1
|
Jiang C, Kan J, Gao G, Dockter C, Li C, Wu W, Yang P, Stein N. Barley2035: A decadal vision for barley research and breeding. MOLECULAR PLANT 2025; 18:195-218. [PMID: 39690737 DOI: 10.1016/j.molp.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Barley (Hordeum vulgare ssp. vulgare) is one of the oldest founder crops in human civilization and has been widely dispersed across the globe to support human society as a livestock feed and a raw material for the brewing industries. Since the early half of the 20th century, it has been used for innovative research on cytogenetics, biochemistry, and genetics, facilitated by its mode of reproduction through self-pollination and its true diploid status, which have contributed to the accumulation of numerous germplasm and mutant resources. In the era of molecular genomics and biology, a multitude of barley genes and their related regulatory mechanisms have been identified and functionally validated, providing a paradigm for equivalent studies in other Triticeae crops. This review highlights important advances on barley research over the past decade, focusing mainly on genomics and genomics-assisted germplasm exploration, genetic dissection of developmental and adaptation-related traits, and the complex dynamics of yield and quality formation. In the coming decade, the prospect of integrating these innovations in barley research and breeding shows great promise. Barley is proposed as a reference Triticeae crop for the discovery and functional validation of new genes and the dissection of their molecular mechanisms. The application of precise genome editing as well as genomic prediction and selection, further enhanced by artificial intelligence-based tools and applications, is expected to promote barley improvement to efficiently meet the evolving global demands for this important crop.
Collapse
Affiliation(s)
- Congcong Jiang
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinhong Kan
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangqi Gao
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen, Denmark
| | - Chengdao Li
- Western Crop Genetic Alliance, Murdoch University, Perth, WA 6150, Australia
| | - Wenxue Wu
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ping Yang
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
2
|
Matsushima R, Hisano H, Kim JS, McNelly R, Oitome NF, Seung D, Fujita N, Sato K. Mutations in starch BRANCHING ENZYME 2a suppress the traits caused by the loss of ISOAMYLASE1 in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:212. [PMID: 39217239 PMCID: PMC11365852 DOI: 10.1007/s00122-024-04725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
KEY MESSAGE The hvbe2a mutations restore the starch-deficient phenotype caused by the hvisa1 and hvflo6 mutations in barley endosperm. The genetic interactions among starch biosynthesis genes can be exploited to alter starch properties, but they remain poorly understood due to the various combinations of mutations to be tested. Here, we isolated two novel barley mutants defective in starch BRANCHING ENZYME 2a (hvbe2a-1 and hvbe2a-2) based on the starch granule (SG) morphology. Both hvbe2a mutants showed elongated SGs in the endosperm and increased resistant starch content. hvbe2a-1 had a base change in HvBE2a gene, substituting the amino acid essential for its enzyme activity, while hvbe2a-2 is completely missing HvBE2a due to a chromosomal deletion. Further genetic crosses with barley isoamylase1 mutants (hvisa1) revealed that both hvbe2a mutations could suppress defects in endosperm caused by hvisa1, such as reduction in starch, increase in phytoglycogen, and changes in the glucan chain length distribution. Remarkably, hvbe2a mutations also transformed the endosperm SG morphology from the compound SG caused by hvisa1 to bimodal simple SGs, resembling that of wild-type barley. The suppressive impact was in competition with floury endosperm 6 mutation (hvflo6), which could enhance the phenotype of hvisa1 in the endosperm. In contrast, the compound SG formation induced by the hvflo6 hvisa1 mutation in pollen was not suppressed by hvbe2a mutations. Our findings provide new insights into genetic interactions in the starch biosynthetic pathway, demonstrating how specific genetic alterations can influence starch properties and SG morphology, with potential applications in cereal breeding for desired starch properties.
Collapse
Affiliation(s)
- Ryo Matsushima
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
- John Innes Centre, Norwich Research Park, Norwich,, NR4 7UH, UK.
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - June-Sik Kim
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Rose McNelly
- John Innes Centre, Norwich Research Park, Norwich,, NR4 7UH, UK
| | - Naoko F Oitome
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich,, NR4 7UH, UK
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| |
Collapse
|
3
|
Clare SJ, Alhashel AF, Li M, Effertz KM, Poudel RS, Zhang J, Brueggeman RS. High resolution mapping of a novel non-transgressive hybrid susceptibility locus in barley exploited by P. teres f. maculata. BMC PLANT BIOLOGY 2024; 24:622. [PMID: 38951756 PMCID: PMC11218204 DOI: 10.1186/s12870-024-05303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Hybrid genotypes can provide significant yield gains over conventional inbred varieties due to heterosis or hybrid vigor. However, hybrids can also display unintended negative attributes or phenotypes such as extreme pathogen susceptibility. The necrotrophic pathogen Pyrenophora teres f. maculata (Ptm) causes spot form net blotch, which has caused significant yield losses to barley worldwide. Here, we report on a non-transgressive hybrid susceptibility locus in barley identified between the three parental lines CI5791, Tifang and Golden Promise that are resistant to Ptm isolate 13IM.3. However, F2 progeny from CI5791 × Tifang and CI5791 × Golden Promise crosses exhibited extreme susceptibility. The susceptible phenotype segregated in a ratio of 1 resistant:1 susceptible representing a genetic segregation ratio of 1 parental (res):2 heterozygous (sus):1 parental (res) suggesting a single hybrid susceptibility locus. Genetic mapping using a total of 715 CI5791 × Tifang F2 individuals (1430 recombinant gametes) and 149 targeted SNPs delimited the hybrid susceptibility locus designated Susceptibility to Pyrenophora teres 2 (Spt2) to an ~ 198 kb region on chromosome 5H of the Morex V3 reference assembly. This single locus was independently mapped with 83 CI5791 × Golden Promise F2 individuals (166 recombinant gametes) and 180 genome wide SNPs that colocalized to the same Spt2 locus. The CI5791 genome was sequenced using PacBio Continuous Long Read technology and comparative analysis between CI5791 and the publicly available Golden Promise genome assembly determined that the delimited region contained a single high confidence Spt2 candidate gene predicted to encode a pentatricopeptide repeat-containing protein.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Abdullah F Alhashel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mengyuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Karl M Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Dewey Scientific, Pullman, WA, 99163, USA
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
- Syngenta Seed Inc, Durham, NC, 27709, USA
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
4
|
Taketa S, Kim JS, Takahashi H, Yajima S, Koshiishi Y, Sotome T, Kato T, Mochida K. Genomic traces of Japanese malting barley breeding in two modern high-quality cultivars, 'Sukai Golden' and 'Sachiho Golden'. BREEDING SCIENCE 2023; 73:435-444. [PMID: 38737917 PMCID: PMC11082453 DOI: 10.1270/jsbbs.23031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/08/2023] [Indexed: 05/14/2024]
Abstract
Two modern high-quality Japanese malting barley cultivars, 'Sukai Golden' and 'Sachiho Golden', were subjected to RNA-sequencing of transcripts extracted from 20-day-old immature seeds. Despite their close relation, 2,419 Sukai Golden-specific and 3,058 Sachiho Golden-specific SNPs were detected in comparison to the genome sequences of two reference cultivars: 'Morex' and 'Haruna Nijo'. Two single nucleotide polymorphism (SNP) clusters respectively showing the incorporation of (1) the barley yellow mosaic virus (BaYMV) resistance gene rym5 from six-row non-malting Chinese landrace Mokusekko 3 on the long arm of 3H, and (2) the anthocyanin-less ant2 gene from a two-row Dutch cultivar on the long arm of 2H were detected specifically in 'Sukai Golden'. Using 221 recombinant inbred lines of a cross between 'Ishukushirazu' and 'Nishinochikara', another BaYMV resistance rym3 gene derived from six-row non-malting Japanese cultivar 'Haganemugi' was mapped to a 0.4-cM interval on the proximal region of 5H. Haplotype analysis of progenitor accessions of the two modern malting cultivars revealed that rym3 of 'Haganemugi' was independently introduced into 'Sukai Golden' and 'Sachiho Golden'. Residual chromosome 5H segments of 'Haganemugi' surrounding rym3 were larger in 'Sukai Golden'. Available results suggest possibilities for malting quality improvement by minimizing residual segments surrounding rym3.
Collapse
Affiliation(s)
- Shin Taketa
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - June-Sik Kim
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Hidekazu Takahashi
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima 960-1296, Japan
| | - Shunsuke Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yuichi Koshiishi
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Toshinori Sotome
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi 320-0002, Japan
| | - Tsuneo Kato
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi 320-0002, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
5
|
Radosavljević I, Križanović K, Šarančić SL, Jakše J. Towards the Investigation of the Adaptive Divergence in a Species of Exceptional Ecological Plasticity: Chromosome-Scale Genome Assembly of Chouardia litardierei (Hyacinthaceae). Int J Mol Sci 2023; 24:10755. [PMID: 37445933 DOI: 10.3390/ijms241310755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
One of the central goals of evolutionary biology is to understand the genomic basis of adaptive divergence. Different aspects of evolutionary processes should be studied through genome-wide approaches, therefore maximizing the investigated genomic space. However, in-depth genome-scale analyses often are restricted to a model or economically important species and their closely related wild congeners with available reference genomes. Here, we present the high-quality chromosome-level genome assembly of Chouardia litardierei, a plant species with exceptional ecological plasticity. By combining PacBio and Hi-C sequencing technologies, we generated a 3.7 Gbp genome with a scaffold N50 size of 210 Mbp. Over 80% of the genome comprised repetitive elements, among which the LTR retrotransposons prevailed. Approximately 86% of the 27,257 predicted genes were functionally annotated using public databases. For the comparative analysis of different ecotypes' genomes, the whole-genome sequencing of two individuals, each from a distinct ecotype, was performed. The detected above-average SNP density within coding regions suggests increased adaptive divergence-related mutation rates, therefore confirming the assumed divergence processes within the group. The constructed genome presents an invaluable resource for future research activities oriented toward the investigation of the genetics underlying the adaptive divergence that is likely unfolding among the studied species' ecotypes.
Collapse
Affiliation(s)
- Ivan Radosavljević
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9A, HR-10000 Zagreb, Croatia
| | - Krešimir Križanović
- Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
| | - Sara Laura Šarančić
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9A, HR-10000 Zagreb, Croatia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Li T, Bian J, Tang M, Shangguan H, Zeng Y, Luo R, Sun H, Ke Q, Nie X, Li Y, Cui L. BGFD: an integrated multi-omics database of barley gene families. BMC PLANT BIOLOGY 2022; 22:454. [PMID: 36131236 PMCID: PMC9490965 DOI: 10.1186/s12870-022-03846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND A gene family comprises a group of genes with similar functional domains that play various roles in plant growth, development, and responses to environmental stimuli. Barley (Hordeum vulgare L.) is the fourth most cultivated cereal crop worldwide, and it is an important model species for genetic studies. Systematic identification and annotation of gene families are key for studies of molecular function and evolutionary history. RESULTS We constructed a multi-omics database containing 5593 genes of 77 gene families called the Barley Gene Family Database (BGFD: http://barleygfdb.com ). BGFD is a free, user-friendly, and web-accessible platform that provides data on barley family genes. BGFD provides intuitive visual displays to facilitate studies of the physicochemical properties, gene structure, phylogenetic relationships, and motif organization of genes. Massive multi-omics datasets have been acquired and processed to generate an atlas of expression pattern profiles and genetic variation in BGFD. The platform offers several practical toolkits to conduct searches, browse, and employ BLAST functions, and the data are downloadable. CONCLUSIONS BGFD will aid research on the domestication and adaptive evolution of barley; it will also facilitate the screening of candidate genes and exploration of important agronomic traits in barley.
Collapse
Affiliation(s)
- Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325 Shandong China
| | - Minqiang Tang
- College of Forestry, Hainan University, Haikou, 570228 Hainan China
| | - Hongbin Shangguan
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Yan Zeng
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Ruihan Luo
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Huifan Sun
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Qinglin Ke
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| |
Collapse
|