1
|
Jin J, Jung M, Sonn SK, Seo S, Suh J, Kweon HY, Moon SH, Jo H, Yoon NH, Oh GT. Peroxiredoxin 3 Deficiency Exacerbates DSS-Induced Acute Colitis via Exosomal miR-1260b-Mediated Barrier Disruption and Proinflammatory Signaling. Antioxid Redox Signal 2024. [PMID: 38970422 DOI: 10.1089/ars.2023.0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Aims: Peroxiredoxin3 (Prdx3) is an intracellular antioxidant enzyme that is specifically localized in mitochondria and protects against oxidative stress by removing mitochondrial reactive oxygen species (ROS). The intestinal epithelium provides a physical and biochemical barrier that segregates host tissues from commensal bacteria to maintain intestinal homeostasis. An imbalance between the cellular antioxidant defense system and oxidative stress has been implicated in the pathogenesis of inflammatory bowel disease (IBD). However, the role of Prdx3 in the intestinal epithelium under intestinal inflammation has not been elucidated. To investigate the potential role of Prdx3 in intestinal inflammation, we used intestinal epithelial cell (IEC)-specific Prdx3-knockout mice. Results: IEC-specific Prdx3-deficient mice showed more severe colitis phenotypes with greater degrees of body weight loss, colon shortening, barrier disruption, mitochondrial damage, and ROS generation in IECs. Furthermore, exosomal miR-1260b was dramatically increased in Prdx3-knockdown colonic epithelial cells. Mechanistically, Prdx3 deficiency promoted intestinal barrier disruption and inflammation via P38-mitogen-activated protein kinase/NFκB signaling. Innovation: This is the first study to report the protective role of Prdx3 in acute colitis using IEC-specific conditional knockout mice. Conclusion: Our study sheds light on the role of exosome-loaded miRNAs, particularly miR-1260b, in IBD. Targeting miR-1260b or modulating exosome-mediated intercellular communication may hold promise as potential therapeutic strategies for managing IBD and restoring intestinal barrier integrity.
Collapse
Affiliation(s)
- Jing Jin
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Moajury Jung
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Seong-Keun Sonn
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | | | - Joowon Suh
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Hyae Yon Kweon
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Shin Hye Moon
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Huiju Jo
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Na Hyeon Yoon
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Goo Taeg Oh
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
- Imvastech Inc., Seoul, Republic of Korea
| |
Collapse
|
2
|
Kim JW, Baek WY, Jung JY, Kim HA, Lee SW, Suh CH. Longitudinal assessment of urinary ALCAM, HPX, and PRDX6 in Korean patients with systemic lupus erythematosus: implications for disease activity monitoring and treatment response. Front Immunol 2024; 15:1369385. [PMID: 38915417 PMCID: PMC11194348 DOI: 10.3389/fimmu.2024.1369385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction This study aimed to demonstrate the potential of activated leukocyte cell adhesion molecule (ALCAM), hemopexin (HPX), and peroxiredoxin 6 (PRDX6) as urine biomarkers for systemic lupus erythematosus (SLE). Methods Urine samples were collected from 138 Korean patients with SLE from the Ajou Lupus Cohort and 39 healthy controls (HC). The concentrations of urine biomarkers were analyzed using enzyme-linked immunosorbent assay kits specific for ALCAM, HPX, and PRDX6, respectively. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic utility, and Pearson's correlation analysis was conducted to assess the relationships between the disease activity and urine biomarkers. Results Patients with SLE and patients with lupus nephritis (LN) showed significantly elevated ALCAM, HPX, and PRDX6 levels compared with HCs. ALCAM, HPX, and PRDX6 showed significant diagnostic values, especially for lupus nephritis (LN), with areas under the receiver operating characteristic curve for LN was 0.850 for ALCAM (95% CI, 0.778-0.921), 0.781 for HPX (95% CI, 0.695-0.867), and 0.714 for PRDX6 (95% CI, 0.617-0.812). Correlation analysis revealed that all proteins were significantly associated with anti-double stranded DNA antibody (ALCAM, r = 0.350, p < 0.001; HPX, r = 0.346, p < 0.001; PRDX6, r = 0.191, p = 0.026) and SLEDAI (ALCAM, r = 0.526, p < 0.001; HPX, r = 0.479, p < 0.001; PRDX6, r = 0.262, p = 0.002). Results from the follow-up of the three biomarker levels in these patients revealed a significant decrease, showing a positive correlation with changes in SLEDAI-2k scores (ALCAM, r = 0.502, p < 0.001; HPX, r = 0.475, p < 0.001; PRDX6, r = 0.245, p = 0.026), indicating their potential as indicators for tracking disease activity. Discussions Urinary ALCAM, HPX, and PRDX6 levels have diagnostic value and reflect disease activity in Korean patients with SLE, emphasizing their potential for non-invasive monitoring and treatment response evaluation.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Wook-Young Baek
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sang-Won Lee
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
3
|
Wang L, Wei Z, Lv L, Xue C. An efficient co-delivery system based on multilayer structural nanoparticles for programmed sequential release of resveratrol and vitamin D3 to combat dextran sodium sulfate-induced colitis in mice. Int J Biol Macromol 2024; 254:127962. [PMID: 37952331 DOI: 10.1016/j.ijbiomac.2023.127962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Multilayer structural nanoparticles (MSNPs) fabricated by layer-by-layer self-assembly were used for the co-encapsulation of resveratrol (Res) and vitamin D3 (Vd). Res and Vd co-encapsulated MSNPs (Res-Vd-MSNPs) were evaluated by appearance, morphology, particle size, ζ potential and encapsulation efficiency (EE). The results showed that Res-Vd-MSNPs were spherical in shape with a particle size of 625.4 nm and a surface charge of +26.1 mV. The EE of Res and Vd was as high as 93.6 % and 90.8 %, respectively. Res-Vd-MSNPs exhibited better stability and lower degradation rate in simulated gastric fluid, allowing the programmed sequential release of Vd and Res in simulated intestinal fluid and simulated colonic fluid, which was also confirmed by in vivo fluorescence imaging of mice. In addition, Res-Vd-MSNPs effectively alleviated the clinical symptoms of dextran sulfate sodium salt (DSS)-induced colitis in mice, including weight loss, diarrhea and fecal bleeding, and it especially exerted a preventive effect on DSS-induced colon tissue damage and colon shortening. Furthermore, Res-Vd-MSNPs suppressed the expression of anti-inflammatory cytokines such as TNF-α, IL-1β and IL-6 and ameliorated DSS-induced oxidative damage, decreased colonic myeloperoxidase (MPO) and nitric oxide (NO) activities and elevated glutathione (GSH) level in DSS-treated mice. This study illustrated that MSNPs were potential carriers for developing the co-delivery system for the synergistic prevention and treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Luhui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China.
| | - Ling Lv
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
4
|
Li N, Wang H, Zhao H, Wang M, Cai J, Hao Y, Yu J, Jiang Y, Lü X, Liu B. Cooperative interactions between Veillonella ratti and Lactobacillus acidophilus ameliorate DSS-induced ulcerative colitis in mice. Food Funct 2023; 14:10475-10492. [PMID: 37934670 DOI: 10.1039/d3fo03898j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Veillonella and Lactobacillus species are key regulators of a healthy gut environment through metabolic cross-feeding, influencing lactic acid and short-chain fatty acid (SCFA) levels, which are crucial for gut health. This study aims to investigate how Veillonella ratti (V. ratti) and Lactobacillus acidophilus (LA) interact with each other and alleviate dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in a mouse model. We assess their metabolic interactions regarding carbon sources through co-culturing in a modified medium. In the in vitro experiments, V. ratti and LA were inoculated in mono-cultures and co-culture, and viable cell counts, OD600, pH, lactic acid, glucose and SCFAs were measured. For the in vivo experiment, 60 C57BL/6 mice were randomly divided into five groups and administered V. ratti and LA alone or in combination via oral gavage (1 × 109 CFU mL-1 per day per mouse) for 14 days. On the seventh day, 2.5% DSS was added to the drinking water to induce colitis. The effects of these probiotics on UC were evaluated by assessing intestinal barrier integrity and intestinal inflammation in the gut microenvironment. In vitro results demonstrated that co-culturing V. ratti with LA significantly increased viable cell numbers, lactic acid production, and SCFA production, while reducing pH and glucose levels in the medium. In vivo findings revealed that intervention with V. ratti, particularly in combination with LA, alleviated symptoms, including weight loss, colon shortening, and tissue damage. These probiotics mitigated intestinal inflammation by down-regulating pro-inflammatory molecules, such as IL-6, IL-1β, IL-γ, iNOS, and IFN-γ, as well as oxidative stress markers, including MDA and MPO. Concurrently, they upregulated the activity of anti-inflammatory enzymes, namely, SOD and GSH, and promoted the production of SCFAs. The combined intervention of V. ratti and LA significantly increased acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and total SCFAs in cecal contents. Furthermore, the intervention of V. ratti and LA increased the abundance of beneficial bacteria, such as Akkermansia, while reducing the abundance of harmful bacteria, such as Escherichia-Shigella and Desulfovibrio, thereby mitigating excessive inflammation. These findings highlight the enhanced therapeutic effects resulting from the interactions between V. ratti and LA, demonstrating the potential of this combined probiotic approach.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Hejing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Huizhu Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Mengyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jin Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yi Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jia Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yun Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
5
|
Almási N, Török S, Al-awar A, Veszelka M, Király L, Börzsei D, Szabó R, Varga C. Voluntary Exercise-Mediated Protection in TNBS-Induced Rat Colitis: The Involvement of NETosis and Prdx Antioxidants. Antioxidants (Basel) 2023; 12:1531. [PMID: 37627526 PMCID: PMC10451893 DOI: 10.3390/antiox12081531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are autoimmune disorders of the gut. It is increasingly clear that voluntary exercise (VE) may exert protection against IBDs, but the exact background mechanism needs to be elucidated. In the present study, we aimed to investigate the possible role of NETosis and the antioxidant peroxiredoxin (Prdx) enzyme family in VE-induced protection. Wistar Han rats were randomly divided into two groups: sedentary (SED) and VE. After the 6-week voluntary wheel running, animals were treated with 2,4,6-trinitrobenzene sulphonic acid (TNBS) as a model of colitis. Here, we found that VE significantly decreased inflammation and ulceration of the colon in the VE TNBS group compared with SED TNBS. We also found that VE significantly decreased the expression of protein arginine deiminase 4 (PAD4) and myeloperoxidase (MPO), and markedly reduced citrullinated histone H3 (citH3) compared with SED TNBS. Furthermore, VE caused a significant increase in the levels of Prdx6 in the control and TNBS groups. Taken together, we found that a prior 6-week VE effectively reduces inflammation in TNBS-induced colitis, and we suggest that the protective effect of VE may be mediated via the inhibition of NETosis and upregulation of Prdx6 antioxidant.
Collapse
Affiliation(s)
- Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Amin Al-awar
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - László Király
- Zala-Cereália Kft, H-8790 Zalaszentgrót-Tüskeszentpéter, Hungary;
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| |
Collapse
|
6
|
Liu Y, Wang P, Hu W, Chen D. New insights into the roles of peroxiredoxins in cancer. Biomed Pharmacother 2023; 164:114896. [PMID: 37210897 DOI: 10.1016/j.biopha.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
Oxidative stress is one of the hallmarks of cancer. Tumorigenesis and progression are accompanied by elevated reactive oxygen species (ROS) levels and adaptive elevation of antioxidant expression levels. Peroxiredoxins (PRDXs) are among the most important antioxidants and are widely distributed in a variety of cancers. PRDXs are involved in the regulation of a variety of tumor cell phenotypes, such as invasion, migration, epithelial-mesenchymal transition (EMT) and stemness. PRDXs are also associated with tumor cell resistance to cell death, such as apoptosis and ferroptosis. In addition, PRDXs are involved in the transduction of hypoxic signals in the TME and in the regulation of the function of other cellular components of the TME, such as cancer-associated fibroblasts (CAFs), natural killer (NK) cells and macrophages. This implies that PRDXs are promising targets for cancer treatment. Of course, further studies are needed to realize the clinical application of targeting PRDXs. In this review, we highlight the role of PRDXs in cancer, summarizing the basic features of PRDXs, their association with tumorigenesis, their expression and function in cancer, and their relationship with cancer therapeutic resistance.
Collapse
Affiliation(s)
- Yan Liu
- First Department of Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Pu Wang
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Weina Hu
- Department of General Practice, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| | - Da Chen
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
7
|
Török S, Almási N, Veszelka M, Börzsei D, Szabó R, Varga C. Protective Effects of H 2S Donor Treatment in Experimental Colitis: A Focus on Antioxidants. Antioxidants (Basel) 2023; 12:antiox12051025. [PMID: 37237891 DOI: 10.3390/antiox12051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic, inflammatory disorders of the gastrointestinal (GI) system, which have become a global disease over the past few decades. It has become increasingly clear that oxidative stress plays a role in the pathogenesis of IBD. Even though several effective therapies exist against IBD, these might have serious side effects. It has been proposed that hydrogen sulfide (H2S), as a novel gasotransmitter, has several physiological and pathological effects on the body. Our present study aimed to investigate the effects of H2S administration on antioxidant molecules in experimental rat colitis. As a model of IBD, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used intracolonically (i.c.) to induce colitis in male Wistar-Hannover rats. Animals were orally treated (2 times/day) with H2S donor Lawesson's reagent (LR). Our results showed that H2S administration significantly decreased the severity of inflammation in the colons. Furthermore, LR significantly suppressed the level of oxidative stress marker 3-nitrotyrosine (3-NT) and caused a significant elevation in the levels of antioxidant GSH, Prdx1, Prdx6, and the activity of SOD compared to TNBS. In conclusion, our results suggest that these antioxidants may offer potential therapeutic targets and H2S treatment through the activation of antioxidant defense mechanisms and may provide a promising strategy against IBD.
Collapse
Affiliation(s)
- Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
8
|
Thapa P, Jiang H, Ding N, Hao Y, Alshahrani A, Lee EY, Fujii J, Wei Q. Loss of Peroxiredoxin IV Protects Mice from Azoxymethane/Dextran Sulfate Sodium-Induced Colorectal Cancer Development. Antioxidants (Basel) 2023; 12:677. [PMID: 36978925 PMCID: PMC10045277 DOI: 10.3390/antiox12030677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Peroxiredoxin IV (Prx4), a typical two-cysteine-containing member of the peroxidase family, functions as an antioxidant to maintain cellular redox homeostasis through the reduction of reactive oxygen species (ROS) via cycles of oxidation-reduction reactions. Under oxidative stress, all Prxs including Prx4 are inactivated as their catalytic cysteines undergo hyperoxidation, and hyperoxidized two-cysteine Prxs can be exclusively repaired and revitalized through the reduction cycle catalyzed by sulfiredoxin (Srx). Previously, we showed that Prx4 is a preferred substrate of Srx, and knockout of Srx in mice leads to resistance to azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon carcinogenesis. To further understand the significance of the Srx/Prx4 axis in colorectal cancer development, Prx4-/- mice were established and subjected to standard AOM/DSS protocol. Compared with wildtype littermates, mice with Prx4-/- genotype had significantly fewer and smaller tumors. Histopathological analysis revealed that loss of Prx4 leads to increased cell death through lipid peroxidation and lower infiltration of inflammatory cells in the knockout tumors compared to wildtype. Treatment with DSS alone also showed decreased infiltration of macrophages and lymphocytes in the colon of knockout mice, suggesting a role for Prx4 in inflammatory response. In addition, loss of Prx4 caused alterations in plasma cytokines and chemokines after DSS and AOM/DSS treatments. These findings suggest that loss of Prx4 protects mice from AOM/DSS-induced colon tumorigenesis. Thus, targeting Prx4 may provide novel strategies for colon cancer prevention and treatment.
Collapse
Affiliation(s)
- Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Eun Y. Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Junichi Fujii
- Department of Biomolecular Function, Yamagata University, Yamagata 990-9585, Japan
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40506, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
9
|
Wang D, Li S, Ma X, Chen X, Tian X, Li X, Chen L, Kang Q, Wang X, Jin P, Lu X, Fu Y, Li J, Sheng J. Immunomodulatory effects of fentanyl and morphine on DSS- and TNBS-induced colitis. Immunopharmacol Immunotoxicol 2022; 44:1044-1057. [PMID: 35848944 DOI: 10.1080/08923973.2022.2102993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Opioid prescription for inflammatory bowel disease (IBD)-related pain is on the rise. However, the use of strong opioids can result in severe complications, and even death, in IBD patients. This study aimed to define the role of fentanyl and morphine, two representative strong opioids, in the pathogenesis of dextran sodium sulfate (DSS)- and 2,4,6-trinitrobenzenesulfonic acid solution (TNBS)-induced colitis. METHOD DSS and TNBS models were induced in C57BL/6J and Balb/c mice, respectively. Disease activity index (DAI), histopathology, enzyme-linked immunosorbent assay (ELISA), multiplex ELISA, and flow cytometry were performed to evaluate the effects of fentanyl and morphine. RESULT Fentanyl exacerbated DSS- and TNBS-induced colitis, while morphine exhibited no significant immunomodulatory effect. Fentanyl and morphine had no obvious effects on the serum levels of adrenocorticotropic hormone (ACTH), glucocorticoid (GC), and prostaglandin E2 (PGE-2) in DSS and TNBS models. Fentanyl elevated the proportions of Th1 cells, μ-opioid receptor (MOR) + Th1 cells, and MOR + macrophages in the colonic mucosa of DSS-treated mice, and enhanced the proportions of Th1 cells, macrophages, MOR + Th1 cells, and MOR + macrophages in the colonic mucosa of TNBS-treated mice. We found that fentanyl upregulated the levels of inflammatory cytokines/chemokines in MOR + macrophages of the colonic lamina propria mononuclear cells (LPMCs) from DSS-treated mice, whereas it had no effect on the expression of most inflammatory cytokines/chemokines in MOR + macrophages in the colonic LPMCs from TNBS-treated mice. CONCLUSION Our findings suggest that fentanyl exacerbates murine colitis via Th1 cell- and macrophage-mediated mechanisms, while morphine exhibits no significant immunomodulatory effect.
Collapse
Affiliation(s)
- Dezhi Wang
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Shanshan Li
- Department of Laboratory, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Xianzong Ma
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing, China.,Chinese PLA General Hospital, Beijing, China
| | - Xi Chen
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoran Tian
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Xuhang Li
- Department of Medicine/GI Division, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Linxiao Chen
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Qian Kang
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Peng Jin
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Xiaojuan Lu
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yanxia Fu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Jianghua Li
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Jianqiu Sheng
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing, China.,Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Essential Roles of Peroxiredoxin IV in Inflammation and Cancer. Molecules 2022; 27:molecules27196513. [PMID: 36235049 PMCID: PMC9573489 DOI: 10.3390/molecules27196513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Peroxiredoxin IV (Prx4) is a 2-Cysteine peroxidase with ubiquitous expression in human tissues. Prx4 scavenges hydrogen peroxide and participates in oxidative protein folding in the endoplasmic reticulum. In addition, Prx4 is secreted outside the cell. Prx4 is upregulated in several cancers and is a potential therapeutic target. We have summarized historical and recent advances in the structure, function and biological roles of Prx4, focusing on inflammatory diseases and cancer. Oxidative stress is known to activate pro-inflammatory pathways. Chronic inflammation is a risk factor for cancer development. Hence, redox enzymes such as Prx4 are important players in the crosstalk between inflammation and cancer. Understanding molecular mechanisms of regulation of Prx4 expression and associated signaling pathways in normal physiological and disease conditions should reveal new therapeutic strategies. Thus, although Prx4 is a promising therapeutic target for inflammatory diseases and cancer, further research needs to be conducted to bridge the gap to clinical application.
Collapse
|
11
|
Liu J, Sun L, Chen D, Huo X, Tian X, Li J, Liu M, Yu Z, Zhang B, Yang Y, Qiu Y, Liu Y, Guo H, Zhou C, Ma X, Xiong Y. Prdx6-induced inhibition of ferroptosis in epithelial cells contributes to liquiritin-exerted alleviation of colitis. Food Funct 2022; 13:9470-9480. [PMID: 35983876 DOI: 10.1039/d2fo00945e] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inhibition of ferroptosis in intestinal epithelial cells ameliorates clinical symptoms and improves endoscopic presentations in inflammatory bowel disease (IBD). Licorice is used worldwide in food and medicine fields. Liquiritin, a flavonoid component in licorice, is an effective substance used as an anti-inflammatory, antioxidant food that has been shown to improve chemically induced colitis. Herein we evaluated the therapeutic effects of liquiritin on colitis and determined whether liquiritin could affect colitis by modulating ferroptosis in epithelial cells. A colitis model was induced in mice by oral administration with 2.5% DSS dissolved in drinking water. The results showed that liquiritin significantly alleviated symptoms, suppressed intestinal inflammation and restored the epithelial barrier function in the colitis mouse model. Liquiritin supplementation upregulated colonic ferritin expression, increased the storage of cellular iron, reduced the cellular iron level and further inhibited ferroptosis in epithelial cells from the colitis model. Pharmacological stimulation of ferroptosis largely blocked liquiritin-induced alleviation of colitis. Peroxiredoxin-6 (Prdx6) expression was significantly decreased in the DSS group, which was reversed by liquiritin treatment. Genetic or pharmacological silencing of Prdx6 largely reversed liquiritin-induced modulation of the ferritin/iron level and ferroptosis in epithelial cells. Molecular docking results showed that liquiritin could bind to Prdx6 through the hydrogen bond interaction with amino acid residues Thr208, Val206 and Pro203. In conclusion, liquiritin treatment largely alleviated DSS induced colitis by inhibiting ferroptosis in epithelial cells. Liquiritin negatively regulated ferroptosis in epithelial cells in colitis by activating Prdx6, increasing the expression of ferritin and subsequently reducing the cellular iron level.
Collapse
Affiliation(s)
- Jinming Liu
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, P.R.China.
| | - Liqun Sun
- Division of Gastroenterology, Dalian University Affiliated Xinhua Hospital, Dalian, 116021, P.R.China.
| | - Dapeng Chen
- Laboratory Animal Center, Dalian Medical University, Dalian, 116000, P.R.China
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, P.R.China.
| | - Xiangge Tian
- Department of Pharmacy, Shenzhen Hospital of Peking University, Shenzhen, 518034, P.R.China
| | - Juan Li
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, P.R.China.
| | - Min Liu
- Division of Gastroenterology, Dalian University Affiliated Xinhua Hospital, Dalian, 116021, P.R.China.
| | - Zhenlong Yu
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, P.R.China. .,College of Pharmacy, Dalian Medical University, Dalian, 116051, P.R.China
| | - Baojing Zhang
- College of Pharmacy, Dalian Medical University, Dalian, 116051, P.R.China
| | - Yuewen Yang
- Laboratory Animal Center, Dalian Medical University, Dalian, 116000, P.R.China
| | - Yang Qiu
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, P.R.China.
| | - Yuejian Liu
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, P.R.China.
| | - Huishu Guo
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, P.R.China.
| | - Changjiang Zhou
- Division of Gastroenterology, Dalian University Affiliated Xinhua Hospital, Dalian, 116021, P.R.China.
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, P.R.China.
| | - Yongjian Xiong
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, P.R.China. .,College of Integrative Medicine, Dalian Medical University, Dalian, 116051, P.R.China
| |
Collapse
|
12
|
Wagner MP, Formaglio P, Gorgette O, Dziekan JM, Huon C, Berneburg I, Rahlfs S, Barale JC, Feinstein SI, Fisher AB, Ménard D, Bozdech Z, Amino R, Touqui L, Chitnis CE. Human peroxiredoxin 6 is essential for malaria parasites and provides a host-based drug target. Cell Rep 2022; 39:110923. [PMID: 35705035 DOI: 10.1016/j.celrep.2022.110923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
The uptake and digestion of host hemoglobin by malaria parasites during blood-stage growth leads to significant oxidative damage of membrane lipids. Repair of lipid peroxidation damage is crucial for parasite survival. Here, we demonstrate that Plasmodium falciparum imports a host antioxidant enzyme, peroxiredoxin 6 (PRDX6), during hemoglobin uptake from the red blood cell cytosol. PRDX6 is a lipid-peroxidation repair enzyme with phospholipase A2 (PLA2) activity. Inhibition of PRDX6 with a PLA2 inhibitor, Darapladib, increases lipid-peroxidation damage in the parasite and disrupts transport of hemoglobin-containing vesicles to the food vacuole, causing parasite death. Furthermore, inhibition of PRDX6 synergistically reduces the survival of artemisinin-resistant parasites following co-treatment of parasite cultures with artemisinin and Darapladib. Thus, PRDX6 is a host-derived drug target for development of antimalarial drugs that could help overcome artemisinin resistance.
Collapse
Affiliation(s)
- Matthias Paulus Wagner
- Institut Pasteur, Université de Paris, Malaria Parasite Biology and Vaccines Unit, Paris, France
| | - Pauline Formaglio
- Institut Pasteur, Université de Paris, Malaria Infection and Immunity Unit, Paris, France
| | - Olivier Gorgette
- Institut Pasteur, Department of Cell Biology and Infection, Centre for Innovation and Technological Research, Ultrastructural Bioimaging Unit, Paris, France
| | - Jerzy Michal Dziekan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Christèle Huon
- Institut Pasteur, Université de Paris, Malaria Parasite Biology and Vaccines Unit, Paris, France
| | - Isabell Berneburg
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre, Justus Liebig University Giessen, Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre, Justus Liebig University Giessen, Giessen, Germany
| | - Jean-Christophe Barale
- Institut Pasteur, Université de Paris, CNRS UMR 3528, Structural Microbiology Unit, Paris, France; Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France
| | | | - Aron B Fisher
- Peroxitech, Inc., Philadelphia, PA, USA; Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Didier Ménard
- Institut Pasteur, Université de Paris, INSERM U1201, Malaria Genetics and Resistance Unit, Paris, France; Dynamics of Host-Pathogen Interactions, EA 7292, IPPTS, Strasbourg University, Strasbourg, France
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rogerio Amino
- Institut Pasteur, Université de Paris, Malaria Infection and Immunity Unit, Paris, France
| | - Lhousseine Touqui
- Cystic Fibrosis, Physiopathology and Phenogenomics, INSERM Unit 938, Saint-Antoine, Paris, France; Institut Pasteur, Université de Paris, Laboratory of Cystic Fibrosis and Chronic Bronchopathies, Paris, France
| | - Chetan E Chitnis
- Institut Pasteur, Université de Paris, Malaria Parasite Biology and Vaccines Unit, Paris, France.
| |
Collapse
|
13
|
Takeshima Y, Iwasaki Y, Nakano M, Narushima Y, Ota M, Nagafuchi Y, Sumitomo S, Okamura T, Elkon K, Ishigaki K, Suzuki A, Kochi Y, Yamamoto K, Fujio K. Immune cell multiomics analysis reveals contribution of oxidative phosphorylation to B-cell functions and organ damage of lupus. Ann Rheum Dis 2022; 81:845-853. [PMID: 35236659 DOI: 10.1136/annrheumdis-2021-221464] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disease. While the long-term prognosis has greatly improved, better long-term survival is still necessary. The type I interferon (IFN) signature, a prominent feature of SLE, is not an ideal therapeutic target or outcome predictor. To explore immunological pathways in SLE more precisely, we performed transcriptomic, epigenomic and genomic analyses using 19 immune cell subsets from peripheral blood. METHODS We sorted 19 immune cell subsets and identified the mRNA expression profiles and genetic polymorphisms in 107 patients with SLE and 92 healthy controls. Combined differentially expressed genes and expression quantitative trait loci analysis was conducted to find key driver genes in SLE pathogenesis. RESULTS We found transcriptomic, epigenetic and genetic importance of oxidative phosphorylation (OXPHOS)/mitochondrial dysfunction in SLE memory B cells. Particularly, we identified an OXPHOS-regulating gene, PRDX6 (peroxiredoxin 6), as a key driver in SLE B cells. Prdx6-deficient B cells showed upregulated mitochondrial respiration as well as antibody production. We revealed OXPHOS signature was associated with type I IFN signalling-related genes (ISRGs) signature in SLE memory B cells. Furthermore, the gene sets related to innate immune signalling among ISRGs presented correlation with OXPHOS and these two signatures showed associations with SLE organ damage as well as specific clinical phenotypes. CONCLUSION This work elucidated the potential prognostic marker for SLE. Since OXPHOS consists of the electron transport chain, a functional unit in mitochondria, these findings suggest the importance of mitochondrial dysfunction as a key immunological pathway involved in SLE.
Collapse
Affiliation(s)
- Yusuke Takeshima
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan.,Department of Functional Genomics and Immunological Diseases, The University of Tokyo, Tokyo, Japan
| | - Yukiko Iwasaki
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan .,Department of Palliative Medicine, Saitama Medical University, Saitama, Japan
| | - Masahiro Nakano
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan
| | - Yuta Narushima
- Research Division, Chugai Pharmaceutical Co Ltd, Kamakura, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan.,Department of Functional Genomics and Immunological Diseases, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan.,Department of Functional Genomics and Immunological Diseases, The University of Tokyo, Tokyo, Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan.,Department of Functional Genomics and Immunological Diseases, The University of Tokyo, Tokyo, Japan
| | - Keith Elkon
- Division of Rheumatology, University of Washington, Seattle, Washington, USA
| | - Kazuyoshi Ishigaki
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, Riken Yokohama Institute, Yokohama, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, Riken Yokohama Institute, Yokohama, Japan
| | - Yuta Kochi
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, Riken Yokohama Institute, Yokohama, Japan.,Department of Genomic Function and Diversity, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, Riken Yokohama Institute, Yokohama, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Epithelial GPR35 protects from Citrobacter rodentium infection by preserving goblet cells and mucosal barrier integrity. Mucosal Immunol 2022; 15:443-458. [PMID: 35264769 PMCID: PMC9038528 DOI: 10.1038/s41385-022-00494-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023]
Abstract
Goblet cells secrete mucin to create a protective mucus layer against invasive bacterial infection and are therefore essential for maintaining intestinal health. However, the molecular pathways that regulate goblet cell function remain largely unknown. Although GPR35 is highly expressed in colonic epithelial cells, its importance in promoting the epithelial barrier is unclear. In this study, we show that epithelial Gpr35 plays a critical role in goblet cell function. In mice, cell-type-specific deletion of Gpr35 in epithelial cells but not in macrophages results in goblet cell depletion and dysbiosis, rendering these animals more susceptible to Citrobacter rodentium infection. Mechanistically, scRNA-seq analysis indicates that signaling of epithelial Gpr35 is essential to maintain normal pyroptosis levels in goblet cells. Our work shows that the epithelial presence of Gpr35 is a critical element for the function of goblet cell-mediated symbiosis between host and microbiota.
Collapse
|
15
|
Wu W, Li WX, Huang CH. Phospholipase A 2, a nonnegligible enzyme superfamily in gastrointestinal diseases. Biochimie 2021; 194:79-95. [PMID: 34974145 DOI: 10.1016/j.biochi.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Gastrointestinal tract is important for digestion, absorption, detoxification and immunity. Gastrointestinal diseases are mainly caused by the imbalance of protective and attacking factors in gastrointestinal mucosa, which can seriously harm human health. Phospholipase A2 (PLA2) is a large family closely involved in lipid metabolism and is found in almost all human cells. A growing number of studies have revealed that its metabolites are deeply implicated in various inflammatory pathways and also regulates the maintenance of numerous biological events such as dietary digestion, membrane remodeling, barrier action, and host immunity. In addition to their phospholipase activity, some members of the superfamily also have other catalytic activities. Based on the in-depth effects of phospholipase A2 on bioactive lipid metabolism and inflammatory cytokines, PLA2 and its metabolites are likely to be involved in the pathogenesis, development or prevention of gastrointestinal diseases. Therefore, this review will focus on the physiological and pathogenic roles of several important PLA2 enzymes in the gastrointestinal tract, and reveals the potential of PLA2 as a therapeutic target for gastrointestinal diseases.
Collapse
Affiliation(s)
- Wei Wu
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Xuan Li
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Chun-Hong Huang
- School of Basic Medical Sciences, 330006, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
16
|
Salovska B, Kondelova A, Pimkova K, Liblova Z, Pribyl M, Fabrik I, Bartek J, Vajrychova M, Hodny Z. Peroxiredoxin 6 protects irradiated cells from oxidative stress and shapes their senescence-associated cytokine landscape. Redox Biol 2021; 49:102212. [PMID: 34923300 PMCID: PMC8688892 DOI: 10.1016/j.redox.2021.102212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Cellular senescence is a complex stress response defined as an essentially irreversible cell cycle arrest mediated by the inhibition of cell cycle-specific cyclin dependent kinases. The imbalance in redox homeostasis and oxidative stress have been repeatedly observed as one of the hallmarks of the senescent phenotype. However, a large-scale study investigating protein oxidation and redox signaling in senescent cells in vitro has been lacking. Here we applied a proteome-wide analysis using SILAC-iodoTMT workflow to quantitatively estimate the level of protein sulfhydryl oxidation and proteome level changes in ionizing radiation-induced senescence (IRIS) in hTERT-RPE-1 cells. We observed that senescent cells mobilized the antioxidant system to buffer the increased oxidation stress. Among the antioxidant proteins with increased relative abundance in IRIS, a unique 1-Cys peroxiredoxin family member, peroxiredoxin 6 (PRDX6), was identified as an important contributor to protection against oxidative stress. PRDX6 silencing increased ROS production in senescent cells, decreased their resistance to oxidative stress-induced cell death, and impaired their viability. Subsequent SILAC-iodoTMT and secretome analysis after PRDX6 silencing showed the downregulation of PRDX6 in IRIS affected protein secretory pathways, decreased expression of extracellular matrix proteins, and led to unexpected attenuation of senescence-associated secretory phenotype (SASP). The latter was exemplified by decreased secretion of pro-inflammatory cytokine IL-6 which was also confirmed after treatment with an inhibitor of PRDX6 iPLA2 activity, MJ33. In conclusion, by combining different methodological approaches we discovered a novel role of PRDX6 in senescent cell viability and SASP development. Our results suggest PRDX6 could have a potential as a drug target for senolytic or senomodulatory therapy. SILAC-iodoTMT is a powerful tool to quantify redox imbalance in IRIS. Senescence in hTERT-RPE-1 cells is not accompanied by bulk cysteine oxidation. Antioxidant proteins are upregulated in senescent hTERT-RPE-1 cells. PRDX6 silencing affects redox homeostasis and viability of senescent cells. PRDX6 silencing alters secretome of senescent RPE-1 cells and suppresses IL-6.
Collapse
Affiliation(s)
- Barbora Salovska
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandra Kondelova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Pimkova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; BIOCEV, 1st Medical Faculty, Charles University, Vestec, Czech Republic
| | - Zuzana Liblova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslav Pribyl
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marie Vajrychova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
17
|
Li L, Cheng L, Li Z, Li C, Hong Y, Gu Z. Butyrylated starch protects mice from DSS-induced colitis: combined effects of butyrate release and prebiotic supply. Food Funct 2021; 12:11290-11302. [PMID: 34635904 DOI: 10.1039/d1fo01913a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Butyrate has recently emerged as a promising substance for the therapy of colitis. To overcome the shortcomings implicated in the existing delivery systems of butyrate, we utilized butyrylated starch to specifically deliver butyrate to the colon. Herein, we describe the stable loading of butyrate via chemical bonds with a heterogeneous distribution throughout the particle. Butyrylated starch supply increased butyrate as well as total short-chain fatty acid contents at the end of the intervention period. Moreover, butyrylated starch showed multiple effects on the suppression of DSS-induced colitis. From the observation of the gut-liver axis, reduced hepatic inflammation and hepatocyte damage further confirmed alleviated colonic inflammation. Given that butyrylated starch has the combined effects of specific release of butyrate in the colon and extra supply of fermentable substrates for gut microbiota, this work provides an effective strategy for the assistant therapy of colitis.
Collapse
Affiliation(s)
- Lingjin Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China.,Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China.,Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China.,Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China.,Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. .,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China.,Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Liao J, Zhang Y, Chen X, Zhang J. The Roles of Peroxiredoxin 6 in Brain Diseases. Mol Neurobiol 2021; 58:4348-4364. [PMID: 34013449 DOI: 10.1007/s12035-021-02427-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Peroxiredoxin 6 (PRDX6), the only mammalian 1-Cys member of the peroxiredoxins (PRDXs) family, has multiple functions of glutathione peroxidase (Gpx) activity, acidic calcium-independent phospholipase (aiPLA2) activity, and lysophosphatidylcholine acyl transferase (LPCAT) activity. It has been documented to be involved in redox homeostasis, phospholipid turnover, glycolipid metabolism, and cellular signaling. Here, we reviewed the characteristics of the available Prdx6 genetic mouse models and the research progresses made with regard to PRDX6 in neuropsychiatric disorders, including neurodegenerative diseases, brain aging, stroke, neurotrauma, gliomas, major depressive disorder, drug addiction, post-traumatic stress disorder, and schizophrenia. The present review highlights the important roles of PRDX6 in neuropsychiatric disorders and may provide novel insights for the development of effective pharmacological treatments and genetic therapies.
Collapse
Affiliation(s)
- Jiangfeng Liao
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China
| | - Yusi Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China. .,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China.
| | - Jing Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China. .,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
19
|
Kaya B, Doñas C, Wuggenig P, Diaz OE, Morales RA, Melhem H, Hernández PP, Kaymak T, Das S, Hruz P, Franc Y, Geier F, Ayata CK, Villablanca EJ, Niess JH. Lysophosphatidic Acid-Mediated GPR35 Signaling in CX3CR1 + Macrophages Regulates Intestinal Homeostasis. Cell Rep 2021; 32:107979. [PMID: 32755573 DOI: 10.1016/j.celrep.2020.107979] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/23/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Single-nucleotide polymorphisms in the gene encoding G protein-coupled receptor 35 (GPR35) are associated with increased risk of inflammatory bowel disease. However, the mechanisms by which GPR35 modulates intestinal immune homeostasis remain undefined. Here, integrating zebrafish and mouse experimental models, we demonstrate that intestinal Gpr35 expression is microbiota dependent and enhanced upon inflammation. Moreover, murine GPR35+ colonic macrophages are characterized by enhanced production of pro-inflammatory cytokines. We identify lysophosphatidic acid (LPA) as a potential endogenous ligand produced during intestinal inflammation, acting through GPR35 to induce tumor necrosis factor (Tnf) expression in macrophages. Mice lacking Gpr35 in CX3CR1+ macrophages aggravate colitis when exposed to dextran sodium sulfate, which is associated with decreased transcript levels of the corticosterone-generating gene Cyp11b1 and macrophage-derived Tnf. Administration of TNF in these mice restores Cyp11b1 expression and intestinal corticosterone production and ameliorates DSS-induced colitis. Our findings indicate that LPA signals through GPR35 in CX3CR1+ macrophages to maintain TNF-mediated intestinal homeostasis.
Collapse
Affiliation(s)
- Berna Kaya
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Cristian Doñas
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden
| | - Philipp Wuggenig
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Oscar E Diaz
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden
| | - Rodrigo A Morales
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden
| | - Hassan Melhem
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | | | - Pedro P Hernández
- Institut Curie, PSL Research University, INSERM U934/CNRS UMR3215, Development and Homeostasis of Mucosal Tissues Group, 75005 Paris, France
| | - Tanay Kaymak
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Srustidhar Das
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden
| | - Petr Hruz
- University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital of Basel, 4031 Basel, Switzerland
| | - Yannick Franc
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1011 Lausanne, Switzerland
| | - Florian Geier
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; Swiss Institute of Bioinformatics, 4031 Basel, Switzerland
| | - C Korcan Ayata
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center for Molecular Medicine (CMM), 17176 Stockholm, Sweden.
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
20
|
Zhang Q, Hu Y, Hu JE, Ding Y, Shen Y, Xu H, Chen H, Wu N. Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis. Life Sci 2021; 278:119529. [PMID: 33894270 DOI: 10.1016/j.lfs.2021.119529] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/19/2023]
Abstract
Glomerular podocyte damage is considered to be one of the main mechanisms leading to Diabetic nephropathy (DN). However, the relevant mechanism of podocyte injury is not yet clear. This study aimed to investigate the effect of peroxiredoxin 6 (Prdx6) on the pathogenesis of podocyte injury induced by high glucose (HG). The mouse glomerular podocyte MPC5 was stimulated with 30 nM glucose, and the Prdx6 overexpression vector or specificity protein 1 (Sp1) overexpression vector was transfected into MPC5 cells before the high glucose stimulation. As results, HG treatment significantly reduced the expression of Prdx6 and Sp1 in MPC5 cells. Prdx6 overexpression increased cell viability, while inhibited podocyte death, inflammation and podocyte destruction in HG-induced MPC5 cells. Prdx6 overexpression inhibited HG-induced ROS and MDA production, while restored SOD and GSH activity in MPC5 cells. Prdx6 overexpression also eliminated ferroptosis caused by HG, which was reflected in the suppression of iron accumulation and the increase in SLC7A11 and GPX4 expression. The improvement effect of Prdx6 on HG-induced podocyte damage could be eliminated by erastin. Moreover, Sp1 could bind to the three Sp1 response elements in the Prdx6 promoter, thereby directly regulating the transcriptional activation of Prdx6 in podocytes. Silencing Sp1 could eliminate the effect of Prdx6 on HG-induced podocyte damage. Further, Prdx6 overexpression attenuated renal injuries in streptozotocin-induced DN mice. Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis, which may provide new insights for the study of the mechanism of DN.
Collapse
Affiliation(s)
- Qianjin Zhang
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China.
| | - Yichuan Hu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Jin-E Hu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Ying Ding
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Yanqiu Shen
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Hong Xu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Huiqin Chen
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| | - Ning Wu
- Department of Endocrinology, Shuyang People's Hospital, The Affiliated Shuyang Hospital of Xuzhou Medical University, China
| |
Collapse
|
21
|
Phasuk S, Jasmin S, Pairojana T, Chang HK, Liang KC, Liu IY. Lack of the peroxiredoxin 6 gene causes impaired spatial memory and abnormal synaptic plasticity. Mol Brain 2021; 14:72. [PMID: 33874992 PMCID: PMC8056661 DOI: 10.1186/s13041-021-00779-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Peroxiredoxin 6 (PRDX6) is expressed dominantly in the astrocytes and exerts either neuroprotective or neurotoxic effects in the brain. Although PRDX6 can modulate several signaling cascades involving cognitive functions, its physiological role in spatial memory has not been investigated yet. This study aims to explore the function of the Prdx6 gene in spatial memory formation and synaptic plasticity. We first tested Prdx6-/- mice on a Morris water maze task and found that their memory performance was defective, along with reduced long-term potentiation (LTP) in CA3-CA1 hippocampal synapses recorded from hippocampal sections of home-caged mice. Surprisingly, after the probe test, these knockout mice exhibited elevated hippocampal LTP, higher phosphorylated ERK1/2 level, and decreased reactive astrocyte markers. We further reduced ERK1/2 phosphorylation by administering MEK inhibitor, U0126, into Prdx6-/- mice before the probe test, which reversed their spatial memory deficit. This study is the first one to report the role of PRDX6 in spatial memory and synaptic plasticity. Our results revealed that PRDX6 is necessary for maintaining spatial memory by modulating ERK1/2 phosphorylation and astrocyte activation.
Collapse
Affiliation(s)
- Sarayut Phasuk
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sureka Jasmin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Tanita Pairojana
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hsueh-Kai Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kai-Chi Liang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ingrid Y Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
22
|
Almási N, Török S, Valkusz Z, Tajti M, Csonka Á, Murlasits Z, Pósa A, Varga C, Kupai K. Sigma-1 Receptor Engages an Anti-Inflammatory and Antioxidant Feedback Loop Mediated by Peroxiredoxin in Experimental Colitis. Antioxidants (Basel) 2020; 9:antiox9111081. [PMID: 33158023 PMCID: PMC7692579 DOI: 10.3390/antiox9111081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic inflammatory condition of the gastrointestinal tract. Since the treatment of IBD is still an unresolved issue, we designed our study to investigate the effect of a novel therapeutic target, sigma-1 receptor (σ1R), considering its ability to activate antioxidant molecules. As a model, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used to induce colitis in Wistar–Harlan male rats. To test the beneficial effects of σ1R, animals were treated intracolonically (i.c.): (1) separately with an agonist (fluvoxamine (FLV)), (2) with an antagonist of the receptor (BD1063), or (3) as a co-treatment. Our results showed that FLV significantly decreased the severity of inflammation and increased the body weight of the animals. On the contrary, simultaneous treatment of FLV with BD1063 diminished the beneficial effects of FLV. Furthermore, FLV significantly enhanced the levels of glutathione (GSH) and peroxiredoxin 1 (PRDX1) and caused a significant reduction in 3-nitrotyrosine (3-NT) levels, the effects of which were abolished by co-treatment with BD1063. Taken together, our results suggest that the activation of σ1R in TNBS-induced colitis through FLV may be a promising therapeutic strategy, and its protective effect seems to involve the antioxidant pathway system.
Collapse
Affiliation(s)
- Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| | - Zsuzsanna Valkusz
- Department of Medicine, Medical Faculty, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6720 Szeged, Hungary; (Z.V.); (M.T.)
| | - Máté Tajti
- Department of Medicine, Medical Faculty, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6720 Szeged, Hungary; (Z.V.); (M.T.)
| | - Ákos Csonka
- Department of Traumatology, University of Szeged, H-6725 Szeged, Hungary;
| | - Zsolt Murlasits
- Laboratory Animals Research Center, Qatar University, Doha 2713, Qatar;
| | - Anikó Pósa
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
- Interdisciplinary Excellence Center, University of Szeged, H-6726 Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
| | - Krisztina Kupai
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (N.A.); (S.T.); (A.P.); (C.V.)
- Department of Medicine, Medical Faculty, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6720 Szeged, Hungary; (Z.V.); (M.T.)
- Correspondence: ; Tel.: +36-6254-4884
| |
Collapse
|
23
|
Lee YJ. Knockout Mouse Models for Peroxiredoxins. Antioxidants (Basel) 2020; 9:antiox9020182. [PMID: 32098329 PMCID: PMC7070531 DOI: 10.3390/antiox9020182] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Peroxiredoxins (PRDXs) are members of a highly conserved peroxidase family and maintain intracellular reactive oxygen species (ROS) homeostasis. The family members are expressed in most organisms and involved in various biological processes, such as cellular protection against ROS, inflammation, carcinogenesis, atherosclerosis, heart diseases, and metabolism. In mammals, six PRDX members have been identified and are subdivided into three subfamilies: typical 2-Cys (PRDX1, PRDX2, PRDX3, and PRDX4), atypical 2-Cys (PRDX5), and 1-Cys (PRDX6) subfamilies. Knockout mouse models of PRDXs have been developed to investigate their in vivo roles. This review presents an overview of the knockout mouse models of PRDXs with emphases on the biological and physiological changes of these model mice.
Collapse
Affiliation(s)
- Young Jae Lee
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea
| |
Collapse
|
24
|
Mei Y, Wang Z, Zhang Y, Wan T, Xue J, He W, Luo Y, Xu Y, Bai X, Wang Q, Huang Y. FA-97, a New Synthetic Caffeic Acid Phenethyl Ester Derivative, Ameliorates DSS-Induced Colitis Against Oxidative Stress by Activating Nrf2/HO-1 Pathway. Front Immunol 2020; 10:2969. [PMID: 31969881 PMCID: PMC6960141 DOI: 10.3389/fimmu.2019.02969] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic idiopathic inflammatory disorder of gastro-intestinal tract, lacking effective drug targets and medications. Caffeic acid phenethyl ester (CAPE), a phenolic constituent derived from propolis, has been reported to be a potential therapeutic agent for IBD with low water solubility and poor bioavailability. In this study, we synthesized a new CAPE derivative (FA-97) and aimed to investigate the effect of FA-97 on DSS-induced colitis. Here, we found that FA-97 attenuated body weight loss, colon length shortening and colonic pathological damage in colitis mice, as well as inhibited inflammatory cell infiltration and expression of pro-inflammatory cytokines in colons. In addition, FA-97 reduced ROS production and MDA generation, while total antioxidant capacity both in DSS-induced colitis mice and LPS-stimulated primary BMDMs and RAW 264.7 cells were enhanced. Mechanically, FA-97 activated Nrf2 followed by increased HO-1 and NQO-1 and down-regulated nuclear levels of p65 and c-Jun, to suppress DSS-induced colonic oxidative stress. Moreover, FA-97 decreased pro-inflammatory cytokine expression and increased the antioxidant defenses in RAW 264.7 via Nrf2 activation. In general, this study reveals that FA-97 activates Nrf2/HO-1 pathway to eventually alleviate DSS-induced colitis against oxidative stress, which has potential activity and may serve as a candidate for IBD therapy.
Collapse
Affiliation(s)
- Yu Mei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zihao Wang
- Centre of Clinical Research for Chinese Medicine, School of Chinese Medicine, Institute of Brain and Gut Axis (IBAG), Hong Kong Baptist University, Kowloon Tong, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Yifan Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Wan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jincheng Xue
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yijun Xu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Bai
- Southwestern Medical University Affiliated Chinese Medicine Hospital, Quzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Takagi T, Homma T, Fujii J, Shirasawa N, Yoriki H, Hotta Y, Higashimura Y, Mizushima K, Hirai Y, Katada K, Uchiyama K, Naito Y, Itoh Y. Elevated ER stress exacerbates dextran sulfate sodium-induced colitis in PRDX4-knockout mice. Free Radic Biol Med 2019; 134:153-164. [PMID: 30578917 DOI: 10.1016/j.freeradbiomed.2018.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Peroxiredoxin 4 (PRDX4), a secretory protein that is preferentially retained in the endoplasmic reticulum (ER), is encoded by a gene located on the X chromosome and highly expressed in colonic tissue. In this study, we investigated the role of PRDX4 by means of male PRDX4-knockout (PRDX4-/y) mice in the development of intestinal inflammation using a dextran sulfate sodium (DSS)-induced colitis model. MATERIALS AND METHODS Acute colitis was induced with DSS (2.5% in drinking water) in wild-type (WT) and PRDX4-/y male C57BL/6 mice. Histological and biochemical analyses were performed on the colonic tissues. RESULTS PRDX4 was mainly localized in the colonic epithelial cells in WT mice. The disease activity index (DAI) scores of PRDX4-/y mice were significantly higher compared to those of WT mice. Specifically, PRDX4-/y mice showed marked body weight loss and shortening of colon length compared to WT mice, whereas the myeloperoxidase levels were increased in PRDX4-/y compared to WT mice. In addition, the mRNA expression levels of TNF-α and IFN-γ were significantly higher in the colonic mucosa of PRDX4-/y compared to WT mice. Moreover, the levels of CHOP and activated caspase 3 were higher in the colonic tissues of PRDX4-/y compared to WT mice following treatment with DSS. The ER also showed greater expansion in PRDX4-/y than WT mice, which was consistent with severe ER stress under PRDX4 deficiency. CONCLUSION Our results demonstrated that the lack of PRDX4 aggravated the colonic mucosal damage induced by DSS. Because PRDX4 functions as an ER thiol oxidase as well as an antioxidant, DSS induced oxidative damage and ER stress to a greater degree in PRDX4-/y than WT mice. These findings suggest that PRDX4 may represent a novel therapeutic molecule in intestinal inflammation.
Collapse
Affiliation(s)
- Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Nobuyuki Shirasawa
- Department of Rehabilitation, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai 981-8551, Japan
| | - Hiroyuki Yoriki
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yuma Hotta
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, Nonoichi 921-8836, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yasuko Hirai
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazuhiro Katada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
26
|
Peroxiredoxin6 in Endothelial Signaling. Antioxidants (Basel) 2019; 8:antiox8030063. [PMID: 30871234 PMCID: PMC6466833 DOI: 10.3390/antiox8030063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Peroxiredoxins (Prdx) are a ubiquitous family of highly conserved antioxidant enzymes with a cysteine residue that participate in the reduction of peroxides. This family comprises members Prdx1–6, of which Peroxiredoxin 6 (Prdx6) is unique in that it is multifunctional with the ability to neutralize peroxides (peroxidase activity) and to produce reactive oxygen species (ROS) via its phospholipase (PLA2) activity that drives assembly of NADPH oxidase (NOX2). From the crystal structure, a C47 residue is responsible for peroxidase activity while a catalytic triad (S32, H26, and D140) has been identified as the active site for its PLA2 activity. This paradox of being an antioxidant as well as an oxidant generator implies that Prdx6 is a regulator of cellular redox equilibrium (graphical abstract). It also indicates that a fine-tuned regulation of Prdx6 expression and activity is crucial to cellular homeostasis. This is specifically important in the endothelium, where ROS production and signaling are critical players in inflammation, injury, and repair, that collectively signal the onset of vascular diseases. Here we review the role of Prdx6 as a regulator of redox signaling, specifically in the endothelium and in mediating various pathologies.
Collapse
|
27
|
Abstract
Redox signalling in the gastrointestinal mucosa is held in an intricate balance. Potent microbicidal mechanisms can be used by infiltrating immune cells, such as neutrophils, to protect compromised mucosae from microbial infection through the generation of reactive oxygen species. Unchecked, collateral damage to the surrounding tissue from neutrophil-derived reactive oxygen species can be detrimental; thus, maintenance and restitution of a breached intestinal mucosal barrier are paramount to host survival. Redox reactions and redox signalling have been studied for decades with a primary focus on contributions to disease processes. Within the past decade, an upsurge of exciting findings have implicated subtoxic levels of oxidative stress in processes such as maintenance of mucosal homeostasis, the control of protective inflammation and even regulation of tissue wound healing. Resident gut microbial communities have been shown to trigger redox signalling within the mucosa, which expresses similar but distinct enzymes to phagocytes. At the fulcrum of this delicate balance is the colonic mucosal epithelium, and emerging evidence suggests that precise control of redox signalling by these barrier-forming cells may dictate the outcome of an inflammatory event. This Review will address both the spectrum and intensity of redox activity pertaining to host-immune and host-microbiota crosstalk during homeostasis and disease processes in the gastrointestinal tract.
Collapse
|
28
|
Gao Y, Bai D, Zhao Y, Zhu Q, Zhou Y, Li Z, Lu N. LL202 ameliorates colitis against oxidative stress of macrophage by activation of the Nrf2/HO‐1 pathway. J Cell Physiol 2018; 234:10625-10639. [DOI: 10.1002/jcp.27739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Dongsheng Bai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Qin Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Yihui Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Zhiyu Li
- Department of Medicinal Chemistry China Pharmaceutical University Nanjing China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| |
Collapse
|
29
|
Cellular Stress Responses and Gut Microbiota in Inflammatory Bowel Disease. Gastroenterol Res Pract 2018; 2018:7192646. [PMID: 30026758 PMCID: PMC6031203 DOI: 10.1155/2018/7192646] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Progresses in the past two decades have greatly expanded our understanding of inflammatory bowel disease (IBD), an incurable disease with multifaceted and challenging clinical manifestations. The pathogenesis of IBD involves multiple processes on the cellular level, which include the stress response signaling such as endoplasmic reticulum (ER) stress, oxidative stress, and hypoxia. Under physiological conditions, the stress responses play key roles in cell survival, mucosal barrier integrity, and immunomodulation. However, they can also cause energy depletion, trigger cell death and tissue injury, promote inflammatory response, and drive the progression of clinical disease. In recent years, gut microflora has emerged as an essential pathogenic factor and therapeutic target for IBD. Altered compositional and metabolic profiles of gut microbiota, termed dysbiosis, are associated with IBD. Recent studies, although limited, have shed light on how ER stress, oxidative stress, and hypoxic stress interact with gut microorganisms, a potential source of stress in the microenvironment of gastrointestinal tract. Our knowledge of cellular stress responses in intestinal homeostasis as well as their cross-talks with gut microbiome will further our understanding of the pathogenesis of inflammatory bowel disease and probably open avenues for new therapies.
Collapse
|
30
|
Lu D, Wang W, Liu J, Qi L, Zhuang R, Zhuo J, Zhang X, Xu X, Zheng S. Peroxiredoxins in inflammatory liver diseases and ischemic/reperfusion injury in liver transplantation. Food Chem Toxicol 2018; 113:83-89. [PMID: 29360557 DOI: 10.1016/j.fct.2018.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/05/2023]
Abstract
Peroxiredoxins (Prxs) belong to the superfamily of thiol-dependent peroxidases, and remove reactive oxygen species (ROS) and other oxidative stress products. The expression and activity of Prxs can be substantially affected by stimuli from the microenvironment, and in turn regulate cytokine secretion in the context of inflammation in both peroxidase-dependent and -independent pathways. Prxs translocate to mitochondria and are hyperoxidized during acute liver damage, and attenuate intracellular ROS accumulation through their peroxidase activity. In particularly, Prx1 modulates the microenvironment in liver injuries by reducing adhesion molecule expression in vascular endothelial cells and inhibiting the inflammatory response and adhesion of macrophages. Prxs have potent prosurvival effects against ROS in ischemic/reperfusion (I/R) injury, but Prxs released from necrotic cells increase secretion of inflammatory cytokines by macrophages through TLR2 and 4 activation, which promotes cell death. Prxs can be used as biomarkers to evaluate I/R injury and predict graft survival in liver transplantation. Prxs are modulated in various types of chronic hepatitis and hepatosteatosis, and mediate disease progression. Alcohol administration increases oxidization and inactivation of Prxs in mice because of oxidative stress. In conclusion, Prxs are essential mediators and biomarkers in inflammatory liver diseases and I/R injury.
Collapse
Affiliation(s)
- Di Lu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wei Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jingfeng Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ling Qi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Runzhou Zhuang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianyong Zhuo
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xuanyu Zhang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Shusen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|