1
|
Zhu F, Chen X, Qiu X, Guo W, Wang X, Cao J, Gong J. Seeing Beyond the Surface: Superior Performance of Ultrasound Elastography over Milan Ultrasound Criteria in Distinguishing Fibrosis of Ulcerative Colitis. J Crohns Colitis 2024; 18:1795-1803. [PMID: 38828738 DOI: 10.1093/ecco-jcc/jjae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 06/02/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Colonic fibrosis has important clinical implications in ulcerative colitis [UC]. Ultrasound imaging has emerged as a convenient and reliable tool in diagnosis of inflammatory bowel disease. We aimed to explore the potential use of ultrasound to evaluate UC fibrosis. METHODS Consecutive UC patients who had proctocolectomy from July 2022 to September 2023 were enrolled in the study. Patients underwent bowel ultrasound examination and ultrasound elastography imaging prior to surgery. Milan ultrasound criteria [MUC] were calculated and bowel wall stiffness was determined using two mean strain ratios [MSRs]. Degree of colonic fibrosis and inflammation was measured upon histological analysis. Receiver operating characteristic [ROC] analysis was used to evaluate the performance of ultrasound-derived parameters to predict fibrosis. RESULTS In all, 56 patients were enrolled with 112 segments included in analysis. The median fibrosis score was 2 [0-4] and the median Geboes score was 5 [0-13] and these two scores were significantly correlated [p < 0.001]. The muscularis mucosa thickness was significantly higher in moderate-severe fibrosis than none-mild fibrosis [p = 0.003] but bowel wall thickness was not [p = 0.082]. The strain ratios [p < 0.001] and MUC [p = 0.010] were significantly higher in involved than non-involved segments. The strain ratios were correlated with fibrosis score [p < 0.001] but not MUC [p = 0.387]. At ROC analysis, mean strain ratio 1 [MSR1] had an area under the curve [AUC] of 0.828 [cutoff value 3.07, 95% CI 0.746-0.893, p < 0.001] to predict moderate-severe fibrosis. CONCLUSION Ultrasound elastography imaging could predict the degree of colonic fibrosis in UC. Application of this technique could help disease monitoring and decision making in UC patients.
Collapse
Affiliation(s)
- Feng Zhu
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR.China
| | - Xin Chen
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR.China
| | - Xueni Qiu
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR.China
| | - Wenwen Guo
- Department of Pathology, Second Hospital affiliated to Nanjing Medical University, Nanjing, PR.China
| | - Xuesong Wang
- Department of Ultrasound Diagnosis, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR.China
| | - Junying Cao
- Department of Ultrasound Diagnosis, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR.China
| | - Jianfeng Gong
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR.China
| |
Collapse
|
2
|
Bellini G, Rettura F, Palermo G, Ippolito C, Segnani C, Pierucci C, Fontanelli L, Frosini D, Nardini V, Lambiase C, Bernardini N, Pellegrini C, Ceravolo R. Prokineticin-2 Is Highly Expressed in Colonic Mucosa of Early Parkinson's Disease Patients. Mov Disord 2024; 39:2091-2097. [PMID: 39051733 DOI: 10.1002/mds.29937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Elevated levels of prokineticin-2 (PK2), regarded as a protein involved in modulating immune/inflammatory responses, have been detected in the substantia nigra, serum, and olfactory neurons of Parkinson's disease (PD) patients. Of note, emerging evidence suggests that gut alterations, including dysbiosis and enteric inflammation, play a role in PD via the gut-brain axis. OBJECTIVES Our goal was to investigate the expression of PK2 in colonic biopsies of PD patients. METHODS Mucosal biopsies from the descending colon were obtained in 11 PD patients and five asymptomatic subjects. Biopsy samples were processed for PK2 immunofluorescence and western blot. RESULTS We revealed an increased PK2 expression in colonic mucosa from PD patients in the early stages compared to controls. In addition, we found that PK2 was expressed by activated enteric glial cells and macrophages. CONCLUSIONS PK2 is highly expressed within neurogenic/inflammatory cells of colonic mucosa from early PD patients, suggesting a potential role of PK2 in gut inflammation, especially in the early stages of PD. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gabriele Bellini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Neurology, the Marlene and Paolo Fresco Institute for Parkinson's Disease and Movement Disorders, New York University Langone Health, New York, New York, USA
| | - Francesco Rettura
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clarissa Pierucci
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Fontanelli
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Frosini
- Neurology Unit, Department of Medical Specialties, AOUP, Pisa, Italy
| | - Vincenzo Nardini
- Anatomia Patologica 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Christian Lambiase
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Neurology Unit, Department of Medical Specialties, AOUP, Pisa, Italy
- Anatomia Patologica 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Neurodegenerative Diseases, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Alyami AS. Imaging of Ulcerative Colitis: The Role of Diffusion-Weighted Magnetic Resonance Imaging. J Clin Med 2024; 13:5204. [PMID: 39274415 PMCID: PMC11396149 DOI: 10.3390/jcm13175204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Magnetic resonance imaging (MRI) has emerged as a promising and appealing alternative to endoscopy in the objective assessment of patients with inflammatory bowel disease (IBD). Diffusion-weighted imaging (DWI) is a specialized imaging technique that enables the mapping of water molecule diffusion within biological tissues, eliminating the need for intravenous gadolinium contrast injection. It is expanding the capability of traditional MRI sequences in Ulcerative Colitis (UC). Recently, there has been growing interest in the application of intravoxel incoherent motion (IVIM) imaging in the field of IBD. This technique combines diffusion and perfusion information, making it a valuable tool for assessing IBD treatment response. Previous studies have extensively studied the use of DWI techniques for evaluating the severity of activity in IBD. However, the majority of these studies have primarily focused on Crohn's disease (CD), with only a limited number of reports specifically examining UC. Therefore, this review briefly introduces the basics of DWI and IVIM imaging and conducts a review of relevant studies that have investigated its application in UC to show whether these techniques are useful techniques for evaluating patients with UC in terms of detection, characterization, and quantification of disease activity. Through the extensive literature survey, most of these studies indicate that DWI proves valuable in the differential diagnosis of UC and could be used as an effective modality for staging UC.
Collapse
Affiliation(s)
- Ali S Alyami
- Department of Diagnostic Radiography Technology, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
4
|
Laudadio I, Carissimi C, Scafa N, Bastianelli A, Fulci V, Renzini A, Russo G, Oliva S, Vitali R, Palone F, Cucchiara S, Stronati L. Characterization of patient-derived intestinal organoids for modelling fibrosis in Inflammatory Bowel Disease. Inflamm Res 2024; 73:1359-1370. [PMID: 38842554 PMCID: PMC11282153 DOI: 10.1007/s00011-024-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND AND AIMS Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD), namely Crohn's disease (CD) and ulcerative colitis (UC), but the precise mechanism by which it occurs is incompletely understood hampering the development of effective therapeutic strategies. Here, we aimed at inducing and characterizing an inflammation-mediated fibrosis in patient-derived organoids (PDOs) issued from crypts isolated from colonic mucosal biopsies of IBD pediatric patients and age matched-control subjects (CTRLs). METHODS Inflammatory-driven fibrosis was induced by exposing CTRL-, CD- and UC-PDOs to the pro-inflammatory cytokine TNF-α for one day, followed by a co-treatment with TNF-α and TGF-β1 for three days. Fibrotic response was proven by analyzing inflammatory and fibrotic markers by RT-qPCR and immunofluorescence. Transcriptomic changes were assessed by RNA-sequencing. RESULTS Co-treatment with TNF-α and TGF-β1 caused in CTRL- and IBD-PDOs morphological changes towards a mesenchymal-like phenotype and up-regulation of inflammatory, mesenchymal, and fibrotic markers. Transcriptomic profiling highlighted that in all intestinal PDOs, regardless of the disease, the co-exposure to TNF-α and TGF-β1 regulated EMT genes and specifically increased genes involved in positive regulation of cell migration. Finally, we demonstrated that CD-PDOs display a specific response to fibrosis compared to both CTRL- and UC-PDOs, mainly characterized by upregulation of nuclear factors controlling transcription. CONCLUSIONS This study demonstrates that intestinal PDOs may develop an inflammatory-derived fibrosis thus representing a promising tool to study fibrogenesis in IBD. Fibrotic PDOs show increased expression of EMT genes. In particular, fibrotic CD-PDOs display a specific gene expression signature compared to UC and CTRL-PDOs.
Collapse
Affiliation(s)
- Ilaria Laudadio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| | - Claudia Carissimi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Noemi Scafa
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Alex Bastianelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Valerio Fulci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Alessandra Renzini
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via. A. Scarpa, 16, 00161, Rome, Italy
| | - Giusy Russo
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Salvatore Oliva
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Roberta Vitali
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Francesca Palone
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Salvatore Cucchiara
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
5
|
D'Antongiovanni V, Pellegrini C, Antonioli L, Ippolito C, Segnani C, Benvenuti L, D'Amati A, Errede M, Virgintino D, Fornai M, Bernardini N. Enteric Glia and Brain Astroglia: Complex Communication in Health and Disease along the Gut-Brain Axis. Neuroscientist 2024; 30:493-510. [PMID: 37052336 DOI: 10.1177/10738584231163460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Several studies have provided interesting evidence about the role of the bidirectional communication between the gut and brain in the onset and development of several pathologic conditions, including inflammatory bowel diseases (IBDs), neurodegenerative diseases, and related comorbidities. Indeed, patients with IBD can experience neurologic disorders, including depression and cognitive impairment, besides typical intestinal symptoms. In parallel, patients with neurodegenerative disease, such as Parkinson disease and Alzheimer disease, are often characterized by the occurrence of functional gastrointestinal disorders. In this context, enteric glial cells and brain astrocytes are emerging as pivotal players in the initiation/maintenance of neuroinflammatory responses, which appear to contribute to the alterations of intestinal and neurologic functions observed in patients with IBD and neurodegenerative disorders. The present review was conceived to provide a comprehensive and critical overview of the available knowledge on the morphologic, molecular, and functional changes occurring in the enteric glia and brain astroglia in IBDs and neurologic disorders. In addition, our intent is to identify whether such alterations could represent a common denominator involved in the onset of comorbidities associated with the aforementioned disorders. This might help to identify putative targets useful to develop novel pharmacologic approaches for the therapeutic management of such disturbances.
Collapse
Affiliation(s)
- Vanessa D'Antongiovanni
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio D'Amati
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Wang J, Yang B, Chandra J, Ivanov A, Brown JM, Florian R. Preventing fibrosis in IBD: update on immune pathways and clinical strategies. Expert Rev Clin Immunol 2024; 20:727-734. [PMID: 38475672 PMCID: PMC11180587 DOI: 10.1080/1744666x.2024.2330604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Intestinal fibrosis is a common and serious complication of inflammatory bowel diseases (IBD) driving stricture formation in Crohn's disease patients and leading to submucosal damage in ulcerative colitis. Recent studies provided novel insights into the role of immune and nonimmune components in the pathogenesis of intestinal fibrosis. Those new findings may accelerate the development of anti-fibrotic treatment in IBD patients. AREAS COVERED This review is designed to cover the recent progress in mechanistic research and therapeutic developments on intestinal fibrosis in IBD patients, including new cell clusters, cytokines, proteins, microbiota, creeping fat, and anti-fibrotic therapies. EXPERT OPINION Due to the previously existing major obstacle of missing consensus on stricture definitions and the absence of clinical trial endpoints, testing of drugs with an anti-fibrotic mechanism is just starting in stricturing Crohn's disease (CD). A biomarker to stratify CD patients at diagnosis without any complications into at-risk populations for future strictures would be highly desirable. Further investigations are needed to identify novel mechanisms of fibrogenesis in the intestine that are targetable and ideally gut specific.
Collapse
Affiliation(s)
- Jie Wang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Bo Yang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Andrei Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - J. Mark Brown
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Rieder Florian
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Program for Global Translational Inflammatory Bowel Diseases, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Kumar D, Sachdeva K, Tanwar R, Devi S. Review on novel targeted enzyme drug delivery systems: enzymosomes. SOFT MATTER 2024; 20:4524-4543. [PMID: 38738579 DOI: 10.1039/d4sm00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The goal of this review is to present enzymosomes as an innovative means for site-specific drug delivery. Enzymosomes make use of an enzyme's special characteristics, such as its capacity to accelerate the reaction rate and bind to a particular substrate at a regulated rate. Enzymosomes are created when an enzyme forms a covalent linkage with a liposome or lipid vesicle surface. To construct enzymosomes with specialized activities, enzymes are linked using acylation, direct conjugation, physical adsorption, and encapsulation techniques. By reducing the negative side effects of earlier treatment techniques and exhibiting efficient medication release, these cutting-edge drug delivery systems improve long-term sickness treatments. They could be a good substitute for antiplatelet medication, gout treatment, and other traditional medicines. Recently developed supramolecular vesicular delivery systems called enzymosomes have the potential to improve drug targeting, physicochemical characteristics, and ultimately bioavailability in the pharmaceutical industry. Enzymosomes have advantages over narrow-therapeutic index pharmaceuticals as focusing on their site of action enhances both their pharmacodynamic and pharmacokinetic profiles. Additionally, it reduces changes in normal enzymatic activity, which enhances the half-life of an enzyme and accomplishes enzyme activity on specific locations.
Collapse
Affiliation(s)
- Dinesh Kumar
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Komal Sachdeva
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Rajni Tanwar
- Department of Pharmaceutical Sciences, Starex University, Gurugram, India
| | - Sunita Devi
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| |
Collapse
|
8
|
Millar JK, Salmon M, Nasser E, Malik S, Kolli P, Lu G, Pinteaux E, Hawkins RB, Ailawadi G. Endothelial to mesenchymal transition in the interleukin-1 pathway during aortic aneurysm formation. J Thorac Cardiovasc Surg 2024; 167:e146-e158. [PMID: 37951532 PMCID: PMC11029391 DOI: 10.1016/j.jtcvs.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVE Endothelial to mesenchymal transition may represent a key link between inflammatory stress and endothelial dysfunction seen in aortic aneurysm disease. Endothelial to mesenchymal transition is regulated by interleukin-1β, and previous work has demonstrated an essential role of interleukin-1 signaling in experimental aortic aneurysm models. We hypothesize that endothelial to mesenchymal transition is present in murine aortic aneurysms, and loss of interleukin-1 signaling attenuates this process. METHODS Murine aortic aneurysms were created in novel CDH5-Cre lineage tracking mice by treating the intact aorta with peri-adventitial elastase. Endothelial to mesenchymal transition transcription factors as well as endothelial and mesenchymal cell markers were analyzed via immunohistochemistry and immunofluorescence (n = 10/group). To determine the role of interleukin-1 signaling, endothelial-specific interleukin-1 receptor 1 knockout and wild-type mice (n = 10/group) were treated with elastase. Additionally, C57/BL6 mice were treated with the interleukin-1 receptor 1 antagonist Anakinra (n = 7) or vehicle (n = 8). RESULTS Elastase treatment yielded greater aortic dilation compared with controls (elastase 97.0% ± 34.0%; control 5.3% ± 4.8%; P < .001). Genetic deletion of interleukin-1 receptor 1 attenuated aortic dilation (control 126.7% ± 38.7%; interleukin-1 receptor 1 knockout 35.2% ± 14.7%; P < .001), as did pharmacologic inhibition of interleukin-1 receptor 1 with Anakinra (vehicle 146.3% ± 30.1%; Anakinra 63.5% ± 23.3%; P < .001). Elastase treatment resulted in upregulation of endothelial to mesenchymal transition transcription factors (Snail, Slug, Twist, ZNF) and mesenchymal cell markers (S100, alpha smooth muscle actin) and loss of endothelial cell markers (vascular endothelial cadherin, endothelial nitric oxide synthase, von Willebrand factor). These changes were attenuated by interleukin-1 receptor 1 knockout and Anakinra treatment. CONCLUSIONS Endothelial to mesenchymal transition occurs in aortic aneurysm disease and is attenuated by loss of interleukin-1 signaling. Endothelial dysfunction through endothelial to mesenchymal transition represents a new and novel pathway in understanding aortic aneurysm disease and may be a potential target for future treatment.
Collapse
Affiliation(s)
- Jessica K Millar
- Department of Surgery, University of Michigan, Ann Arbor, Mich; Department of Cardiac Surgery, University of Michigan, Ann Arbor, Mich
| | - Morgan Salmon
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Mich
| | | | | | | | - Guanyi Lu
- Department of Surgery, University of Florida, Gainesville, Fla
| | - Emmanuel Pinteaux
- Division of Neuroscience, University of Manchester, Manchester, United Kingdom
| | - Robert B Hawkins
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Mich
| | - Gorav Ailawadi
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
9
|
Rieder F, Mukherjee PK, Massey WJ, Wang Y, Fiocchi C. Fibrosis in IBD: from pathogenesis to therapeutic targets. Gut 2024; 73:854-866. [PMID: 38233198 PMCID: PMC10997492 DOI: 10.1136/gutjnl-2023-329963] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Intestinal fibrosis resulting in stricture formation and obstruction in Crohn's disease (CD) and increased wall stiffness leading to symptoms in ulcerative colitis (UC) is among the largest unmet needs in inflammatory bowel disease (IBD). Fibrosis is caused by a multifactorial and complex process involving immune and non-immune cells, their soluble mediators and exposure to luminal contents, such as microbiota and environmental factors. To date, no antifibrotic therapy is available. Some progress has been made in creating consensus definitions and measurements to quantify stricture morphology for clinical practice and trials, but approaches to determine the degree of fibrosis within a stricture are still lacking. OBJECTIVE We herein describe the current state of stricture pathogenesis, measuring tools and clinical trial endpoints development. DESIGN Data presented and discussed in this review derive from the past and recent literature and the authors' own research and experience. RESULTS AND CONCLUSIONS Significant progress has been made in better understanding the pathogenesis of fibrosis, but additional studies and preclinical developments are needed to define specific therapeutic targets.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William J Massey
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yan Wang
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Atreya R, Kühbacher T, Waldner MJ, Hirschmann S, Drvarov O, Abu Hashem R, Maaser C, Kucharzik T, Dinter J, Mertens J, Schramm C, Holler B, Mössner J, Suzuki K, Yokoyama J, Terai S, Uter W, Yoneyama H, Asakura H, Hibi T, Neurath MF. Submucosal Injection of the RNA Oligonucleotide GUT-1 in Active Ulcerative Colitis Patients: A Randomized, Double-Blind, Placebo-Controlled Phase 2a Induction Trial. J Crohns Colitis 2024; 18:406-415. [PMID: 37777210 DOI: 10.1093/ecco-jcc/jjad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND AND AIMS Carbohydrate sulfotransferase 15 [CHST15] biosynthesizes sulphated matrix glycosaminoglycans and is implicated in intestinal inflammation and fibrosis. Here, we evaluate the efficacy and safety of the double-stranded RNA oligonucleotide GUT-1, a specific blocker of CHST15, as induction therapy in patients with ulcerative colitis [UC]. METHODS In this randomized, double-blind, placebo-controlled, phase 2a study, we enrolled endoscopically active UC patients, refractory to conventional therapy, in five hospital centres across Germany. Patients were randomized 1:1:1 using a block randomized technique to receive a single dosing of 25 nM GUT-1, 250 nM GUT-1, or placebo by endoscopic submucosal injections. The primary outcome measure was improvement of endoscopic lesions at weeks 2 or 4. The secondary outcome measures included clinical and histological responses. Safety was assessed in all patients who received treatment. RESULTS Twenty-eight patients were screened, 24 were randomized, and 21 were evaluated. Endoscopic improvement at weeks 2 or 4 was achieved by 71.4% in the GUT-1 250 nM, 0% in the GUT-1 25 nM, and 28.6% in the placebo group. Clinical remission was shown by 57.1% in the GUT-1 250 nM, 0% in the GUT-1 25 nM, and 14.3% in the placebo groups. Histological improvement was shown by 42.9% in the GUT-1 250 nM, 0% in the GUT-1 25 nM, and 0% in the placebo groups. GUT-1 250 nM reduced CHST15 expression significantly and suppressed mucosal inflammation and fibrosis. GUT-1 application was well tolerated. CONCLUSION Single dosing by submucosal injection of GUT-1 repressed CHST15 mucosal expression and may represent a novel induction therapy by modulating tissue remodelling in UC.
Collapse
Affiliation(s)
- Raja Atreya
- Department of Medicine 1, University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, DZI, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tanja Kühbacher
- Department of Internal Medicine/Gastroenterology, Asklepios Westklinikum, Hamburg, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, DZI, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Simon Hirschmann
- Department of Medicine 1, University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, DZI, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Drvarov
- Department of Internal Medicine/Gastroenterology, Asklepios Westklinikum, Hamburg, Germany
| | - Raed Abu Hashem
- Department of Internal Medicine/Gastroenterology, Asklepios Westklinikum, Hamburg, Germany
| | - Christian Maaser
- Klinik für Allgemeine Innere Medizin und Gastroenterologie, Klinikum Lüneburg, Lüneburg, Germany
| | - Torsten Kucharzik
- Klinik für Allgemeine Innere Medizin und Gastroenterologie, Klinikum Lüneburg, Lüneburg, Germany
| | - Johanna Dinter
- Klinik für Gastroenterologie und Hepatologie, Uniklinik Köln, Köln, Germany
| | - Jessica Mertens
- Klinik für Gastroenterologie und Hepatologie, Uniklinik Köln, Köln, Germany
| | - Christoph Schramm
- Klinik für Gastroenterologie und Hepatologie, Uniklinik Köln, Köln, Germany
| | - Babett Holler
- Klinik und Poliklinik für Gastroenterologie und Rheumatologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Joachim Mössner
- Klinik und Poliklinik für Gastroenterologie und Rheumatologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Kenji Suzuki
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata city, Niigata, Japan
| | - Junji Yokoyama
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata city, Niigata, Japan
| | - Shuji Terai
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata city, Niigata, Japan
| | - Wolfgang Uter
- Institut für Medizininformatik, Biometrie und Epidemiologie, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Hitoshi Asakura
- Department of Gastroenterology, Niigata University Medical and Dental Hospital, Niigata city, Niigata, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato Institute Hospital, Kitasato University, Minato-city, Tokyo, Japan
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, DZI, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
D'Antongiovanni V, Segnani C, Ippolito C, Antonioli L, Colucci R, Fornai M, Bernardini N, Pellegrini C. Pathological Remodeling of the Gut Barrier as a Prodromal Event of High-Fat Diet-Induced Obesity. J Transl Med 2023; 103:100194. [PMID: 37290605 DOI: 10.1016/j.labinv.2023.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Intestinal barrier alterations represent a primum movens in obesity and related intestinal dysfunctions. However, whether gut barrier remodeling represents prodromal events in obesity before weight gain, metabolic alterations, and systemic inflammation remains unclear. Herein, we examined morphologic changes in the gut barrier in a mouse model of high-fat diet (HFD) since the earliest phases of diet assumption. C57BL/6J mice were fed with standard diet (SD) or HFD for 1, 2, 4, or 8 weeks. Remodeling of intestinal epithelial barrier, inflammatory infiltrate, and collagen deposition in the colonic wall was assessed by histochemistry and immunofluorescence analysis. Obese mice displayed increased body and epididymal fat weight along with increased plasma resistin, IL-1β, and IL-6 levels after 8 weeks of HFD. Starting from 1 week of HFD, mice displayed (1) a decreased claudin-1 expression in lining epithelial cells, (2) an altered mucus in goblet cells, (3) an increase in proliferating epithelial cells in colonic crypts, (4) eosinophil infiltration along with an increase in vascular P-selectin, and (5) deposition of collagen fibers. HFD intake is associated with morphologic changes in the large bowel at mucosal and submucosal levels. In particular, the main changes include alterations in the mucous layer and intestinal epithelial barrier integrity and activation of mucosal defense-enhanced fibrotic deposition. These changes represent early events occurring before the development of obesity condition that could contribute to compromising the intestinal mucosal barrier and functions, opening the way for systemic dissemination.
Collapse
Affiliation(s)
- Vanessa D'Antongiovanni
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health," University of Pisa, Pisa, Italy.
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Tavares de Sousa H, Magro F. How to Evaluate Fibrosis in IBD? Diagnostics (Basel) 2023; 13:2188. [PMID: 37443582 DOI: 10.3390/diagnostics13132188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
In this review, we will describe the importance of fibrosis in inflammatory bowel disease (IBD) by discussing its distinct impact on Crohn's disease (CD) and ulcerative colitis (UC) through their translation to histopathology. We will address the existing knowledge on the correlation between inflammation and fibrosis and the still not fully explained inflammation-independent fibrogenesis. Finally, we will compile and discuss the recent advances in the noninvasive assessment of intestinal fibrosis, including imaging and biomarkers. Based on the available data, none of the available cross-sectional imaging (CSI) techniques has proved to be capable of measuring CD fibrosis accurately, with MRE showing the most promising performance along with elastography. Very recent research with radiomics showed encouraging results, but further validation with reliable radiomic biomarkers is warranted. Despite the interesting results with micro-RNAs, further advances on the topic of fibrosis biomarkers depend on the development of robust clinical trials based on solid and validated endpoints. We conclude that it seems very likely that radiomics and AI will participate in the future non-invasive fibrosis assessment by CSI techniques in IBD. However, as of today, surgical pathology remains the gold standard for the diagnosis and quantification of intestinal fibrosis in IBD.
Collapse
Affiliation(s)
- Helena Tavares de Sousa
- Gastroenterology Department, Algarve University Hospital Center, 8500-338 Portimão, Portugal
- ABC-Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
13
|
Britzen-Laurent N, Weidinger C, Stürzl M. Contribution of Blood Vessel Activation, Remodeling and Barrier Function to Inflammatory Bowel Diseases. Int J Mol Sci 2023; 24:ijms24065517. [PMID: 36982601 PMCID: PMC10051397 DOI: 10.3390/ijms24065517] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) consist of a group of chronic inflammatory disorders with a complex etiology, which represent a clinical challenge due to their often therapy-refractory nature. In IBD, inflammation of the intestinal mucosa is characterized by strong and sustained leukocyte infiltration, resulting in the loss of epithelial barrier function and subsequent tissue destruction. This is accompanied by the activation and the massive remodeling of mucosal micro-vessels. The role of the gut vasculature in the induction and perpetuation of mucosal inflammation is receiving increasing recognition. While the vascular barrier is considered to offer protection against bacterial translocation and sepsis after the breakdown of the epithelial barrier, endothelium activation and angiogenesis are thought to promote inflammation. The present review examines the respective pathological contributions of the different phenotypical changes observed in the microvascular endothelium during IBD, and provides an overview of potential vessel-specific targeted therapy options for the treatment of IBD.
Collapse
Affiliation(s)
- Nathalie Britzen-Laurent
- Division of Surgical Research, Department of Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence:
| | - Carl Weidinger
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Michael Stürzl
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
14
|
Colucci R, Fornai M, Antonioli L, Segnani C, Ippolito C, Pellegrini C, Nericcio A, Zizzo MG, Serio R, Blandizzi C, Bernardini N. Role of cyclooxygenase pathways in bowel fibrotic remodelling in a murine model of experimental colitis. J Pharm Pharmacol 2023; 75:264-275. [PMID: 36477570 DOI: 10.1093/jpp/rgac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Gut fibrosis occurs under chronic inflammation. This study examined the effects of different cyclooxygenase (COX) inhibitors on fibrosis in the inflamed colon. METHODS Colitis was induced by 2,4-dinitrobenzenesulfonic acid (DNBS) in albino male Sprague-Dawley rats. After 6, 12 and 18 days, macroscopic and microscopic damage, collagen and elastic fibre content were examined. At day 6, pro-fibrotic factors (collagen I and III, hydroxyproline, fibronectin, matrix metalloproteinase-2 and -9), transforming growth factor-beta (TGF-β) signalling [TGF-β, Ras homolog gene family member A (RhoA), phosphorylated small mother against decapentaplegic (pSMAD)-2 and -6] and peristalsis were assessed, and the effects of indomethacin, SC-560 or celecoxib were tested. KEY FINDINGS Six days after DNBS administration, significant histopathological signs of fibrotic remodelling were observed in rats. At day 6, pro-fibrotic factors were up-regulated and colonic peristalsis was altered. COX inhibitors reversed the histochemical, molecular and functional changes in the fibrotic colon. COX inhibition reduced TGF-β expression, SMAD2 phosphorylation and RhoA, and increased SMAD6 expression. CONCLUSIONS Colonic fibrosis is associated with altered bowel motility and induction of profibrotic factors driven by TGF-β signalling. COX-1 and COX-2 inhibition counteracts this fibrotic remodelling by the modulation of TGF-β/SMAD signalling, mainly via SMAD6 induction and reduction in SMAD2 phosphorylation.
Collapse
Affiliation(s)
- Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Anna Nericcio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Medina A, Bellec K, Polcowñuk S, Cordero JB. Investigating local and systemic intestinal signalling in health and disease with Drosophila. Dis Model Mech 2022; 15:274860. [PMID: 35344037 PMCID: PMC8990086 DOI: 10.1242/dmm.049332] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Whole-body health relies on complex inter-organ signalling networks that enable organisms to adapt to environmental perturbations and to changes in tissue homeostasis. The intestine plays a major role as a signalling centre by producing local and systemic signals that are relayed to the body and that maintain intestinal and organismal homeostasis. Consequently, disruption of intestinal homeostasis and signalling are associated with systemic diseases and multi-organ dysfunction. In recent years, the fruit fly Drosophila melanogaster has emerged as a prime model organism to study tissue-intrinsic and systemic signalling networks of the adult intestine due to its genetic tractability and functional conservation with mammals. In this Review, we highlight Drosophila research that has contributed to our understanding of how the adult intestine interacts with its microenvironment and with distant organs. We discuss the implications of these findings for understanding intestinal and whole-body pathophysiology, and how future Drosophila studies might advance our knowledge of the complex interplay between the intestine and the rest of the body in health and disease. Summary: We outline work in the fruit fly Drosophila melanogaster that has contributed knowledge on local and whole-body signalling coordinated by the adult intestine, and discuss its implications in intestinal pathophysiology and associated systemic dysfunction.
Collapse
Affiliation(s)
- Andre Medina
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Karen Bellec
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Sofia Polcowñuk
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Julia B Cordero
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.,CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
16
|
Jasso GJ, Jaiswal A, Varma M, Laszewski T, Grauel A, Omar A, Silva N, Dranoff G, Porter JA, Mansfield K, Cremasco V, Regev A, Xavier RJ, Graham DB. Colon stroma mediates an inflammation-driven fibroblastic response controlling matrix remodeling and healing. PLoS Biol 2022; 20:e3001532. [PMID: 35085231 PMCID: PMC8824371 DOI: 10.1371/journal.pbio.3001532] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/08/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammation is often associated with the development of tissue fibrosis, but how mesenchymal cell responses dictate pathological fibrosis versus resolution and healing remains unclear. Defining stromal heterogeneity and identifying molecular circuits driving extracellular matrix deposition and remodeling stands to illuminate the relationship between inflammation, fibrosis, and healing. We performed single-cell RNA-sequencing of colon-derived stromal cells and identified distinct classes of fibroblasts with gene signatures that are differentially regulated by chronic inflammation, including IL-11-producing inflammatory fibroblasts. We further identify a transcriptional program associated with trans-differentiation of mucosa-associated fibroblasts and define a functional gene signature associated with matrix deposition and remodeling in the inflamed colon. Our analysis supports a critical role for the metalloprotease Adamdec1 at the interface between tissue remodeling and healing during colitis, demonstrating its requirement for colon epithelial integrity. These findings provide mechanistic insight into how inflammation perturbs stromal cell behaviors to drive fibroblastic responses controlling mucosal matrix remodeling and healing.
Collapse
Affiliation(s)
- Guadalupe J. Jasso
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alok Jaiswal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mukund Varma
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Tyler Laszewski
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Angelo Grauel
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Abdifatah Omar
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nilsa Silva
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Glenn Dranoff
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jeffrey A. Porter
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Keith Mansfield
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Viviana Cremasco
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute and David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (RJX); (DBG)
| | - Daniel B. Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (RJX); (DBG)
| |
Collapse
|
17
|
Bakkaloglu OK, Eskazan T, Celik S, Kurt EA, Hatemi I, Erzin Y, Celik AF. Can we predict mucosal remission in ulcerative colitis more precisely with a redefined cutoff level of C-reactive protein? Colorectal Dis 2022; 24:77-84. [PMID: 34610199 DOI: 10.1111/codi.15940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 02/08/2023]
Abstract
AIM Most patients with ulcerative colitis (UC) with active mucosal disease have a lower C-reactive protein (CRP) level than the classic accepted cutoff level (≤5 mg/l). We aimed to predict the mucosal remission in UC with an optimal cutoff level of CRP when mucosal activity and extensiveness of UC were both considered. METHOD In this retrospective study, we evaluated CRP values and their relation to mucosal extension and UC activity in 331 colonoscopic examinations performed between December 2016 and March 2019. Endoscopic activity and disease extension were assessed using Mayo scores and the Montreal classification. RESULTS The Mayo 2 and 3 groups' CRP values were significantly higher when compared with Mayo 0-1 between values of E1 and both E2 and E3 with an increasing trend. The standard CRP cutoff level ≤5 mg/l only yielded 55% specificity in predicting mucosal remission. In the ROC analysis, a CRP cutoff level ≤2.9 mg/l predicted an overall mucosal remission (Mayo 0-1) with 77% sensitivity and 80% specificity, and ≤1.9 mg/l predicted Mayo-0 with 70% sensitivity and specificity. In the clinical remission subgroup, the overall CRP cutoff level was even lower, at ≤1.58 mg/l. CONCLUSION An overall CRP cutoff level ≤2.9 mg/l predicts mucosal remission in UC better than the standard cutoff ≤5 mg/l. Mucosal remission in stable clinical remission may present with an even lower CRP level. An increasing trend in the CRP level from E1 through E3 even in mucosal remission suggests that both histological inflammation and extensiveness may have some influence on a CRP-based prediction of endoscopic remission.
Collapse
Affiliation(s)
- Oguz Kagan Bakkaloglu
- Section of Gastroenterology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Tugce Eskazan
- Section of Gastroenterology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Sinem Celik
- Atasehir Acibadem Hospital, Acibadem University, Istanbul, Turkey
| | - Enes Ali Kurt
- Section of Gastroenterology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Ibrahim Hatemi
- Section of Gastroenterology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Yusuf Erzin
- Section of Gastroenterology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Aykut Ferhat Celik
- Section of Gastroenterology, Department of Internal Medicine, Cerrahpasa Medical School, Istanbul University - Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
18
|
Herb-Partitioned Moxibustion Improves Crohn's Disease-Associated Intestinal Fibrosis by Suppressing the RhoA/ROCK1/MLC Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2247953. [PMID: 34840583 PMCID: PMC8612780 DOI: 10.1155/2021/2247953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022]
Abstract
Background and Aims Intestinal fibrosis is one of the severe and common complications of Crohn's disease (CD), but the etiology and pathogenesis remain uncertain. The study intended to examine whether the effect of herb-partitioned moxibustion on rats with CD-associated intestinal fibrosis is associated with the RhoA/ROCK1/MLC pathway. Methods All experimental rats were randomly allocated into the normal control group (NC), model control group (MC), and herb-partitioned moxibustion group (HPM). Intestinal fibrosis was established in rats with CD by repeated rectal administrations of 2,4,6-trinitrobenzenesulfonic acid (TNBS). Herb-partitioned moxibustion was applied at the Qihai (CV6) and Tianshu (ST25) acupoints once daily for 10 days in the HPM group. In this study, histological changes were examined by hematoxylin and eosin (HE) staining; then, Masson's trichrome staining was used to assess the degree of fibrosis in each group. Experimental methods of immunohistochemistry, western blotting, and real-time PCR were applied to detect the levels of α-SMA, collagen III, RhoA, ROCK1, and p-MLC. Moreover, the double immunofluorescent staining for the colocalization of both α-SMA and ROCK1 was performed. Results Contrasted with the normal controls, the collagen deposition and fibrosis scores were increased in colonic tissue of model rats, and HPM decreased the collagen deposition and fibrosis scores. The protein of α-SMA and collagen III in the MC group exceeds that of the NC group; HPM decreased the expression of α-SMA and collagen III in rats with intestinal fibrosis. Similarly, the expression of RhoA, ROCK1, and p-MLC in model rats was obviously increased compared with normal controls; the expression of RhoA, ROCK1, and p-MLC was decreased after HPM. The coexpression of α-SMA and ROCK1 in rats with intestinal fibrosis was higher than normal rats. Conclusion HPM improves CD-associated intestinal fibrosis by suppressing the RhoA/ROCK1/MLC pathway.
Collapse
|
19
|
Gordon IO, Abushamma S, Kurowski JA, Holubar SD, Kou L, Lyu R, Rieder F. Paediatric Ulcerative Colitis Is a Fibrotic Disease and Is Linked with Chronicity of Inflammation. J Crohns Colitis 2021; 16:804-821. [PMID: 34849664 PMCID: PMC9228908 DOI: 10.1093/ecco-jcc/jjab216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/20/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Intestinal fibrosis has recently been characterised in adult ulcerative colitis and may affect motility, diarrhoea, and the symptom of urgency. We aimed to charactersze the presence of fibrosis in paediatric patients with ulcerative colitis, and its link to severity and chronicity of mucosal inflammation, as well as clinical factors of severity. METHODS We performed a single-centre cross-sectional study in children ages 1-18 years with ulcerative colitis, undergoing colectomy or proctocolectomy. Tissue cross-sections were derived from proximal, mid, and distal colon and rectum, and inflammation and fibrosis were graded based on previously developed scores. Clinical data were collected prospectively. RESULTS From 62 patients, 205 intestinal sections were evaluated. Median age at diagnosis was 13 years, 100% had extensive colitis, and all resections were done for refractory disease. The presence, chronicity, and degree of inflammation were linked with the presence of fibrosis. Thickness of the muscularis mucosa was also linked with presence and chronicity of inflammation. The overall submucosal fibrosis burden was associated with prior anti-tumour necrosis factor use. CONCLUSIONS Paediatric patients with ulcerative colitis exhibit colorectal submucosal fibrosis and muscularis mucosa thickening, which correlate with the presence, chronicity, and degree of mucosal inflammation. Fibrosis should be recognised as a complication of paediatric ulcerative colitis, and ulcerative colitis should be considered a progressive disease.
Collapse
Affiliation(s)
- Ilyssa O Gordon
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Suha Abushamma
- Department of Gastroenterology, Washington University School of Medicine, Barnes Jewish Hospital, St Louis, MO,USA
| | - Jacob A Kurowski
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Stefan D Holubar
- Department of Colorectal Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Lei Kou
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ruishen Lyu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Corresponding author: Florian Rieder, MD, Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, 9500 Euclid Avenue – A3, Cleveland, OH, 44195, USA. Tel.: +1 [216] 445 4916; fax: +1 [216] 636 0104;
| |
Collapse
|
20
|
Pellegrini C, Fornai M, Benvenuti L, Colucci R, Caputi V, Palazon-Riquelme P, Giron MC, Nericcio A, Garelli F, D'Antongiovanni V, Segnani C, Ippolito C, Nannipieri M, Lopez-Castejon G, Pelegrin P, Haskó G, Bernardini N, Blandizzi C, Antonioli L. NLRP3 at the crossroads between immune/inflammatory responses and enteric neuroplastic remodelling in a mouse model of diet-induced obesity. Br J Pharmacol 2021; 178:3924-3942. [PMID: 34000757 DOI: 10.1111/bph.15532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Enteric neurogenic/inflammation contributes to bowel dysmotility in obesity. We examined the role of NLRP3 in colonic neuromuscular dysfunctions in mice with high-fat diet (HFD)-induced obesity. EXPERIMENTAL APPROACH Wild-type C57BL/6J and NLRP3-KO (Nlrp3-/- ) mice were fed with HFD or standard diet for 8 weeks. The activation of inflammasome pathways in colonic tissues from obese mice was assessed. The role of NLRP3 in in vivo colonic transit and in vitro tachykininergic contractions and substance P distribution was evaluated. The effect of substance P on NLRP3 signalling was tested in cultured cells. KEY RESULTS HFD mice displayed increased body and epididymal fat weight, cholesterol levels, plasma resistin levels and plasma and colonic IL-1β levels, colonic inflammasome adaptor protein apoptosis-associated speck-like protein containing caspase-recruitment domain (ASC) and caspase-1 mRNA expression and ASC immunopositivity in macrophages. Colonic tachykininergic contractions were enhanced in HFD mice. HFD NLRP3-/- mice developed lower increase in body and epididymal fat weight, cholesterol levels, systemic and bowel inflammation. In HFD Nlrp3-/- mice, the functional alterations of tachykinergic pathways and faecal output were normalized. In THP-1 cells, substance P promoted IL-1β release. This effect was inhibited upon incubation with caspase-1 inhibitor or NK1 antagonist and not observed in ASC-/- cells. CONCLUSION AND IMPLICATIONS In obesity, NLRP3 regulates an interplay between the shaping of enteric immune/inflammatory responses and the activation of substance P/NK1 pathways underlying the onset of colonic dysmotility. Identifying NLRP3 as a therapeutic target for the treatment of bowel symptoms related to obesity.
Collapse
Affiliation(s)
- Carolina Pellegrini
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Valentina Caputi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Pablo Palazon-Riquelme
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Anna Nericcio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Francesca Garelli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | | | - Cristina Segnani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Monica Nannipieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gloria Lopez-Castejon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pablo Pelegrin
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, New York, USA
| | - Nunzia Bernardini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
Wang J, Lin S, Brown JM, van Wagoner D, Fiocchi C, Rieder F. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol Rev 2021; 302:211-227. [PMID: 33993489 DOI: 10.1111/imr.12974] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) worldwide has resulted in a global public health challenge. Intestinal fibrosis leading to stricture formation and bowel obstruction is a frequent complication in Crohn's disease (CD), and the lack of anti-fibrotic therapies makes elucidation of fibrosis mechanisms a priority. Progress has shown that mesenchymal cells, cytokines, microbial products, and mesenteric adipocytes are jointly implicated in the pathogenesis of intestinal fibrosis. This recent information puts prevention or reversal of intestinal strictures within reach through innovative therapies validated by reliable clinical trial endpoints. Here, we review the role of immune and non-immune components of the pathogenesis of intestinal fibrosis, including new cell clusters, cytokine networks, host-microbiome interactions, creeping fat, and their translation for endpoint development in anti-fibrotic clinical trials.
Collapse
Affiliation(s)
- Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - David van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
22
|
Chen Y, Cheng J, Zhang Y, Chen JDZ, Seralu FM. Electroacupuncture at ST36 Relieves Visceral Hypersensitivity via the NGF/TrkA/TRPV1 Peripheral Afferent Pathway in a Rodent Model of Post-Inflammation Rectal Hypersensitivity. J Inflamm Res 2021; 14:325-339. [PMID: 33584100 PMCID: PMC7875081 DOI: 10.2147/jir.s285146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/31/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose The aim of the study was to investigate the effects of electroacupuncture (EA) at ST36 on rectal hypersensitivity and compliance in DSS-treated post-inflammation rats. In addition, we explored the involvement of mast cells-triggered NGF/TrkA/TRPV1 peripheral afferent pathway. Methods Rats were provided water with 5% dextran sulphate sodium (DSS) for 7 days. Two weeks after the DSS treatment they were subjected to initial and repetitive EA. Different sets of parameters were compared in the initial test and then EA with the selected parameters were performed for 2 weeks. Rectal compliance was assessed by colorectal distension while visceral sensitivity was evaluated by abdominal withdraw reflexes (AWR) and electromyogram (EMG). Masson's trichrome staining was performed to stain collagen and toluidine blue staining was applied to assess the degranulation of mast cells. Nerve growth factor (NGF), tryptase, TrkA and TRPV1 were measured by Western blot or immunofluorescence staining. Results EA at 100 Hz was more effective in improving rectal compliance and visceral hypersensitivity. Daily EA improved visceral hypersensitivity but not rectal compliance. Five weeks after DSS treatment, fibrosis was noted in both sham-EA and EA groups. The expression and activation of mast cells were significantly reduced after the 2-week EA treatment with a concurrent decrease in the expression of colonic NGF/TrkA and TRPV1 in both colon and dorsal root ganglions. Conclusion EA at ST36 with a special set of parameters has no effect on reduced rectal compliance but relieves visceral hypersensitivity via the mast cells-triggered NGF/TrkA/TRPV1 peripheral afferent pathway in DSS-treated post-inflammation rats.
Collapse
Affiliation(s)
- Yan Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Jiafei Cheng
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiling Zhang
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Florin M Seralu
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Sarvestani SK, Signs S, Hu B, Yeu Y, Feng H, Ni Y, Hill DR, Fisher RC, Ferrandon S, DeHaan RK, Stiene J, Cruise M, Hwang TH, Shen X, Spence JR, Huang EH. Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nat Commun 2021; 12:262. [PMID: 33431859 PMCID: PMC7801686 DOI: 10.1038/s41467-020-20351-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of ulcerative colitis (UC), a major type of inflammatory bowel disease, remains unknown. No model exists that adequately recapitulates the complexity of clinical UC. Here, we take advantage of induced pluripotent stem cells (iPSCs) to develop an induced human UC-derived organoid (iHUCO) model and compared it with the induced human normal organoid model (iHNO). Notably, iHUCOs recapitulated histological and functional features of primary colitic tissues, including the absence of acidic mucus secretion and aberrant adherens junctions in the epithelial barrier both in vitro and in vivo. We demonstrate that the CXCL8/CXCR1 axis was overexpressed in iHUCO but not in iHNO. As proof-of-principle, we show that inhibition of CXCL8 receptor by the small-molecule non-competitive inhibitor repertaxin attenuated the progression of UC phenotypes in vitro and in vivo. This patient-derived organoid model, containing both epithelial and stromal compartments, will generate new insights into the underlying pathogenesis of UC while offering opportunities to tailor interventions to the individual patient.
Collapse
Affiliation(s)
- Samaneh K Sarvestani
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Steven Signs
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Yunku Yeu
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ying Ni
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - David R Hill
- Department of Internal Medicine, Gastroenterology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert C Fisher
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Sylvain Ferrandon
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Reece K DeHaan
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jennifer Stiene
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Michael Cruise
- Department of Pathology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Tae Hyun Hwang
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emina H Huang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
24
|
Receptors for pro-resolving mediators as a therapeutic tool for smooth muscle remodeling-associated disorders. Pharmacol Res 2020; 164:105340. [PMID: 33276103 DOI: 10.1016/j.phrs.2020.105340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
Respiratory airway, blood vessel and intestinal wall remodeling, in which smooth muscle remodeling plays a major role, is a key pathological event underlying the development of several associated diseases, including asthma, cardiovascular disorders (e.g., atherosclerosis, hypertension, and aneurism formation), and inflammatory bowel disease. However, the mechanisms underlying these remodeling processes remain poorly understood. We hypothesize that the creation of chronic inflammation-mediated networks that support and exacerbate the airway, as well as vascular and intestinal wall remodeling, is a crucial pathogenic mechanism governing the development of the associated diseases. The failed inflammation resolution might be one of the causal pathogenic mechanisms. Hence, it is reasonable to assume that applying specialized, pro-resolving mediators (SPMs), acting via cognate G-protein coupled receptors (GPCRs), could potentially be an effective pathway for treating these disorders. However, several obstacles, such as poor understanding of the SPM/receptor signaling pathways, SMP rapid inactivation as well as their complex and costly synthesis, limit their translational potential. In this connection, stable, small-molecule SPM mimetics and receptor agonists have emerged as new, potentially suitable drugs. It has been recently shown in preclinical studies that they can effectively attenuate the manifestations of asthma, atherosclerosis and Crohn's disease. Remarkably, some biased SPM receptor agonists, which cause a signaling response in the desired inflammation pro-resolving direction, revealed similar beneficial effects. These encouraging observations suggest that SPM mimetics and receptor agonists can be applied as a novel approach for the treatment of various chronic inflammation conditions, including airway, vascular and intestinal wall remodeling-associated disorders.
Collapse
|
25
|
Interleukin-36 Cytokine/Receptor Signaling: A New Target for Tissue Fibrosis. Int J Mol Sci 2020; 21:ijms21186458. [PMID: 32899668 PMCID: PMC7556029 DOI: 10.3390/ijms21186458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Tissue fibrosis is a major unresolved medical problem, which impairs the function of various systems. The molecular mechanisms involved are poorly understood, which hinders the development of effective therapeutic strategies. Emerging evidence from recent studies indicates that interleukin 36 (IL-36) and the corresponding receptor (IL-36R), a newly-characterized cytokine/receptor signaling complex involved in immune-inflammation, play an important role in the pathogenesis of fibrosis in multiple tissues. This review focuses on recent experimental findings, which implicate IL-36R and its associated cytokines in different forms of organ fibrosis. Specifically, it outlines the molecular basis and biological function of IL-36R in normal cells and sums up the pathological role in the development of fibrosis in the lung, kidney, heart, intestine, and pancreas. We also summarize the new progress in the IL-36/IL-36R-related mechanisms involved in tissue fibrosis and enclose the potential of IL-36R inhibition as a therapeutic strategy to combat pro-fibrotic pathologies. Given its high association with disease, gaining new insight into the immuno-mechanisms that contribute to tissue fibrosis could have a significant impact on human health.
Collapse
|
26
|
Xu X, Lin S, Yang Y, Gong X, Tong J, Li K, Li Y. Histological and ultrastructural changes of the colon in dextran sodium sulfate-induced mouse colitis. Exp Ther Med 2020; 20:1987-1994. [PMID: 32782508 PMCID: PMC7401218 DOI: 10.3892/etm.2020.8946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) is a complex disease that results from a dysregulated immune response in the gastrointestinal tract. A mouse model orally administered with dextran sodium sulfate (DSS) is the most widely used experimental animal model of UC. However, the ultrastructure of the colon in mouse colitis is poorly understood. In the present study, colonic specimens from DSS-induced UC mice underwent hematoxylin and eosin staining, Masson's trichrome staining and Verhoeff's elastic staining. In addition, the ultrastructure of samples was examined by transmission electron microscopy. UC was successfully induced by 7 consecutive days of DSS oral administration. The goblet cell architecture of the UC tissue was damaged in the mucosa. Additionally, a significant number of inflammatory cells infiltrated into the stroma and the structure of the intestinal gland was destroyed. The tissue in the submucosa showed significant edema. Hyperplasia was also identified in the submucosa, promoting a disorganized microstructure within the colon wall. Numerous collagen fibers in the muscular layer were disrupted, and the fiber bundles were thinner compared with those in the normal control group. Furthermore, in the DSS-induced UC group, the smooth muscle cell showed edema, the cell membrane structure was unclear and the shape of the nucleus was irregular. In conclusion, the present study revealed important histological and ultrastructural changes in the colon of DSS-induced UC mice. These features may contribute to improved understanding of the pathogenesis and mechanism of UC.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, P.R. China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Shanghai 200120, P.R. China
| | - Sisi Lin
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yanhua Yang
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Xiaohui Gong
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Shanghai 200120, P.R. China
| | - Jianhua Tong
- Shanghai East Hospital, Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Kun Li
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yongyu Li
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
27
|
He JS, Tan JY, Li XZ, Feng R, Xiong SS, Lin SN, Qiu Y, Mao R. Serum biomarkers of fibrostenotic Crohn's disease: Where are we now? J Dig Dis 2020; 21:336-341. [PMID: 32496631 DOI: 10.1111/1751-2980.12913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Intestinal fibrosis and subsequent stricture formation are major clinical challenges in inflammatory bowel disease, resulting in an increased rate of operation and poor prognosis compared with those without. With the changing perception that intestinal fibrosis is irreversible to the point of view that it is reversible in recent years, various candidate serum biomarkers have been studied over the past decades, which may stratify patients based on their risks of developing stenosis and enable the detection of early stages of fibrosis. However, reliable and accurate biomarkers are still unavailable due to conflicting results and the lack of high-quality evidence. In this review we summarized the serum biomarkers that have been proposed for intestinal fibrosis in recent years, which includes gene polymorphisms or variants, epigenetic markers, extracellular matrix components, growth factors, and antibodies, aiming to provide clues for future research.
Collapse
Affiliation(s)
- Jin Shen He
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jin Yu Tan
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Zhi Li
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Rui Feng
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shan Shan Xiong
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Nan Lin
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yun Qiu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ren Mao
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
28
|
Chen P, Zhou G, Lin J, Li L, Zeng Z, Chen M, Zhang S. Serum Biomarkers for Inflammatory Bowel Disease. Front Med (Lausanne) 2020; 7:123. [PMID: 32391365 PMCID: PMC7188783 DOI: 10.3389/fmed.2020.00123] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic, inflammatory disorder of the gastrointestinal tract. As the novel therapeutic goal and biologicals are widely recognized, accurate assessment of disease and prediction of therapeutic response have become a crucial challenge in clinical practice. Also, because of the continuously rising incidence, convenient and economical methods of diagnosis and clinical assessment are urgently needed. Recently, serum biomarkers have made a great progress and become a focus in IBD study because they are non-invasive, convenient, and relatively inexpensive than are markers in biopsy tissue, stool, breath, and other body fluids. Aims: To review the available data on serological biomarkers for IBD. Methods: We searched PubMed using predefined key words on relevant literatures of serum biomarkers regarding diagnosis, evaluation of therapeutic efficacy, surveillance of disease activity, and assessment of prognosis for IBD. Results: We reviewed serological biomarkers that are well-established and widely used (e.g., C-reactive protein), newly discovered biomarkers (e.g., cytokines, antibodies, and non-coding RNAs), and also recently advancements in serological biomarkers (e.g., metabolomics and proteomics) that are used in different aspects of IBD management. Conclusions: With such a wealth of researches, to date, there are still no ideal serum biomarkers for IBD. Serum profiling and non-coding RNAs are just starting to blossom but reveal great promise for future clinical practice. Combining different biomarkers can be valuable in improving performance of disease evaluation.
Collapse
Affiliation(s)
- Peng Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gaoshi Zhou
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxia Lin
- Division of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Pellegrini C, Ippolito C, Segnani C, Dolfi A, Errede M, Virgintino D, Fornai M, Antonioli L, Garelli F, Nericcio A, Colucci R, Cerri S, Blandini F, Blandizzi C, Bernardini N. Pathological remodelling of colonic wall following dopaminergic nigrostriatal neurodegeneration. Neurobiol Dis 2020; 139:104821. [PMID: 32088380 DOI: 10.1016/j.nbd.2020.104821] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/30/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIM Patients with Parkinson's disease (PD) are often characterized by functional gastrointestinal disorders. Such disturbances can occur at all stages of PD and precede the typical motor symptoms of the disease by many years. However, the morphological alterations associated with intestinal disturbances in PD are undetermined. This study examined the remodelling of colonic wall in 6-hydroxydopamine (6-OHDA)-induced PD rats. METHODS 8 weeks after 6-OHDA injection animals were sacrificed. Inflammatory infiltrates, collagen deposition and remodelling of intestinal epithelial barrier and tunica muscularis in the colonic wall were assessed by histochemistry, immunohistochemistry, immunofluorescence and western blot analysis. RESULTS 6-OHDA rats displayed significant alterations of colonic tissues as compared with controls. Signs of mild inflammation (eosinophil infiltration) and a transmural deposition of collagen fibres were observed. Superficial colonic layers were characterized by severe morphological alterations. In particular, lining epithelial cells displayed a reduced claudin-1 and transmembrane 16A/Anoctamin 1 (TMEM16A/ANO1) expression; goblet cells increased their mucin expression; colonic crypts were characterized by an increase in proliferating epithelial cells; the density of S100-positive glial cells and vimentin-positive fibroblast-like cells was increased as well. Several changes were found in the tunica muscularis: downregulation of α-smooth muscle actin/desmin expression and increased proliferation of smooth muscle cells; increased vimentin expression and proliferative phenotype in myenteric ganglia; reduction of interstitial cells of Cajal (ICCs) density. CONCLUSIONS A pathological remodelling occurs in the colon of 6-OHDA rats. The main changes include: enhanced fibrotic deposition; alterations of the epithelial barrier; activation of mucosal defense; reduction of ICCs. These results indicate that central nigrostriatal denervation is associated with histological changes in the large bowel at mucosal, submucosal and muscular level. These alterations might represent morphological correlates of digestive symptoms in PD.
Collapse
Affiliation(s)
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Amelio Dolfi
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mariella Errede
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| | - Daniela Virgintino
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Garelli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Anna Nericcio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Silvia Cerri
- Laboratory of Functional Neurochemistry, Centre for Research in Neurodegenerative Diseases, "C. Mondino" National Neurological Institute, University of Pavia, Pavia, Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, Centre for Research in Neurodegenerative Diseases, "C. Mondino" National Neurological Institute, University of Pavia, Pavia, Italy
| | - Corrado Blandizzi
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| |
Collapse
|
30
|
Bassotti G, Antonelli E, Villanacci V, Nascimbeni R, Dore MP, Pes GM, Maconi G. Abnormal gut motility in inflammatory bowel disease: an update. Tech Coloproctol 2020; 24:275-282. [PMID: 32062797 DOI: 10.1007/s10151-020-02168-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is substantial evidence linking disturbed gastrointestinal motility to inflammation. Thus, it is not surprising that abnormalities of gastrointestinal motility play a role in inflammatory bowel disease (IBD), affecting patient outcomes. We performed a review of the literature to investigate the relationship between abnormal gut motility and IBD. METHODS With an extensive literature search, we retrieved the pertinent articles linking disturbed gut motility to IBD in various anatomical districts. RESULTS The evidence in the literature suggests that abnormal gastrointestinal motility plays a role in the clinical setting of IBD and may confuse the clinical picture. CONCLUSIONS Abnormal gut motility may be important in the clinical setting of IBD. However, additional data obtained with modern techniques (e.g., magnetic resonance imaging) are needed to individuate in a more precise manner gastrointestinal motor dysfunctions, to understand the nature of clinical manifestations and properly tailor the treatment of patients.
Collapse
Affiliation(s)
- G Bassotti
- Gastroenterology and Hepatology Section, Department of Medicine, University of Perugia Medical School, Perugia, Italy. .,Clinica Di Gastroenterologia Ed Epatologia, Ospedale Santa Maria della Misericordia, Piazzale Menghini, 1, San Sisto, 06156, Perugia, Italy.
| | - E Antonelli
- Gastroenterology Unit, Perugia General Hospital, Perugia, Italy
| | - V Villanacci
- Pathology Institute, Spedali Civili, Brescia, Italy
| | - R Nascimbeni
- Surgical Section Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - M P Dore
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - G M Pes
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - G Maconi
- Gastroenterology Unit, Department of Biomedical and Clinical Sciences, L. Sacco University Hospital, Milan, Italy
| |
Collapse
|
31
|
Mortensen JH, Lindholm M, Langholm LL, Kjeldsen J, Bay-Jensen AC, Karsdal MA, Manon-Jensen T. The intestinal tissue homeostasis - the role of extracellular matrix remodeling in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2019; 13:977-993. [PMID: 31587588 DOI: 10.1080/17474124.2019.1673729] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Extracellular matrix (ECM) remodeling of the intestinal tissue is important in inflammatory bowel disease (IBD) due to the extensive mucosal remodeling. There are still gaps in our knowledge as to how ECM remodeling is related to intestinal epithelium homeostasis and healing of the intestinal mucosa.Areas covered: The aim of this review is to highlight the importance of the ECM in relation to the pathogenesis of IBD, while addressing basement membrane and interstitial matrix remodeling, and the processes of wound healing of the intestinal tissue in IBD.Expert opinion: In IBD, basement membrane remodeling may reflect the integrity of the intestinal epithelial-cell homeostasis. The interstitial matrix remodeling is associated with deep inflammation such as the transmural inflammation as seen in fistulas and intestinal fibrosis leading to fibrostenotic strictures, in patients with CD. The interplay between wound healing processes and ECM remodeling also affects the tissue homeostasis in IBD. The interstitial matrix, produced by fibroblasts, holds a very different biology as compared to the epithelial basement membrane in IBD. In combination with integration of wound healing, quantifying the interplay between damage and repair to these sub compartments may provide essential information in IBD patient profiling, mucosal healing and disease management.
Collapse
Affiliation(s)
- J H Mortensen
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| | - M Lindholm
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark.,Department of Medical Gastroenterology, Odense University hospital, Odense, Denmark
| | - L L Langholm
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| | - J Kjeldsen
- Department of Medical Gastroenterology, Odense University hospital, Odense, Denmark
| | - A C Bay-Jensen
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| | - M A Karsdal
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| | - T Manon-Jensen
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| |
Collapse
|
32
|
Scheibe K, Kersten C, Schmied A, Vieth M, Primbs T, Carlé B, Knieling F, Claussen J, Klimowicz AC, Zheng J, Baum P, Meyer S, Schürmann S, Friedrich O, Waldner MJ, Rath T, Wirtz S, Kollias G, Ekici AB, Atreya R, Raymond EL, Mbow ML, Neurath MF, Neufert C. Inhibiting Interleukin 36 Receptor Signaling Reduces Fibrosis in Mice With Chronic Intestinal Inflammation. Gastroenterology 2019; 156:1082-1097.e11. [PMID: 30452921 DOI: 10.1053/j.gastro.2018.11.029] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Intestinal fibrosis is a long-term complication in inflammatory bowel diseases (IBD) that frequently results in functional damage, bowel obstruction, and surgery. Interleukin (IL) 36 is a group of cytokines in the IL1 family with inflammatory effects. We studied the expression of IL36 and its receptor, interleukin 1 receptor like 2 (IL1RL2 or IL36R) in the development of intestinal fibrosis in human tissues and mice. METHODS We obtained intestinal tissues from 92 patients with Crohn's disease (CD), 48 patients with ulcerative colitis, and 26 patients without inflammatory bowel diseases (control individuals). Tissues were analyzed by histology to detect fibrosis and by immunohistochemistry to determine the distribution of fibroblasts and levels of IL36R ligands. Human and mouse fibroblasts were incubated with IL36 or control medium, and transcriptome-wide RNA sequences were analyzed. Mice were given neutralizing antibodies against IL36R, and we studied intestinal tissues from Il1rl2-/- mice; colitis and fibrosis were induced in mice by repetitive administration of DSS or TNBS. Bone marrow cells were transplanted from Il1rl2-/- to irradiated wild-type mice and intestinal tissues were analyzed. Antibodies against IL36R were applied to mice with established chronic colitis and fibrosis and intestinal tissues were studied. RESULTS Mucosal and submucosal tissue from patients with CD or ulcerative colitis had higher levels of collagens, including type VI collagen, compared with tissue from control individuals. In tissues from patients with fibrostenotic CD, significantly higher levels of IL36A were noted, which correlated with high numbers of activated fibroblasts that expressed α-smooth muscle actin. IL36R activation of mouse and human fibroblasts resulted in expression of genes that regulate fibrosis and tissue remodeling, as well as expression of collagen type VI. Il1rl2-/- mice and mice given injections of an antibody against IL36R developed less severe colitis and fibrosis after administration of DSS or TNBS, but bone marrow cells from Il1rl2-/- mice did not prevent induction of colitis and fibrosis. Injection of antibodies against IL36R significantly reduced established fibrosis in mice with chronic intestinal inflammation. CONCLUSION We found higher levels of IL36A in fibrotic intestinal tissues from patients with IBD compared with control individuals. IL36 induced expression of genes that regulate fibrogenesis in fibroblasts. Inhibition or knockout of the IL36R gene in mice reduces chronic colitis and intestinal fibrosis. Agents designed to block IL36R signaling could be developed for prevention and treatment of intestinal fibrosis in patients with IBD.
Collapse
Affiliation(s)
- Kristina Scheibe
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Kersten
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anabel Schmied
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Tatjana Primbs
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Birgitta Carlé
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ferdinand Knieling
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Jie Zheng
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Patrick Baum
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Sebastian Meyer
- Institute of Medical Informatics, Biometry, and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian J Waldner
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Timo Rath
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - George Kollias
- Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Arif B Ekici
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ernest L Raymond
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - M Lamine Mbow
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Markus F Neurath
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Clemens Neufert
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
33
|
Pierdomenico M, Palone F, Cesi V, Vitali R, Mancuso AB, Cucchiara S, Oliva S, Aloi M, Stronati L. Transcription Factor ZNF281: A Novel Player in Intestinal Inflammation and Fibrosis. Front Immunol 2018; 9:2907. [PMID: 30619271 PMCID: PMC6297801 DOI: 10.3389/fimmu.2018.02907] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Background and aims: Recent evidences reveal the occurrence of a close relationship among epithelial to mesenchymal transition (EMT), chronic inflammation and fibrosis. ZNF281 is an EMT-inducing transcription factor (EMT-TF) involved in the regulation of pluripotency, stemness, and cancer. The aim of this study was to investigate in vitro, in vivo, and ex vivo a possible role of ZNF281 in the onset and progression of intestinal inflammation. A conceivable contribution of the protein to the development of intestinal fibrosis was also explored. Methods: Human colorectal adenocarcinoma cell line, HT29, and C57BL/6 mice were used for in vitro and in vivo studies. Mucosal biopsy specimens were taken during endoscopy from 29 pediatric patients with Crohn's disease (CD), 24 with ulcerative colitis (UC) and 16 controls. ZNF281 was knocked down by transfecting HT29 cells with 20 nM small interference RNA (siRNA) targeting ZNF281 (siZNF281). Results: We show for the first time that ZNF281 is induced upon treatment with inflammatory agents in HT29 cells, in cultured uninflamed colonic samples from CD patients and in DSS-treated mice. ZNF281 expression correlates with the disease severity degree of CD and UC patients. Silencing of ZNF281 strongly reduces both inflammatory (IL-8, IL-1beta, IL-17, IL-23) and EMT/fibrotic (SNAIL, Slug, TIMP-1, vimentin, fibronectin, and α-SMA) gene expression; besides, it abolishes the increase of extracellular-collagen level as well as the morphological modifications induced by inflammation. Conclusions: The identification of transcription factor ZNF281 as a novel player of intestinal inflammation and fibrosis allows a deeper comprehension of the pathogenetic mechanisms underlying inflammatory bowel disease (IBD) and provide a new target for their cure.
Collapse
Affiliation(s)
- Maria Pierdomenico
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Franscesca Palone
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cesi
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy
| | - Roberta Vitali
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy
| | - Anna Barbara Mancuso
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Salvatore Cucchiara
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Salvatore Oliva
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Laura Stronati
- Department of Cellular Biotechnology and Hematology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
34
|
Hutter S, van Haaften WT, Hünerwadel A, Baebler K, Herfarth N, Raselli T, Mamie C, Misselwitz B, Rogler G, Weder B, Dijkstra G, Meier CF, de Vallière C, Weber A, Imenez Silva PH, Wagner CA, Frey-Wagner I, Ruiz PA, Hausmann M. Intestinal Activation of pH-Sensing Receptor OGR1 [GPR68] Contributes to Fibrogenesis. J Crohns Colitis 2018; 12:1348-1358. [PMID: 30165600 DOI: 10.1093/ecco-jcc/jjy118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS pH-sensing ovarian cancer G-protein coupled receptor-1 [OGR1/GPR68] is regulated by key inflammatory cytokines. Patients suffering from inflammatory bowel diseases [IBDs] express increased mucosal levels of OGR1 compared with non-IBD controls. pH-sensing may be relevant for progression of fibrosis, as extracellular acidification leads to fibroblast activation and extracellular matrix remodelling. We aimed to determine OGR1 expression in fibrotic lesions in the intestine of Crohn's disease [CD] patients, and the effect of Ogr1 deficiency in fibrogenesis. METHODS Human fibrotic and non-fibrotic terminal ileum was obtained from CD patients undergoing ileocaecal resection due to stenosis. Gene expression of fibrosis markers and pH-sensing receptors was analysed. For the initiation of fibrosis in vivo, spontaneous colitis by Il10-/-, dextran sodium sulfate [DSS]-induced chronic colitis and the heterotopic intestinal transplantation model were used. RESULTS Increased expression of fibrosis markers was accompanied by an increase in OGR1 [2.71 ± 0.69 vs 1.18 ± 0.03, p = 0.016] in fibrosis-affected human terminal ileum, compared with the non-fibrotic resection margin. Positive correlation between OGR1 expression and pro-fibrotic cytokines [TGFB1 and CTGF] and pro-collagens was observed. The heterotopic animal model for intestinal fibrosis transplanted with terminal ileum from Ogr1-/- mice showed a decrease in mRNA expression of fibrosis markers as well as a decrease in collagen layer thickness and hydroxyproline compared with grafts from wild-type mice. CONCLUSIONS OGR1 expression was correlated with increased expression levels of pro-fibrotic genes and collagen deposition. Ogr1 deficiency was associated with a decrease in fibrosis formation. Targeting OGR1 may be a potential new treatment option for IBD-associated fibrosis.
Collapse
Affiliation(s)
- Senta Hutter
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Wouter T van Haaften
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Anouk Hünerwadel
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Katharina Baebler
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Neel Herfarth
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Tina Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Céline Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Benjamin Misselwitz
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland.,Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Bruce Weder
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Chantal Florence Meier
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Pedro H Imenez Silva
- Institute of Physiology, University of Zürich, Zürich, Switzerland.,Kidney Control of Homeostasis, Swiss National Centre of Competence in Research, Zürich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
35
|
Zhou H, Zhang HJ, Guan L, Zhang YN, Li Y, Sun MJ. Mechanism and therapeutic effects of Saccharomyces boulardii on experimental colitis in mice. Mol Med Rep 2018; 18:5652-5662. [PMID: 30387820 PMCID: PMC6236308 DOI: 10.3892/mmr.2018.9612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a type of chronic inflammatory disturbance that affects a number of individuals worldwide; the precise mechanism is unclear and treatment is frequently insufficient to maintain patients in remission. Saccharomyces boulardii is a thermophilic, non‑pathogenic yeast that may be administered for prophylaxis and treatment of a variety of diarrheal diseases. Recent clinical studies have demonstrated that it may have a role in IBD; however, the mechanism of action is unclear. The hypoxia‑inducible factors (HIFs) are ubiquitously expressed regulators of cellular adaptation to hypoxia and are central to the adaptive and inflammatory responses of cells of the intestinal mucosa in patients with IBD. The present study aimed to investigate the effects of S. boulardii on dextran sulfate sodium (DSS)‑induced colitis in mice and the effects of S. boulardii on HIFs. Mice were divided into five groups (n=10 mice/group): i) Control; ii) DSS; iii) S. boulardii (Sb) + DSS; iv) normal saline (NS) + DSS; and v) Sb. For 14 consecutive days, mice from the Sb+DSS and Sb groups were given S. boulardii suspension in saline (150 mg/kg/day; final volume 0.2 ml) by oral gavage. The NS+DSS group received the same volume of NS by gavage. The Control mice received water only. From day 8 to day 14, 3.5% DSS was added to the drinking water of the DSS, Sb+DSS and NS+DSS groups to induce acute colitis. Body weight decreased and disease activity index and histological score increased in mice with DSS‑induced colitis. Oral administration of S. boulardii reduced DSS‑induced weight loss, ameliorated the histological damage and protected the colon barrier in mice with DSS‑induced colitis. The expression of HIF‑1α and HIF‑2α in colon tissues was measured by reverse transcription‑quantitative polymerase chain reaction, immunoblotting and immunohistochemistry. The increase in HIFs in the colon induced by DSS was significantly inhibited by S. boulardii treatment. The expression levels of several epithelial‑mesenchymal transition (EMT) markers and of vascular endothelial growth factor (VEGF) that are regulated by HIFs were measured. S. boulardii reduced EMT and decreased expression of VEGF that was induced by DSS treatment. These results indicated that treatment with S. boulardii ameliorated DSS‑induced colitis, partly through downregulation of HIF‑1α and HIF‑2α.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Gastroenterology and Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| | - Hui-Jing Zhang
- Department of Gastroenterology and Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| | - Lin Guan
- Department of Gastroenterology and Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| | - Yi-Ning Zhang
- Department of Gastroenterology and Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| | - Yue Li
- Department of Gastroenterology and Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| | - Ming-Jun Sun
- Department of Gastroenterology and Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| |
Collapse
|
36
|
Masi S, Colucci R, Duranti E, Nannipieri M, Anselmino M, Ippolito C, Tirotta E, Georgiopoulos G, Garelli F, Nericcio A, Segnani C, Bernardini N, Blandizzi C, Taddei S, Virdis A. Aging Modulates the Influence of Arginase on Endothelial Dysfunction in Obesity. Arterioscler Thromb Vasc Biol 2018; 38:2474-2483. [DOI: 10.1161/atvbaha.118.311074] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Stefano Masi
- From the Department of Clinical and Experimental Medicine (M.S., D.E., N.M., I.C., T.E., S.C., B.N., B.C., T.S., V.A.), University of Pisa, Italy
- National Centre for Cardiovascular Preventions and Outcomes, University College London, United Kingdom (M.S.)
- Department of Twin Research and Genetic Epidemiology, King’s College London, United Kingdom (M.S.)
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy (C.R., G.F., N.A.)
| | - Emiliano Duranti
- From the Department of Clinical and Experimental Medicine (M.S., D.E., N.M., I.C., T.E., S.C., B.N., B.C., T.S., V.A.), University of Pisa, Italy
| | - Monica Nannipieri
- From the Department of Clinical and Experimental Medicine (M.S., D.E., N.M., I.C., T.E., S.C., B.N., B.C., T.S., V.A.), University of Pisa, Italy
| | | | - Chiara Ippolito
- From the Department of Clinical and Experimental Medicine (M.S., D.E., N.M., I.C., T.E., S.C., B.N., B.C., T.S., V.A.), University of Pisa, Italy
| | - Erika Tirotta
- From the Department of Clinical and Experimental Medicine (M.S., D.E., N.M., I.C., T.E., S.C., B.N., B.C., T.S., V.A.), University of Pisa, Italy
| | - Georgios Georgiopoulos
- First Department of Cardiology, Hippokration Hospital, University of Athens, Greece (G.G.)
| | - Francesca Garelli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy (C.R., G.F., N.A.)
| | - Anna Nericcio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy (C.R., G.F., N.A.)
| | - Cristina Segnani
- From the Department of Clinical and Experimental Medicine (M.S., D.E., N.M., I.C., T.E., S.C., B.N., B.C., T.S., V.A.), University of Pisa, Italy
| | - Nunzia Bernardini
- From the Department of Clinical and Experimental Medicine (M.S., D.E., N.M., I.C., T.E., S.C., B.N., B.C., T.S., V.A.), University of Pisa, Italy
| | - Corrado Blandizzi
- From the Department of Clinical and Experimental Medicine (M.S., D.E., N.M., I.C., T.E., S.C., B.N., B.C., T.S., V.A.), University of Pisa, Italy
| | - Stefano Taddei
- From the Department of Clinical and Experimental Medicine (M.S., D.E., N.M., I.C., T.E., S.C., B.N., B.C., T.S., V.A.), University of Pisa, Italy
| | - Agostino Virdis
- From the Department of Clinical and Experimental Medicine (M.S., D.E., N.M., I.C., T.E., S.C., B.N., B.C., T.S., V.A.), University of Pisa, Italy
| |
Collapse
|
37
|
Gordon IO, Agrawal N, Willis E, Goldblum JR, Lopez R, Allende D, Liu X, Patil DY, Yerian L, El-Khider F, Fiocchi C, Rieder F. Fibrosis in ulcerative colitis is directly linked to severity and chronicity of mucosal inflammation. Aliment Pharmacol Ther 2018; 47:922-939. [PMID: 29411405 PMCID: PMC5842117 DOI: 10.1111/apt.14526] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 11/21/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fibrosis in ulcerative colitis has remained largely unexplored despite its clinical implications. AIMS This cross-sectional study was aimed at characterising the presence, anatomical location and degree of ulcerative colitis-associated fibrosis and its possible link to clinical parameters. METHODS Seven hundred and six individual tissue cross-sections derived every 10 cm along the length of 89 consecutive Ulcerative colitis colectomy specimens were examined and compared to Crohn's disease colitis, diverticular disease and uninvolved areas from colorectal cancer patients. Degree of inflammation, fibrosis and morphometric measurements of all layers of the intestinal wall were evaluated. Three gastrointestinal pathologists independently assessed colon sections stained with haematoxylin and eosin, Masson trichrome and Sirius red. Clinical data were collected prospectively. RESULTS Submucosal fibrosis was detected in 100% of ulcerative colitis colectomy specimens, but only in areas affected by inflammation. Submucosal fibrosis was associated with the severity of intestinal inflammation (Spearman correlations rho (95% confidence interval): 0.58 (P < 0.001) and histopathological changes of chronic mucosal injury, but not active inflammation. Colectomy for refractory disease rather than presence of dysplasia was associated with increased fibrosis and a thicker muscularis mucosae, whereas a thinner muscularis mucosae was associated with anti-tumour necrosis factor therapy. No feature on endoscopic mucosal biopsies could predict the underlying amount of fibrosis or the thickness of the muscularis mucosae. CONCLUSIONS A significant degree of fibrosis and muscularis mucosae thickening should be considered as common complications of chronic progressive ulcerative colitis. These features may have clinical consequences such as motility abnormalities and increased wall stiffness.
Collapse
Affiliation(s)
- Ilyssa O. Gordon
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland, USA
| | - Neha Agrawal
- Department of Hospital Medicine, Medicine Institute, Digestive Diseases and Surgery Institute, Cleveland, USA
| | - Eric Willis
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland, USA
| | - John R. Goldblum
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland, USA
| | - Rocio Lopez
- Department of Quantitative Health Sciences, Digestive Diseases and Surgery Institute, Cleveland, USA
| | - Daniela Allende
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland, USA
| | - Xiuli Liu
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland, USA
| | - Deepa Y. Patil
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland, USA
| | - Lisa Yerian
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland, USA
| | - Faris El-Khider
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland, USA
| | - Claudio Fiocchi
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland, USA,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, USA
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland, USA,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, USA
| |
Collapse
|
38
|
Magro F, Sousa HT. Editorial: ulcerative colitis submucosal fibrosis and inflammation: more than just strictures. Aliment Pharmacol Ther 2018. [PMID: 29512912 DOI: 10.1111/apt.14575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- F Magro
- Department of Gastroenterology, Faculty of Medicine, Centro Hospitalar São João, Porto, Portugal.,Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - H T Sousa
- Department of Gastroenterology, Centro Hospitalar e Universitário do Algarve - PortimãoUnit, Portimão, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal.,ABC - Algarve Biomedical Centre, University of Algarve, Faro, Portugal
| |
Collapse
|
39
|
Fluxá D, Simian D, Flores L, Ibáñez P, Lubascher J, Figueroa C, Kronberg U, Pizarro G, Castro M, Piottante A, Vial MT, Quera R. Clinical, endoscopic and histological correlation and measures of association in ulcerative colitis. J Dig Dis 2017; 18:634-641. [PMID: 28949435 DOI: 10.1111/1751-2980.12546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/30/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the correlation between clinical, fecal, endoscopic and histological activity in patients with ulcerative colitis (UC). METHODS A correlational cross-sectional analysis was performed in patients with UC who underwent colonoscopy between February and December 2016. Clinical, endoscopic, fecal and histological activities were determined using the partial Mayo subscore, Mayo endoscopic subscore and modified Mayo endoscopic subscore, fecal calprotectin and Geboes score and the presence of basal plasmacytosis, respectively. Scores were analyzed using Spearman's rank correlation test. To determine the association between scores and some clinical variables and active UC, univariate and multivariate logistic regressions were used. RESULTS Altogether 105 procedures (93 patients) were included. In 64.8% of the procedures, the mucosa was inflamed; however, 14.7% did not show histological inflammation. Endoscopic remission was observed in the other 35.2% of procedures; however, in biopsies 21.6% exhibited histological inflammation. Mayo endoscopic subscore and modified Mayo endoscopic score were well correlated but were only moderately correlated with clinical and histological scores. Furthermore, there was a moderate correlation between Mayo endoscopic score and Geboes score. Conversely, histological scores were poorly correlated with partial Mayo score. In multivariate analysis, Geboes score and basal plasmacytosis were predictive of active disease (OR 3.505, 95% CI 1.544-7.959 and OR 3.240, 95% CI 1.123-9.349, respectively), whereas biological therapy was found to be protective against UC (OR 0.021, 95% CI 0.000-0.641). CONCLUSION Clinical, endoscopic and histological activities were moderately correlated, while Geboes score and basal plasmacytosis were predictive of endoscopically active UC.
Collapse
Affiliation(s)
- Daniela Fluxá
- Department of Gastroenterology, Clínica Las Condes, Santiago, Chile
| | - Daniela Simian
- Academic Department Research Unit, Clínica Las Condes, Santiago, Chile
| | - Lilian Flores
- Department of Gastroenterology, Inflammatory Bowel Disease Program, Clínica Las Condes, Santiago, Chile
| | - Patricio Ibáñez
- Department of Gastroenterology, Inflammatory Bowel Disease Program, Clínica Las Condes, Santiago, Chile
| | - Jaime Lubascher
- Department of Gastroenterology, Inflammatory Bowel Disease Program, Clínica Las Condes, Santiago, Chile
| | - Carolina Figueroa
- Department of Gastroenterology, Inflammatory Bowel Disease Program, Clínica Las Condes, Santiago, Chile
| | - Udo Kronberg
- Department of Surgery, Colorectal Surgery Unit, Inflammatory Bowel Disease Program, Clínica Las Condes, Santiago, Chile
| | - Gonzalo Pizarro
- Department of Gastroenterology, Clínica Las Condes, Santiago, Chile.,Department of Gastroenterology, Barros Luco Trudeau Hospital, Santiago, Chile
| | - Magdalena Castro
- Academic Department Research Unit, Epidemiology and Biomedical Statistics, Academic Research Unit, Clínica Las Condes, Santiago, Chile
| | | | - María T Vial
- Department of Pathology, Clínica Las Condes, Santiago, Chile
| | - Rodrigo Quera
- Department of Gastroenterology, Inflammatory Bowel Disease Program, Clínica Las Condes, Santiago, Chile
| |
Collapse
|
40
|
Garidisan: Improving the Quality of Ulcer Healing in Rats with Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8721257. [PMID: 28928792 PMCID: PMC5591922 DOI: 10.1155/2017/8721257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022]
Abstract
Garidisan, commonly used in Mongolia to treat ulcerative colitis (UC), contains wild poppy and Artemisia frigida Willd. Clinical evidence shows that Garidisan can effectively treat UC and that recurrence is low. Thus, we evaluated the effects of Garidisan on ulcer healing quality and the regulation of immune balance in rats with experimental UC. UC was induced by immunization with TNBS and Garidisan significantly reduced DAI, CMDI, and HS. H&E staining, SEM, and VG staining showed that Garidisan repaired damaged intestinal mucosa and significantly reduced expression of ICAM-1 and CD105 in regenerated tissues of UC rats. Collagen fibers were significantly fewer as well after treatment. Garidisan elevated EGF, VEGF, bFGF, VEGFR2, and FGFR1 of UC rats, reduced CD3+CD4+/CD3+CD8+ T cell ratios, and increased CD4+Th1/CD4+Th2 cell ratios and IFN-r/IL-4 ratios in peripheral blood of UC rats. In conclusion, Garidisan promoted tissue maturation of regenerated tissues by regulating the immune balance and improved functional maturity of regenerated tissues by reducing collagen formation, promoting maturation of new blood vessels, and increasing expression of growth factors and their receptors.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Intestinal fibrosis is a common complication of several enteropathies, with inflammatory bowel disease (IBD) being the major cause. Intestinal fibrosis affects both ulcerative colitis and Crohn's disease, and no specific antifibrotic therapy exists. This review highlights recent developments in this area. RECENT FINDINGS The pathophysiology of intestinal stricture formation includes inflammation-dependent and inflammation-independent mechanisms. A better understanding of the mechanisms of intestinal fibrogenesis and the availability of compounds for other nonintestinal fibrotic diseases bring clincial trials in stricturing Crohn's disease within reach. SUMMARY Improved understanding of its mechanisms and ongoing development of clinical trial endpoints for intestinal fibrosis will allow the testing of novel antifibrotic compounds in IBD.
Collapse
Affiliation(s)
- Giovanni Latella
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Florian Rieder
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Disease and Surgery Institute; Cleveland Clinic Foundation, Cleveland, USA
- Department of Pathobiology, Lerner Research Institute; Cleveland Clinic Foundation, Cleveland, USA
| |
Collapse
|
42
|
Valatas V, Filidou E, Drygiannakis I, Kolios G. Stromal and immune cells in gut fibrosis: the myofibroblast and the scarface. Ann Gastroenterol 2017; 30:393-404. [PMID: 28655975 PMCID: PMC5479991 DOI: 10.20524/aog.2017.0146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/19/2017] [Indexed: 02/07/2023] Open
Abstract
Post-inflammatory scarring is the end-result of excessive extracellular matrix (ECM) accumulation and tissue architectural destruction. It represents a failure to effectively remodel ECM and achieve proper reinstitution and healing during chronic relapsing inflammatory processes. Scarring may affect the functionality of any organ, and in the case of inflammatory bowel disease (IBD)-associated fibrosis leads to stricture formation and often surgery to remove the affected bowel. The activated myofibroblast is the final effector cell that overproduces ECM under the influence of various mediators generated by an intense interplay of classic and non-classic immune cells. This review focuses on how proinflammatory mediators from various sources produced in different stages of intestinal inflammation can form profibrotic pathways that eventually lead to tissue scarring through sustained activation of myofibroblasts.
Collapse
Affiliation(s)
- Vassilis Valatas
- Laboratory of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion (Vassilis Valatas, Ioannis Drygiannakis)
| | - Eirini Filidou
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis (Eirini Filidou, George Kolios), Greece
| | - Ioannis Drygiannakis
- Laboratory of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion (Vassilis Valatas, Ioannis Drygiannakis)
| | - George Kolios
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis (Eirini Filidou, George Kolios), Greece
| |
Collapse
|
43
|
Bruno RM, Duranti E, Ippolito C, Segnani C, Bernardini N, Di Candio G, Chiarugi M, Taddei S, Virdis A. Different Impact of Essential Hypertension on Structural and Functional Age-Related Vascular Changes. Hypertension 2017; 69:71-78. [DOI: 10.1161/hypertensionaha.116.08041] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/02/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023]
Abstract
We evaluated whether vascular remodeling is present in physiological aging and whether hypertension accelerates the aging process for vascular function and structure. Small arteries from 42 essential hypertensive patients (HT) and 41 normotensive individuals (NT) were dissected after subcutaneous biopsy. Endothelium-dependent vasodilation (pressurized myograph) was assessed by acetylcholine, repeated under the nitric oxide synthase inhibitor
N
-nitro-
l
-arginine methylester or the antioxidant tempol. Structure was evaluated by media–lumen ratio (M/L). Intravascular oxidative generation and collagen deposition were assessed. Inhibition by
N
-nitro-
l
-arginine methylester on ACh was inversely related to age in both groups (
P
<0.0001) and blunted in HT versus NT for each age range. In NT, tempol enhanced endothelial function in the oldest subgroup; in HT, the potentiating effect started earlier. HT showed an increased M/L (
P
<0.001) versus control. In both groups, M/L was directly related to age (
P
<0.0001). M/L was greater in HT, starting from 31 to 45 years range. A significant age–hypertension interaction occurred (
P
=0.0009). In NT, intravascular superoxide emerged in the oldest subgroup, whereas it appeared earlier among HT. Among NT, aged group displayed an increment of collagen fibers versus young group. In HT, collagen deposition was already evident in youngest, with a further enhancement in the aged group. In small arteries, ageing shows a eutrophic vascular remodeling and a reduced nitric oxide availability. Oxidative stress and fibrosis emerge in advanced age. In HT, nitric oxide availability is early reduced, but the progression rate with age is similar. Structural alterations include wide collagen deposition and intravascular reactive oxygen species, and the progression rate with age is steeper.
Collapse
Affiliation(s)
- Rosa Maria Bruno
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Emiliano Duranti
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Chiara Ippolito
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Cristina Segnani
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Nunzia Bernardini
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Giulio Di Candio
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Massimo Chiarugi
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Stefano Taddei
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| | - Agostino Virdis
- From the Histology Unit (C.I., C.S., N.B.), Internal Medicine Unit (R.M.B., E.D., S.T., A.V.) of Department of Clinical and Experimental Medicine, Emergency Surgery Unit (M.C.) of Department of Surgery, Medical, Molecular, and Critical Area Pathology, and General Surgery Unit (G.D.C.) of Department of Oncology Transplantation and New Technologies, University of Pisa, Italy
| |
Collapse
|