1
|
Jamshidi A, Beheshti Maal A, Alikhani M, Madani H, Sadri B, Moghaddassi M, Salimzadeh A, Ahmadipour M, Shahrbaf MA, Hajizadeh-Saffar E, Baghaban Eslaminejad M, Hassani SN, Taghiyar L, Abbasi F, Baharvand H, Vosough M. Allogeneic bone marrow derived clonal mesenchymal stromal cells in refractory rheumatoid arthritis: a pilot study. Regen Med 2024; 19:599-609. [PMID: 39713986 DOI: 10.1080/17460751.2024.2443352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024] Open
Abstract
AIMS This phase I trial assessed the safety and potential efficacy of monthly 3 dose intravenous infusion of allogeneic bone marrow-derived clonal mesenchymal stromal cells (BM-cMSCs) in refractory rheumatoid arthritis (RA) patients over 24 weeks. PATIENTS & METHODS Six patients with refractory RA received BM-cMSC infusions at one-month intervals over a 24-week period. Safety outcomes included adverse events (AEs) and serious adverse events (SAEs). Clinical efficacy was assessed using the Visual Analog Scale (VAS), Simple and Clinical Disease Activity Indices (SDAI/CDAI), Health Assessment Questionnaire (HAQ), and American College of Rheumatology (ACR) response criteria. Serological makers including: erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), IL-10, IL-17, TNF-α, and Treg/Th17 ratios were measured. RESULTS BM-cMSC infusions were well-tolerated, with no SAEs reported. VAS scores improved in three patients, with two achieving sustained pain relief and quality-of-life enhancement. Four patients met ACR20 at week 16, while SDAI and CDAI scores indicated disease activity reduction in three patients. Anti-CCP and RF levels showed variable responses, with some increases not consistently correlating with clinical outcomes. Serological biomarkers showed mixed results; IL-10 increased in five patients, while pro-inflammatory markers TNF-α and IL-17 decreased in the same individuals. CONCLUSIONS BM-cMSC therapy demonstrated a favorable safety profile and potential efficacy in managing refractory RA. While preliminary results are promising, further studies with larger cohorts and long-term follow-up are needed to validate these findings and optimize therapeutic strategies. CLINICAL TRIAL REGISTRATION IRCT20080728001031N29.
Collapse
Affiliation(s)
- Ahmadreza Jamshidi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Beheshti Maal
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Majid Alikhani
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Madani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahareh Sadri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Moghaddassi
- Rheumatology Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Salimzadeh
- Rheumatology Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Ahmadipour
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Amin Shahrbaf
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Taghiyar
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Abbasi
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Liu X, Li Z, Liu L, Zhang P, Wang Y, Ding G. Metformin-mediated effects on mesenchymal stem cells and mechanisms: proliferation, differentiation and aging. Front Pharmacol 2024; 15:1465697. [PMID: 39193338 PMCID: PMC11347424 DOI: 10.3389/fphar.2024.1465697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a type of pluripotent adult stem cell with strong self-renewal and multi-differentiation abilities. Their excellent biological traits, minimal immunogenicity, and abundant availability have made them the perfect seed cells for treating a wide range of diseases. After more than 60 years of clinical practice, metformin is currently one of the most commonly used hypoglycaemic drugs for type 2 diabetes in clinical practice. In addition, metformin has shown great potential in the treatment of various systemic diseases except for type 2 diabetes in recent years, and the mechanisms are involved with antioxidant stress, anti-inflammatory, and induced autophagy, etc. This article reviews the effects and the underlying mechanisms of metformin on the biological properties, including proliferation, multi-differentiation, and aging, of MSCs in vitro and in vivo with the aim of providing theoretical support for in-depth scientific research and clinical applications in MSCs-mediated disease treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
3
|
Yang J, Li D, Zhang M, Lin G, Hu S, Xu H. From the updated landscape of the emerging biologics for IBDs treatment to the new delivery systems. J Control Release 2023; 361:568-591. [PMID: 37572962 DOI: 10.1016/j.jconrel.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
Inflammatory bowel diseases (IBDs) treatments have shifted from small-molecular therapeutics to the oncoming biologics. The first-line biologics against the moderate-to-severe IBDs are mainly involved in antibodies against integrins, cytokines and cell adhesion molecules. Besides, other biologics including growth factors, antioxidative enzyme, anti-inflammatory peptides, nucleic acids, stem cells and probiotics have also been explored at preclinical or clinical studies. Biologics with variety of origins have their unique potentials in attenuating immune inflammation or gut mucosa healing. Great advances in use of biologics for IBDs treatments have been archived in recent years. But delivering issues for biologic have also been confronted due to their liable nature. In this review, we will focus on biologics for IBDs treatments in the recent publications; summarize the current landscapes of biologics and their promise to control disease progress. Alternatively, the confronted challenges for delivering biologics will also be analyzed. To combat these drawbacks, some new delivering strategies are provided: firstly, designing the functional materials with high affinity toward biologics; secondly, the delivering vehicle systems to encapsulate the liable biologics; thirdly, the topical adhering delivery systems as enema. To our knowledge, this review is the first study to summarize the updated usage of the oncoming biologics for IBDs, their confronted challenges in term of delivery and the potential combating strategies.
Collapse
Affiliation(s)
- Jiaojiao Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Mengjiao Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Gaolong Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Sunkuan Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China
| | - Helin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
4
|
Hidalgo-García L, Ruiz-Malagon AJ, Huertas F, Rodríguez-Sojo MJ, Molina-Tijeras JA, Diez-Echave P, Becerra P, Mirón B, Morón R, Rodríguez-Nogales A, Gálvez J, Rodríguez-Cabezas ME, Anderson P. Administration of intestinal mesenchymal stromal cells reduces colitis-associated cancer in C57BL/6J mice modulating the immune response and gut dysbiosis. Pharmacol Res 2023; 195:106891. [PMID: 37586618 DOI: 10.1016/j.phrs.2023.106891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/22/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) have a higher risk of developing colitis-associated colorectal cancer (CAC) with poor prognosis. IBD etiology remains undefined but involves environmental factors, genetic predisposition, microbiota imbalance (dysbiosis) and mucosal immune defects. Mesenchymal stromal cell (MSC) injections have shown good efficacy in reducing intestinal inflammation in animal and human studies. However, their effect on tumor growth in CAC and their capacity to restore gut dysbiosis are not clear. METHODS The outcome of systemic administrations of in vitro expanded human intestinal MSCs (iMSCs) on tumor growth in vivo was evaluated using the AOM/DSS model of CAC in C57BL/6J mice. Innate and adaptive immune responses in blood, mesenteric lymph nodes (MLNs) and colonic tissue were analyzed by flow cytometry. Intestinal microbiota composition was evaluated by 16S rRNA amplicon sequencing. RESULTS iMSCs significantly inhibited colitis and intestinal tumor development, reducing IL-6 and COX-2 expression, and IL-6/STAT3 and PI3K/Akt signaling. iMSCs decreased colonic immune cell infiltration, and partly restored intestinal monocyte homing and differentiation. iMSC administration increased the numbers of Tregs and IFN-γ+CD8+ T cells in the MLNs while decreasing the IL-4+Th2 response. It also ameliorated intestinal dysbiosis in CAC mice, increasing diversity and Bacillota/Bacteroidota ratio, as well as Akkermansia abundance, while reducing Alistipes and Turicibacter, genera associated with inflammation. CONCLUSION Administration of iMSCs protects against CAC, ameliorating colitis and partially reverting intestinal dysbiosis, supporting the use of MSCs for the treatment of IBD.
Collapse
Affiliation(s)
- Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Antonio Jesús Ruiz-Malagon
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Francisco Huertas
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Cirugía, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - José Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Patricia Becerra
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Anatomía Patológica, Hospital Universitario Clínico San Cecilio, 18014 Granada, Spain
| | - Benito Mirón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Cirugía, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | - Rocío Morón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Centro de Investigación Biomédica En Red para Enfermedades Hepáticas y Digestivas (CIBER-EHD), School of Pharmacy, University of Granada, 18071 Granada, Spain.
| | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Per Anderson
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; Departamento de Bioquímica, Biología Molecular e Inmunología III, University of Granada, 18016 Granada, Spain
| |
Collapse
|
5
|
Shimizu Y, Ntege EH, Azuma C, Uehara F, Toma T, Higa K, Yabiku H, Matsuura N, Inoue Y, Sunami H. Management of Rheumatoid Arthritis: Possibilities and Challenges of Mesenchymal Stromal/Stem Cell-Based Therapies. Cells 2023; 12:1905. [PMID: 37508569 PMCID: PMC10378234 DOI: 10.3390/cells12141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent, chronic, and progressive autoimmune disorder primarily affecting joints and muscles. The associated inflammation, pain, and motor restriction negatively impact patient quality of life (QOL) and can even contribute to premature mortality. Further, conventional treatments such as antiinflammatory drugs are only symptomatic. Substantial progress has been made on elucidating the etiopathology of overt RA, in particular the contributions of innate and adaptive immune system dysfunction to chronic inflammation. Although the precise mechanisms underlying onset and progression remain elusive, the discovery of new drug targets, early diagnosis, and new targeted treatments have greatly improved the prognosis and QOL of patients with RA. However, a sizable proportion of patients develop severe adverse effects, exhibit poor responses, or cannot tolerate long-term use of these drugs, necessitating more effective and safer therapeutic alternatives. Mounting preclinical and clinical evidence suggests that the transplantation of multipotent adult stem cells such as mesenchymal stromal/stem cells is a safe and effective treatment strategy for controlling chronic inflammation and promoting tissue regeneration in patients with intractable diseases, including RA. This review describes the current status of MSC-based therapies for RA as well as the opportunities and challenges to broader clinical application.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Chinatsu Azuma
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Fuminari Uehara
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Takashi Toma
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Kotaro Higa
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Hiroki Yabiku
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Naoki Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| | - Yoshikazu Inoue
- Department of Plastic and Reconstructive Surgery, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, Nishihara 903-0215, Japan
| |
Collapse
|
6
|
Medina JP, Bermejo-Álvarez I, Pérez-Baos S, Yáñez R, Fernández-García M, García-Olmo D, Mediero A, Herrero-Beaumont G, Largo R. MSC therapy ameliorates experimental gouty arthritis hinting an early COX-2 induction. Front Immunol 2023; 14:1193179. [PMID: 37533852 PMCID: PMC10391650 DOI: 10.3389/fimmu.2023.1193179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Objective The specific effect of Adipose-Derived Mesenchymal Stem Cells (Ad-MSC) on acute joint inflammation, where the response mostly depends on innate immunity activation, remains elusive. The pathogenesis of gouty arthritis, characterized by the deposition of monosodium urate (MSU) crystals in the joints, associated to acute flares, has been associated to NLRP3 inflammasome activation and subsequent amplification of the inflammatory response. Our aim was to study the effect of human Ad-MSC administration in the clinical inflammatory response of rabbits after MSU injection, and the molecular mechanisms involved. Methods Ad-MSC were administered by intraarterial route shortly after intraarticular MSU crystal injections. Joint and systemic inflammation was sequentially studied, and the mechanisms involved in NLRP3 inflammasome activation, and the synthesis of inflammatory mediators were assessed in the synovial membranes 72h after insult. Ad-MSC and THP-1-derived macrophages stimulated with MSU were co-cultured in transwell system. Results A single systemic dose of Ad-MSC accelerated the resolution of local and systemic inflammatory response. In the synovial membrane, Ad-MSC promoted alternatively M2 macrophage presence, inhibiting NLRP3 inflammasome and inducing the production of anti-inflammatory cytokines, such as IL-10 or TGF-β, and decreasing nuclear factor-κB activity. Ad-MSC induced a net anti-inflammatory balance in MSU-stimulated THP-1 cells, with a higher increase in IL-10 and IDO expression than that observed for IL-1β and TNF. Conclusion Our in vivo and in vitro results showed that a single systemic dose of Ad-MSC decrease the intensity and duration of the inflammatory response by an early local COX-2 upregulation and PGE2 release. Ad-MSCs suppressed NF-kB activity, NLRP3 inflammasome, and promoted the presence of M2 alternative macrophages in the synovium. Therefore, this therapeutic approach could be considered as a pharmacological alternative in patients with comorbidities that preclude conventional treatment.
Collapse
Affiliation(s)
- Juan Pablo Medina
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Ismael Bermejo-Álvarez
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Sandra Pérez-Baos
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Rosa Yáñez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
- Advanced Therapies Dept, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - María Fernández-García
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
- Advanced Therapies Dept, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Damián García-Olmo
- New Therapies Laboratory, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Department of Surgery, School of Medicine UAM, Madrid, Spain
| | - Aránzazu Mediero
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz Universidad Autonoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
7
|
Choi A, Javius-Jones K, Hong S, Park H. Cell-Based Drug Delivery Systems with Innate Homing Capability as a Novel Nanocarrier Platform. Int J Nanomedicine 2023; 18:509-525. [PMID: 36742991 PMCID: PMC9893846 DOI: 10.2147/ijn.s394389] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/12/2023] [Indexed: 01/29/2023] Open
Abstract
Nanoparticle-based drug delivery systems have been designed to treat various diseases. However, many problems remain, such as inadequate tumor targeting and poor therapeutic outcomes. To overcome these obstacles, cell-based drug delivery systems have been developed. Candidates for cell-mediated drug delivery include blood cells, immune cells, and stem cells with innate tumor tropism and low immunogenicity; they act as a disguise to deliver the therapeutic payload. In drug delivery systems, therapeutic agents are encapsulated intracellularly or attached to the surface of the plasma membrane and transported to the desired site. Here, we review the pros and cons of cell-based therapies and discuss their homing mechanisms in the tumor microenvironment. In addition, different strategies to load therapeutic agents inside or on the surface of circulating cells and the current applications for a wide range of disease treatments are summarized.
Collapse
Affiliation(s)
- Anseo Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea,Correspondence: Hansoo Park; Seungpyo Hong, School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea, Tel +82-2 820 5804, Fax +82-2 813 8159, Email ;
| |
Collapse
|
8
|
Lopez-Santalla M, Conde C, Rodriguez-Trillo A, Garin MI. Assessment of mesenchymal stem/stromal cell-based therapy in K/BxN serum transfer-induced arthritis. Front Immunol 2022; 13:943293. [PMID: 36300108 PMCID: PMC9589432 DOI: 10.3389/fimmu.2022.943293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and cartilage/bone destruction with systemic comorbidities. Despite advances in understanding the aetiology of RA and novel biologic drugs, a substantial number of individuals with RA remain intolerant or resistant to these therapies. In this context, mesenchymal stem/stromal cell (MSC)-based therapy has emerged as an innovative therapeutic alternative to address unresolved treatment issues for patients with RA thanks to the immunomodulatory properties of these cells. The majority of preclinical studies in MSC-based therapy have been conducted using the well-known collagen-induced arthritis (CIA) mouse model however due to its low incidence, the mouse strain restriction and the prolonged induction phase of collagen-induced arthritis, alternative experimental models of RA have been developed such as K/BxN serum transfer-induced arthritis (STIA), which mimics many of human RA features. In this study, we evaluate whether the K/BxN STIA model could be used as an alternative model to study the immunomodulatory potential of MSC-based therapy. Unexpectedly, our data suggest that adipose-derived MSC-based therapy is unsuitable for modulating the progression of K/BxN serum-transfer arthritis in mice despite the various experimental parameters tested. Based on the differences in the immune status and monocytic/macrophage balance among the different arthritic models, these results could help to identify the cellular targets of the MSCs and, most importantly to predict the RA patients that will respond positively to MSC-based therapy.
Collapse
Affiliation(s)
- Mercedes Lopez-Santalla
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBER-ER) and Advanced Therapy Unit, Madrid, Spain
- Advanced Therapy Unit, Health Research Institute- Fundación Jiménez Díaz, University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Carmen Conde
- Laboratorio de Reumatología Experimental y Observacional, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Angela Rodriguez-Trillo
- Laboratorio de Reumatología Experimental y Observacional, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Marina I. Garin
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBER-ER) and Advanced Therapy Unit, Madrid, Spain
- Advanced Therapy Unit, Health Research Institute- Fundación Jiménez Díaz, University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
9
|
Omar TA, Sweed E, Sweed D, Eledel RH, Abou-Elela DH, Hikal G. Mesenchymal Stem Cells for the Treatment of Acetic Acid-Induced Ulcerative Colitis in Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background: Ulcerative colitis (UC) is an autoimmune inflammatory bowel disease, characterized by chronic and relapsing inflammation of the intestinal mucosa. Clinical treatments fail to reduce inflammation and induce side effects in nearly 30% of patients. Mesenchymal stem cells (MSCs) are immunomodulatory agents that can encourage tissue repair and regeneration.
Aim: To investigate the ability of MSCs to differentiate into enterocytes under the mediation of activin a, fibroblastic growth factor 2, and epidermal growth factors and to study the effect of administering MSCs to rats with acetic acid (AA)-induced UC.
Methods: MSCs isolated from the umbilical cord were induced to differentiate into enterocytes. The induced cells were morphologically evaluated by flow cytometry and immunocytochemistry. Forty rats were divided into four groups: control, AA-induced UC, differentiated, and undifferentiated MSC treated groups. The acute UC in rats was induced by 3% AA transrectal administration. Body weight changes, disease activity index (DAI), and histopathological and immunohistochemical CD105 and CD34 staining were recorded. IL-17, IL-10, and TGF- β levels were measured as well.
Results: In Both differentiated and undifferentiated MSCs, induced MSCs improved the DAI score and significantly recovered the pathological changes. The favorable effect of MSCs was significantly linked to CD105 overexpression and CD34 low expression. IL-10 and TGF-β levels increased while IL-17 levels decreased.
Conclusion: Both differentiated and undifferentiated MSCs showed anti-inflammatory and immunomodulatory effects in our study. Based on our results, MSCs could become potentially useful for regenerative medicine and the clinical treatment of UC.
Collapse
|
10
|
Che Z, Ye Z, Zhang X, Lin B, Yang W, Liang Y, Zeng J. Mesenchymal stem/stromal cells in the pathogenesis and regenerative therapy of inflammatory bowel diseases. Front Immunol 2022; 13:952071. [PMID: 35990688 PMCID: PMC9386516 DOI: 10.3389/fimmu.2022.952071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) represent a group of chronic inflammatory disorders of the gastrointestinal (GI) tract including ulcerative colitis (UC), Crohn’s disease (CD), and unclassified IBDs. The pathogenesis of IBDs is related to genetic susceptibility, environmental factors, and dysbiosis that can lead to the dysfunction of immune responses and dysregulated homeostasis of local mucosal tissues characterized by severe inflammatory responses and tissue damage in GI tract. To date, extensive studies have indicated that IBDs cannot be completely cured and easy to relapse, thus prompting researchers to find novel and more effective therapeutics for this disease. Due to their potent multipotent differentiation and immunomodulatory capabilities, mesenchymal stem/stromal cells (MSCs) not only play an important role in regulating immune and tissue homeostasis but also display potent therapeutic effects on various inflammatory diseases, including IBDs, in both preclinical and clinical studies. In this review, we present a comprehensive overview on the pathological mechanisms, the currently available therapeutics, particularly, the potential application of MSCs-based regenerative therapy for IBDs.
Collapse
Affiliation(s)
- Zhengping Che
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xueying Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Weiqing Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yanfang Liang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- *Correspondence: Jincheng Zeng, ; Yanfang Liang,
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
- Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
- *Correspondence: Jincheng Zeng, ; Yanfang Liang,
| |
Collapse
|
11
|
Cross Talk between Mesenchymal Stem/Stromal Cells and Innate Immunocytes Concerning Lupus Disease. Stem Cell Rev Rep 2022; 18:2781-2796. [DOI: 10.1007/s12015-022-10397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 10/16/2022]
|
12
|
Wang S, Wang Y, Xu B, Qin T, Lv Y, Yan H, Shao Y, Fang Y, Zheng S, Qiu Y. Biodistribution of 89Zr-oxine-labeled human bone marrow-derived mesenchymal stem cells by micro-PET/computed tomography imaging in Sprague-Dawley rats. Nucl Med Commun 2022; 43:834-846. [PMID: 35438673 PMCID: PMC9177155 DOI: 10.1097/mnm.0000000000001562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To develop a method for labeling human bone marrow mesenchymal stem cells (hMSCs) with 89Zr-oxine to characterize the biodistribution characteristics of hMSCs in normal Sprague-Dawley (SD) rats in real-time by micro-PET-computed tomography (micro-PET/CT) imaging. METHODS 89Zr-oxine complex was synthesized from 89Zr-oxalate and 8-hydroxyquinoline (oxine). After hMSCs were labeled with the 89Zr-oxine complex, the radioactivity retention, viability, proliferation, apoptosis, differentiation, morphology, and phenotype of labeled cells were assessed. The biodistribution of 89Zr-oxine-labeled hMSCs in SD rats was tracked in real-time by micro-PET/CT imaging. RESULTS The cell labeling efficiency was 52.6 ± 0.01%, and 89Zr-oxine was stably retained in cells (66.7 ± 0.9% retention on 7 days after labeling). Compared with the unlabeled hMSCs, 89Zr-oxine labeling did not affect the biological characteristics of cells. Following intravenous administration in SD rats, labeled hMSCs mainly accumulated in the liver (7.35 ± 1.41% ID/g 10 days after labeling, n = 6) and spleen (8.48 ± 1.20% ID/g 10 days after labeling, n = 6), whereas intravenously injected 89Zr-oxalate mainly accumulated in the bone (4.47 ± 0.35% ID/g 10 days after labeling, n = 3). CONCLUSION 89Zr-oxine labeling and micro-PET/CT imaging provide a useful and non-invasive method of assessing the biodistribution of cell therapy products in SD rats. The platform provides a foundation for us to further understand the mechanism of action and migration dynamics of cell therapy products.
Collapse
Affiliation(s)
- Shuzhe Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
- Toxicology Department of China Academy of Pharmaceutical Industry Shanghai InnoStar Biotechnology Co. Ltd, Shanghai
| | - Yan Wang
- Toxicology Department of China Academy of Pharmaceutical Industry Shanghai InnoStar Biotechnology Co. Ltd, Shanghai
| | - Bohua Xu
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Tian Qin
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Yupeng Lv
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Heng Yan
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Yifei Shao
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Yangyang Fang
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Shaoqiu Zheng
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
- Jiangxi University of Traditional Chinese Medicine, Nanchang
- Yangtze Delta Advanced Research Institute, Yangtze Delta Pharmaceutical College Nantong, Jiangsu, China
| | - Yunliang Qiu
- Toxicology Department of China Academy of Pharmaceutical Industry Shanghai InnoStar Biotechnology Co. Ltd, Shanghai
| |
Collapse
|
13
|
Wang L, Gao T, Li Y, Xie Y, Zeng S, Tai C, Feng Y, Shen P, Wang B. A long-term anti-inflammation markedly alleviated high-fat diet-induced obesity by repeated administrations of overexpressing IL10 human umbilical cord-derived mesenchymal stromal cells. Stem Cell Res Ther 2022; 13:259. [PMID: 35715850 PMCID: PMC9204983 DOI: 10.1186/s13287-022-02935-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/12/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Obesity is a chronic process and could activate various inflammatory responses, which in turn aggravates obesity and related metabolic syndrome. Here we explored whether long-term inhibition of inflammation could successfully alleviate high-fat diet (HFD)-induced obesity. Methods We constructed stable overexpressing interleukin 10 (IL10) human umbilical cord-derived mesenchymal stromal cells (HUCMSCs) which repeatedly were applied to obesity mice with HFD feeding to obtain a long-term anti-inflammation based on the prominent anti-inflammation effects of IL10 and immunomodulatery effects of HUCMSCs. Then we monitored the features of obesity including body weight, serum ALT, AST, and lipids. In addition, glucose homeostasis was determined by glucose tolerance and insulin sensitivity tests. The infiltrated macrophages in adipose tissues and hepatic lipid accumulation were detected, and the expressions of adipogenesis and inflammatory genes in adipose tissues were examined by real-time (RT) PCR and western blot analysis. Results Compared with HUCMSCs, IL10-HUCMSCs treatment had much better anti-obesity effects including body weight reduction, less hepatic lipids accumulation, lower amount and size of adipocyte, greater glucose tolerance, less systemic insulin resistance, and less adipose tissue inflammation in HFD feeding mice. Finally, IL10-HUCMSCs could decrease the activation of MAPK JNK of adipose tissue induced by HFD. The inhibition of MAPK JNK signal pathway by a small chemical molecule SP600125 in 3T3-L1 cells, a preadipocyte line, reduced the differentiation of adipocytes and lipid droplet accumulation. Conclusion A lasting anti-inflammation based on gene modified stem cell therapy is an effective strategy in preventing diet-induced obesity and obesity-related metabolic syndrome.
Collapse
Affiliation(s)
- Liudi Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Tianyun Gao
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Yu Li
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, School of Life Science, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Sheng Zeng
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Chenxu Tai
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Yirui Feng
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, School of Life Science, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, School of Life Science, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China. .,College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Abdi H, Ghaleh HEG, Kondori BJ, Motlagh BM. Anti-Inflammatory Effects Of Calcitriol-Treated Mesenchymal Stem Cells On Experimental Ulcerative Colitis. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objective — Ulcerative colitis is an inflammatory bowel disease usually affecting the innermost lining of the colon and rectum. Both corticosteroids and anti-inflammatory drugs are administrated as medical treatment for UC. However, these drugs, in addition to chemical side effects, impose exorbitant costs on patients. Therefore, extensive studies are underway to find new treatment approaches. This study aims to determine the effect of calcitriol-treated mesenchymal stem cells in the UC treatment. Material and Methods — This experimental study was performed on 50 Wistar rats with inducing ulcerative colitis model by 4% acetic acid. MSCs were isolated from rat bone marrow and proliferated in an appropriate medium. Bone marrow-derived mesenchymal stem cells were injected intraperitoneally. Symptom severity of this disease was evaluated using the factors, such as stool consistency, fecal blood and histopathological study of colon tissue. Furthermore, the levels of myeloperoxidase, nitric oxide and inflammatory cytokines like IL1, IL6 and TNF-α were measured using ELISA technique. Results — The results showed that calcitriol-treated MSCs, significantly reduced the production of inflammatory cytokines including IL-1 (150.22±29.04)(P<0.01), IL-6 (681±56.20)(P<0.01), TNF-α (53.07±11.30)(P<0.01) and significantly decrease in level of NO (12.86±5.65)(P<0.01), MPO (0.175±0.024)(P<0.01) and the destruction of intestinal crypts compared to the control group (P<0.05). Conclusions — It seems that using calcitriol with MSCs has reduced the symptoms of UC in our experimental model. Due to their ease of isolation and expansion, MSCs can be used as an adjunctive therapy to improve the condition of patients with UC colitis.
Collapse
Affiliation(s)
- Hossein Abdi
- Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
15
|
Chen G, Wang F, Nie M, Zhang H, Zhang H, Zhao Y. Roe-inspired stem cell microcapsules for inflammatory bowel disease treatment. Proc Natl Acad Sci U S A 2021; 118:e2112704118. [PMID: 34686606 PMCID: PMC8639345 DOI: 10.1073/pnas.2112704118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which exert regulatory effects on various immune cells, have been a promising therapy for inflammatory bowel disease treatment. However, their therapeutic effects are limited by lack of nutritional supply, immune system attack, and low accumulation on the target site. Here, inspired by the natural incubation mechanism of roe, we present immune-isolating, wet-adhesive, and nutrient-rich microcapsules for therapeutic MSCs encapsulation. The adhesive shells were fabricated by ionic cross-linking of alginate and visible curing of epsilon-poly-L-lysine-graft-methacrylamide and dopamine methacrylamide, which encapsulated the liquid core of the MSCs and roe proteins. Due to the core-shell construction of the resultant microcapsules, the MSCs might escape from attack of the immune system while still maintaining immunomodulating functions. In addition, the roe proteins encapsulated in the core phase offered sufficient nutrient supply for MSCs' survival and proliferation. Furthermore, after intraperitoneal transplantation, the wet-adhesive radicals on the shell surface could immobilize the MSCs-encapsulating microcapsules onto the bowel. Based on these features, practical values of the roe-inspired microcapsules with MSCs encapsulation were demonstrated by applying them to treat dextran sulfate sodium (DSS)-induced colitis through increasing residence time, regulating immune imbalance, and relieving disease progression. We believe that the proposed roe-inspired microcapsules with MSCs encapsulation are potential for clinical application.
Collapse
Affiliation(s)
- Guopu Chen
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Fengyuan Wang
- Department of Dermatology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Min Nie
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Han Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China;
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Improving the Efficacy of Mesenchymal Stem/Stromal-Based Therapy for Treatment of Inflammatory Bowel Diseases. Biomedicines 2021; 9:biomedicines9111507. [PMID: 34829736 PMCID: PMC8615066 DOI: 10.3390/biomedicines9111507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) consisting of persistent and relapsing inflammatory processes of the intestinal mucosa are caused by genetic, environmental, and commensal microbiota factors. Despite recent advances in clinical treatments aiming to decrease inflammation, nearly 30% of patients treated with biologicals experienced drawbacks including loss of response, while others can develop severe side effects. Hence, novel effective treatments are highly needed. Mesenchymal stem/stromal cell (MSCs) therapy is an innovative therapeutic alternative currently under investigation for IBD. MSCs have the inherent capacity of modulating inflammatory immune responses as well as regenerating damaged tissues and are therefore a prime candidate to use as cell therapy in patients with IBD. At present, MSC-based therapy has been shown preclinically to modulate intestinal inflammation, whilst the safety of MSC-based therapy has been demonstrated in clinical trials. However, the successful results in preclinical studies have not been replicated in clinical trials. In this review, we will summarize the protocols used in preclinical and clinical trials and the novel approaches currently under investigation which aim to increase the beneficial effects of MSC-based therapy for IBD.
Collapse
|
17
|
Qi LL, Fan ZY, Mao HG, Wang JB. The Therapeutic Efficacy of Adipose Tissue-Derived Mesenchymal Stem Cell Conditioned Medium on Experimental Colitis Was Improved by the Serum From Colitis Rats. Front Bioeng Biotechnol 2021; 9:694908. [PMID: 34604183 PMCID: PMC8484792 DOI: 10.3389/fbioe.2021.694908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
Adipose derived mesenchymal stem cells (AD-MSCs) have shown therapeutic potential in treatments of inflammatory bowel disease (IBD). Due to the harsh host environment and poor survival of the cells, controversy concerning the homing, proliferation and differentiation of MSCs in lesion tissue still remains. It has been reported that conditioned media from MSCs could improve the colitis, whereas the therapeutic efficiency could be significantly elevated by the stimulation of pro-cytokines. In this study, we pre-treated the adipose derived MSCs with the serum from colitis rats and then the activated conditioned media (CM-AcMSC) were collected. To compare the therapeutic effects of CM-MSC and CM-AcMSC on IBD, we constructed dextran sodium sulphate (DSS)-induced colitis rat models. The colitis was induced in rats by administrating 5% DSS in drinking water for 10 days, and the disease symptoms were recorded daily. The colon histopathological changes were observed by different staining methods (H&E and PAS). The expression levels of MUC2 and tight junctions (TJs) were determined by RT-qPCR. The levels of inflammatory cytokines were analyzed by ELISA and western blot analysis. Our findings suggested that CM-AcMSC was more effective in ameliorating the clinical features and histological damage scores. Treatment with CM-AcMSC significantly increased the expression of MUC2 and TJs and suppressed the production of pro-inflammatory cytokines in colonic tissues of colitis rats. The inhibitory effects of CM-AcMSC on inflammatory responses of colitis rats were mediated by NF-κB signaling pathway. These results suggested that pre-activation of MSCs with serum from colitis rats could promote the production of paracrine factors and improve the therapeutic effects of conditioned medium on colitis rats.
Collapse
Affiliation(s)
- Li-Li Qi
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, China
| | - Zhe-Yu Fan
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, China
| | - Hai-Guang Mao
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, China
| | - Jin-Bo Wang
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, China
| |
Collapse
|
18
|
Han L, Ma C, Peng H, Wu Z, Xu H, Wu J, Zhang N, Jiang Q, Ma C, Huang R, Li H, Pan G. Define mesenchymal stem cell from its fate: Biodisposition of human mesenchymal stem cells in normal and Con-A induced liver injury mice. J Pharmacol Exp Ther 2021; 379:125-133. [PMID: 34373354 DOI: 10.1124/jpet.121.000607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
The pharmaceutical industry and clinical trials have been revolutionized mesenchymal stem cell-based therapeutics. However, little has the pharmacokinetics of transplanted cells been characterized in their target tissues under healthy or disease condition. A qPCR analytical method with matrix effect was developed to track the biodistribution of human mesenchymal stem cells in normal and Con A induced liver injury mice. MSC disposition in blood and different organs were compared and relevant PK parameters were calculated. Human and mice MSCs (hMSCs and mMSCs) displayed a very similar pharmacokinetic profile in all tested doses: about 95% of the detected hMSCs accumulated in the lung, 3% in the liver, while almost negligible cells were detected in other tissues. A significant double peak of hMSCs concentration emerged in the lung within 1-2 hours after intravenous injection, so did the mMSCs. Prazosin, a vasodilator could eliminate the second peak in the lung and increase its Cmax and AUC by 10% in the first 2 hours. The injury caused by Con A was significantly reduced by hMSCs while the Cmax and AUC0-8 of cells in the injured liver was decreased by 54% and 50% respectively. And the Cmax and AUC would be improved with the alleviation of congestion through the administration of heparin. The study provides a novel insight into the pharmacokinetics of exogenous MSCs in normal and Con-A induced liver injury mice which provided a framework for optimizing cell transplantation. Significance Statement MSCs are known for their potential as regenerative therapies in treating several diseases, while an insufficient understanding of the pharmacokinetics of MSCs restricts their future application. The current study was the first time to elucidate the PK and the possible factors including dosage, species and derived sources, disease in a systematic way. Furthermore, we investigated that ConA-induced liver injury significantly prevent cells from entering injury site which could be reversed by the diminished congestion achieved by heparin.
Collapse
Affiliation(s)
- Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Chenhui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| | - Huige Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica; Nanjing University of Chinese Medicine, China
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jiajun Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Ning Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Qinghui Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Chen Ma
- Shanghai Institute of Materia Medica, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Hai Li
- Department of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, China
| |
Collapse
|
19
|
Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021; 175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Current treatment strategies for inflammatory bowel disease (IBD) seek to alleviate the undesirable symptoms of the disorder. Despite the higher specificity of newer generation therapeutics, e.g. monoclonal antibodies, adverse effects still arise from their interference with non-specific systemic immune cascades. To circumvent such undesirable effects, both conventional and newer therapeutic options can benefit from various targeting strategies. Of course, both the development and the assessment of the efficiency of such targeted delivery systems necessitate the use of suitable in vivo and in vitro models representing relevant pathophysiological manifestations of the disorder. Accordingly, the current review seeks to provide a comprehensive discussion of the available preclinical models with emphasis on human in vitro models of IBD, along with their potentials and limitations. This is followed by an elaboration on the advancements in the field of biology- and nanotechnology-based targeted drug delivery systems and the potential rooms for improvement to facilitate their clinical translation.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Karim S Shalaby
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
20
|
Wang L, Li Y, Xu M, Deng Z, Zhao Y, Yang M, Liu Y, Yuan R, Sun Y, Zhang H, Wang H, Qian Z, Kang H. Regulation of Inflammatory Cytokine Storms by Mesenchymal Stem Cells. Front Immunol 2021; 12:726909. [PMID: 34394132 PMCID: PMC8358430 DOI: 10.3389/fimmu.2021.726909] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used in preclinical and clinical trials for various diseases and have shown great potential in the treatment of sepsis and coronavirus disease (COVID-19). Inflammatory factors play vital roles in the pathogenesis of diseases. The interaction between inflammatory factors is extremely complex. Once the dynamics of inflammatory factors are unbalanced, inflammatory responses and cytokine storm syndrome develop, leading to disease exacerbation and even death. Stem cells have become ideal candidates for the treatment of such diseases due to their immunosuppressive and anti-inflammatory properties. However, the mechanisms by which stem cells affect inflammation and immune regulation are still unclear. This article discusses the therapeutic mechanism and potential value of MSCs in the treatment of sepsis and the novel COVID-19, outlines how MSCs mediate innate and acquired immunity at both the cellular and molecular levels, and described the anti-inflammatory mechanisms and related molecular pathways. Finally, we review the safety and efficacy of stem cell therapy in these two diseases at the preclinical and clinical levels.
Collapse
Affiliation(s)
- Lu Wang
- Medical School of Chinese PLA, Beijing, China.,Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yun Li
- Medical School of Chinese PLA, Beijing, China.,Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Moyan Xu
- Health Care Office, Chinese PLA General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Yan Zhao
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mengmeng Yang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuyan Liu
- Medical School of Chinese PLA, Beijing, China.,Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Rui Yuan
- Medical School of Chinese PLA, Beijing, China.,Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Heming Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhirong Qian
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongjun Kang
- Medical School of Chinese PLA, Beijing, China.,Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Lopez-Santalla M, Bueren JA, Garin MI. Mesenchymal stem/stromal cell-based therapy for the treatment of rheumatoid arthritis: An update on preclinical studies. EBioMedicine 2021; 69:103427. [PMID: 34161884 PMCID: PMC8237294 DOI: 10.1016/j.ebiom.2021.103427] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and progressive joint destruction and is a primary cause of disability worldwide. Despite the existence of numerous anti-rheumatic drugs, a significant number of patients with RA do not respond or are intolerant to current treatments. Mesenchymal stem/stromal cell (MSCs) therapy represents a promising therapeutic tool to treat RA, mainly attributable to the immunomodulatory effects of these cells. This review comprises a comprehensive analysis of the scientific literature related to preclinical studies of MSC-based therapy in RA to analyse key aspects of current protocols as well as novel approaches which aim to improve the efficacy of MSC-based therapy.
Collapse
Affiliation(s)
- Mercedes Lopez-Santalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid; Spain; Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM).
| | - Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid; Spain; Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM)
| | - Marina I Garin
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid; Spain; Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM).
| |
Collapse
|
22
|
Klimova RR, Demidova NA, Masalova OV, Kushch AA. Preventive Vaccination with Mesenchymal Stem Cells Protects Mice from Lethal Infection Caused by Herpes Simplex Virus 1. Mol Biol 2021; 55:413-423. [PMID: 34931092 PMCID: PMC8675305 DOI: 10.1134/s0026893321020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022]
Abstract
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect almost all organs and tissues, cause genital herpes-the most common sexually transmitted disease-disorders of the central nervous system (CNS), and lead to severe complications in children. Despite the available drugs, the incidence of HSV-1/2 continues to rise. None of the prophylactic vaccine candidates have shown a protective effect in trials nor approval for use in clinical practice. We have investigated the protective properties of mesenchymal stem cells (MSC) isolated from the bone marrow of mice. A comparative analysis of the protective response to the introduction of primary and modified MSCs (mMSC) was carried out using the plasmid containing gene of the HSV and an inactivated virus in a model of lethal HSV-1 infection in mice. mMSCs were obtained by transfection of the Us6 gene encoding glycoprotein D (gD) of the HSV, the plasmid contained the same gene. After twofold immunization with primary MSCs, the formation of antibodies interacting with the viral antigen (according to enzyme immunoassay data) and neutralizing the infectious activity of HSV-1 in the reaction of biological neutralization was observed in the peripheral blood of mice. In addition, the introduction of primary MSCs induced the production of interferon gamma (INF-γ) which is detected in the peripheral blood of mice. After infection with HSV-1, the immunized mice showed significantly increased titers of virus-specific antibodies, an increased level of IFNγ, and were completely protected from lethal HSV-1 infection. The protective effect of the other three immunogens was lower and did not exceed 50-65%. Considering the wide availability of MSCs, the proven safety of intravenous administration, and the results obtained in this work on the ability to induce innate, adaptive and protective immunity to HSV-1, MSCs can be considered a promising basis for the development of new cellular vaccines for the prevention of herpesvirus and other viral infections.
Collapse
Affiliation(s)
- R. R. Klimova
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - N. A. Demidova
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - O. V. Masalova
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - A. A. Kushch
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| |
Collapse
|
23
|
Hosseini-Asl SK, Mehrabani D, Karimi-Busheri F. Therapeutic Effect of Mesenchymal Stem Cells in Ulcerative Colitis: A Review on Achievements and Challenges. J Clin Med 2020; 9:E3922. [PMID: 33287220 PMCID: PMC7761671 DOI: 10.3390/jcm9123922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
The worldwide epidemiology of inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), still shows an increasing trend in Asia and Iran. Despite an improvement in the treatment landscape focused on symptomatic control, long-term colectomies have not decreased over the last 10-year period. Thus, novel therapies are urgently needed in clinics to supplement the existing treatments. Mesenchymal stem cells (MSCs) are multipotent adult stem cells with immunosuppressive effects, targeting IBD as a new treatment strategy. They have recently received global attention for their use in cell transplantation due to their easy expansion and wide range of activities to be engrafted, and because they are home to the mucosa of the intestine. Moreover, MSCs are able to differentiate into epithelial and other cells that can directly promote repair in the mucosal damages in UC. It seems that there is a need to deepen our understanding to target MSCs as a promising treatment option for UC patients who are refractory to conventional therapies. Here, we overviewed the therapeutic effects of MSCs in UC and discussed the achievements and challenges in the cell transplantation of UC.
Collapse
Affiliation(s)
- Seyed-Kazem Hosseini-Asl
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71987-74731, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
24
|
Vázquez A, Fernández-Sevilla LM, Jiménez E, Pérez-Cabrera D, Yañez R, Subiza JL, Varas A, Valencia J, Vicente A. Involvement of Mesenchymal Stem Cells in Oral Mucosal Bacterial Immunotherapy. Front Immunol 2020; 11:567391. [PMID: 33329530 PMCID: PMC7711618 DOI: 10.3389/fimmu.2020.567391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Recent clinical observations indicate that bacterial vaccines induce cross-protection against infections produced by different microorganisms. MV130, a polyvalent bacterial sublingual preparation designed to prevent recurrent respiratory infectious diseases, reduces the infection rate in patients with recurrent respiratory tract infections. On the other hand, mesenchymal stem cells (MSCs) are key cell components that contribute to the maintenance of tissue homeostasis and exert both immunostimulatory and immunosuppressive functions. Herein, we study the effects of MV130 in human MSC functionality as a potential mechanism that contributes to its clinical benefits. We provide evidence that during MV130 sublingual immunization of mice, resident oral mucosa MSCs can take up MV130 components and their numbers remain unchanged after vaccination, in contrast to granulocytes that are recruited from extramucosal tissues. MSCs treated in vitro with MV130 show an increased viability without affecting their differentiation potential. In the short-term, MSC treatment with MV130 induces higher leukocyte recruitment and T cell expansion. In contrast, once T-cell activation is initiated, MV130 stimulation induces an up-regulated expression of immunosuppressor factors in MSCs. Accordingly, MV130-primed MSCs reduce T lymphocyte proliferation, induce the differentiation of dendritic cells with immunosuppressive features and favor M2-like macrophage polarization, thus counterbalancing the immune response. In addition, MSCs trained with MV130 undergo functional changes, enhancing their immunomodulatory response to a secondary stimulus. Finally, we show that MSCs are able to uptake, process and retain a reservoir of the TLR ligands derived from MV130 digestion which can be subsequently transferred to dendritic cells, an additional feature that also may be associated to trained immunity.
Collapse
Affiliation(s)
- Alberto Vázquez
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Lidia M Fernández-Sevilla
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - Eva Jiménez
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - David Pérez-Cabrera
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Rosa Yañez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | | | - Alberto Varas
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - Jaris Valencia
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| | - Angeles Vicente
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
25
|
Tian J, Kou X, Wang R, Jing H, Chen C, Tang J, Mao X, Zhao B, Wei X, Shi S. Autophagy controls mesenchymal stem cell therapy in psychological stress colitis mice. Autophagy 2020; 17:2586-2603. [PMID: 32910719 DOI: 10.1080/15548627.2020.1821547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cell transplantation (MSCT) has been applied to treat a variety of autoimmune and inflammatory diseases. Psychosocial stress can aggravate disease progression in chronic inflammatory patients. Whether psychological stress affects MSCT is largely unknown. In this study we show that psychological stress attenuates therapeutic effects of MSCT in a DSS-induced colitis mouse model by elevating the levels of exosomal Mir7k/mmu-let-7 k (microRNA 7 k) in circulation. Mechanistically, Mir7k inhibits STAT3 pathway in donor MSCs, leading to upregulated expression of BECN1 (beclin 1, autophagy related) and, thus, activation of macroautophagy/autophagy. Inhibition of autophagy by blocking Mir7k or activating STAT3 signaling can restore MSCT-mediated therapy in psychologically stressed colitis mice. Our study identifies a previously unknown role of autophagy in regulating MSCT therapy via exosomal miRNA Mir7k.Abbreviations: BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; DAI: disease activity index; DAPI: 4',6-diamidino-2-phenylindole; DSS: dextran sulfate sodium; GFP: green fluorescent protein; HAI: histological activity index; IFNG/IFN-γ: interferon gamma; IL10: interleukin 10; IL1RN/IL-1Rra: interleukin 1 receptor antagonist; KD: knockdown; miRNA: microRNA; MSCs: mesenchymal stem cells; MSCT: mesenchymal stem cell transplantation; NTA: nanoparticle tracking analysis; PGE2: prostaglandin E2; SD: standard deviation; siRNA: small-interfering RNA; STAT3: signal transducer and activator of transcription 3; TEM: transmission electron microscopy; TGFB1/TGF-β1: transforming growth factor, beta 1; Th17 cell: T helper cell 17; TNF/TNF-α: tumor necrosis factor; TNFAIP6/TSG6: tumor necrosis factor alpha induced protein 6; Tregs: regulatory T cells.
Collapse
Affiliation(s)
- Jun Tian
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Xiaoxing Kou
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Runci Wang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Huan Jing
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Jianxia Tang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Xueli Mao
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Bingjiao Zhao
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Xi Wei
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Songtao Shi
- Guanghua School of Stomatology, Affiliated Stomatological Hospital and Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.,Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
26
|
Mesenchymal Stem/Stromal Cells for Rheumatoid Arthritis Treatment: An Update on Clinical Applications. Cells 2020; 9:cells9081852. [PMID: 32784608 PMCID: PMC7465092 DOI: 10.3390/cells9081852] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that affects the lining of the synovial joints leading to stiffness, pain, inflammation, loss of mobility, and erosion of joints. Its pathogenesis is related to aberrant immune responses against the synovium. Dysfunction of innate and adaptive immunity, including dysregulated cytokine networks and immune complex-mediated complement activation, are involved in the progression of RA. At present, drug treatments, including corticosteroids, antirheumatic drugs, and biological agents, are used in order to modulate the altered immune responses. Chronic use of these drugs may cause adverse effects to a significant number of RA patients. Additionally, some RA patients are resistant to these therapies. In recent years, mesenchymal stem/stromal cell (MSCs)-based therapies have been largely proposed as a novel and promising stem cell therapeutic approach in the treatment of RA. MSCs are multipotent progenitor cells that have immunomodulatory properties and can be obtained and expanded easily. Today, nearly one hundred studies in preclinical models of RA have shown promising trends for clinical application. Proof-of-concept clinical studies have demonstrated satisfactory safety profile of MSC therapy in RA patients. The present review discusses MSC-based therapy approaches with a focus on published clinical data, as well as on clinical trials, for treatment of RA that are currently underway.
Collapse
|