontally transferred together with the symbiosis genes. Regarding the T4SS structural organization in Mesorhizobium, the virB/virD4 genes were absent in all chickpea (Cicer arietinum L.) microsymbionts and in the Lotus symbiont Mesorhizobium japonicum MAFF303099T. Interestingly, the presence of genes belonging to another secretion system (T3SS) was restricted to these strains lacking the virB/virD4 genes. The traG gene expression was detected in M. mediterraneum Ca36T and M. ciceri LMS-1 strains when exposed to chickpea root exudates and also in the early nodules formed by M. mediterraneum Ca36T, but not in older nodules. This study contributes to a better understanding of the importance of T4SS in mutualistic symbiotic bacteria.
Collapse
|
10
|
Lorite MJ, Estrella MJ, Escaray FJ, Sannazzaro A, Videira e Castro IM, Monza J, Sanjuán J, León-Barrios M. The Rhizobia- Lotus Symbioses: Deeply Specific and Widely Diverse. Front Microbiol 2018; 9:2055. [PMID: 30258414 PMCID: PMC6144797 DOI: 10.3389/fmicb.2018.02055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
The symbiosis between Lotus and rhizobia has been long considered very specific and only two bacterial species were recognized as the microsymbionts of Lotus: Mesorhizobium loti was considered the typical rhizobia for the L. corniculatus complex, whereas Bradyrhizobium sp. (Lotus) was the symbiont for L. uliginosus and related species. As discussed in this review, this situation has dramatically changed during the last 15 years, with the characterization of nodule bacteria from worldwide geographical locations and from previously unexplored Lotus spp. Current data support that the Lotus rhizobia are dispersed amongst nearly 20 species in five genera (Mesorhizobium, Bradyrhizobium, Rhizobium, Ensifer, and Aminobacter). As a consequence, M. loti could be regarded an infrequent symbiont of Lotus, and several plant-bacteria compatibility groups can be envisaged. Despite the great progress achieved with the model L. japonicus in understanding the establishment and functionality of the symbiosis, the genetic and biochemical bases governing the stringent host-bacteria compatibility pairships within the genus Lotus await to be uncovered. Several Lotus spp. are grown for forage, and inoculation with rhizobia is a common practice in various countries. However, the great diversity of the Lotus rhizobia is likely squandered, as only few bacterial strains are used as inoculants for Lotus pastures in very different geographical locations, with a great variety of edaphic and climatic conditions. The agroecological potential of the genus Lotus can not be fully harnessed without acknowledging the great diversity of rhizobia-Lotus interactions, along with a better understanding of the specific plant and bacterial requirements for optimal symbiotic nitrogen fixation under increasingly constrained environmental conditions.
Collapse
Affiliation(s)
- María J. Lorite
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J. Estrella
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Francisco J. Escaray
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Analía Sannazzaro
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | | | - Jorge Monza
- Facultad de Agronomia, Universidad de la República, Montevideo, Uruguay
| | - Juan Sanjuán
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Milagros León-Barrios
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
11
|
Ridley CJA, Day JG, Smith AG. Cryopreservation studies of an artificial co-culture between the cobalamin-requiring green alga Lobomonas rostrata and the bacterium Mesorhizobium loti. JOURNAL OF APPLIED PHYCOLOGY 2017; 30:995-1003. [PMID: 29755204 PMCID: PMC5928187 DOI: 10.1007/s10811-017-1270-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 06/08/2023]
Abstract
Algal-bacterial co-cultures, rather than cultures of algae alone, are regarded as having the potential to enhance productivity and stability in industrial algal cultivation. As with other inocula in biotechnology, to avoid loss of production strains, it is important to develop preservation methods for the long-term storage of these cultures, and one of the most commonly used approaches is cryopreservation. However, whilst there are many reports of cryopreserved xenic algal cultures, little work has been reported on the intentional preservation of both algae and beneficial bacteria in xenic cultures. Instead, studies have focused on the development of methods to conserve the algal strain(s) present, or to avoid overgrowth of bacteria in xenic isolates during the post-thaw recovery phase. Here, we have established a co-cryopreservation method for the long-term storage of both partners in a unialgal-bacterial co-culture. This is an artificial model mutualism between the alga Lobomonas rostrata and the bacterium Mesorhizobium loti, which provides vitamin B12 (cobalamin) to the alga in return for photosynthate. Using a Planer Kryo 360 controlled-rate cooler, post-thaw viability (PTV) values of 72% were obtained for the co-culture, compared to 91% for the axenic alga. The cultures were successfully revived after 6 months storage in liquid nitrogen, and continued to exhibit mutualism. Furthermore, the alga could be cryopreserved with non-symbiotic bacteria, without bacterial overgrowth occurring. It was also possible to use less controllable passive freezer chambers to cryopreserve the co-cultures, although the PTV was lower. Finally, we demonstrated that an optimised cryopreservation method may be used to prevent the overgrowth potential of non-symbiotic, adventitious bacteria in both axenic and co-cultures of L. rostrata after thawing.
Collapse
Affiliation(s)
| | - John G. Day
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA UK
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA UK
| |
Collapse
|
12
|
Duarte CM, Basile LA, Zalguizuri A, Lepek VC. The transcriptional factor TtsI is involved in a negative regulation of swimming motility in Mesorhizobium loti MAFF303099. FEMS Microbiol Lett 2016; 363:fnw222. [PMID: 27664056 DOI: 10.1093/femsle/fnw222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/13/2016] [Accepted: 09/16/2016] [Indexed: 01/10/2023] Open
Abstract
Mesorhizobium loti MAFF303099 has a functional Type III secretion system (T3SS) that is involved in the determination of competitiveness for legume nodulation. Here we demonstrate that the transcriptional factor TtsI, which positively regulates T3SS genes expression, is involved in a negative regulation of M. loti swimming motility in soft-agar. Conditions that induce T3SS expression affect flagella production. The same conditions also affect promoter activity of M. loti visN gene, a homolog to the positive regulator of flagellar genes that has been described in other rhizobia. Defects in T3SS complex assembly at membranes limited the negative regulation of motility by the expression of TtsI.
Collapse
|
13
|
Draft Genome Sequences of Facultative Methylotrophs, Gemmobacter sp. Strain LW1 and Mesorhizobium sp. Strain 1M-11, Isolated from Movile Cave, Romania. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01266-15. [PMID: 26586870 PMCID: PMC4653772 DOI: 10.1128/genomea.01266-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Facultative methylotrophs belonging to the genera Gemmobacter and Mesorhizobium were isolated from microbial mat and cave water samples obtained from the Movile Cave ecosystem. Both bacteria can utilize methylated amines as their sole carbon and nitrogen source. Here, we report the draft genome sequences of Gemmobacter sp. strain LW1 and Mesorhizobium sp. strain IM1.
Collapse
|
14
|
Mercante V, Duarte CM, Sánchez CM, Zalguizuri A, Caetano-Anollés G, Lepek VC. The absence of protein Y4yS affects negatively the abundance of T3SS Mesorhizobium loti secretin, RhcC2, in bacterial membranes. FRONTIERS IN PLANT SCIENCE 2015; 6:12. [PMID: 25688250 PMCID: PMC4311626 DOI: 10.3389/fpls.2015.00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
Mesorhizobium loti MAFF303099 has a functional type III secretion system (T3SS) that is involved in the determination of nodulation competitiveness on Lotus. The M. loti T3SS cluster contains gene y4yS (mlr8765) that codes for a protein of unknown function (Y4yS). A mutation in the y4yS gene favors the M. loti symbiotic competitive ability on Lotus tenuis cv. Esmeralda and affects negatively the secretion of proteins through T3SS. Here we localize Y4yS in the bacterial membrane using a translational reporter peptide fusion. In silico analysis indicated that this protein presents a tetratricopeptide repeat (TPR) domain, a signal peptide and a canonical lipobox LGCC in the N-terminal sequence. These features that are shared with proteins required for the formation of the secretin complex in type IV secretion systems and in the Tad system, together with its localization, suggest that the y4yS-encoded protein is required for the formation of the M. loti T3SS secretin (RhcC2) complex. Remarkably, analysis of RhcC2 in the wild-type and M. loti y4yS mutant strains indicated that the absence of Y4yS affects negatively the accumulation of normal levels of RhcC2 in the membrane.
Collapse
Affiliation(s)
- Virginia Mercante
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” Universidad Nacional de San MartínBuenos Aires, Argentina
| | - Cecilia M. Duarte
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” Universidad Nacional de San MartínBuenos Aires, Argentina
| | - Cintia M. Sánchez
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” Universidad Nacional de San MartínBuenos Aires, Argentina
| | - Andrés Zalguizuri
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” Universidad Nacional de San MartínBuenos Aires, Argentina
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of IllinoisUrbana-Champaign, USA
| | - Viviana C. Lepek
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde,” Universidad Nacional de San MartínBuenos Aires, Argentina
| |
Collapse
|
15
|
García AN, Ayub ND, Fox AR, Gómez MC, Diéguez MJ, Pagano EM, Berini CA, Muschietti JP, Soto G. Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC PLANT BIOLOGY 2014; 14:248. [PMID: 25227589 PMCID: PMC4177055 DOI: 10.1186/s12870-014-0248-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/11/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND The production of antimicrobial peptides is a common defense strategy of living cells against a wide range of pathogens. Plant snakin peptides inhibit bacterial and fungal growth at extremely low concentrations. However, little is known of their molecular and ecological characteristics, including origin, evolutionary equivalence, specific functions and activity against beneficial microbes. The aim of this study was to identify and characterize snakin-1 from alfalfa (MsSN1). RESULTS Phylogenetic analysis showed complete congruence between snakin-1 and plant trees. The antimicrobial activity of MsSN1 against bacterial and fungal pathogens of alfalfa was demonstrated in vitro and in vivo. Transgenic alfalfa overexpressing MsSN1 showed increased antimicrobial activity against virulent fungal strains. However, MsSN1 did not affect nitrogen-fixing bacterial strains only when these had an alfalfa origin. CONCLUSIONS The results reported here suggest that snakin peptides have important and ancestral roles in land plant innate immunity. Our data indicate a coevolutionary process, in which alfalfa exerts a selection pressure for resistance to MsSN1 on rhizobial bacteria. The increased antimicrobial activity against virulent fungal strains without altering the nitrogen-fixing symbiosis observed in MsSN1-overexpressing alfalfa transgenic plants opens the way to the production of effective legume transgenic cultivars for biotic stress resistance.
Collapse
Affiliation(s)
- Araceli Nora García
- />Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar, C25 (1712) Buenos Aires Argentina
| | - Nicolás Daniel Ayub
- />Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar, C25 (1712) Buenos Aires Argentina
| | - Ana Romina Fox
- />Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar, C25 (1712) Buenos Aires Argentina
| | - María Cristina Gómez
- />Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar, C25 (1712) Buenos Aires Argentina
| | - María José Diéguez
- />Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar, C25 (1712) Buenos Aires Argentina
| | - Elba María Pagano
- />Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar, C25 (1712) Buenos Aires Argentina
| | - Carolina Andrea Berini
- />Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), UBA-CONICET, Paraguay 2155, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge Prometeo Muschietti
- />Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
- />Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Hector Torres”, (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Soto
- />Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los Reseros S/N, Castelar, C25 (1712) Buenos Aires Argentina
| |
Collapse
|
16
|
Peng J, Hao B, Liu L, Wang S, Ma B, Yang Y, Xie F, Li Y. RNA-Seq and microarrays analyses reveal global differential transcriptomes of Mesorhizobium huakuii 7653R between bacteroids and free-living cells. PLoS One 2014; 9:e93626. [PMID: 24695521 PMCID: PMC3973600 DOI: 10.1371/journal.pone.0093626] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/04/2014] [Indexed: 11/18/2022] Open
Abstract
Mesorhizobium huakuii 7653R occurs either in nitrogen-fixing symbiosis with its host plant, Astragalus sinicus, or free-living in the soil. The M. huakuii 7653R genome has recently been sequenced. To better understand the complex biochemical and developmental changes that occur in 7653R during bacteroid development, RNA-Seq and Microarrays were used to investigate the differential transcriptomes of 7653R bacteroids and free-living cells. The two approaches identified several thousand differentially expressed genes. The most prominent up-regulation occurred in the symbiosis plasmids, meanwhile gene expression is concentrated to a set of genes (clusters) in bacteroids to fulfill corresponding functional requirements. The results suggested that the main energy metabolism is active while fatty acid metabolism is inactive in bacteroid and that most of genes relevant to cell cycle are down-regulated accordingly. For a global analysis, we reconstructed a protein-protein interaction (PPI) network for 7653R and integrated gene expression data into the network using Cytoscape. A highly inter-connected subnetwork, with function enrichment for nitrogen fixation, was found, and a set of hubs and previously uncharacterized genes participating in nitrogen fixation were identified. The results described here provide a broader biological landscape and novel insights that elucidate rhizobial bacteroid differentiation, nitrogen fixation and related novel gene functions.
Collapse
Affiliation(s)
- Jieli Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Baohai Hao
- Center for Bioinformatics, School of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Liu Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Shanming Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Binguang Ma
- Center for Bioinformatics, School of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Yi Yang
- Center for Bioinformatics, School of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Fuli Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- * E-mail:
| |
Collapse
|
17
|
Hove-Jensen B, Zechel DL, Jochimsen B. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol Mol Biol Rev 2014; 78:176-97. [PMID: 24600043 PMCID: PMC3957732 DOI: 10.1128/mmbr.00040-13] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses.
Collapse
|
18
|
Tatsukami Y, Nambu M, Morisaka H, Kuroda K, Ueda M. Disclosure of the differences of Mesorhizobium loti under the free-living and symbiotic conditions by comparative proteome analysis without bacteroid isolation. BMC Microbiol 2013; 13:180. [PMID: 23898917 PMCID: PMC3750425 DOI: 10.1186/1471-2180-13-180] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/26/2013] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Rhizobia are symbiotic nitrogen-fixing soil bacteria that show a symbiotic relationship with their host legume. Rhizobia have 2 different physiological conditions: a free-living condition in soil, and a symbiotic nitrogen-fixing condition in the nodule. The lifestyle of rhizobia remains largely unknown, although genome and transcriptome analyses have been carried out. To clarify the lifestyle of bacteria, proteome analysis is necessary because the protein profile directly reflects in vivo reactions of the organisms. In proteome analysis, high separation performance is required to analyze complex biological samples. Therefore, we used a liquid chromatography-tandem mass spectrometry system, equipped with a long monolithic silica capillary column, which is superior to conventional columns. In this study, we compared the protein profile of Mesorhizobium loti MAFF303099 under free-living condition to that of symbiotic conditions by using small amounts of crude extracts. RESULT We identified 1,533 and 847 proteins for M. loti under free-living and symbiotic conditions, respectively. Pathway analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many of the enzymes involved in the central carbon metabolic pathway were commonly detected under both conditions. The proteins encoded in the symbiosis island, the transmissible chromosomal region that includes the genes that are highly upregulated under the symbiotic condition, were uniquely detected under the symbiotic condition. The features of the symbiotic condition that have been reported by transcriptome analysis were confirmed at the protein level by proteome analysis. In addition, the genes of the proteins involved in cell surface structure were repressed under the symbiotic nitrogen-fixing condition. Furthermore, farnesyl pyrophosphate (FPP) was found to be biosynthesized only in rhizobia under the symbiotic condition. CONCLUSION The obtained protein profile appeared to reflect the difference in phenotypes under the free-living and symbiotic conditions. In addition, KEGG pathway analysis revealed that the cell surface structure of rhizobia was largely different under each condition, and surprisingly, rhizobia might provided FPP to the host as a source of secondary metabolism. M. loti changed its metabolism and cell surface structure in accordance with the surrounding conditions.
Collapse
Affiliation(s)
- Yohei Tatsukami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mami Nambu
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hironobu Morisaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Kyoto Industrial Science and Technology Innovation Center, Shimogyo-ku, Kyoto 600-8813, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Kyoto Industrial Science and Technology Innovation Center, Shimogyo-ku, Kyoto 600-8813, Japan
| |
Collapse
|
19
|
Queiroux C, Washburn BK, Davis OM, Stewart J, Brewer TE, Lyons MR, Jones KM. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules. BMC Microbiol 2012; 12:74. [PMID: 22587634 PMCID: PMC3462710 DOI: 10.1186/1471-2180-12-74] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy's Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. RESULTS Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a "SodM-like" (superoxide dismutase-like) protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon) identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. CONCLUSIONS Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process.
Collapse
Affiliation(s)
- Clothilde Queiroux
- Department of Biological Science, Florida State University, Biology Unit I, 230A, Tallahassee, FL 32306-4370, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 2012; 13:162. [PMID: 22554235 PMCID: PMC3464626 DOI: 10.1186/1471-2164-13-162] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/03/2012] [Indexed: 02/02/2023] Open
Abstract
Background The metabolic capacity for nitrogen fixation is known to be present in several prokaryotic species scattered across taxonomic groups. Experimental detection of nitrogen fixation in microbes requires species-specific conditions, making it difficult to obtain a comprehensive census of this trait. The recent and rapid increase in the availability of microbial genome sequences affords novel opportunities to re-examine the occurrence and distribution of nitrogen fixation genes. The current practice for computational prediction of nitrogen fixation is to use the presence of the nifH and/or nifD genes. Results Based on a careful comparison of the repertoire of nitrogen fixation genes in known diazotroph species we propose a new criterion for computational prediction of nitrogen fixation: the presence of a minimum set of six genes coding for structural and biosynthetic components, namely NifHDK and NifENB. Using this criterion, we conducted a comprehensive search in fully sequenced genomes and identified 149 diazotrophic species, including 82 known diazotrophs and 67 species not known to fix nitrogen. The taxonomic distribution of nitrogen fixation in Archaea was limited to the Euryarchaeota phylum; within the Bacteria domain we predict that nitrogen fixation occurs in 13 different phyla. Of these, seven phyla had not hitherto been known to contain species capable of nitrogen fixation. Our analyses also identified protein sequences that are similar to nitrogenase in organisms that do not meet the minimum-gene-set criteria. The existence of nitrogenase-like proteins lacking conserved co-factor ligands in both diazotrophs and non-diazotrophs suggests their potential for performing other, as yet unidentified, metabolic functions. Conclusions Our predictions expand the known phylogenetic diversity of nitrogen fixation, and suggest that this trait may be much more common in nature than it is currently thought. The diverse phylogenetic distribution of nitrogenase-like proteins indicates potential new roles for anciently duplicated and divergent members of this group of enzymes.
Collapse
|
21
|
Sánchez C, Mercante V, Babuin MF, Lepek VC. Dual effect of Mesorhizobium loti T3SS functionality on the symbiotic process. FEMS Microbiol Lett 2012; 330:148-56. [PMID: 22428564 DOI: 10.1111/j.1574-6968.2012.02545.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 01/26/2023] Open
Abstract
Mesorhizobium loti MAFF303099 has a functional type III secretory system (T3SS) involved in the nodulation process on Lotus tenuis and Lotus japonicus. Four putative M. loti T3SS effectors (Mlr6358, Mlr6331, Mlr6361, and Mlr6316) have been previously described, and it has been demonstrated that the N-terminal regions of Mlr6361 and Mlr6358 mediate the secretion via a T3SS. Here, we demonstrate the capacity of Mlr6316 and Mlr6331 N-terminal regions to direct the secretion of a translational fusion to a reporter peptide through T3SS. By using single, double, and triple mutants, we demonstrated the positive and negative participation of some of these proteins in the determination of competitiveness on Lotus spp. Low competitiveness values correlated with low nodulation efficiency for a mutant deficient in three of the putative M. loti effectors. Our data suggest that the net effect of M. loti T3SS function on symbiotic process with Lotus results from a balance between positive and negative effects.
Collapse
Affiliation(s)
- Cintia Sánchez
- Instituto de Investigaciones Biotecnológicas 'Dr. Rodolfo Ugalde', Universidad Nacional de General San Martín (IIB-UNSAM), CONICET, San Martín, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
22
|
Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG. Mutualistic interactions between vitamin B12 -dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 2012; 14:1466-76. [PMID: 22463064 DOI: 10.1111/j.1462-2920.2012.02733.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many algae are auxotrophs for vitamin B(12) (cobalamin), which they need as a cofactor for B(12) -dependent methionine synthase (METH). Because only prokaryotes can synthesize the cobalamin, they must be the ultimate source of the vitamin. In the laboratory, a direct interaction between algae and heterotrophic bacteria has been shown, with bacteria supplying cobalamin in exchange for fixed carbon. Here we establish a system to study this interaction at the molecular level. In a culture of a B(12) -dependent green alga Chlamydomonas nivalis, we found a contaminating bacterium, identified by 16S rRNA analysis as Mesorhizobium sp. Using the sequenced strain of M. loti (MAFF303099), we found that it was able to support the growth of B(12) -dependent Lobomonas rostrata, another green alga, in return for fixed carbon. The two organisms form a stable equilibrium in terms of population numbers, which is maintained over many generations in semi-continuous culture, indicating a degree of regulation. However, addition of either vitamin B(12) or a carbon source for the bacteria perturbs the equilibrium, demonstrating that the symbiosis is mutualistic and facultative. Chlamydomonas reinhardtii does not require B(12) for growth because it encodes a B(12) -independent methionine synthase, METE, the gene for which is suppressed by addition of exogenous B(12) . Co-culturing C. reinhardtii with M. loti also results in reduction of METE expression, demonstrating that the bacterium can deliver the vitamin to this B(12) -independent alga. We discuss the implications of this for the widespread distribution of cobalamin auxotrophy in the algal kingdom.
Collapse
Affiliation(s)
- Elena Kazamia
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J, Hungria M, Bellgard M. The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes (Basel) 2012; 3:138-66. [PMID: 24704847 PMCID: PMC3899959 DOI: 10.3390/genes3010138] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 11/16/2022] Open
Abstract
The symbiotic relationship between legumes and nitrogen fixing bacteria is critical for agriculture, as it may have profound impacts on lowering costs for farmers, on land sustainability, on soil quality, and on mitigation of greenhouse gas emissions. However, despite the importance of the symbioses to the global nitrogen cycling balance, very few rhizobial genomes have been sequenced so far, although there are some ongoing efforts in sequencing elite strains. In this study, the genomes of fourteen selected strains of the order Rhizobiales, all previously fully sequenced and annotated, were compared to assess differences between the strains and to investigate the feasibility of defining a core ‘symbiome’—the essential genes required by all rhizobia for nodulation and nitrogen fixation. Comparison of these whole genomes has revealed valuable information, such as several events of lateral gene transfer, particularly in the symbiotic plasmids and genomic islands that have contributed to a better understanding of the evolution of contrasting symbioses. Unique genes were also identified, as well as omissions of symbiotic genes that were expected to be found. Protein comparisons have also allowed the identification of a variety of similarities and differences in several groups of genes, including those involved in nodulation, nitrogen fixation, production of exopolysaccharides, Type I to Type VI secretion systems, among others, and identifying some key genes that could be related to host specificity and/or a better saprophytic ability. However, while several significant differences in the type and number of proteins were observed, the evidence presented suggests no simple core symbiome exists. A more abstract systems biology concept of nitrogen fixing symbiosis may be required. The results have also highlighted that comparative genomics represents a valuable tool for capturing specificities and generalities of each genome.
Collapse
Affiliation(s)
- Michael Black
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - Paula Moolhuijzen
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - Brett Chapman
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - Roberto Barrero
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | - John Howieson
- Centre for Rhizobium Studies, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| | | | - Matthew Bellgard
- Centre for Comparative Genomics, Murdoch University, South Street, Murdoch, Perth, WA 6150, Australia.
| |
Collapse
|
24
|
Fukai E, Soyano T, Umehara Y, Nakayama S, Hirakawa H, Tabata S, Sato S, Hayashi M. Establishment of a Lotus japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:720-30. [PMID: 22014259 DOI: 10.1111/j.1365-313x.2011.04826.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We established a gene tagging population of the model legume Lotus japonicus using an endogenous long terminal repeat (LTR) retrotransposon Lotus Retrotransposon 1 (LORE1). The population was composed of 2450 plant lines, from which a total of 4532 flanking sequence tags of LORE1 were recovered by pyrosequencing. The two-dimensional arrangement of the plant population, together with the use of multiple identifier sequences in the primers used to amplify the flanking regions, made it possible to trace insertions back to the original plant lines. The large-scale detection of new LORE1 insertion sites revealed a preference for genic regions, especially in exons of protein-coding genes, which is an interesting feature to consider in the interaction between host genomes and chromoviruses, to which LORE1 belongs, a class of retrotransposon widely distributed among plants. Forward screening of the symbiotic mutants from the population succeeded to identify five symbiotic mutants of known genes. These data suggest that LORE1 is robust as a genetic tool.
Collapse
Affiliation(s)
- Eigo Fukai
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The establishment of nitrogen-fixing symbiosis between a legume plant and its rhizobial symbiont requires that the bacterium adapt to changing conditions that occur with the host plant that both promotes and allows infection of the host root nodule cell, regulates and resists the host defense response, permits the exchange of metabolites, and contributes to the overall health of the host. This adaptive process involves changes to the bacterial cell surface and, therefore, structural modifications to the lipopolysaccharide (LPS). In this chapter, we describe the structures of the LPSs from symbiont members of the Rhizobiales, the genetics and mechanism of their biosynthesis, the modifications that occur during symbiosis, and their possible functions.
Collapse
|
26
|
Sánchez C, Iannino F, Deakin WJ, Ugalde RA, Lepek VC. Characterization of the Mesorhizobium loti MAFF303099 type-three protein secretion system. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:519-28. [PMID: 19348570 DOI: 10.1094/mpmi-22-5-0519] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Type III secretion systems (T3SS) have been found in several species of rhizobia. Proteins (termed effectors) secreted by this system are involved in host-range determination and influence nodulation efficiency. Mesorhizobium loti MAFF303099 possesses a functional T3SS in its symbiotic island whose expression is induced by flavonoids. As in other rhizobia, conserved cis-elements (tts box) were found in the promoter regions of genes or operons encoding T3SS components. Using a bioinformatics approach, we searched for other tts-box-controlled genes, and confirmed this transcriptional regulation for some of them using lacZ fusions to the predicted promoter regions. Translational fusions to a reporter peptide were created to demonstrate T3SS-mediated secretion of two new MAFF303099 effectors. Finally, we showed that mutation of the M. loti MAFF303099 T3SS affects its competitiveness on Lotus glaber and investigated, at the molecular level, responses of the model legume L. japonicus to the T3SS.
Collapse
Affiliation(s)
- Cintia Sánchez
- Instituto de Investigaciones Biotecnológicas, INTECH, Universidad Nacional de General San Martín, CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
27
|
Martínez-Salazar JM, Sandoval-Calderón M, Guo X, Castillo-Ramírez S, Reyes A, Loza MG, Rivera J, Alvarado-Affantranger X, Sánchez F, González V, Dávila G, Ramírez-Romero MA. The Rhizobium etli RpoH1 and RpoH2 sigma factors are involved in different stress responses. MICROBIOLOGY-SGM 2009; 155:386-397. [PMID: 19202087 DOI: 10.1099/mic.0.021428-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The physiological role and transcriptional expression of Rhizobium etli sigma factors rpoH1 and rpoH2 are reported in this work. Both rpoH1 and rpoH2 were able to complement the temperature-sensitive phenotype of an Escherichia coli rpoH mutant. The R. etli rpoH1 mutant was sensitive to heat shock, sodium hypochlorite and hydrogen peroxide, whereas the rpoH2 mutant was sensitive to NaCl and sucrose. The rpoH2 rpoH1 double mutant had increased sensitivity to heat shock and oxidative stress when compared with the rpoH1 single mutant. This suggests that in R. etli, RpoH1 is the main heat-shock sigma factor, but a more complete protective response could be achieved with the participation of RpoH2. Conversely, RpoH2 is involved in osmotic tolerance. In symbiosis with bean plants, the R. etli rpoH1 and rpoH2 rpoH1 mutants still elicited nodule formation, but exhibited reduced nitrogenase activity and bacterial viability in early and late symbiosis compared with nodules produced by rpoH2 mutants and wild-type strains. In addition, nodules formed by R. etli rpoH1 and rpoH2 rpoH1 mutants showed premature senescence. It was also determined that fixNf and fixKf expression was affected in rpoH1 mutants. Both rpoH genes were induced under microaerobic conditions and in the stationary growth phase, but not in response to heat shock. Analysis of the upstream region of rpoH1 revealed a sigma70 and a probable sigmaE promoter, whereas in rpoH2, one probable sigmaE-dependent promoter was detected. In conclusion, the two RpoH proteins operate under different stress conditions, RpoH1 in heat-shock and oxidative responses, and RpoH2 in osmotic tolerance.
Collapse
Affiliation(s)
- Jaime M Martínez-Salazar
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210 Cuernavaca, Morelos, México
| | - Mario Sandoval-Calderón
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210 Cuernavaca, Morelos, México
| | - Xianwu Guo
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210 Cuernavaca, Morelos, México
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210 Cuernavaca, Morelos, México
| | - Alma Reyes
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210 Cuernavaca, Morelos, México
| | - Maria G Loza
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210 Cuernavaca, Morelos, México
| | - Javier Rivera
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210 Cuernavaca, Morelos, México
| | - Xochitl Alvarado-Affantranger
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, CP 62271 Cuernavaca, Morelos, México
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, CP 62271 Cuernavaca, Morelos, México
| | - Víctor González
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210 Cuernavaca, Morelos, México
| | - Guillermo Dávila
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210 Cuernavaca, Morelos, México
| | - Miguel A Ramírez-Romero
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210 Cuernavaca, Morelos, México
| |
Collapse
|
28
|
Hanyu M, Fujimoto H, Tejima K, Saeki K. Functional differences of two distinct catalases in Mesorhizobium loti MAFF303099 under free-living and symbiotic conditions. J Bacteriol 2009; 191:1463-71. [PMID: 19074374 PMCID: PMC2648221 DOI: 10.1128/jb.01583-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Accepted: 12/04/2008] [Indexed: 11/20/2022] Open
Abstract
Protection against reactive oxygen species (ROS) is important for legume-nodulating rhizobia during the establishment and maintenance of symbiosis, as well as under free-living conditions, because legume hosts might assail incoming microbes with ROS and because nitrogenase is extremely sensitive to ROS. We generated mutants of two potential catalase genes in Mesorhizobium loti MAFF303099 to investigate their physiological significance. Biochemical results indicated that genes with the locus tags mlr2101 and mlr6940 encoded a monofunctional catalase and a bifunctional catalase-peroxidase, respectively, that were named katE and katG. Under free-living conditions, the katG mutant demonstrated an extended generation time and elevated sensitivity to exogenous H(2)O(2), whereas the katE mutant exhibited no generation time extension and only a slight increase in sensitivity to exogenous H(2)O(2). However, the katE mutant showed a marked decrease in its survival rate during the stationary phase. With regard to symbiotic capacities with Lotus japonicus, the katG mutant was indistinguishable from the wild type; nevertheless, the mutants with disrupted katE formed nodules with decreased nitrogen fixation capacities (about 50 to 60%) compared to those formed by the wild type. These mutant phenotypes agreed with the expression profiles showing that transcription of katG, but not katE, was high during the exponential growth phase and that transcription levels of katE versus sigA were elevated during stationary phase and were approximately fourfold higher in bacteroids than mid-exponential-phase cells. Our results revealed functional separation of the two catalases, as well as the importance of KatE under conditions of strong growth limitation.
Collapse
Affiliation(s)
- Masaki Hanyu
- Department of Biological Sciences, Nara Women's University, Japan
| | | | | | | |
Collapse
|
29
|
Yang M, Sun K, Zhou L, Yang R, Zhong Z, Zhu J. Functional analysis of three AHL autoinducer synthase genes in Mesorhizobium loti reveals the important role of quorum sensing in symbiotic nodulation. Can J Microbiol 2009; 55:210-4. [DOI: 10.1139/w08-128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the most important signal transduction pathways in bacteria, quorum sensing, is involved in many regulatory circuits in rhizobia, especially in the control of communication between rhizobia and their plant hosts. In this study, we identified 3 autoinducer synthase genes — mrlI1, mrlI2, and mrlI3 — in Mesorhizobium loti NZP 2213. We found that MrlI1 and MrlI2 could synthesize distinct N-acyl homoserine lactone (AHL) autoinducers in rich medium cultures, and the expression of mrlI1 was shown to be growth-phase-dependent. MrlI3 did not produce any detectable AHL molecules under the culture conditions tested. To investigate whether these AHL synthases affect nodulation, we examined the nodulation of AHL-deficient mutants on their native plant host Lotus corniculatus and found that the efficiency of nodulation of bacteria with mutations of any of these 3 synthase genes was reduced, suggesting that quorum sensing systems in M. loti may play an important role in successful establishment of rhizobium–legume symbiosis.
Collapse
Affiliation(s)
- Menghua Yang
- Department of Microbiology, MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Kejing Sun
- Department of Microbiology, MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Lei Zhou
- Department of Microbiology, MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ruifu Yang
- Department of Microbiology, MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zengtao Zhong
- Department of Microbiology, MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jun Zhu
- Department of Microbiology, MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Pawlowski K, Jacobsen KR, Alloisio N, Ford Denison R, Klein M, Tjepkema JD, Winzer T, Sirrenberg A, Guan C, Berry AM. Truncated hemoglobins in actinorhizal nodules of Datisca glomerata. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:776-85. [PMID: 17682965 DOI: 10.1055/s-2007-965258] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Three types of hemoglobins exist in higher plants, symbiotic, non-symbiotic, and truncated hemoglobins. Symbiotic (class II) hemoglobins play a role in oxygen supply to intracellular nitrogen-fixing symbionts in legume root nodules, and in one case ( Parasponia Sp.), a non-symbiotic (class I) hemoglobin has been recruited for this function. Here we report the induction of a host gene, dgtrHB1, encoding a truncated hemoglobin in Frankia-induced nodules of the actinorhizal plant Datisca glomerata. Induction takes place specifically in cells infected by the microsymbiont, prior to the onset of bacterial nitrogen fixation. A bacterial gene (Frankia trHBO) encoding a truncated hemoglobin with O (2)-binding kinetics suitable for the facilitation of O (2) diffusion ( ) is also expressed in symbiosis. Nodule oximetry confirms the presence of a molecule that binds oxygen reversibly in D. glomerata nodules, but indicates a low overall hemoglobin concentration suggesting a local function. Frankia trHbO is likely to be responsible for this activity. The function of the D. glomerata truncated hemoglobin is unknown; a possible role in nitric oxide detoxification is suggested.
Collapse
Affiliation(s)
- K Pawlowski
- Department of Plant Biochemistry, Göttingen University, 37077 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sugiyama A, Shitan N, Sato S, Nakamura Y, Tabata S, Yazaki K. Genome-wide analysis of ATP-binding cassette (ABC) proteins in a model legume plant, Lotus japonicus: comparison with Arabidopsis ABC protein family. DNA Res 2006; 13:205-28. [PMID: 17164256 DOI: 10.1093/dnares/dsl013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ATP-binding cassette (ABC) proteins constitute a large family in plants with more than 120 members each in Arabidopsis and rice, and have various functions including the transport of auxin and alkaloid, as well as the regulation of stomata movement. In this report, we carried out genome-wide analysis of ABC protein genes in a model legume plant, Lotus japonicus. For analysis of the Lotus genome sequence, we devised a new method 'domain-based clustering analysis', where domain structures like the nucleotide-binding domain (NBD) and transmembrane domain (TMD), instead of full-length amino acid sequences, are used to compare phylogenetically each other. This method enabled us to characterize fragments of ABC proteins, which frequently appear in a draft sequence of the Lotus genome. We identified 91 putative ABC proteins in L. japonicus, i.e. 43 'full-size', 40 'half-size' and 18 'soluble' putative ABC proteins. The characteristic feature of the composition is that Lotus has extraordinarily many paralogs similar to AtMRP14 and AtPDR12, which are at least six and five members, respectively. Expression analysis of the latter genes performed with real-time quantitative reverse transcription-PCR revealed their putative involvement in the nodulation process.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere Kyoto University, Gokasho, Uji 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, Surovcik K, Meinicke P, Merkl R. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 2006; 7:142. [PMID: 16542435 PMCID: PMC1489950 DOI: 10.1186/1471-2105-7-142] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 03/16/2006] [Indexed: 01/25/2023] Open
Abstract
Background Horizontal gene transfer (HGT) is considered a strong evolutionary force shaping the content of microbial genomes in a substantial manner. It is the difference in speed enabling the rapid adaptation to changing environmental demands that distinguishes HGT from gene genesis, duplications or mutations. For a precise characterization, algorithms are needed that identify transfer events with high reliability. Frequently, the transferred pieces of DNA have a considerable length, comprise several genes and are called genomic islands (GIs) or more specifically pathogenicity or symbiotic islands. Results We have implemented the program SIGI-HMM that predicts GIs and the putative donor of each individual alien gene. It is based on the analysis of codon usage (CU) of each individual gene of a genome under study. CU of each gene is compared against a carefully selected set of CU tables representing microbial donors or highly expressed genes. Multiple tests are used to identify putatively alien genes, to predict putative donors and to mask putatively highly expressed genes. Thus, we determine the states and emission probabilities of an inhomogeneous hidden Markov model working on gene level. For the transition probabilities, we draw upon classical test theory with the intention of integrating a sensitivity controller in a consistent manner. SIGI-HMM was written in JAVA and is publicly available. It accepts as input any file created according to the EMBL-format. It generates output in the common GFF format readable for genome browsers. Benchmark tests showed that the output of SIGI-HMM is in agreement with known findings. Its predictions were both consistent with annotated GIs and with predictions generated by different methods. Conclusion SIGI-HMM is a sensitive tool for the identification of GIs in microbial genomes. It allows to interactively analyze genomes in detail and to generate or to test hypotheses about the origin of acquired genes.
Collapse
Affiliation(s)
- Stephan Waack
- Institut für Informatik, Universität Göttingen, Lotzestr. 16–18, 37083 Göttingen, Germany
| | - Oliver Keller
- Institut für Informatik, Universität Göttingen, Lotzestr. 16–18, 37083 Göttingen, Germany
| | - Roman Asper
- Institut für Informatik, Universität Göttingen, Lotzestr. 16–18, 37083 Göttingen, Germany
| | - Thomas Brodag
- Institut für Informatik, Universität Göttingen, Lotzestr. 16–18, 37083 Göttingen, Germany
| | - Carsten Damm
- Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Lotzestr. 16–18, 37083 Göttingen, Germany
| | - Wolfgang Florian Fricke
- Göttingen Genomics Laboratory, Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Katharina Surovcik
- Institut für Informatik, Universität Göttingen, Lotzestr. 16–18, 37083 Göttingen, Germany
| | - Peter Meinicke
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Rainer Merkl
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
33
|
Casabuono AC, D'Antuono A, Sato Y, Nonami H, Ugalde R, Lepek V, Erra-Balsells R, Couto AS. A matrix-assisted laser desorption/ionization mass spectrometry approach to the lipid A from Mesorhizobium loti. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:2175-82. [PMID: 16779872 DOI: 10.1002/rcm.2575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The isolation, purification and analysis of the lipid A obtained from Mesorhizobium loti Ayac 1 BII strain is presented. Analysis of the carbohydrate moiety after acid hydrolysis by high-pH anion-exchange chromatography with pulse amperometric detection (HPAEC-PAD) showed the presence of glucosamine and galacturonic acid as the only sugar components. Gas chromatographic (GC) and GC/mass spectrometric (MS) analysis of the fatty acids revealed the presence of 3-OH-C12:0; 3-OH-C13:0; 3-OH-C20:0 and 27-OH-C28:0 among the major hydroxylated species. In addition, C16:0, C17:0, C18:0 and C 20:0 were shown as main saturated fatty acids. Different polyacylated species were evidenced by thin layer chromatography of lipid A, allowing the purification of two fractions. Ultraviolet matrix-assisted laser desorption/ionization time-of-flight (UV-MALDI-TOF) MS analysis with different matrices, in the positive- and negative-ion mode, was performed. The fast moving component revealed the presence of hexa-acylated species, varying in the fatty acid composition. Species containing three 3-OH fatty acids and a 27-OH-C28:0 fatty acid were observed. Individual ions within this family differ by +/-14 mass units. The slow moving component was enriched mainly in penta-acylated species. Among them, three subgroups were detected: the major one compatible with the sugar core bearing two 3-OH 20:0 fatty acids, a 3-OH 13:0 or a 3-OH 12:0 fatty acid, a 27-OH 28:0 fatty acid and one saturated fatty acid. Each signal differs in a C18:0 acyl unit from the corresponding hexa-acylated family. On the other hand, a subgroup bearing one 3-OH 20:0 fatty acid, one 27-OH 28:0 fatty acid and two non-polar fatty acids was shown. A minor subgroup compatible with structures containing two hydroxylated and three non-polar fatty acids was also detected. The results obtained showed that nor-harmane was an excellent matrix for charged lipid A structural studies in both, positive and negative ion modes.
Collapse
Affiliation(s)
- Adriana C Casabuono
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Skorpil P, Broughton WJ. Molecular interactions between Rhizobium and legumes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 41:143-64. [PMID: 16623393 DOI: 10.1007/3-540-28221-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Peter Skorpil
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Sciences III, Université de Genève, 1212 Genève 4, Switzerland
| | | |
Collapse
|
35
|
Skorpil P, Saad MM, Boukli NM, Kobayashi H, Ares-Orpel F, Broughton WJ, Deakin WJ. NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol Microbiol 2005; 57:1304-17. [PMID: 16102002 DOI: 10.1111/j.1365-2958.2005.04768.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rhizobium sp. NGR234 nodulates many plants, some of which react to proteins secreted via a type three secretion system (T3SS) in a positive- (Flemingia congesta, Tephrosia vogelii) or negative- (Crotalaria juncea, Pachyrhizus tuberosus) manner. T3SSs are devices that Gram-negative bacteria use to inject effector proteins into the cytoplasm of eukaryotic cells. The only two rhizobial T3SS effector proteins characterized to date are NopL and NopP of NGR234. NopL can be phosphorylated by plant kinases and we show this to be true for NopP as well. Mutation of nopP leads to a dramatic reduction in nodule numbers on F. congesta and T. vogelii. Concomitant mutation of nopL and nopP further diminishes nodulation capacity to levels that, on T. vogelii, are lower than those produced by the T3SS null mutant NGR(Omega)rhcN. We also show that the T3SS of NGR234 secretes at least one additional effector, which remains to be identified. In other words, NGR234 secretes a cocktail of effectors, some of which have positive effects on nodulation of certain plants while others are perceived negatively and block nodulation. NopL and NopP are two components of this mix that extend the ability of NGR234 to nodulate certain legumes.
Collapse
Affiliation(s)
- Peter Skorpil
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Sciences III, Université de Genève, 30 quai Ernest-Ansermet, 1211, Genève 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
36
|
Sato Y, Monincová M, Chaloupková R, Prokop Z, Ohtsubo Y, Minamisawa K, Tsuda M, Damborsky J, Nagata Y. Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, encode haloalkane dehalogenases with novel structures and substrate specificities. Appl Environ Microbiol 2005; 71:4372-9. [PMID: 16085827 PMCID: PMC1183339 DOI: 10.1128/aem.71.8.4372-4379.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haloalkane dehalogenases are key enzymes for the degradation of halogenated aliphatic pollutants. Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, have open reading frames (ORFs), mlr5434 and blr1087, respectively, that encode putative haloalkane dehalogenase homologues. The crude extracts of Escherichia coli strains expressing mlr5434 and blr1087 showed the ability to dehalogenate 18 halogenated compounds, indicating that these ORFs indeed encode haloalkane dehalogenases. Therefore, these ORFs were referred to as dmlA (dehalogenase from Mesorhizobium loti) and dbjA (dehalogenase from Bradyrhizobium japonicum), respectively. The principal component analysis of the substrate specificities of various haloalkane dehalogenases clearly showed that DbjA and DmlA constitute a novel substrate specificity class with extraordinarily high activity towards beta-methylated compounds. Comparison of the circular dichroism spectra of DbjA and other dehalogenases strongly suggested that DbjA contains more alpha-helices than the other dehalogenases. The dehalogenase activity of resting cells and Northern blot analyses both revealed that the dmlA and dbjA genes were expressed under normal culture conditions in MAFF303099 and USDA110 strain cells, respectively.
Collapse
Affiliation(s)
- Yukari Sato
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Testa CA, Lherbet C, Pojer F, Noel JP, Poulter CD. Cloning and expression of IspDF from Mesorhizobium loti. Characterization of a bifunctional protein that catalyzes non-consecutive steps in the methylerythritol phosphate pathway. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1764:85-96. [PMID: 16203191 DOI: 10.1016/j.bbapap.2005.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 08/08/2005] [Accepted: 08/09/2005] [Indexed: 11/16/2022]
Abstract
Gram-negative bacteria, plant chloroplasts, green algae and some Gram-positive bacteria utilize the 2-C-methyl-d-erythritol phosphate (MEP) pathway for the biosynthesis of isoprenoids. IspD, ispE, and ispF encode the enzymes required to convert MEP to 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (cMEDP) during the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate in the MEP pathway. Upon analysis of the Mesorhizobium loti genome, ORF mll0395 showed homology to both ispD and ispF and appeared to encode a fusion protein. M. loti ispE was located elsewhere on the chromosome. Purified recombinant IspDF protein was mostly a homodimer, MW approximately 46 kDa/subunit. Incubation of IspDF with MEP, CTP, and ATP gave 4-diphosphocytidyl-2-C-methyl-d-erythritol (CDP-ME) as the only product. When Escherichia coli IspE protein was added to the incubation mixture, cMEDP was formed. In addition, M. loti ORF mll0395 complements lethal disruptions in both ispD and ispF in Salmonella typhimurium. These results indicate that IspDF is a bifunctional protein, which catalyzes the first and third steps in the conversion of MEP to cMEDP.
Collapse
Affiliation(s)
- Charles A Testa
- Department of Chemistry, University of Utah, Salt Lake City, 84112, USA
| | | | | | | | | |
Collapse
|
38
|
D'Antuono AL, Casabuono A, Couto A, Ugalde RA, Lepek VC. Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:446-57. [PMID: 15915643 DOI: 10.1094/mpmi-18-0446] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The role of Mesorhizobium loti surface polysaccharides on the nodulation process is not yet fully understood. In this article, we describe the nodulation phenotype of mutants affected in the synthesis of lipopolysaccharide (LPS) and beta(1,2) cyclic glucan. M. loti lpsbeta2 mutant produces LPS with reduced amount of O-antigen, whereas M. loti lpsbeta1 mutant produces LPS totally devoid of O-antigen. Both genes are clustered in the chromosome. Based on amino acid sequence homology, LPS sugar composition, and enzymatic activity, we concluded that lpsbeta2 codes for an enzyme involved in the transformation of dTDP-glucose into dTDP-rhamnose, the sugar donor of rhamnose for the synthesis of O-antigen. On the other hand, lpsbeta1 codes for a glucosyltransferase involved in the biosynthesis of the O-antigen. Although LPS mutants elicited normal nodules, both show reduced competitiveness compared with the wild type. M. loti beta(1-2) cyclic glucan synthase (cgs) mutant induces white, empty, ineffective pseudonodules in Lotus tenuis. Cgs mutant induces normal root hair curling but is unable to induce the formation of infection threads. M. loti cgs mutant was more sensitive to deoxycholate and displayed motility impairment compared with the wild-type strain. This pleiotropic effect depends on calcium concentration and temperature.
Collapse
Affiliation(s)
- Alejandra L D'Antuono
- Instituto de Investigaciones Biotecnológicas, INTECH, Universidad Nacional de General San Martin, CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
39
|
Meguro N, Kodama Y, Gallegos MT, Watanabe K. Molecular characterization of resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in petroleum-contaminated soil. Appl Environ Microbiol 2005; 71:580-6. [PMID: 15640241 PMCID: PMC544201 DOI: 10.1128/aem.71.1.580-586.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PCR assays for analyzing resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in soil were developed. Sequence analysis of amplicons showed that the PCR successfully retrieved transporter gene fragments from soil. Most of the genes retrieved from petroleum-contaminated soils formed a cluster (cluster PCS) that was distantly related to known transporter genes. Competitive PCR showed that the abundance of PCS genes is increased in petroleum-contaminated soil.
Collapse
Affiliation(s)
- Norika Meguro
- Laboratory of Applied Microbiology, Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan
| | | | | | | |
Collapse
|
40
|
Fretin D, Fauconnier A, Köhler S, Halling S, Léonard S, Nijskens C, Ferooz J, Lestrate P, Delrue RM, Danese I, Vandenhaute J, Tibor A, DeBolle X, Letesson JJ. The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell Microbiol 2005; 7:687-98. [PMID: 15839898 DOI: 10.1111/j.1462-5822.2005.00502.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Persistence infection is the keystone of the ruminant and human diseases called brucellosis and Malta fever, respectively, and is linked to the intracellular tropism of Brucella spp. While described as non-motile, Brucella spp. have all the genes except the chemotactic system, necessary to assemble a functional flagellum. We undertook to determine whether these genes are expressed and are playing a role in some step of the disease process. We demonstrated that in the early log phase of a growth curve in 2YT nutrient broth, Brucella melitensis expresses genes corresponding to the basal (MS ring) and the distal (hook and filament) parts of the flagellar apparatus. Under these conditions, a polar and sheathed flagellar structure is visible by transmission electron microscopy (TEM). We evaluated the effect of mutations in flagellar genes of B. melitensis encoding various parts of the structure, MS ring, P ring, motor protein, secretion apparatus, hook and filament. None of these mutants gave a discernible phenotype as compared with the wild-type strain in cellular models of infection. In contrast, all these mutants were unable to establish a chronic infection in mice infected via the intraperitoneal route, raising the question of the biological role(s) of this flagellar appendage.
Collapse
Affiliation(s)
- D Fretin
- Unité de Recherche en Biologie Moléculaire, University of Namur, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Brown CK, Vetting MW, Earhart CA, Ohlendorf DH. Biophysical analyses of designed and selected mutants of protocatechuate 3,4-dioxygenase1. Annu Rev Microbiol 2004; 58:555-85. [PMID: 15487948 DOI: 10.1146/annurev.micro.57.030502.090927] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The catechol dioxygenases allow a wide variety of bacteria to use aromatic compounds as carbon sources by catalyzing the key ring-opening step. These enzymes use specifically either catechol or protocatechuate (2,3-dihydroxybenozate) as their substrates; they use a bare metal ion as the sole cofactor. To learn how this family of metalloenzymes functions, a structural analysis of designed and selected mutants of these enzymes has been undertaken. Here we review the results of this analysis on the nonheme ferric iron intradiol dioxygenase protocatechuate 3,4-dioxygenase.
Collapse
Affiliation(s)
- C Kent Brown
- Center for Metals in Biocatalysis and Department of Biochemistry, Molecular Biology, and Biophysics , Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
42
|
Yurgel SN, Kahn ML. Dicarboxylate transport by rhizobia. FEMS Microbiol Rev 2004; 28:489-501. [PMID: 15374663 DOI: 10.1016/j.femsre.2004.04.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 01/03/2004] [Accepted: 04/04/2004] [Indexed: 11/27/2022] Open
Abstract
Soil bacteria collectively known as rhizobia are able to convert atmospheric dinitrogen to ammonia while participating in a symbiotic association with legume plants. This capability has made the bacteria an attractive research subject at many levels of investigation, especially since physiological and metabolic specialization are central to this ecological niche. Dicarboxylate transport plays an important role in the operation of an effective, nitrogen-fixing symbiosis and considerable evidence suggests that dicarboxylates are a major energy and carbon source for the nitrogen-fixing rhizobia. The dicarboxylate transport (Dct) system responsible for importing these compounds generally consists of a dicarboxylate carrier protein, DctA, and a two component kinase regulatory system, DctB/DctD. DctA and DctB/D differ in the substrates that they recognize and a model for substrate recognition by DctA and DctB is discussed. In some rhizobia, DctA expression can be induced during symbiosis in the absence of DctB/DctD by an alternative, uncharacterized, mechanism. The DctA protein belongs to a subgroup of the glutamate transporter family now thought to have an unusual structure that combines aspects of permeases and ion channels. While the structure of C(4)-dicarboxylate transporters has not been analyzed in detail, mutagenesis of S. meliloti DctA has produced results consistent with the alignment of the rhizobial protein with the more characterized bacterial and eukaryotic glutamate transporters in this family.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| | | |
Collapse
|
43
|
Fenner BJ, Tiwari RP, Reeve WG, Dilworth MJ, Glenn AR. Sinorhizobium medicaegenes whose regulation involves the ActS and/or ActR signal transduction proteins. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09622.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
44
|
Gage DJ. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 2004; 68:280-300. [PMID: 15187185 PMCID: PMC419923 DOI: 10.1128/mmbr.68.2.280-300.2004] [Citation(s) in RCA: 465] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria belonging to the genera Rhizobium, Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Azorhizobium (collectively referred to as rhizobia) grow in the soil as free-living organisms but can also live as nitrogen-fixing symbionts inside root nodule cells of legume plants. The interactions between several rhizobial species and their host plants have become models for this type of nitrogen-fixing symbiosis. Temperate legumes such as alfalfa, pea, and vetch form indeterminate nodules that arise from root inner and middle cortical cells and grow out from the root via a persistent meristem. During the formation of functional indeterminate nodules, symbiotic bacteria must gain access to the interior of the host root. To get from the outside to the inside, rhizobia grow and divide in tubules called infection threads, which are composite structures derived from the two symbiotic partners. This review focuses on symbiotic infection and invasion during the formation of indeterminate nodules. It summarizes root hair growth, how root hair growth is influenced by rhizobial signaling molecules, infection of root hairs, infection thread extension down root hairs, infection thread growth into root tissue, and the plant and bacterial contributions necessary for infection thread formation and growth. The review also summarizes recent advances concerning the growth dynamics of rhizobial populations in infection threads.
Collapse
Affiliation(s)
- Daniel J Gage
- Department of Molecular and Cell Biology, University of Connecticut, 75 N. Eagleville Rd., U-44, Storrs, CT 06269, USA.
| |
Collapse
|
45
|
Vaughan S, Wickstead B, Gull K, Addinall SG. Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J Mol Evol 2004; 58:19-29. [PMID: 14743312 DOI: 10.1007/s00239-003-2523-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2003] [Accepted: 07/24/2003] [Indexed: 10/26/2022]
Abstract
The FtsZ protein is a polymer-forming GTPase which drives bacterial cell division and is structurally and functionally related to eukaryotic tubulins. We have searched for FtsZ-related sequences in all freely accessible databases, then used strict criteria based on the tertiary structure of FtsZ and its well-characterized in vitro and in vivo properties to determine which sequences represent genuine homologues of FtsZ. We have identified 225 full-length FtsZ homologues, which we have used to document, phylum by phylum, the primary sequence characteristics of FtsZ homologues from the Bacteria, Archaea, and Eukaryota. We provide evidence for at least five independent ftsZ gene-duplication events in the bacterial kingdom and suggest the existence of three ancestoral euryarchaeal FtsZ paralogues. In addition, we identify "FtsZ-like" sequences from Bacteria and Archaea that, while showing significant sequence similarity to FtsZs, are unlikely to bind and hydrolyze GTP.
Collapse
Affiliation(s)
- Sue Vaughan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | |
Collapse
|
46
|
Zhu J, Chai Y, Zhong Z, Li S, Winans SC. Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 2004; 69:6949-53. [PMID: 14602662 PMCID: PMC262303 DOI: 10.1128/aem.69.11.6949-6953.2003] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An ultrasensitive bioassay system for the detection of N-acylhomoserine lactones (AHLs) was constructed in Agrobacterium tumefaciens by using the T7 expression system to overproduce the AHL receptor TraR. This strain detected many diverse AHLs, some at extremely low concentrations. We used this strain to detect for the first time AHLs made by Mesorhizobium huakuii, which symbiotically fixes nitrogen in association with the legume Astragalus sinicus, a source of green manure throughout eastern Asia.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|
47
|
Streit WR, Schmitz RA, Perret X, Staehelin C, Deakin WJ, Raasch C, Liesegang H, Broughton WJ. An evolutionary hot spot: the pNGR234b replicon of Rhizobium sp. strain NGR234. J Bacteriol 2004; 186:535-42. [PMID: 14702322 PMCID: PMC305759 DOI: 10.1128/jb.186.2.535-542.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain NGR234 has an exceptionally broad host range and is able to nodulate more than 112 genera of legumes. Since the overall organization of the NGR234 genome is strikingly similar to that of the narrow-host-range symbiont Rhizobium meliloti strain 1021 (also known as Sinorhizobium meliloti), the obvious question is why are the spectra of hosts so different? Study of the early symbiotic genes of both bacteria (carried by the SymA plasmids) did not provide obvious answers. Yet, both rhizobia also possess second megaplasmids that bear, among many other genes, those that are involved in the synthesis of extracellular polysaccharides (EPSs). EPSs are involved in fine-tuning symbiotic interactions and thus may help answer the broad- versus narrow-host-range question. Accordingly, we sequenced two fragments (total, 594 kb) that encode 575 open reading frames (ORFs). Comparisons revealed 19 conserved gene clusters with high similarity to R. meliloti, suggesting that a minimum of 28% (158 ORFs) of the genetic information may have been acquired from a common ancestor. The largest conserved cluster carried the exo and exs genes and contained 31 ORFs. In addition, nine highly conserved regions with high similarity to Agrobacterium tumefaciens C58, Bradyrhizobium japonicum USDA110, and Mesorhizobium loti strain MAFF303099, as well as two conserved clusters that are highly homologous to similar regions in the plant pathogen Erwinia carotovora, were identified. Altogether, these findings suggest that >/==" BORDER="0">40% of the pNGR234b genes are not strain specific and were probably acquired from a wide variety of other microbes. The presence of 26 ORFs coding for transposases and site-specific integrases supports this contention. Surprisingly, several genes involved in the degradation of aromatic carbon sources and genes coding for a type IV pilus were also found.
Collapse
Affiliation(s)
- W R Streit
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Meloni S, Rey L, Sidler S, Imperial J, Ruiz-Argüeso T, Palacios JM. The twin-arginine translocation (Tat) system is essential for Rhizobium-legume symbiosis. Mol Microbiol 2003; 48:1195-207. [PMID: 12787349 DOI: 10.1046/j.1365-2958.2003.03510.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Tat (twin-arginine translocation) system mediates export of periplasmic proteins in folded conformation. Proteins transported via Tat contain a characteristic twin-arginine motif in their signal peptide. Genetic determinants (tatABC genes) of the Tat system from Rhizobium leguminosarum bv. viciae were cloned and characterized, and a tatBC deletion mutant was constructed. The mutant lacked the ability for membrane targeting of hydrogenase, a known Tat substrate, and was impaired in hydrogenase activity. Interestingly, in the absence of a functional Tat system, only small, white nodules unable to fix nitrogen were induced in symbiosis with pea plants. Analysis of nodule structure and location of green fluorescent protein (GFP)-tagged bacteria within nodules indicated that the symbiotic process was blocked in the tat mutant at a stage previous to bacteria release into cortical cells. The R. leguminosarum Tat-deficient mutant lacked a functional cytochrome bc1 complex. This was consistent with the fact that R. leguminosarum Rieske protein, a key component of the symbiosis-essential cytochrome bc1 complex, contained a typical twin-arginine signal peptide. However, comparative analyses of nodule structure indicated that nodule development in the tat mutant was arrested at an earlier step than in a cytochrome bc1 mutant. These data indicate that the Tat pathway is also critical for proteins relevant to the initial stages of the symbiotic process.
Collapse
Affiliation(s)
- Stefania Meloni
- Laboratorio de Microbiología, Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Grant AW, Steel G, Waugh H, Ellis EM. A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity. FEMS Microbiol Lett 2003; 218:93-9. [PMID: 12583903 DOI: 10.1111/j.1574-6968.2003.tb11503.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A novel aldo-keto reductase (AKR) from Escherichia coli has been cloned, expressed and purified. This protein, YghZ, is distantly related (<40%) to mammalian aflatoxin dialdehyde reductases of the aldo-keto reductase AKR7 family and to potassium channel beta-subunits in the AKR6 family. The enzyme has been placed in a new AKR family (AKR14), with the designation AKR14A1. Sequences encoding putative homologues of this enzyme exist in many other bacteria. The enzyme can reduce several aldehyde and diketone substrates, including the toxic metabolite methylglyoxal. The K(m) for the model substrate 4-nitrobenzaldehyde is 1.06 mM and for the endogenous dicarbonyl methylglyoxal it is 3.4 mM. Overexpression of the recombinant enzyme in E. coli leads to increased resistance to methylglyoxal. It is possible that this enzyme plays a role in the metabolism of methylglyoxal, and can influence its levels in vivo.
Collapse
Affiliation(s)
- Anne W Grant
- Department of Bioscience, University of Strathclyde, Royal College, 204 George Street, Glasgow G1 1XW, UK
| | | | | | | |
Collapse
|
50
|
Letesson JJ, Lestrate P, Delrue RM, Danese I, Bellefontaine F, Fretin D, Taminiau B, Tibor A, Dricot A, Deschamps C, Haine V, Leonard S, Laurent T, Mertens P, Vandenhaute J, De Bolle X. Fun stories about Brucella: the "furtive nasty bug". Vet Microbiol 2002; 90:317-28. [PMID: 12414152 DOI: 10.1016/s0378-1135(02)00208-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although Brucella is responsible for one of the major worldwide zoonosis, our understanding of its pathogenesis remains in its infancy. In this paper, we summarize some of the research in progress in our laboratory that we think could contribute to a better understanding of the Brucella molecular virulence mechanisms and their regulation.
Collapse
Affiliation(s)
- J-J Letesson
- Laboratoire d'Immunologie et de Microbiologie, Unité de Recherche en Biologie Moleculaire, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|