1
|
Nuche J, Ponz I, Sánchez Sánchez V, Bóbeda J, Gaitán Á, López-Linares K, García-Cosío MD, Sarnago Cebada F, González JS, Arribas Ynsaurriaga F, Ruíz-Cabello J, Ibáñez B, Delgado JF. Four-Dimensional Magnetic Resonance Pulmonary Flow Imaging for Assessing Pulmonary Vasculopathy in Patients with Postcapillary Pulmonary Hypertension. J Clin Med 2025; 14:929. [PMID: 39941600 PMCID: PMC11818231 DOI: 10.3390/jcm14030929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Noninvasive techniques for diagnosing combined postcapillary pulmonary hypertension (CpcPH) are unavailable. Objective: To assess the diagnostic performance of cardiac magnetic resonance (CMR)-based four-dimensional (4D)-flow analysis in identifying CpcPH. Methods: Prospective observational study of heart failure (HF) patients with suspected pulmonary hypertension (PH) who underwent simultaneous CMR and right heart catheterization. The 4D-flow biomarkers were calculated using an automatic pipeline. A predictive model including 4D-flow biomarkers associated with CpcPH with a p-value < 0.20 was built to determine the diagnostic performance of 4D-flow analysis to identify CpcPH. Results: A total of 46 HF patients (55.4 ± 14 years, 63% male) with confirmed PH (19 [41%] isolated postcapillary PH [IpcPH], 27 [59%] CpcPH) were included. No differences were found in baseline characteristics, echocardiography, or CMR anatomical and functional parameters, except for a higher Doppler-estimated systolic pulmonary pressure and larger pulmonary artery in CpcPH patients. The 4D-flow CMR analysis was performed in 31 patients (67%). The maximal peak velocity (67.1 [62.2-77.5] cm/s-IpcPH vs. 58.2 [45.8-66.0] cm/s-CpcPH; p = 0.021) and maximal helicity (339.9 [290.0-391.8]) cm/s2-IpcPH vs. 226.0 (173.5-343.7) cm/s2-CpcPH; p = 0.026) were significantly lower in patients with CpcPH. A maximal multivariable model including sex, maximal average, and peak velocities, Reynolds number, flow rate, and helicity showed fair diagnostic performance (area under the curve: 0.768 [95%-CI: 0.572-0.963]; sensitivity: 100%; specificity: 55%). Conclusions: In HF patients with PH, 4D-flow-derived maximal peak velocity and maximal helicity were significantly lower in CpcPH patients. A multiparametric model including maximal 4D-flow-derived biomarkers showed good diagnostic performance for identifying CpcPH.
Collapse
Affiliation(s)
- Jorge Nuche
- Cardiology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Servicio de Cardiología, Avenida de Córdoba s/n, 28041 Madrid, Spain; (J.N.); (V.S.S.); (M.D.G.-C.); (F.S.C.); (F.A.Y.)
- Centro de Investigación Biomédica En Red de Enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares, Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Inés Ponz
- Cardiology Department, Hospital Universitario La Paz, Instituto de Investigación IDIPAZ, Paseo de la Castellana 261, 28029 Madrid, Spain
| | - Violeta Sánchez Sánchez
- Cardiology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Servicio de Cardiología, Avenida de Córdoba s/n, 28041 Madrid, Spain; (J.N.); (V.S.S.); (M.D.G.-C.); (F.S.C.); (F.A.Y.)
- Centro de Investigación Biomédica En Red de Enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares, Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Javier Bóbeda
- Vicomtech, Basque Research and Technology Alliance (BRTA), Paseo Mikeletegi 57, 20009 San Sebastián, Spain; (J.B.); (K.L.-L.)
| | - Ángel Gaitán
- Medical Physics Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Avenida de Córdoba s/n, 28041 Madrid, Spain;
- eHealth Group, Biogipuzkoa Health Research Institute, Paseo Dr. Beguiristán s/n, 20014 San Sebastián, Spain
| | - Karen López-Linares
- Vicomtech, Basque Research and Technology Alliance (BRTA), Paseo Mikeletegi 57, 20009 San Sebastián, Spain; (J.B.); (K.L.-L.)
- eHealth Group, Biogipuzkoa Health Research Institute, Paseo Dr. Beguiristán s/n, 20014 San Sebastián, Spain
| | - María Dolores García-Cosío
- Cardiology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Servicio de Cardiología, Avenida de Córdoba s/n, 28041 Madrid, Spain; (J.N.); (V.S.S.); (M.D.G.-C.); (F.S.C.); (F.A.Y.)
- Centro de Investigación Biomédica En Red de Enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain;
| | - Fernando Sarnago Cebada
- Cardiology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Servicio de Cardiología, Avenida de Córdoba s/n, 28041 Madrid, Spain; (J.N.); (V.S.S.); (M.D.G.-C.); (F.S.C.); (F.A.Y.)
| | - Javier Sánchez González
- Centro Nacional de Investigaciones Cardiovasculares, Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Philips Healthcare Ibérica, Calle María de Portugal, 1, 28050 Madrid, Spain
| | - Fernando Arribas Ynsaurriaga
- Cardiology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Servicio de Cardiología, Avenida de Córdoba s/n, 28041 Madrid, Spain; (J.N.); (V.S.S.); (M.D.G.-C.); (F.S.C.); (F.A.Y.)
- Centro de Investigación Biomédica En Red de Enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain;
- Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain;
| | - Jesús Ruíz-Cabello
- Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain;
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), Spain & Ikerbasque, Basque Foundation for Science, Kurutz Gain Industrialdea, 48009 Bilbao, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Borja Ibáñez
- Centro de Investigación Biomédica En Red de Enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares, Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- IIS-Fundación Jiménez Díaz, Avenida de los Reyes Católicos 2, 28040 Madrid, Spain
| | - Juan F. Delgado
- Cardiology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Servicio de Cardiología, Avenida de Córdoba s/n, 28041 Madrid, Spain; (J.N.); (V.S.S.); (M.D.G.-C.); (F.S.C.); (F.A.Y.)
- Centro de Investigación Biomédica En Red de Enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain;
- eHealth Group, Biogipuzkoa Health Research Institute, Paseo Dr. Beguiristán s/n, 20014 San Sebastián, Spain
| |
Collapse
|
2
|
Real C, Pérez-García CN, Galán-Arriola C, García-Lunar I, García-Álvarez A. Right ventricular dysfunction: pathophysiology, experimental models, evaluation, and treatment. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2024; 77:957-970. [PMID: 39068988 DOI: 10.1016/j.rec.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/28/2024] [Indexed: 07/30/2024]
Abstract
Interest in the right ventricle has substantially increased due to advances in knowledge of its pathophysiology and prognostic implications across a wide spectrum of diseases. However, we are still far from understanding the multiple mechanisms that influence right ventricular dysfunction, its evaluation continues to be challenging, and there is a shortage of specific treatments in most scenarios. This review article aims to update knowledge about the physiology of the right ventricle, its transition to dysfunction, diagnostic tools, and available treatments from a translational perspective.
Collapse
Affiliation(s)
- Carlos Real
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Servicio de Cardiología, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | | | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Servicio de Cardiología, Hospital Universitario La Moraleja, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Servicio de Cardiología, Instituto Clínic Cardiovascular (ICCV), Hospital Clínic, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Ipek R, Holland J, Cramer M, Rider O. CMR to characterize myocardial structure and function in heart failure with preserved left ventricular ejection fraction. Eur Heart J Cardiovasc Imaging 2024; 25:1491-1504. [PMID: 39205602 PMCID: PMC11522877 DOI: 10.1093/ehjci/jeae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Despite remarkable progress in therapeutic drugs, morbidity, and mortality for heart failure (HF) remains high in developed countries. HF with preserved ejection fraction (HFpEF) now accounts for around half of all HF cases. It is a heterogeneous disease, with multiple aetiologies, and as such poses a significant diagnostic challenge. Cardiac magnetic resonance (CMR) has become a valuable non-invasive modality to assess cardiac morphology and function, but beyond that, the multi-parametric nature of CMR allows novel approaches to characterize haemodynamics and with magnetic resonance spectroscopy (MRS), the study of metabolism. Furthermore, exercise CMR, when combined with lung water imaging provides an in-depth understanding of the underlying pathophysiological and mechanistic processes in HFpEF. Thus, CMR provides a comprehensive phenotyping tool for HFpEF, which points towards a targeted and personalized therapy with improved diagnostics and prevention.
Collapse
Affiliation(s)
- Rojda Ipek
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jennifer Holland
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| | - Mareike Cramer
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Oliver Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
4
|
Wysocki A, Macek P, Dziadkowiec-Macek B, Poręba M, Gać P, Poręba R. The Importance of Cardiac Magnetic Resonance in the Assessment Risk of Cardiac Arrhythmias in Patients with Arterial Hypertension. J Clin Med 2024; 13:5383. [PMID: 39336870 PMCID: PMC11432360 DOI: 10.3390/jcm13185383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/25/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Objectives: Arterial hypertension (AH) is one of the major risk factors for cardiovascular diseases. An association between untreated AH and arrhythmia is observed. Cardiac magnetic resonance (CMR) assesses myocardial fibrosis by detecting foci of late gadolinium enhancement (LGE). Clinical significance of LGE at the right ventricular insertion point (RVIP) is not fully established. This study aimed to assess the relationship between the presence of LGE at the RVIP determined by CMR and the incidence of arrhythmia in a group suffering from arterial hypertension. Methods: The study group consisted of 81 patients with AH (37 men and 44 women, age: 56.7 ± 7.1 years). All subjects underwent CMR and 24 h Holter ECG monitoring. Two subgroups were distinguished in the study group based on the criterion of the presence of LGE at the RVIP in CMR. The RVIP+ subgroup consisted of patients with LGE at the RVIP, while the RVIP- group consisted of patients without LGE at the RVIP. Results: The RVIP+ subgroup was characterized by higher maximum and minimum heart rates in 24 h Holter ECG recordings compared to the RVIP- subgroup (p < 0.05). The RVIP+ subgroup had a statistically significantly higher number of single premature supraventricular beats, supraventricular tachycardias, and single premature ventricular beats than the RVIP- subgroup (p < 0.05). Regression analysis documented that a longer duration of AH (counted from diagnosis) as well as the occurrence of LGE at the RVIP (assessed by CMR) are independent risk factors for arrhythmia (p < 0.05). Conclusions: Due to the possibility of detecting LGE at the RVIP, CMR may be a useful diagnostic method in estimating the risk of arrhythmias in the group of patients with AH.
Collapse
Affiliation(s)
- Andrzej Wysocki
- Centre of Diagnostic Imaging, 4th Military Hospital, 50-981 Wroclaw, Poland
| | - Piotr Macek
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Barbara Dziadkowiec-Macek
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Małgorzata Poręba
- Department of Paralympic Sports, Wroclaw University of Health and Sport Sciences, 51-617 Wroclaw, Poland
| | - Paweł Gać
- Centre of Diagnostic Imaging, 4th Military Hospital, 50-981 Wroclaw, Poland
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Rafał Poręba
- Centre of Diagnostic Imaging, 4th Military Hospital, 50-981 Wroclaw, Poland
- Department of Angiology and Internal Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Zhang X, Yang S, Hao S, Li J, Qiu M, Chen H, Huang Y. Myocardial fibrosis and prognosis in heart failure with preserved ejection fraction: a pooled analysis of 12 cohort studies. Eur Radiol 2024; 34:1854-1862. [PMID: 37658896 DOI: 10.1007/s00330-023-10218-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/02/2023] [Accepted: 07/15/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVES Heart failure with preserved ejection fraction (HFpEF) is a syndrome with significant clinical heterogeneity. Myocardial fibrosis has been considered a common pathological process in the development and progress of HFpEF. This study aimed to consolidate data on the prognostic effect of myocardial fibrosis, evaluated by cardiovascular magnetic resonance (CMR) imaging in patients with HFpEF. METHODS Three medical databases were searched for potentially related articles up to February 28, 2023. Cohort studies reporting associations between myocardial fibrosis and risk of all-cause mortality or composite major adverse cardiac outcomes (MACE) were included. Cardiac fibrosis was evaluated by CMR metrics, including late gadolinium enhancement (LGE) or myocardial extracellular volume (ECV). The hazard ratios (HRs) and 95% confidence intervals (CI) of the outcomes for higher myocardial fibrosis were calculated. RESULTS Twelve studies with 2787 patients with HFpEF were included for analysis. After a median follow-up duration of 31.2 months, a higher level of cardiac fibrosis was associated with a significant increase in the risk of MACE (HR = 1.34, 95% CI = 1.14-1.57) and all-cause mortality (HR = 1.74, 95% CI = 1.27-2.39), respectively. Furthermore, the increased risk of outcomes was both observed when cardiac fibrosis was defined according to LGE or ECV, respectively. CONCLUSIONS Higher burden of myocardial fibrosis evaluated by CMR can predict a poor prognosis in patients with HFpEF. Evaluation of LGE or ECV based on CMR could be recommended in these patients for risk stratification and guiding further treatment. CLINICAL RELEVANCE STATEMENT Inclusion of cardiovascular magnetic resonance examination in the diagnostic and risk-evaluation algorithms in patients with heart failure with preserved ejection fraction should be considered in clinical practice and future studies. KEY POINTS • Myocardial fibrosis is a common pathological process in heart failure with preserved ejection fraction. • A higher myocardial fibrosis burden on cardiac magnetic resonance predicts a poor prognosis in patients with heart failure with preserved ejection fraction. • Evaluation of myocardial fibrosis may be useful in patients with heart failure with preserved ejection fraction for risk stratification and treatment guidance.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Cardiology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China
| | - Shaomin Yang
- Department of Radiology, Lecong Hospital of Shunde, Foshan, China
| | - Shali Hao
- Department of Cardiology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China
| | - Jiahuan Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China
| | - Min Qiu
- Department of Cardiology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China
| | - Haixiong Chen
- Department of Radiology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China.
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China.
- Faculty of Medicine, The George Institute for Global Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
6
|
Cabanis P, Magat J, Rodriguez-Padilla J, Ramlugun G, Yon M, Bihan-Poudec Y, Pallares-Lupon N, Vaillant F, Pasdois P, Jais P, Dos-Santos P, Constantin M, Benoist D, Pourtau L, Dubes V, Rogier J, Labrousse L, Haissaguerre M, Bernus O, Quesson B, Walton R, Duchateau J, Vigmond E, Ozenne V. Cardiac structure discontinuities revealed by ex-vivo microstructural characterization. A focus on the basal inferoseptal left ventricle region. J Cardiovasc Magn Reson 2023; 25:78. [PMID: 38093273 PMCID: PMC10720182 DOI: 10.1186/s12968-023-00989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND While the microstructure of the left ventricle (LV) has been largely described, only a few studies investigated the right ventricular insertion point (RVIP). It was accepted that the aggregate cardiomyocytes organization was much more complex due to the intersection of the ventricular cavities but a precise structural characterization in the human heart was lacking even if clinical phenotypes related to right ventricular wall stress or arrhythmia were observed in this region. METHODS MRI-derived anatomical imaging (150 µm3) and diffusion tensor imaging (600 µm3) were performed in large mammalian whole hearts (human: N = 5, sheep: N = 5). Fractional anisotropy, aggregate cardiomyocytes orientations and tractography were compared within both species. Aggregate cardiomyocytes orientation on one ex-vivo sheep whole heart was then computed using structure tensor imaging (STI) from 21 µm isotropic acquisition acquired with micro computed tomography (MicroCT) imaging. Macroscopic and histological examination were performed. Lastly, experimental cardiomyocytes orientation distribution was then compared to the usual rule-based model using electrophysiological (EP) modeling. Electrical activity was modeled with the monodomain formulation. RESULTS The RVIP at the level of the inferior ventricular septum presented a unique arrangement of aggregate cardiomyocytes. An abrupt, mid-myocardial change in cardiomyocytes orientation was observed, delimiting a triangle-shaped region, present in both sheep and human hearts. FA's histogram distribution (mean ± std: 0.29 ± 0.06) of the identified region as well as the main dimension (22.2 mm ± 5.6 mm) was found homogeneous across samples and species. Averaged volume is 0.34 cm3 ± 0.15 cm3. Both local activation time (LAT) and morphology of pseudo-ECGs were strongly impacted with delayed LAT and change in peak-to-peak amplitude in the simulated wedge model. CONCLUSION The study was the first to describe the 3D cardiomyocytes architecture of the basal inferoseptal left ventricle region in human hearts and identify the presence of a well-organized aggregate cardiomyocytes arrangement and cardiac structural discontinuities. The results might offer a better appreciation of clinical phenotypes like RVIP-late gadolinium enhancement or uncommon idiopathic ventricular arrhythmias (VA) originating from this region.
Collapse
Affiliation(s)
- Pierre Cabanis
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Bordeaux, France.
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.
- Centre de Résonance Magnétique des Systèmes Biologiques, 2 Rue Dr Hoffmann Martinot, 33000, Bordeaux, France.
| | - Julie Magat
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Bordeaux, France
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, 2 Rue Dr Hoffmann Martinot, 33000, Bordeaux, France
| | | | - Girish Ramlugun
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Maxime Yon
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Yann Bihan-Poudec
- Centre de Neuroscience Cognitive, CNRS, Université Claude Bernard Lyon I, Villeurbanne, France
| | - Nestor Pallares-Lupon
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Fanny Vaillant
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Philippe Pasdois
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Pierre Jais
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Cardiology Department, Bordeaux University Hospital (CHU), Pessac, France
| | - Pierre Dos-Santos
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Cardiology Department, Bordeaux University Hospital (CHU), Pessac, France
| | - Marion Constantin
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - David Benoist
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Line Pourtau
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Virginie Dubes
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Julien Rogier
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Cardiology Department, Bordeaux University Hospital (CHU), Pessac, France
| | - Louis Labrousse
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Cardiology Department, Bordeaux University Hospital (CHU), Pessac, France
| | - Michel Haissaguerre
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Cardiology Department, Bordeaux University Hospital (CHU), Pessac, France
| | - Olivier Bernus
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Bruno Quesson
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Bordeaux, France
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, 2 Rue Dr Hoffmann Martinot, 33000, Bordeaux, France
| | - Richard Walton
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Josselin Duchateau
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Cardiology Department, Bordeaux University Hospital (CHU), Pessac, France
| | - Edward Vigmond
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- CNRS, IMB, UMR5251, Talence, France
| | - Valéry Ozenne
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Bordeaux, France
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, 2 Rue Dr Hoffmann Martinot, 33000, Bordeaux, France
| |
Collapse
|
7
|
Sciatti E, Coccia MG, Magnano R, Aakash G, Limonta R, Diep B, Balestrieri G, D'Isa S, Abramov D, Parwani P, D'Elia E. Heart Failure Preserved Ejection Fraction in Women: Insights Learned from Imaging. Heart Fail Clin 2023; 19:461-473. [PMID: 37714587 DOI: 10.1016/j.hfc.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
While the prevalence of heart failure, in general, is similar in men and women, women experience a higher rate of HFpEF compared to HFrEF. Cardiovascular risk factors, parity, estrogen levels, cardiac physiology, and altered response to the immune system may be at the root of this difference. Studies have found that in response to increasing age and hypertension, women experience more concentric left ventricle remodeling, more ventricular and arterial stiffness, and less ventricular dilation compared to men, which predisposes women to developing more diastolic dysfunction. A multi-modality imaging approach is recommended to identify patients with HFpEF. Particularly, appreciation of sex-based differences as described in this review is important in optimizing the evaluation and care of women with HFpEF.
Collapse
Affiliation(s)
- Edoardo Sciatti
- Cardiology Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | | | | | - Gupta Aakash
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Raul Limonta
- School of Medicine and Surgery, Milano Bicocca University, Milano, Italy
| | - Brian Diep
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | | | - Salvatore D'Isa
- Cardiology Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Dmitry Abramov
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Purvi Parwani
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Emilia D'Elia
- Cardiology Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy.
| |
Collapse
|
8
|
Terui Y, Sugimura K, Ota H, Tada H, Nochioka K, Sato H, Katsuta Y, Fujiwara J, Harada-Shoji N, Sato-Tadano A, Morita Y, Sun W, Higuchi S, Tatebe S, Fukui S, Miyamichi-Yamamoto S, Suzuki H, Yaoita N, Kikuchi N, Sakota M, Miyata S, Sakata Y, Ishida T, Takase K, Yasuda S, Shimokawa H. Usefulness of cardiac magnetic resonance for early detection of cancer therapeutics-related cardiac dysfunction in breast cancer patients. Int J Cardiol 2023; 371:472-479. [PMID: 36115441 DOI: 10.1016/j.ijcard.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prognosis of breast cancer patients has been improved along with the progress in cancer therapies. However, cancer therapeutics-related cardiac dysfunction (CTRCD) has been an emerging issue. For early detection of CTRCD, we examined whether native T1 mapping and global longitudinal strain (GLS) using cardiac magnetic resonance (CMR) and biomarkers analysis are useful. METHODS We prospectively enrolled 83 consecutive chemotherapy-naïve female patients with breast cancer (mean age, 56 ± 13 yrs.) between 2017 and 2020. CTRCD was defined based on echocardiography as left ventricular ejection fraction (LVEF) below 53% at any follow-up period with LVEF>10% points decrease from baseline after chemotherapy. To evaluate cardiac function, CMR (at baseline and 6 months), 12‑lead ECG, echocardiography, and biomarkers (at baseline and every 3 months) were evaluated. RESULTS A total of 164 CMRs were performed in 83 patients. LVEF and GLS were significantly decreased after chemotherapy (LVEF, from 71.2 ± 4.4 to 67.6 ± 5.8%; GLS, from -27.9 ± 3.9 to -24.7 ± 3.5%, respectively, both P < 0.01). Native T1 value also significantly elevated after chemotherapy (from 1283 ± 36 to 1308 ± 39 msec, P < 0.01). Among the 83 patients, 7 (8.4%) developed CTRCD. Of note, native T1 value before chemotherapy was significantly higher in patients with CTRCD than in those without it (1352 ± 29 vs. 1278 ± 30 msec, P < 0.01). The multivariable logistic regression analysis revealed that native T1 value was an independent predictive factor for the development of CTRCD [OR 2.33; 95%CI 1.15-4.75, P = 0.02]. CONCLUSIONS These results indicate that CMR is useful to detect chemotherapy-related myocardial damage and predict for the development of CTRCD in breast cancer patients.
Collapse
Affiliation(s)
- Yosuke Terui
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koichiro Sugimura
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Cardiology, International University of Health and Welfare, School of Medicine, Narita, Japan
| | - Hideki Ota
- Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Tada
- Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kotaro Nochioka
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruka Sato
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuko Katsuta
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Fujiwara
- Clinical Physiological Laboratory Center, Tohoku University Hospital, Sendai, Japan
| | - Narumi Harada-Shoji
- Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiko Sato-Tadano
- Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiaki Morita
- Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Wenyu Sun
- Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Higuchi
- Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunsuke Tatebe
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigefumi Fukui
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Miyamichi-Yamamoto
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideaki Suzuki
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhiro Yaoita
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhiro Kikuchi
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miku Sakota
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Miyata
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Teikyo University Graduate School of Public Health, Tokyo, Japan
| | - Yasuhiko Sakata
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Ishida
- Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Takase
- Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Yasuda
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; International University of Health and Welfare, Graduate School, Narita, Japan.
| |
Collapse
|
9
|
He J, Yang W, Wu W, Sun X, Li S, Yin G, Zhuang B, Xu J, Zhou D, Zhang Y, Wang Y, Zhu L, Sharma P, Sirajuddin A, Teng Z, Kureshi F, Zhao S, Lu M. Clinical features, myocardial strain and tissue characteristics of heart failure with preserved ejection fraction in patients with obesity: A prospective cohort study. EClinicalMedicine 2023; 55:101723. [PMID: 36386034 PMCID: PMC9646878 DOI: 10.1016/j.eclinm.2022.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The pathophysiology and subsequent myocardial dysfunction of heart failure with preserved ejection fraction (HFpEF) with comorbid obesity has not been extensively described. This study aimed to investigate the clinical features and cardiovascular magnetic resonance (CMR) derived myocardial strain and tissue characteristics in patients with HFpEF and comorbid obesity phenotype. METHODS In this prospective cohort study, we included consecutive patients admitted to Fuwai hospital in China who underwent CMR. Patients with HFpEF or obesity were diagnosed with demographic data, clinical presentation, laboratory test, and echocardiography or CMR imaging. The key exclusion criteria were cardiomyopathy, primary valvular heart disease, and significant coronary artery disease. Participant data were obtained from the electronic medical records database or inquiry. Comparisons of clinical features and CMR derived structural and functional parameters amongst different groups were made using one-way analysis of variance, or χ2 tests, and post hoc Bonferroni analysis where appropriate. FINDINGS Between January 1, 2019 and July 31, 2021, 280 participants (108 patients with HFpEF and obesity, 50 patients with HFpEF and normal weight, 72 patients with obesity, and 50 healthy controls) were enrolled. Compared with patients with HFpEF and normal weight, patients with HFpEF and obesity were younger males, and had higher plasma volume, uric acid and hemoglobin levels, yet less often atrial fibrillation, and lower NT-proBNP levels, and had higher left ventricular mass index, end-diastole/systole volume index, lower left atrial volume index, and worse myocardial strains (all p ≤ 0.05), but no remarkable difference in late gadolinium enhancement (LGE) presence and extracellular volume fraction (ECV). After adjusting for age, atrial fibrillation, and coronary artery disease, only global longitudinal strain (GLS, p = 0.031) and early-diastolic global longitudinal strain rate (eGLSR, p = 0.043) were considerably worse in patients with HFpEF and obesity versus patients with HFpEF and normal weight. Furthermore, early-diastolic strain rates showed no linear association with ECV in patients with HFpEF and obesity. Moreover, GLS demonstrated the highest diagnostic ability when compared with traditional CMR structural parameters and ECV to diagnose patients with HFpEF and obesity in the setting of obesity. INTERPRETATION Higher systemic inflammation, and worse GLS and eGLSR may be the distinct features of obesity-related HFpEF phenotype; strains and ECV may represent different mechanisms of HFpEF with obesity, deserving further study. FUNDING The Construction Research Project of Key Laboratory (Cultivation) of Chinese Academy of Medical Sciences (2019PT310025); National Natural Science Foundation of China (81971588); Capital's Funds for Health Improvement and Research (CFH 2020-2-4034); Youth Key Program of High-level Hospital Clinical Research (2022-GSP-QZ-5).
Collapse
Affiliation(s)
- Jian He
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjing Yang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weichun Wu
- Department of Echocardiography, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Sun
- Department of Nuclear Medicine, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China
| | - Shuang Li
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yin
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baiyan Zhuang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Xu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zhou
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuhui Zhang
- Department of Heart Failure Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yining Wang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leyi Zhu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Piyush Sharma
- Saint James School of Medicine, Park Ridge, IL, 60068, USA
| | - Arlene Sirajuddin
- Department of Health and Human Services, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md, USA
| | - Zhongzhao Teng
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Faraz Kureshi
- Axis Cardiovascular and Axis Cardiovascular Advanced Imaging, St David's Healthcare, Austin, Tex, USA
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China
- Corresponding author. Fuwai Hospital, National Centre for Cardiovascular Diseases, Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Peking Union Medical College, Beilishi Road No.167, Xicheng District, Beijing 100037, China.
| |
Collapse
|
10
|
Wang Y, Lin L, Li X, Cao J, Wang J, Jing ZC, Li S, Liu H, Wang X, Jin ZY, Wang YN. Native T1 Mapping-Based Radiomics for Noninvasive Prediction of the Therapeutic Effect of Pulmonary Arterial Hypertension. Diagnostics (Basel) 2022; 12:diagnostics12102492. [PMID: 36292180 PMCID: PMC9600513 DOI: 10.3390/diagnostics12102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Novel markers for predicting the short-term therapeutic effect of pulmonary arterial hypertension (PAH) to assist in the prompt initiation of tailored treatment strategies are greatly needed and highly desirable. The aim of the study was to investigate the role of cardiac magnetic resonance (CMR) native T1 mapping radiomics in predicting the short-term therapeutic effect in PAH patients; (2) Methods: Fifty-five PAH patients who received targeted therapy were retrospectively included. Patients were subdivided into an effective group and an ineffective group by assessing the therapeutic effect after ≥3 months of treatment. All patients underwent CMR examinations prior to the beginning of the therapy. Radiomics features from native T1 mapping images were extracted. A radiomics model was constructed using the support vector machine (SVM) algorithm for predicting the therapeutic effect; (3) Results: The SVM radiomics model revealed favorable performance for predicting the therapeutic effect with areas under the receiver operating characteristic curve of 0.955 in the training cohort and 0.893 in the test cohort, respectively. With the optimal cutoff value, the radiomics model showed accuracies of 0.909 and 0.818 in the training and test cohorts, respectively; (4) Conclusions: The CMR native T1 mapping-based radiomics model holds promise for predicting the therapeutic effect in PAH patients.
Collapse
Affiliation(s)
- Yue Wang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Lu Lin
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Xiao Li
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Jian Cao
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Jian Wang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Sen Li
- Department of Research & Development, Yizhun Medical AI Co., Ltd., 12th Floor 12, Block A, Beihang Zhizhen Building, No. 7 Zhichun Road, Haidian District, Beijing 100088, China
| | - Hao Liu
- Department of Research & Development, Yizhun Medical AI Co., Ltd., 12th Floor 12, Block A, Beihang Zhizhen Building, No. 7 Zhichun Road, Haidian District, Beijing 100088, China
| | - Xin Wang
- Department of Research & Development, Yizhun Medical AI Co., Ltd., 12th Floor 12, Block A, Beihang Zhizhen Building, No. 7 Zhichun Road, Haidian District, Beijing 100088, China
| | - Zheng-Yu Jin
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, China
- Correspondence: (Y.-N.W.); (Z.-Y.J.)
| | - Yi-Ning Wang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, China
- Correspondence: (Y.-N.W.); (Z.-Y.J.)
| |
Collapse
|
11
|
Lau C, Elshibly MMM, Kanagala P, Khoo JP, Arnold JR, Hothi SS. The role of cardiac magnetic resonance imaging in the assessment of heart failure with preserved ejection fraction. Front Cardiovasc Med 2022; 9:922398. [PMID: 35924215 PMCID: PMC9339656 DOI: 10.3389/fcvm.2022.922398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure (HF) is a major cause of morbidity and mortality worldwide. Current classifications of HF categorize patients with a left ventricular ejection fraction of 50% or greater as HF with preserved ejection fraction or HFpEF. Echocardiography is the first line imaging modality in assessing diastolic function given its practicality, low cost and the utilization of Doppler imaging. However, the last decade has seen cardiac magnetic resonance (CMR) emerge as a valuable test for the sometimes challenging diagnosis of HFpEF. The unique ability of CMR for myocardial tissue characterization coupled with high resolution imaging provides additional information to echocardiography that may help in phenotyping HFpEF and provide prognostication for patients with HF. The precision and accuracy of CMR underlies its use in clinical trials for the assessment of novel and repurposed drugs in HFpEF. Importantly, CMR has powerful diagnostic utility in differentiating acquired and inherited heart muscle diseases presenting as HFpEF such as Fabry disease and amyloidosis with specific treatment options to reverse or halt disease progression. This state of the art review will outline established CMR techniques such as transmitral velocities and strain imaging of the left ventricle and left atrium in assessing diastolic function and their clinical application to HFpEF. Furthermore, it will include a discussion on novel methods and future developments such as stress CMR and MR spectroscopy to assess myocardial energetics, which show promise in unraveling the mechanisms behind HFpEF that may provide targets for much needed therapeutic interventions.
Collapse
Affiliation(s)
- Clement Lau
- Department of Cardiology, New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Mohamed M. M. Elshibly
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Prathap Kanagala
- Department of Cardiology, Liverpool University Hospitals NHS Foundation Trust and Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| | - Jeffrey P. Khoo
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Jayanth Ranjit Arnold
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Sandeep Singh Hothi
- Department of Cardiology, New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Hayashi H, Oda S, Emoto T, Kidoh M, Nagayama Y, Nakaura T, Sakabe D, Tokuyasu S, Hirakawa K, Takashio S, Yamamoto E, Tsujita K, Hirai T. Myocardial extracellular volume quantification by cardiac CT in pulmonary hypertension: Comparison with cardiac MRI. Eur J Radiol 2022; 153:110386. [PMID: 35661458 DOI: 10.1016/j.ejrad.2022.110386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Myocardial extracellular volume (ECV) measured by cardiac magnetic resonance imaging (MRI) has been suggested as a marker of disease severity in pulmonary hypertension (PH). However, consistency between ECVs quantified by computed tomography (CT) and MRI has not been sufficiently investigated in (PH). We investigated the utility of CT-ECV in PH, using MRI-ECV as a reference standard. METHOD We evaluated 20 patients with known or suspected PH who underwent dual-energy CT, cardiac MRI, and right heart catheterization. We used Pearson correlation analysis to investigate correlations between CT-ECV and MRI-ECV. We also assessed correlations between ECV and mean pulmonary artery pressure (mPAP). RESULTS CT-ECV showed a very strong correlation with MRI-ECV at the anterior (r = 0.83) and posterior right ventricular insertion points (RVIPs) (r = 0.84). CT-ECV and MRI-ECV were strongly correlated in the septum and left ventricular free wall (r = 0.79-0.73) but weakly correlated in the right ventricular free wall (r = 0.26). CT-ECV showed a strong correlation with mPAP in the anterior RVIP (r = 0.64) and a moderate correlation in the posterior RVIP and septum (r = 0.50-0.42). Compared with CT-ECV, MRI-ECV had a higher correlation with mPAP; however, the difference was not significant (anterior RVIP, r = 0.72 [MRI-ECV] vs. 0.64 [CT-ECV], p = 0.663; posterior RVIP, r = 0.67 vs. 0.50, p = 0.446). CONCLUSION Dual-energy CT can quantify myocardial ECV and yield results comparable to those obtained using cardiac MRI. CT-ECV in the anterior RVIP could be a noninvasive surrogate marker of disease severity in PH.
Collapse
Affiliation(s)
- Hidetaka Hayashi
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan.
| | - Takafumi Emoto
- Department of Central Radiology, Kumamoto University Hospital, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Daisuke Sakabe
- Department of Central Radiology, Kumamoto University Hospital, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Shinichi Tokuyasu
- CT Clinical Science, Philips Japan, Kohnan 2-13-37, Minato-ku, Tokyo 108-8507, Japan
| | - Kyoko Hirakawa
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
13
|
Del Torto A, Guaricci AI, Pomarico F, Guglielmo M, Fusini L, Monitillo F, Santoro D, Vannini M, Rossi A, Muscogiuri G, Baggiano A, Pontone G. Advances in Multimodality Cardiovascular Imaging in the Diagnosis of Heart Failure With Preserved Ejection Fraction. Front Cardiovasc Med 2022; 9:758975. [PMID: 35355965 PMCID: PMC8959466 DOI: 10.3389/fcvm.2022.758975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a syndrome defined by the presence of heart failure symptoms and increased levels of circulating natriuretic peptide (NP) in patients with preserved left ventricular ejection fraction and various degrees of diastolic dysfunction (DD). HFpEF is a complex condition that encompasses a wide range of different etiologies. Cardiovascular imaging plays a pivotal role in diagnosing HFpEF, in identifying specific underlying etiologies, in prognostic stratification, and in therapeutic individualization. Echocardiography is the first line imaging modality with its wide availability; it has high spatial and temporal resolution and can reliably assess systolic and diastolic function. Cardiovascular magnetic resonance (CMR) is the gold standard for cardiac morphology and function assessment, and has superior contrast resolution to look in depth into tissue changes and help to identify specific HFpEF etiologies. Differently, the most important role of nuclear imaging [i.e., planar scintigraphy and/or single photon emission CT (SPECT)] consists in the screening and diagnosis of cardiac transthyretin amyloidosis (ATTR) in patients with HFpEF. Cardiac CT can accurately evaluate coronary artery disease both from an anatomical and functional point of view, but tissue characterization methods have also been developed. The aim of this review is to critically summarize the current uses and future perspectives of echocardiography, nuclear imaging, CT, and CMR in patients with HFpEF.
Collapse
Affiliation(s)
- Alberico Del Torto
- Department of Emergency and Acute Cardiac Care, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | | | - Marco Guglielmo
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Laura Fusini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Daniela Santoro
- University Cardiology Unit, Policlinic University Hospital, Bari, Italy
| | - Monica Vannini
- University Cardiology Unit, Policlinic University Hospital, Bari, Italy
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Giuseppe Muscogiuri
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy
- University Milano Bicocca, Milan, Italy
| | - Andrea Baggiano
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Pontone
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
- *Correspondence: Gianluca Pontone
| |
Collapse
|
14
|
Heart failure with preserved ejection fraction assessed by cardiac magnetic resonance: From clinical uses to emerging techniques. Trends Cardiovasc Med 2021; 33:141-147. [PMID: 34933114 DOI: 10.1016/j.tcm.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022]
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) account for approximately 50% of those with heart failure (HF) and have increased morbidity and mortality when compared to those with HF with reduced ejection fraction. Currently, the pathophysiology and diagnostic criteria for HFpEF remain unclear, contributing significantly to delays in creating a beneficial and tailored treatment that can improve the prognosis of HFpEF. A multitude of studies have exclusively tested and illustrated the diagnostic value of echocardiography imaging in HFpEF; however, a widely-accepted criterion to identify HFpEF using cardiovascular magnetic resonance (CMR) imaging has not been established. As the gold standard for cardiac structural, functional measurement, and tissue characterization, CMR holds great potential for the early discovery of the pathophysiology, diagnosis, and risk stratification of HFpEF. This review aims to comprehensively discuss the diagnostic and prognostic role of CMR parameters in the setting of HFpEF through validated routine and prospective emerging techniques, and provide clinical perspectives for CMR imaging application in HFpEF.
Collapse
|
15
|
MUW researcher of the month. Wien Klin Wochenschr 2021; 133:1233-1234. [PMID: 34787708 DOI: 10.1007/s00508-021-01984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Edvardsen T, Donal E, Marsan NA, Maurovich-Horvat P, Dweck MR, Maurer G, Petersen SE, Cosyns B. The year 2020 in the European Heart Journal - Cardiovascular Imaging: part I. Eur Heart J Cardiovasc Imaging 2021; 22:1219-1227. [PMID: 34463734 DOI: 10.1093/ehjci/jeab148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022] Open
Abstract
The European Heart Journal - Cardiovascular Imaging was launched in 2012 and has during these 9 years become one of the leading multimodality cardiovascular imaging journals. The journal is currently ranked as number 20 among all cardiovascular journals. Our journal is well established as one of the top cardiovascular journals and is the most important cardiovascular imaging journal in Europe. The most important studies published in our Journal in 2020 will be highlighted in two reports. Part I of the review will focus on studies about myocardial function and risk prediction, myocardial ischaemia, and emerging techniques in cardiovascular imaging, while Part II will focus on valvular heart disease, heart failure, cardiomyopathies, and congenital heart disease.
Collapse
Affiliation(s)
- Thor Edvardsen
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Postbox 4950 Nydalen, Sognsvannsveien 20, NO-0424 Oslo, Norway.,Institute for clinical medicine, University of Oslo, Sognsvannsveien 20, NO-0424 Oslo, Norway
| | - Erwan Donal
- Department of Cardiology and CIC-IT1414, CHU Rennes, Inserm, LTSI-UMR 1099, University Rennes-1, Rennes F-35000, France
| | - Nina A Marsan
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Pál Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Centre, Semmelweis University, 2 Korányi u., 1083 Budapest, Hungary
| | - Marc R Dweck
- Centre for Cardiovascular Sciences, University of Edinburgh, Chancellors Building, Little France Crescent, Edinburgh EH16 4SB, UK
| | - Gerald Maurer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Wahringer Gurtel 18-20, 1090 Vienna, Austria
| | - Steffen E Petersen
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK.,William Harvey Research Institute, Queen Mary University of London, CharterhouseSquare, London EC1M 6BQ, UK
| | - Bernard Cosyns
- Cardiology, CHVZ (Centrum voor Hart en Vaatziekten), ICMI (In Vivo Cellular and Molecular Imaging) Laboratory, Universitair ziekenhuis Brussel, 109 Laarbeeklaan, Brussels 1090, Belgium
| |
Collapse
|
17
|
Mikami Y, Cornhill A, Dykstra S, Satriano A, Hansen R, Flewitt J, Seib M, Rivest S, Sandonato R, Lydell CP, Howarth AG, Heydari B, Merchant N, Fine N, White JA. Right ventricular insertion site fibrosis in a dilated cardiomyopathy referral population: phenotypic associations and value for the prediction of heart failure admission or death. J Cardiovasc Magn Reson 2021; 23:79. [PMID: 34134712 PMCID: PMC8210339 DOI: 10.1186/s12968-021-00761-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is increasingly recognized as a heterogenous disease with distinct phenotypes on late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging. While mid-wall striae (MWS) fibrosis is a widely recognized phenotypic risk marker, other fibrosis patterns are prevalent but poorly defined. Right ventricular (RV) insertion (RVI) site fibrosis is commonly seen, but without objective criteria has been considered a non-specific finding. In this study we developed objective criteria for RVI fibrosis and studied its clinical relevance in a large cohort of patients with DCM. METHODS We prospectively enrolled 645 DCM patients referred for LGE-CMR. All underwent standardized imaging protocols and baseline health evaluations. LGE images were blindly scored using objective criteria, inclusive of RVI site and MWS fibrosis. Associations between LGE patterns and CMR-based markers of adverse chamber remodeling were evaluated. Independent associations of LGE fibrosis patterns with the primary composite clinical outcome of heart failure admission or death were determined by multivariable analysis. RESULTS The mean age was 56 ± 14 (28% female) with a mean left ventricular (LV) ejection fraction (LVEF) of 37%. At a median of 1061 days, 129 patients (20%) experienced the primary outcome. Any abnormal LGE was present in 306 patients (47%), inclusive of 274 (42%) meeting criteria for RVI site fibrosis and 167 (26%) for MWS fibrosis. All with MWS fibrosis showed RVI site fibrosis. Solitary RVI site fibrosis was associated with higher bi-ventricular volumes [LV end-systolic volume index (78 ± 39 vs. 66 ± 33 ml/m2, p = 0.01), RV end-diastolic volume index (94 ± 28 vs. 84 ± 22 ml/m2 (p < 0.01), RV end-systolic volume index (56 ± 26 vs. 45 ± 17 ml/m2, p < 0.01)], lower bi-ventricular function [LVEF 35 ± 12 vs. 39 ± 10% (p < 0.01), RV ejection fraction (RVEF) 43 ± 12 vs. 48 ± 10% (p < 0.01)], and higher extracellular volume (ECV). Patient with solitary RVI site fibrosis experienced a non-significant 1.4-fold risk of the primary outcome, increasing to a significant 2.6-fold risk when accompanied by MWS fibrosis. CONCLUSIONS RVI site fibrosis in the absence of MWS fibrosis is associated with bi-ventricular remodelling and intermediate risk of heart failure admission or death. Our study findings suggest RVI site fibrosis to be pre-requisite for the incremental development of MWS fibrosis, a more advanced phenotype associated with greater LV remodeling and risk of clinical events.
Collapse
Affiliation(s)
- Yoko Mikami
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada
| | - Aidan Cornhill
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada
| | - Steven Dykstra
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada
| | - Alessandro Satriano
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada
| | - Reis Hansen
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada
| | - Jacqueline Flewitt
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada
| | - Michelle Seib
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada
| | - Sandra Rivest
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada
| | - Rosa Sandonato
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada
| | - Carmen P Lydell
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada
- Department of Diagnostic Imaging, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew G Howarth
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bobak Heydari
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Naeem Merchant
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada
- Department of Diagnostic Imaging, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nowell Fine
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - James A White
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, #0700, SSB, Foothills Medical Centre, 1403-29th St. NW, Calgary, AB, T2N2T9, Canada.
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
18
|
Abstract
Purpose of Review Pulmonary arterial hypertension (PAH) is a progressive disease with high mortality. A greater understanding of the physiology and function of the cardiovascular system in PAH will help improve survival. This review covers the latest advances within cardiovascular magnetic resonance imaging (CMR) regarding diagnosis, evaluation of treatment, and prognostication of patients with PAH. Recent Findings New CMR measures that have been proven relevant in PAH include measures of ventricular and atrial volumes and function, tissue characterization, pulmonary artery velocities, and arterio-ventricular coupling. Summary CMR markers carry prognostic information relevant for clinical care such as treatment response and thereby can affect survival. Future research should investigate if CMR, as a non-invasive method, can improve existing measures or even provide new and better measures in the diagnosis, evaluation of treatment, and determination of prognosis of PAH.
Collapse
|
19
|
Abstract
The health burden of heart failure with preserved ejection fraction is increasingly recognized. Despite improvements in diagnostic algorithms and established knowledge on the clinical trajectory, effective treatment options for heart failure with preserved ejection fraction remain limited, mainly because of the high mechanistic heterogeneity. Diagnostic scores, big data, and phenomapping categorization are proposed as key steps needed for progress. In the meantime, advancements in imaging techniques combined to high-fidelity pressure signaling analysis have uncovered right ventricular dysfunction as a mediator of heart failure with preserved ejection fraction progression and as major independent determinant of poor outcome. This review summarizes the current understanding of the pathophysiology of right ventricular dysfunction in heart failure with preserved ejection fraction covering the different right heart phenotypes and offering perspectives on new treatments targeting the right ventricle in its function and geometry.
Collapse
Affiliation(s)
- Marco Guazzi
- Department of Biological Sciences, University of Milano, Italy (M.G.).,Cardiology Division, San Paolo Hospital, Italy (M.G.)
| | - Robert Naeije
- Erasme Hospital, Free University of Brussels, Belgium (R.N.)
| |
Collapse
|
20
|
Non-Invasive Assessment of Pulmonary Vasculopathy. HEARTS 2021. [DOI: 10.3390/hearts2010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Right heart catheterization remains necessary for the diagnosis of pulmonary hypertension and, therefore, for the prognostic evaluation of patients with chronic heart failure. The non-invaSive Assessment of Pulmonary vasculoPathy in Heart failure (SAPPHIRE) study was designed to assess the feasibility and prognostic relevance of a non-invasive evaluation of the pulmonary artery vasculature in patients with heart failure and pulmonary hypertension. Patients will undergo a right heart catheterization, cardiac resonance imaging, and a pulmonary function test in order to identify structural and functional parameters allowing the identification of combined pre- and postcapillary pulmonary hypertension, and correlate these findings with the hemodynamic data.
Collapse
|
21
|
Cosyns B, Haugaa KH, Gerber B, Gimelli A, Sade LE, Maurer G, Popescu BA, Edvardsen T. The year 2019 in the European Heart Journal - Cardiovascular Imaging: part II. Eur Heart J Cardiovasc Imaging 2020; 21:1331-1340. [PMID: 33188688 DOI: 10.1093/ehjci/jeaa292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
The European Heart Journal - Cardiovascular Imaging was launched in 2012 and has during these years become one of the leading multimodality cardiovascular imaging journal. The journal is now established as one of the top cardiovascular journals and is the most important cardiovascular imaging journal in Europe. The most important studies published in our Journal from 2019 will be highlighted in two reports. Part II will focus on valvular heart disease, heart failure, cardiomyopathies, and congenital heart disease. While Part I of the review has focused on studies about myocardial function and risk prediction, myocardial ischaemia, and emerging techniques in cardiovascular imaging.
Collapse
Affiliation(s)
- Bernard Cosyns
- Cardiology, CHVZ (Centrum voor Hart en Vaatziekten), ICMI (In Vivo Cellular and Molecular Imaging) Laboratory, Universitair ziekenhuis Brussel, 101 Laarbeeklaan, Brussels 1090, Belgium
| | - Kristina H Haugaa
- Department of Cardiology, ProCardio Centre for Innovation, Oslo University Hospital, Rikshospitalet, Oslo Norway and Institute for clinical medicine, University of Oslo, Oslo, Norway
| | - Bernrhard Gerber
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc, Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Av Hippocrate 10/2806, Brussels, Belgium
| | | | - Leyla Elif Sade
- Department of Cardiology, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Gerald Maurer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Sos. Fundeni 258, Sector 2, 022328 Bucharest, Romania
| | - Thor Edvardsen
- Department of Cardiology, ProCardio Centre for Innovation, Oslo University Hospital, Rikshospitalet, Oslo Norway and Institute for clinical medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Giollo A, Dumitru RB, Swoboda PP, Plein S, Greenwood JP, Buch MH, Andrews J. Cardiac magnetic resonance imaging for the detection of myocardial involvement in granulomatosis with polyangiitis. Int J Cardiovasc Imaging 2020; 37:1053-1062. [PMID: 33057879 PMCID: PMC7969556 DOI: 10.1007/s10554-020-02066-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022]
Abstract
The prevalence of undiagnosed cardiac involvement in granulomatosis with polyangiitis (GPA) is unknown. In this prospective study we investigated the utility of cardiovascular magnetic resonance (CMR) to identify myocardial abnormalities in GPA and their correlation with disease phenotype. Twenty-six patients with GPA and no cardiovascular disease or diabetes mellitus underwent contrast-enhanced CMR, including late gadolinium-enhancement (LGE), T1-mapping for native T1 and extra-cellular volume (ECV) quantification for assessment of myocardial fibrosis, cine imaging and tissue tagging for assessment of left ventricular (LV) function. Twenty-five healthy volunteers (HV) with comparable age, sex, BMI and arterial blood pressure served as controls. Patients with GPA had similar cardiovascular risk profile to HV. A focal, non-ischaemic LGE pattern of fibrosis was detected in 24% of patients and no controls (p = 0.010). Patients with myocardial LGE were less frequently PR3 ANCA (7% vs 93%, p = 0.007), and had involvement of the lower respiratory tract and skin. LGE scar mass was higher in patients presenting with renal involvement. Native T1 and ECV were higher in patients with GPA than HV; ECV was higher in those with relapsing disease, and native T1 was inversely associated with PR3 ANCA (β = - 0.664, p = 0.001). Peak systolic strain was slightly reduced in GPA compared to controls; LV ejection function was inversely correlated with disease duration (β = - 0.454, p = 0.026). Patients with GPA have significant myocardial abnormalities on CMR. ANCA, systemic involvement and disease severity were associated with myocardial fibrosis. CMR could be a useful tool for risk stratification of myocardial involvement in GPA.
Collapse
Affiliation(s)
- Alessandro Giollo
- NIHR Leeds Biomedical Research Centre and Clinical Research Facility, Leeds Teaching Hospitals NHS Trust, Leeds, UK. .,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK. .,Rheumatology Section, Department of Medicine, University of Verona, Policlinico G.B. Rossi 10, 37134, Verona, Italy.
| | - Raluca B Dumitru
- NIHR Leeds Biomedical Research Centre and Clinical Research Facility, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Peter P Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sven Plein
- NIHR Leeds Biomedical Research Centre and Clinical Research Facility, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - John P Greenwood
- NIHR Leeds Biomedical Research Centre and Clinical Research Facility, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Maya H Buch
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Centre for Musculoskeletal Research, University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester Teaching Hospitals NHS Trust, Manchester, UK
| | - Jacqueline Andrews
- NIHR Leeds Biomedical Research Centre and Clinical Research Facility, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
23
|
Aryal SR, Sharifov OF, Lloyd SG. Emerging role of cardiovascular magnetic resonance imaging in the management of pulmonary hypertension. Eur Respir Rev 2020; 29:29/156/190138. [PMID: 32620585 DOI: 10.1183/16000617.0138-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a clinical condition characterised by elevation of pulmonary arterial pressure (PAP) above normal range due to various aetiologies. While cardiac right-heart catheterisation (RHC) remains the gold standard and mandatory for establishing the diagnosis of PH, noninvasive imaging of the heart plays a central role in the diagnosis and management of all forms of PH. Although Doppler echocardiography (ECHO) can measure a range of haemodynamic and anatomical variables, it has limited utility for visualisation of the pulmonary artery and, oftentimes, the right ventricle. Cardiovascular magnetic resonance (CMR) provides comprehensive information about the anatomical and functional aspects of the pulmonary artery and right ventricle that are of prognostic significance for assessment of long-term outcomes in disease progression. CMR is suited for serial follow-up of patients with PH due to its noninvasive nature, high sensitivity to changes in anatomical and functional parameters, and high reproducibility. In recent years, there has been growing interest in the use of CMR derived parameters as surrogate endpoints for early-phase PH clinical trials. This review will discuss the role of CMR in the diagnosis and management of PH, including current applications and future developments, in comparison to other existing major imaging modalities.
Collapse
Affiliation(s)
- Sudeep R Aryal
- Dept of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Oleg F Sharifov
- Dept of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Steven G Lloyd
- Dept of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA .,Birmingham VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
24
|
Milkas A, Tsioufis K, Koliastasis L, Tsiamis E, Tousoulis D, Bartunek J, Vanderheyden M. Impact of increased venous pressure on kidney function and mortality in cardiovascular patients with preserved ejection fraction. Curr Med Res Opin 2020; 36:353-359. [PMID: 31868029 DOI: 10.1080/03007995.2019.1708286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Right but not left ventricular hemodynamic parameters have been found to be independently associated with adverse renal outcomes in patients with acute decompensated heart failure (HF).Aim: To investigate the hemodynamic profile of patients without acute decompensated heart failure and left ventricular ejection fraction >50% referred for elective left and right heart catheterization and to correlate left and right filling pressures, stroke volume and arterial blood pressure to renal function parameters. Subsequently, we tested the hypothesis that right ventricle and left ventricle hemodynamic parameters can predict all-cause mortality in our non-HF subjects.Methods: Between October 2009 and November 2010, 151 consecutive patients referred for elective left and right heart catheterization were studied and consequently followed up for a mean period of 8 years in order to identify all-cause mortality. Patient's initial cohort was subdivided in two groups according to right atrial pressure. The RAPRLOW group (Right Atrium Pressure ≤ 9 mmHg) and the RAPRHIGH group (Right Atrium Pressure > 9mmHg)Results: No correlation between blood pressure, pulmonary capillary wedges pressure, cardiac index, stroke volume and stroke volume index (SVI), and parameters of kidney function was observed. However, a weak, although, significant correlation between right atrial pressure (RAP) and modification of diet in renal disease (MDRD) (r = -0.202; p = .014) could be detected. RAPRLOW patients had a statistically significant lower MDRD value of 16.6 mL/min/1.73 m2 than RAPRHIGH patients. Increased RAP (HR = 2.03; 95% [CI]: 1.05 to 3.9; p = .025) and age (HR = 1.08, 95% [CI] 1.04-1.12, p < .001) independently predicted all-cause mortality during follow up.Conclusions: Our study demonstrates that right ventricular preload affects renal function in patients with preserved systolic function and that neither aortic systolic pressure nor left ventricle pressure indices were related to estimated glomerular filtration rate. Furthermore, we demonstrate for the first time that an increased RAP is able to predict a worse prognosis in patients with preserved ejection fraction independently of well-established risk factors, such as blood pressure and SVI.
Collapse
Affiliation(s)
- Anastasios Milkas
- Cardiovascular Center OLV Hospital, Aalst, Belgium
- Athens Naval and Veterans Hospital, Athens, Greece
| | - Konstantinos Tsioufis
- First Cardiology Department, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Greece
| | | | - Eleftherios Tsiamis
- First Cardiology Department, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Greece
| | - Dimitris Tousoulis
- First Cardiology Department, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Greece
| | | | | |
Collapse
|