1
|
Fletcher EJ, Stubblefield WS, Huff J, Santacruz-Márquez R, Laws M, Brehm E, Flaws JA. Prenatal exposure to an environmentally relevant phthalate mixture alters serum cytokine levels and inflammatory markers in the F1 mouse ovary. Toxicol Sci 2024; 201:26-37. [PMID: 38954831 PMCID: PMC11347776 DOI: 10.1093/toxsci/kfae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Phthalates are used as plasticizers and solvents in consumer products. Virtually 100% of the US population has measurable exposure levels to phthalates, however, the mechanisms by which prenatal exposure to phthalate mixtures affects reproductive health in the offspring remain unclear. Thus, this study tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture promotes inflammation in F1 ovarian tissue. Pregnant CD-1 dams were dosed orally with vehicle control (corn oil) or phthalate mixture (20 μg/kg/d, 200 μg/kg/d, 200 mg/kg/d, 500 mg/kg/d). Pregnant dams delivered pups naturally and ovaries and sera from the F1 females were collected at postnatal day (PND) 21, PND 60, 3 mo, and 6 mo. Sera were used to measure levels of C-reactive protein (CRP). Ovaries and sera were used for cytokine array analysis. RNA was isolated from F1 ovaries and used to quantify expression of selected cytokine genes. Prenatal exposure to the mixture significantly increased the levels of CRP at 200 µg/kg/d on PND 21 compared with controls. The mixture altered 6 immune factors in sera at PND 21 and 33 immune factors in the ovary and sera at 6 mo compared with controls. The mixture increased ovarian expression of cytokines at PND 21 and decreased ovarian expression of cytokines at 6 mo compared with controls. These data suggest that prenatal exposure to a phthalate mixture interferes with the immune response in F1 female mice long after initial exposure.
Collapse
Affiliation(s)
- Endia J Fletcher
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Winter S Stubblefield
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Justin Huff
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Ramsés Santacruz-Márquez
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Mary Laws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Emily Brehm
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| |
Collapse
|
2
|
Santacruz-Márquez R, Safar AM, Laws MJ, Meling DD, Liu Z, Kumar TR, Nowak RA, Raetzman LT, Flaws JA. The effects of short-term and long-term phthalate exposures on ovarian follicle growth dynamics and hormone levels in female mice†. Biol Reprod 2024; 110:198-210. [PMID: 37812459 PMCID: PMC10790346 DOI: 10.1093/biolre/ioad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Di(2-ethylhexyl) phthalate and diisononyl phthalate are widely used as plasticizers in polyvinyl chloride products. Short-term exposures to phthalates affect hormone levels, ovarian follicle populations, and ovarian gene expression. However, limited data exist regarding the effects of long-term exposure to phthalates on reproductive functions. Thus, this study tested the hypothesis that short-term and long-term exposure to di(2-ethylhexyl) phthalate or diisononyl phthalate disrupts follicle dynamics, ovarian and pituitary gene expression, and hormone levels in female mice. Adult CD-1 female mice were exposed to vehicle, di(2-ethylhexyl) phthalate, or diisononyl phthalate (0.15 ppm, 1.5 ppm, or 1500 ppm) via the chow for 1 or 6 months. Short-term exposure to di(2-ethylhexyl) phthalate (0.15 ppm) and diisononyl phthalate (1.5 ppm) decreased serum follicle-stimulating hormone levels compared to control. Long-term exposure to di(2-ethylhexyl) phthalate and diisononyl phthalate (1500 ppm) increased the percentage of primordial follicles and decreased the percentages of preantral and antral follicles compared to control. Both phthalates increased follicle-stimulating hormone levels (di(2-ethylhexyl) phthalate at 1500 ppm; diisononyl phthalate at 1.5 ppm) and decreased luteinizing hormone levels (di(2-ethylhexyl) phthalate at 0.15 and 1.5 ppm; diisononyl phthalate at 1.5 ppm and 1500 ppm) compared to control. Furthermore, both phthalates altered the expression of pituitary gonadotropin subunit genes (Cga, Fshb, and Lhb) and a transcription factor (Nr5a1) that regulates gonadotropin synthesis. These data indicate that long-term exposure to di(2-ethylhexyl) phthalate and diisononyl phthalate alters follicle growth dynamics in the ovary and the expression of gonadotropin subunit genes in the pituitary and consequently luteinizing hormone and follicle-stimulating hormone synthesis.
Collapse
Affiliation(s)
- Ramsés Santacruz-Márquez
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adira M Safar
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Zhenghui Liu
- Division of Reproductive Sciences, Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Lori T Raetzman
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Alhelaisi A, Alrezaki A, Nahdi S, Aldahmash W, Alwasel S, Harrath AH. Early-Life Exposure to the Mycotoxin Fumonisin B1 and Developmental Programming of the Ovary of the Offspring: The Possible Role of Autophagy in Fertility Recovery. TOXICS 2023; 11:980. [PMID: 38133381 PMCID: PMC10747440 DOI: 10.3390/toxics11120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Mycotoxins are produced by more than one hundred fungi and produce secondary metabolites that contaminate various agricultural commodities, especially rice and corn. Their presence in the food chain is considered a serious problem worldwide. In recent years, a link between exposure to mycotoxins and impaired fertility has been suggested. Consequently, it has become vital to investigate the interactive effects of these mycotoxins on ovarian function. In this study, we investigated the intergenerational effects of the mycotoxin fumonisin B1 (FB1) on ovarian structure and function. Virgin Wistar albino female rats were separated into control and FB1 treatment groups and examined from day 6 of pregnancy until delivery (20 and 50 mg/kg b.w./day). The obtained female rats of the first (F1) and second generations (F2) were euthanized at 4 weeks of age, and ovary samples were collected. We found that the ovary weight index increased with the high dose of the treatment (50 mg/kg b.w./day) among both F1 and F2, in a manner similar to that observed in polycystic ovary syndrome. As expected, FB1 at a high dose (50 mg/kg b.w.) reduced the number of primordial follicles in F1 and F2, leading to an accelerated age-related decline in reproductive capacity. Moreover, it reduced the fertility rate among the F1 female rats by affecting follicle growth and development, as the number of secondary and tertiary follicles decreased. Histopathological changes were evidenced by the altered structures of most of the growing follicle oocytes, as revealed by a thinning irregular zona pellucida and pyknosis in granulosa cells. These findings are concomitant with steroidogenesis- and folliculogenesis-related gene expression, as evidenced by the decrease in CYP19 activity and estrogen receptor beta (ESR2) gene expression. Additionally, GDF-9 mRNA levels were significantly decreased, and IGF-1 mRNA levels were significantly increased. However, the results from the ovaries of the F2 treatment groups were different and unexpected. While there was no significant variation in CYP19 activity compared to the control, the ESR2 significantly increased, leading to stereological and histopathological changes similar to those of the control, except for some altered follicles. The hallmark histological feature was the appearance of vacuolar structures within the oocyte and between granulosa cell layers. Interestingly, the autophagic marker LC3 was significantly increased in the F2 offspring, whereas this protein was significantly decreased in the F1 offspring. Therefore, we suggest that the promotion of autophagy in the ovaries of the F2 offspring may be considered a recovery mechanism from the effect of prenatal FB1 exposure. Thus, autophagy corrected the effect of FB1 during the early life of the F1 female rats, leading to F2 offspring with ovarian structure and function similar to those of the control. However, the offspring, treated female rats may experience early ovarian aging because their ovarian pool was affected.
Collapse
Affiliation(s)
| | | | | | | | | | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (A.A.); (S.N.); (W.A.); (S.A.)
| |
Collapse
|
4
|
Safar AM, Santacruz-Márquez R, Laws MJ, Meling DD, Liu Z, Kumar TR, Nowak RA, Raetzman LT, Flaws JA. Dietary exposure to an environmentally relevant phthalate mixture alters follicle dynamics, hormone levels, ovarian gene expression, and pituitary gene expression in female mice. Reprod Toxicol 2023; 122:108489. [PMID: 37839492 PMCID: PMC10873030 DOI: 10.1016/j.reprotox.2023.108489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Phthalates are chemicals ubiquitously used in industry. Individual phthalates have been found to adversely affect female reproduction; however, humans are exposed to a mixture of phthalates daily, primarily through ingestion. Previous studies show that exposure to an environmentally relevant mixture of phthalates (Mix) can affect female reproduction. Little research, however, has been conducted on the effects of short-term (1 month) and long-term (6 months) exposure to Mix on ovarian functions. Thus, this study tested the hypothesis that short-term and long-term exposure to Mix alters ovarian folliculogenesis, serum hormone concentrations, pituitary gene expression, and ovarian expression of genes involved in steroidogenesis, apoptosis, cell cycle regulation, and oxidative stress. Adult CD-1 female mice were exposed to vehicle control (corn oil) or Mix (0.15-1500 ppm) in the chow for 1 or 6 months. Exposure to Mix for 1 month increased the number of atretic follicles (0.15 ppm), altered ovarian gene expression (0.15 ppm, 1500 ppm), and decreased serum testosterone (1.5 ppm) compared to control. Exposure to Mix for 6 months increased serum follicle-stimulating hormone (FSH) (0.15 ppm), decreased serum luteinizing hormone (LH) (0.15 ppm, 1.5 ppm, and 1500 ppm), decreased serum estradiol (1500 ppm), altered pituitary gene expression (1500 ppm), increased the number (1500 ppm) and percentage (1.5 ppm and 1500 ppm) of primordial follicles, and decreased the percentage of preantral (1500 ppm) and antral (1.5 ppm and 1500 ppm) follicles compared to control. These data indicate that exposure to Mix can alter folliculogenesis, steroidogenesis, and gene expression in female mice.
Collapse
Affiliation(s)
- Adira M Safar
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Zhenghui Liu
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, Division of Reproductive Endocrinology & Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - T Rajendra Kumar
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, Division of Reproductive Endocrinology & Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lori T Raetzman
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Xiao Z, Li Q, Wang Z, Zhang H. Single- and combined-phthalate exposures are associated with biological ageing among adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115715. [PMID: 37992641 DOI: 10.1016/j.ecoenv.2023.115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Previous research has emphasized the effects of lifestyle and genetics on ageing. However, the association between exposure to phthalates, which are extensively used in cosmetics and personal care products, and ageing is still unclear. METHOD Data for 4711 subjects from the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2010 were incorporated in the present study. The acceleration of the Klemera-Doubal method-biological age (KDM-BA) and phenotypic Age (PhenoAge) were measured by the composite of 13 biomarkers. Multiple-linear and weighted-quantile sum (WQS) regression models were constructed to explore the relationships of single- and combined-phthalate exposures, as indicated by urinary phthalate metabolites, with KDM-BA and PhenoAge. A generalized additive model (GAM) was fitted to explore the potential nonlinear relationships among the above variables. RESULTS Except for mono-(carboxynonyl), all urinary phthalate metabolites were associated with biological ageing, with correlation coefficients ranging from 0.241 to 0.526; however, mono-ethyl presented a negative correlation. The WQS models revealed mixed effects of combined urinary phthalate metabolites on ageing, with a 0.22-year ((95 % CI) 0.09, 0.32) increase in KDM-BA acceleration and a 0.27-year ((95 % CI) 0.13, 0.37) increase in PhenoAge acceleration for each decile increase in urinary phthalate metabolites. Moreover, MCPP, MEOHP, and MBzP seemed to be the top three phthalates in terms of biological ageing, with weights of 33.3 % and 32.2 %, 29.2 % and 17.2 %, and 21.5 % and 30.1 % in KDM-BA and PhenoAge acceleration, respectively. CONCLUSION Single-phthalate exposure was mostly associated with the ageing process, and combined-phthalate exposure presented mixed effects on biological ageing, emphasizing phthalate exposure as a significant risk factor for ageing.
Collapse
Affiliation(s)
- Zhihao Xiao
- School of Public Health, Nanjing Medical University, China
| | - Qian Li
- School of Public Health, Nanjing Medical University, China
| | - Zhiqi Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Hongmei Zhang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
6
|
Jauregui EJ, McSwain M, Liu X, Miller K, Burns K, Craig ZR. Human-relevant exposure to di-n-butyl phthalate tampers with the ovarian insulin-like growth factor 1 system and disrupts folliculogenesis in young adult mice. Toxicol Sci 2023; 195:42-52. [PMID: 37439711 PMCID: PMC10464517 DOI: 10.1093/toxsci/kfad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
Phthalates are compounds used in consumer and medical products worldwide. Phthalate exposure in women has been demonstrated by detection of phthalate metabolites in their urine and ovarian follicular fluid. High urinary phthalate burden has been associated with reduced ovarian reserve and oocyte retrieval in women undergoing assisted reproduction. Unfortunately, no mechanistic explanation for these associations is available. In short term in vivo and in vitro animal studies modeling human-relevant exposures to di-n-butyl phthalate (DBP), we have identified ovarian folliculogenesis as a target for phthalate exposures. In the present study, we investigated whether DBP exposure negatively influences insulin-like growth factor 1 (IGF1) signaling in the ovary and disrupts ovarian folliculogenesis. CD-1 female mice were exposed to corn oil (vehicle) or DBP (10 µg/kg/day, 100 µg/kg/day, or 1000 mg/kg/day) for 20-32 days. Ovaries were collected as animals reached the proestrus stage to achieve estrous cycle synchronization. Levels of mRNAs encoding IGF1 and 2 (Igf1 and Igf2), IGF1 receptor (Igf1r), and IGF-binding proteins 1-6 (Ifgbp1-6) were measured in whole ovary homogenates. Ovarian follicle counts and immunostaining for phosphorylated IGF1R protein (pIGF1R) were used to evaluate folliculogenesis and IGF1R activation, respectively. DBP exposure, at a realistic dose that some women may experience (100 µg/kg/day for 20-32 days), reduced ovarian Igf1 and Igf1r mRNA expression and reduced small ovarian follicle numbers and primary follicle pIGF1R positivity in DBP-treated mice. These findings reveal that DBP tampers with the ovarian IGF1 system and provide molecular insight into how phthalates could influence the ovarian reserve in females.
Collapse
Affiliation(s)
- Estela J Jauregui
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85721, USA
- Training in Environmental Toxicology of Human Disease, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, USA
| | - Maile McSwain
- Environmental Health Sciences Transformative Undergraduate Research Experiences Program, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, USA
| | - Xiaosong Liu
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85721, USA
| | - Kara Miller
- Training in Environmental Toxicology of Human Disease, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, USA
| | - Kimberlie Burns
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85721, USA
| | - Zelieann R Craig
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, USA
- Southwest Environmental Health Sciences Center, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
7
|
Graceli JB, da Costa CS, Laws MJ, Deviney ARK, Meling D, Flaws JA. Chronic exposure to a mixture of phthalates shifts the white and brown adipose tissue phenotypes in female mice. Toxicol Sci 2023; 193:204-218. [PMID: 37021957 PMCID: PMC10230284 DOI: 10.1093/toxsci/kfad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Phthalates are endocrine-disrupting chemicals used in consumer products. Although phthalates are obesogens and affect metabolic function, it is unknown if chronic exposure for 6 months to a phthalate mixture alters adipose tissue phenotype in female mice. After vehicle or mixture exposure, white adipose tissue and brown adipose tissue (WAT and BAT) were analyzed for expression of adipogenesis, proliferation, angiogenesis, apoptosis, oxidative stress, inflammation, and collagen deposition markers. The mixture altered WAT morphology, leading to an increase in hyperplasia, blood vessel number, and expression of BAT markers (Adipoq and Fgf2) in WAT. The mixture increased the expression of the inflammatory markers, Il1β, Ccl2, and Ccl5, in WAT. The mixture also increased expression of the proapoptotic (Bax and Bcl2) and antiapoptotic (Bcl2l10) factors in WAT. The mixture increased expression of the antioxidant Gpx1 in WAT. The mixture changed BAT morphology by increasing adipocyte diameter, whitening area, and blood vessel number and decreased expression of the thermogenic markers Ucp1, Pgargc1a, and Adrb3. Furthermore, the mixture increased the expression of adipogenic markers Plin1 and Cebpa, increased mast cell number, and increased Il1β expression in BAT. The mixture also increased expression of the antioxidant markers Gpx and Nrf2 and the apoptotic marker Casp2 in BAT. Collectively, these data indicate that chronic exposure to a phthalate mixture alters WAT and BAT lipid metabolism phenotypes in female mice, leading to an apparent shift in their normal morphology. Following long-term exposure to a phthalate mixture, WAT presented BAT-like features and BAT presented WAT-like features.
Collapse
Affiliation(s)
- Jones B Graceli
- Department of Morphology, Federal University of Espirito Santo, Vitoria, Brazil
| | - Charles S da Costa
- Department of Morphology, Federal University of Espirito Santo, Vitoria, Brazil
| | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Ashley R K Deviney
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Daryl Meling
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Laws MJ, Meling DD, Deviney ARK, Santacruz-Márquez R, Flaws JA. Long-term exposure to di(2-ethylhexyl) phthalate, diisononyl phthalate, and a mixture of phthalates alters estrous cyclicity and/or impairs gestational index and birth rate in mice. Toxicol Sci 2023; 193:48-61. [PMID: 36929940 PMCID: PMC10176245 DOI: 10.1093/toxsci/kfad030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Phthalates are found in plastic food containers, medical plastics, and personal care products. However, the effects of long-term phthalate exposure on female reproduction are unknown. Thus, this study investigated the effects of long-term, dietary phthalate exposure on estrous cyclicity and fertility in female mice. Adult female CD-1 mice were fed chow containing vehicle control (corn oil) or 0.15-1500 ppm of di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP), or a mixture of phthalates (Mix) containing DEHP, DiNP, benzyl butyl phthalate, di-n-butyl phthalate, diisobutyl phthalate, and diethyl phthalate. Measurements of urinary phthalate metabolites confirmed effective delivery of phthalates. Phthalate consumption for 11 months did not affect body weight compared to control. DEHP exposure at 0.15 ppm for 3 and 5 months increased the time that the mice spent in estrus and decreased the time the mice spent in metestrus/diestrus compared to control. DiNP exposure (0.15-1500 ppm) did not significantly affect time in estrus or metestrus/diestrus compared to control. Mix exposure at 0.15 and 1500 ppm for 3 months decreased the time the mice spent in metestrus/diestrus and increased the time the mice spent in estrus compared to control. DEHP (0.15-1500 ppm) or Mix (0.15-1500 ppm) exposure did not affect fertility-related indices compared to control. However, long-term DiNP exposure at 1500 ppm significantly reduced gestational index and birth rate compared to control. These data indicate that chronic dietary exposure to phthalates alters estrous cyclicity, and long-term exposure to DiNP reduces gestational index and birth rate in mice.
Collapse
Affiliation(s)
- Mary J Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Ashley R K Deviney
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Ramsés Santacruz-Márquez
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| |
Collapse
|
9
|
Rebuzzini P, Fabozzi G, Cimadomo D, Ubaldi FM, Rienzi L, Zuccotti M, Garagna S. Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction. Cells 2022; 11:cells11193163. [PMID: 36231124 PMCID: PMC9563050 DOI: 10.3390/cells11193163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
Environmental toxicants (ETs) are an exogenous chemical group diffused in the environment that contaminate food, water, air and soil, and through the food chain, they bioaccumulate into the organisms. In mammals, the exposure to ETs can affect both male and female fertility and their reproductive health through complex alterations that impact both gametogeneses, among other processes. In humans, direct exposure to ETs concurs to the declining of fertility, and its transmission across generations has been recently proposed. However, multi- and transgenerational inheritances of ET reprotoxicity have only been demonstrated in animals. Here, we review recent studies performed on laboratory model animals investigating the effects of ETs, such as BPA, phthalates, pesticides and persistent contaminants, on the reproductive system transmitted through generations. This includes multigenerational effects, where exposure to the compounds cannot be excluded, and transgenerational effects in unexposed animals. Additionally, we report on epigenetic mechanisms, such as DNA methylation, histone tails and noncoding RNAs, which may play a mechanistic role in a nongenetic transmission of environmental information exposure through the germline across generations.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| | - Gemma Fabozzi
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
| | - Danilo Cimadomo
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
| | | | - Laura Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Sant’Andrea 34, 61029 Urbino, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| |
Collapse
|
10
|
Crobeddu B, Jutras-Carignan A, Kolasa É, Mounier C, Robaire B, Plante I. Gestational and lactational exposure to the emergent alternative plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) impairs lipid metabolism to a greater extent than the commonly used Di(2-ethylhexyl) phthalate (DEHP) in the adult rat mammary gland. Toxicol Sci 2022; 189:268-286. [PMID: 35861430 DOI: 10.1093/toxsci/kfac076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Due to their endocrine disruption properties, phthalate plasticizers such as di(2-ethylhexyl) phthalate (DEHP) can affect the hormone-dependent development of the mammary gland. Over the past few years, DEHP has been partially replaced by 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) which also have potential endocrine disrupting properties. The goal of the present study is to understand the impact of a gestational and lactational exposure to DEHP and DINCH on mammary gland development using Sprague-Dawley rats. Both plasticizers altered the adipocytes of the mammary gland fat pad of adult progeny, as demonstrated by a decrease in their size, folding of their membrane and modulations of the lipid profiles. DEHP treatments decreased the expression of Rxrα and Scd1 at the low and high dose, respectively, but did not affect any of the other genes studied. DINCH modulation of lipid metabolism could be observed at puberty by a decreased expression of genes implicated in triglyceride synthesis, lipid transport and lipolysis, but by an increased expression of genes of the β-oxidation pathway and of genes involved in lipid storage and fatty acid synthesis at adulthood, compared to control and DEHP-treated rats. A strong upregulation of different inflammatory markers was observed following DINCH exposure only. Together, our results indicate that a gestational and lactational exposure to DINCH has earlier and more significant effects on lipid homeostasis, adipogenesis and the inflammatory state of the adult mammary gland than DEHP exposure. The long-term consequence of these effects on mammary gland health remained to be determined.
Collapse
Affiliation(s)
- Bélinda Crobeddu
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Antoine Jutras-Carignan
- Laboratoire du métabolisme des lipides, CERMO-FC, Département des sciences biologiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Élise Kolasa
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Catherine Mounier
- Laboratoire du métabolisme des lipides, CERMO-FC, Département des sciences biologiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
11
|
Gonsioroski AV, Aquino AM, Alonso-Costa LG, Barbisan LF, Scarano WR, Flaws JA. Multigenerational Effects of an Environmentally Relevant Phthalate Mixture on Reproductive Parameters and Ovarian miRNA Expression in Female Rats. Toxicol Sci 2022; 189:91-106. [PMID: 35762964 PMCID: PMC9801715 DOI: 10.1093/toxsci/kfac066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Phthalates are endocrine-disrupting chemicals used in many consumer products. Our laboratory previously developed an environmentally relevant phthalate mixture consisting of 6 phthalates and found that it disrupted female fertility in mice. However, it was unknown if maternal exposure to the mixture affects reproductive parameters and ovarian post-transcription in the F1 and F2 generation of female rats. Thus, we tested the hypothesis that maternal exposure to the phthalate mixture affects folliculogenesis, steroidogenesis, and ovarian microRNA (miRNA) in the F1 and F2 generations of female rats. Pregnant female rats were divided into 4 groups and orally dosed daily from gestational day 10 to postnatal day 21 with corn oil (control group), 20 μg/kg/day, 200 μg/kg/day, or 200 mg/kg/day of the phthalate mixture. Maternal exposure to the phthalate mixture impaired folliculogenesis in the F1 and F2 generations of female rats and affected steroidogenesis in the F1 generation of female rats compared to control. Further, the phthalate mixture altered ovarian expression of some genes related to the cell cycle and steroidogenesis compared to control in the F1 and F2 generations of female rats. The mixture also increased ovarian expression of rno-mir-184 that is involved with the oocyte maturation process. Collectively, our data show that maternal exposure to the phthalate mixture affects folliculogenesis and steroidogenesis in the F1 and F2 generations of female rats and alters ovarian miRNA expression in the F1 generation of female rats.
Collapse
Affiliation(s)
| | | | - Luiz G Alonso-Costa
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP 18618-689, Brazil
| | - Luis F Barbisan
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP 18618-689, Brazil
| | - Wellerson R Scarano
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP 18618-689, Brazil
| | - Jodi A Flaws
- To whom correspondence should be addressed at Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Avenue, Urbana, IL 61802, USA. E-mail:
| |
Collapse
|
12
|
Fletcher EJ, Santacruz-Márquez R, Mourikes VE, Neff AM, Laws MJ, Flaws JA. Effects of Phthalate Mixtures on Ovarian Folliculogenesis and Steroidogenesis. TOXICS 2022; 10:251. [PMID: 35622664 PMCID: PMC9143992 DOI: 10.3390/toxics10050251] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023]
Abstract
The female reproductive system is dependent upon the health of the ovaries. The ovaries are responsible for regulating reproduction and endocrine function. Throughout a female's reproductive lifespan, the ovaries undergo continual structural changes that are crucial for the maturation of ovarian follicles and the production of sex steroid hormones. Phthalates are known to target the ovaries at critical time points and to disrupt normal reproductive function. The US population is constantly exposed to measurable levels of phthalates. Phthalates can also pass placental barriers and affect the developing offspring. Phthalates are frequently prevalent as mixtures; however, most previous studies have focused on the effects of single phthalates on the ovary and female reproduction. Thus, the effects of exposure to phthalate mixtures on ovarian function and the female reproductive system remain unclear. Following a brief introduction to the ovary and its major roles, this review covers what is currently known about the effects of phthalate mixtures on the ovary, focusing primarily on their effects on folliculogenesis and steroidogenesis. Furthermore, this review focuses on the effects of phthalate mixtures on female reproductive outcomes. Finally, this review emphasizes the need for future research on the effects of environmentally relevant phthalate mixtures on the ovary and female reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; (E.J.F.); (R.S.-M.); (V.E.M.); (A.M.N.); (M.J.L.)
| |
Collapse
|