1
|
Tabatabai TS, Salehi M, Rezakhani L, Arabpour Z, Djalilian AR, Alizadeh M. Decellularization of various tissues and organs through chemical methods. Tissue Cell 2024; 91:102573. [PMID: 39393204 DOI: 10.1016/j.tice.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.
Collapse
Affiliation(s)
- Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Inal MS, Avci H, Hassan S, Darcan C, Shin SR, Akpek A. Advances in xenogeneic donor decellularized organs: A review on studies with sheep and porcine-derived heart valves. Bioeng Transl Med 2024; 9:e10695. [PMID: 39545084 PMCID: PMC11558188 DOI: 10.1002/btm2.10695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 11/17/2024] Open
Abstract
Heart valve replacement surgeries are performed on patients suffering from abnormal heart valve function. In these operations, the problematic tissue is replaced with mechanical valves or with bioprosthetics that are being developed. The thrombotic effect of mechanical valves, reflecting the need for lifelong use of anticoagulation drugs, and the short-lived nature of biological valves make these two types of valves problematic. In addition, they cannot adapt to the somatic growth of young patients. Although decellularized scaffolds have shown some promise, a successful translation has so far evaded. Although decellularized porcine xenografts have been extensively studied in the literature, they have several disadvantages, such as a propensity for calcification in the implant model, a risk of porcine endogenous retrovirus (PERV) infection, and a high xenoantigen density. As seen in clinical data, it is clear that there are biocompatibility problems in almost all studies. However, since decellularized sheep heart valves have not been tried in the clinic, a large data pool could not be established. This review compares and contrasts decellularized porcine and sheep xenografts for heart valve tissue engineering. It reveals that decellularized sheep heart valves can be an alternative to pigs in terms of biocompatibility. In addition, it highlights the potential advantages of bioinks derived from the decellularized extracellular matrix in 3D bioprinting technology, emphasizing that they can be a new alternative for the application. We also outline the future prospects of using sheep xenografts for heart valve tissue engineering.
Collapse
Affiliation(s)
- Muslum Suleyman Inal
- Department of Molecular Biology and GeneticsBilecik Seyh Edebali UniversityBilecikTurkey
| | - Huseyin Avci
- Translational Medicine Research and Clinical Center, Cellular Therapy and Stem Cell Production Application and Research CenterEskisehir Osmangazi UniversityTurkey
| | - Shabir Hassan
- Department of BiologyKhalifa UniversityAbu DhabiUnited Arab Emirates
| | - Cihan Darcan
- Department of Molecular Biology and GeneticsBilecik Seyh Edebali UniversityBilecikTurkey
| | - Su Ryon Shin
- Harvard Medical SchoolBrigham and Women's HospitalBostonMassachusettsUSA
| | - Ali Akpek
- Department of Biomedical EngineeringYildiz Technical UniversityTurkey
| |
Collapse
|
3
|
Sabateen F, Soják V, Nagi AS, Valentík P, Šagát M, Nosál' M. 20-Year follow-up and comparison of valved conduits used for right ventricular outflow tract reconstruction: single-centre, propensity score match analysis. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2023; 37:ivad182. [PMID: 37950452 PMCID: PMC10651434 DOI: 10.1093/icvts/ivad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVES Surgical repair of complex congenital heart defects with hypoplasia or atresia of the right ventricular outflow tract (RVOT) may require pulmonary valve implantation or replacement during the primary repair or reoperation. The purpose of this study is to evaluate the outcomes of cryopreserved homografts, bovine jugular vein conduits and decellularized Matrix P Plus N conduits in patients undergoing RVOT reconstruction at a single centre. METHODS Retrospective, single-centre review of 173 patients with 199 conduits undergoing right ventricle-to-pulmonary artery reconstruction with valved conduit from 2002 to 2022. RESULTS A total of 199 conduits were implanted in 173 patients (62.8% male), with a mean age of 8.97 ± 8.5 years. The following 3 types of conduits were used: homografts 129 (64.8%), bovine jugular vein conduits 45 (22.7%) and Matrix P Plus N 25 (12.5%). During the mean follow-up duration of 8.6 ± 5.8 years, there were 20 deaths, 35 conduit reoperations and 44 catheter reinterventions. Overall survival, reoperation-free and catheter reintervention-free survival at 20 years were 83%, 67.8% and 65.6%, respectively. Multivariable Cox analysis identified younger patient age, smaller conduit size, low patient weight and primary diagnosis of common arterial trunk as risk factors for reoperation and catheter reintervention. CONCLUSIONS Long-term outcomes of reconstruction of the RVOT using homografts, bovine jugular vein and Matrix P Plus N conduits were acceptable. The reoperation rate for conduit dysfunction did not differ significantly among groups. Over time, the need for conduit replacement was higher in smaller conduits and in patients with common arterial trunk diagnosis.
Collapse
Affiliation(s)
- Fadi Sabateen
- Department of Pediatric Cardiac Surgery, Children’s Heart Centre, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Vladimír Soják
- Department of Pediatric Cardiac Surgery, Children’s Heart Centre, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Aref Saif Nagi
- Department of Pediatric Cardiac Surgery, Children’s Heart Centre, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Pavel Valentík
- Department of Pediatric Cardiac Surgery, Children’s Heart Centre, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Michal Šagát
- Department of Pediatric Cardiac Surgery, Children’s Heart Centre, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | - Matej Nosál'
- Department of Pediatric Cardiac Surgery, Children’s Heart Centre, National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| |
Collapse
|
4
|
Tripathi AS, Zaki MEA, Al-Hussain SA, Dubey BK, Singh P, Rind L, Yadav RK. Material matters: exploring the interplay between natural biomaterials and host immune system. Front Immunol 2023; 14:1269960. [PMID: 37936689 PMCID: PMC10627157 DOI: 10.3389/fimmu.2023.1269960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Biomaterials are widely used for various medical purposes, for instance, implants, tissue engineering, medical devices, and drug delivery systems. Natural biomaterials can be obtained from proteins, carbohydrates, and cell-specific sources. However, when these biomaterials are introduced into the body, they trigger an immune response which may lead to rejection and failure of the implanted device or tissue. The immune system recognizes natural biomaterials as foreign substances and triggers the activation of several immune cells, for instance, macrophages, dendritic cells, and T cells. These cells release pro-inflammatory cytokines and chemokines, which recruit other immune cells to the implantation site. The activation of the immune system can lead to an inflammatory response, which can be beneficial or detrimental, depending on the type of natural biomaterial and the extent of the immune response. These biomaterials can also influence the immune response by modulating the behavior of immune cells. For example, biomaterials with specific surface properties, such as charge and hydrophobicity, can affect the activation and differentiation of immune cells. Additionally, biomaterials can be engineered to release immunomodulatory factors, such as anti-inflammatory cytokines, to promote a tolerogenic immune response. In conclusion, the interaction between biomaterials and the body's immune system is an intricate procedure with potential consequences for the effectiveness of therapeutics and medical devices. A better understanding of this interplay can help to design biomaterials that promote favorable immune responses and minimize adverse reactions.
Collapse
Affiliation(s)
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bidhyut Kumar Dubey
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, India
| | - Prabhjot Singh
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Laiba Rind
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Rajnish Kumar Yadav
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| |
Collapse
|
5
|
Poulis N, Breitenstein P, Hofstede S, Hoerstrup SP, Emmert MY, Fioretta ES. Multiscale analysis of human tissue engineered matrices for next generation heart valve applications. Acta Biomater 2023; 158:101-114. [PMID: 36638939 DOI: 10.1016/j.actbio.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Human tissue-engineered matrices (hTEMs) have been proposed as a promising approach for in situ tissue engineered heart valves (TEHVs). However, there is still a limited understanding on how ECM composition in hTEMs develops over tissue culture time. Therefore, we performed a longitudinal hTEM assessment by 1) multiscale evaluation of hTEM composition during culture time (2, 4, 6-weeks), using (immuno)histology, biochemical assays, and mass spectrometry (LC-MS/MS); 2) analysis of protein pathways involved in ECM development using gene set enrichment analysis (GSEA); and 3) assessment of hTEM mechanical characterization using uniaxial tensile testing. Finally, as a proof-of-concept, TEHVs manufactured using 6-weeks hTEM samples were tested in a pulse duplicator. LC-MS/MS confirmed the tissue culture time-dependent increase in ECM proteins observed in histology and biochemical assays, revealing the most abundant collagens (COL6, COL12), proteoglycans (HSPG2, VCAN), and glycoproteins (FN, TNC). GSEA identified the most represented protein pathways in the hTEM at 2-weeks (mRNA metabolic processes), 4-weeks (ECM production), and 6-weeks (ECM organization and maturation). Uniaxial mechanical testing showed increased stiffness and stress at failure, and reduction in strain over tissue culture time. hTEM-based TEHVs demonstrated promising in vitro performance at both pulmonary and aortic pressure conditions, with symmetric leaflet coaptation and no stenosis. In conclusion, ECM protein abundance and maturation increased over tissue culture time, with consequent improvement of hTEM mechanical characteristics. These findings suggest that longer tissue culture impacts tissue organization, leading to an hTEM that may be suitable for high-pressure applications. STATEMENT OF SIGNIFICANCE: It is believed that the composition of the extracellular matrix (ECM) in the human tissue engineered matrices (hTEM) may favor tissue engineered heart valve (TEHV) remodeling upon implantation. However, the exact protein composition of the hTEM, and how this impacts tissue mechanical properties, remains unclear. Hence, we developed a reproducible rotation-based tissue culture method to produce hTEM samples. We performed a longitudinal assessment using different analytical techniques and mass spectrometry. Our data provided an in-depth characterization of the hTEM proteome with focus on ECM components, their development, and how they may impact the mechanical properties. Based on these results, we manufactured functional hTEM-based TEHVs at aortic-like condition in vitro. These outcomes pose an important step in translating hTEM-based TEHVs into clinics and in predicting their remodeling potential upon implantation.
Collapse
Affiliation(s)
- N Poulis
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - P Breitenstein
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - S Hofstede
- Laboratory for Orthopaedic Biomechanics, Institute for Biomechanics, ETH Zurich, Lengghalde 5, 8008 Zurich, Switzerland
| | - S P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - M Y Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Wyss Zurich, University and ETH Zurich, Zurich, Switzerland; Charité Universitätsmedizin Berlin, Berlin, Germany; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charite (DHZC), Berlin, Germany.
| | - E S Fioretta
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
6
|
Natural Polymers in Heart Valve Tissue Engineering: Strategies, Advances and Challenges. Biomedicines 2022; 10:biomedicines10051095. [PMID: 35625830 PMCID: PMC9139175 DOI: 10.3390/biomedicines10051095] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
In the history of biomedicine and biomedical devices, heart valve manufacturing techniques have undergone a spectacular evolution. However, important limitations in the development and use of these devices are known and heart valve tissue engineering has proven to be the solution to the problems faced by mechanical and prosthetic valves. The new generation of heart valves developed by tissue engineering has the ability to repair, reshape and regenerate cardiac tissue. Achieving a sustainable and functional tissue-engineered heart valve (TEHV) requires deep understanding of the complex interactions that occur among valve cells, the extracellular matrix (ECM) and the mechanical environment. Starting from this idea, the review presents a comprehensive overview related not only to the structural components of the heart valve, such as cells sources, potential materials and scaffolds fabrication, but also to the advances in the development of heart valve replacements. The focus of the review is on the recent achievements concerning the utilization of natural polymers (polysaccharides and proteins) in TEHV; thus, their extensive presentation is provided. In addition, the technological progresses in heart valve tissue engineering (HVTE) are shown, with several inherent challenges and limitations. The available strategies to design, validate and remodel heart valves are discussed in depth by a comparative analysis of in vitro, in vivo (pre-clinical models) and in situ (clinical translation) tissue engineering studies.
Collapse
|
7
|
Pulmonary valve replacement: a new paradigm with tissue engineering. Curr Probl Cardiol 2022:101212. [PMID: 35460681 DOI: 10.1016/j.cpcardiol.2022.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
Abstract
Prevalence of congenital heart diseases worldwide is around 9 per 1000 newborns, 20% of which affect the pulmonary valve or right ventricular outflow tract. As survival after surgical repair of these defects has improved over time, there is the need to address the long-term issues of older children and young adults with "repaired" congenital heart diseases. In recent decades, the most used types of valves are the mechanical and bioprosthetic valves. Despite improving patients' quality of life, these effects are suboptimal due to their limitations, such as the inability to grow and adapt to hemodynamic changes. These issues have led to the search for living valve solutions through tissue engineering to respond to these challenges. This review aims to review the performance of traditional pulmonary valves and understand how tissue engineering-based valves can improve the management of these patients.
Collapse
|
8
|
Naso F, Gandaglia A. Can Heart Valve Decellularization Be Standardized? A Review of the Parameters Used for the Quality Control of Decellularization Processes. Front Bioeng Biotechnol 2022; 10:830899. [PMID: 35252139 PMCID: PMC8891751 DOI: 10.3389/fbioe.2022.830899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
When a tissue or an organ is considered, the attention inevitably falls on the complex and delicate mechanisms regulating the correct interaction of billions of cells that populate it. However, the most critical component for the functionality of specific tissue or organ is not the cell, but the cell-secreted three-dimensional structure known as the extracellular matrix (ECM). Without the presence of an adequate ECM, there would be no optimal support and stimuli for the cellular component to replicate, communicate and interact properly, thus compromising cell dynamics and behaviour and contributing to the loss of tissue-specific cellular phenotype and functions. The limitations of the current bioprosthetic implantable medical devices have led researchers to explore tissue engineering constructs, predominantly using animal tissues as a potentially unlimited source of materials. The high homology of the protein sequences that compose the mammalian ECM, can be exploited to convert a soft animal tissue into a human autologous functional and long-lasting prosthesis ensuring the viability of the cells and maintaining the proper biomechanical function. Decellularization has been shown to be a highly promising technique to generate tissue-specific ECM-derived products for multiple applications, although it might comprise very complex processes that involve the simultaneous use of chemical, biochemical, physical and enzymatic protocols. Several different approaches have been reported in the literature for the treatment of bone, cartilage, adipose, dermal, neural and cardiovascular tissues, as well as skeletal muscle, tendons and gastrointestinal tract matrices. However, most of these reports refer to experimental data. This paper reviews the most common and latest decellularization approaches that have been adopted in cardiovascular tissue engineering. The efficacy of cells removal was specifically reviewed and discussed, together with the parameters that could be used as quality control markers for the evaluation of the effectiveness of decellularization and tissue biocompatibility. The purpose was to provide a panel of parameters that can be shared and taken into consideration by the scientific community to achieve more efficient, comparable, and reliable experimental research results and a faster technology transfer to the market.
Collapse
|
9
|
Blum KM, Mirhaidari G, Breuer CK. Tissue engineering: Relevance to neonatal congenital heart disease. Semin Fetal Neonatal Med 2022; 27:101225. [PMID: 33674254 PMCID: PMC8390581 DOI: 10.1016/j.siny.2021.101225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Congenital heart disease (CHD) represents a large clinical burden, representing the most common cause of birth defect-related death in the newborn. The mainstay of treatment for CHD remains palliative surgery using prosthetic vascular grafts and valves. These devices have limited effectiveness in pediatric patients due to thrombosis, infection, limited endothelialization, and a lack of growth potential. Tissue engineering has shown promise in providing new solutions for pediatric CHD patients through the development of tissue engineered vascular grafts, heart patches, and heart valves. In this review, we examine the current surgical treatments for congenital heart disease and the research being conducted to create tissue engineered products for these patients. While much research remains to be done before tissue engineering becomes a mainstay of clinical treatment for CHD patients, developments have been progressing rapidly towards translation of tissue engineering devices to the clinic.
Collapse
Affiliation(s)
- Kevin M Blum
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Gabriel Mirhaidari
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus OH, USA,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus OH, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus, OH, USA.
| |
Collapse
|
10
|
Vafaee T, Walker F, Thomas D, Roderjan JG, Veiga Lopes S, da Costa FDA, Desai A, Rooney P, Jennings LM, Fisher J, Berry HE, Ingham E. Repopulation of decellularised porcine pulmonary valves in the right ventricular outflow tract of sheep: Role of macrophages. J Tissue Eng 2022; 13:20417314221102680. [PMID: 35782993 PMCID: PMC9243591 DOI: 10.1177/20417314221102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
The primary objective was to evaluate performance of low concentration SDS decellularised porcine pulmonary roots in the right ventricular outflow tract of juvenile sheep. Secondary objectives were to explore the cellular population of the roots over time. Animals were monitored by echocardiography and roots explanted at 1, 3, 6 (n = 4) and 12 months (n = 8) for gross analysis. Explanted roots were subject to histological, immunohistochemical and quantitative calcium analysis (n = 4 at 1, 3 and 12 months) and determination of material properties (n = 4; 12 months). Cryopreserved ovine pulmonary root allografts (n = 4) implanted for 12 months, and non-implanted cellular ovine roots were analysed for comparative purposes. Decellularised porcine pulmonary roots functioned well and were in very good condition with soft, thin and pliable leaflets. Morphometric analysis showed cellular population by 1 month. However, by 12 months the total number of cells was less than 50% of the total cells in non-implanted native ovine roots. Repopulation of the decellularised porcine tissues with stromal (α-SMA+; vimentin+) and progenitor cells (CD34+; CD271+) appeared to be orchestrated by macrophages (MAC 387+/ CD163low and CD163+/MAC 387-). The calcium content of the decellularised porcine pulmonary root tissues increased over the 12-month period but remained low (except suture points) at 401 ppm (wet weight) or below. The material properties of the decellularised porcine pulmonary root wall were unchanged compared to pre-implantation. There were some changes in the leaflets but importantly, the porcine tissues did not become stiffer. The decellularised porcine pulmonary roots showed good functional performance in vivo and were repopulated with ovine cells of the appropriate phenotype in a process orchestrated by M2 macrophages, highlighting the importance of these cells in the constructive tissue remodelling of cardiac root tissues.
Collapse
Affiliation(s)
- Tayyebeh Vafaee
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| | - Fiona Walker
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| | - Dan Thomas
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| | - João Gabriel Roderjan
- Department of Cardiac Surgery, Santa
Casa de Curitiba, Pontifica Universidade Catolica do Parana, Curitiba, Brazil
| | - Sergio Veiga Lopes
- Department of Cardiac Surgery, Santa
Casa de Curitiba, Pontifica Universidade Catolica do Parana, Curitiba, Brazil
| | - Francisco DA da Costa
- Department of Cardiac Surgery, Santa
Casa de Curitiba, Pontifica Universidade Catolica do Parana, Curitiba, Brazil
| | - Amisha Desai
- Institute of Medical and Biological
Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Paul Rooney
- NHS Blood and Transplant, Tissue and
Eye Services, Estuary Banks, Liverpool, UK
| | - Louise M Jennings
- Institute of Medical and Biological
Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - John Fisher
- Institute of Medical and Biological
Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Helen E Berry
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| | - Eileen Ingham
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| |
Collapse
|
11
|
Ramm R, Goecke T, Köhler P, Tudorache I, Cebotari S, Ciubotaru A, Sarikouch S, Höffler K, Bothe F, Petersen B, Haverich A, Niemann H, Hilfiker A. Immunological and functional features of decellularized xenogeneic heart valves after transplantation into GGTA1-KO pigs. Regen Biomater 2021; 8:rbab036. [PMID: 35928180 PMCID: PMC8329474 DOI: 10.1093/rb/rbab036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 07/22/2023] Open
Abstract
Decellularization of xenogeneic heart valves might lead to excellent regenerative implants, from which many patients could benefit. However, this material carries various xenogeneic epitopes and thus bears a considerable inherent immunological risk. Here, we investigated the regenerative and immunogenic potential of xenogeneic decellularized heart valve implants using pigs deficient for the galactosyltransferase gene (GGTA1-KO) as novel large animal model. Decellularized aortic and pulmonary heart valves obtained from sheep, wild-type pigs or GGTA1-KO pigs were implanted into GGTA1-KO pigs for 3, or 6 months, respectively. Explants were analyzed histologically, immunhistologically (CD3, CD21 and CD172a) and anti-αGal antibody serum titers were determined by ELISA. Xenogeneic sheep derived implants exhibited a strong immune reaction upon implantation into GGTA1-KO pigs, characterized by massive inflammatory cells infiltrates, presence of foreign body giant cells, a dramatic increase of anti-αGal antibody titers and ultimately destruction of the graft, whereas wild-type porcine grafts induced only a mild reaction in GGTA1-KO pigs. Allogeneic implants, wild-type/wild-type and GGTA1-KO/GGTA1-KO valves did not induce a measurable immune reaction. Thus, GGTA1-KO pigs developed a 'human-like' immune response toward decellularized xenogeneic implants showing that immunogenicity of xenogeneic implants is not sufficiently reduced by decellularization, which detracts from their regenerative potential.
Collapse
Affiliation(s)
- Robert Ramm
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Peter Köhler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystr. 10, 31535 Mariensee/Neustadt am Ruebenberge, Germany
| | - Igor Tudorache
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Serghei Cebotari
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Anatol Ciubotaru
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Samir Sarikouch
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Klaus Höffler
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | | | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystr. 10, 31535 Mariensee/Neustadt am Ruebenberge, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Hoeltystr. 10, 31535 Mariensee/Neustadt am Ruebenberge, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| |
Collapse
|
12
|
Williams DF, Bezuidenhout D, de Villiers J, Human P, Zilla P. Long-Term Stability and Biocompatibility of Pericardial Bioprosthetic Heart Valves. Front Cardiovasc Med 2021; 8:728577. [PMID: 34589529 PMCID: PMC8473620 DOI: 10.3389/fcvm.2021.728577] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 01/15/2023] Open
Abstract
The use of bioprostheses for heart valve therapy has gradually evolved over several decades and both surgical and transcatheter devices are now highly successful. The rapid expansion of the transcatheter concept has clearly placed a significant onus on the need for improved production methods, particularly the pre-treatment of bovine pericardium. Two of the difficulties associated with the biocompatibility of bioprosthetic valves are the possibilities of immune responses and calcification, which have led to either catastrophic failure or slow dystrophic changes. These have been addressed by evolutionary trends in cross-linking and decellularization techniques and, over the last two decades, the improvements have resulted in somewhat greater durability. However, as the need to consider the use of bioprosthetic valves in younger patients has become an important clinical and sociological issue, the requirement for even greater longevity and safety is now paramount. This is especially true with respect to potential therapies for young people who are afflicted by rheumatic heart disease, mostly in low- to middle-income countries, for whom no clinically acceptable and cost-effective treatments currently exist. To extend longevity to this new level, it has been necessary to evaluate the mechanisms of pericardium biocompatibility, with special emphasis on the interplay between cross-linking, decellularization and anti-immunogenicity processes. These mechanisms are reviewed in this paper. On the basis of a better understanding of these mechanisms, a few alternative treatment protocols have been developed in the last few years. The most promising protocol here is based on a carefully designed combination of phases of tissue-protective decellularization with a finely-titrated cross-linking sequence. Such refined protocols offer considerable potential in the progress toward superior longevity of pericardial heart valves and introduce a scientific dimension beyond the largely disappointing 'anti-calcification' treatments of past decades.
Collapse
Affiliation(s)
- David F. Williams
- Strait Access Technologies Ltd. Pty., Cape Town, South Africa
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Deon Bezuidenhout
- Strait Access Technologies Ltd. Pty., Cape Town, South Africa
- Cardiovascular Research Unit, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | | | - Paul Human
- Christiaan Barnard Department of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| | - Peter Zilla
- Strait Access Technologies Ltd. Pty., Cape Town, South Africa
- Cardiovascular Research Unit, Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- Christiaan Barnard Department of Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Chang TI, Hsu KH, Li SJ, Chuang MK, Luo CW, Chen YJ, Chang CI. Evolution of pulmonary valve reconstruction with focused review of expanded polytetrafluoroethylene handmade valves. Interact Cardiovasc Thorac Surg 2020; 32:585-592. [PMID: 33377488 DOI: 10.1093/icvts/ivaa302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/17/2020] [Accepted: 10/04/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Many surgeons develop unique techniques for unmet needs for right ventricular outflow reconstruction to resolve pulmonary regurgitation after corrective surgery for congenital heart diseases. Expanded polytetrafluoroethylene (ePTFE) stands out as a reliable synthetic material, and clinical results with handmade ePTFE valves have been promising. This review focuses on the historical evolution of the use of ePTFE in pulmonary valve replacement and in the techniques for pioneering the translation of the handmade ePTFE trileaflet design for the transcatheter approach. METHODS We searched for and reviewed publications from 1990 to 2020 in the Pubmed database. Nineteen clinical studies from 2005 to 2019 that focused on ePTFE-based valves were summarized. The evolution of the ePTFE-based valve over 3 decades and recent relevant in vitro studies were investigated. RESULTS The average freedom from reintervention or surgery in the recorded ePTFE-based valve population was 90.2% at 5 years, and the survival rate was 96.7% at 3 years. CONCLUSIONS Non-inferior clinical results of this ePTFE handmade valve were revealed compared to allograft or xenograft options for pulmonary valve replacement. Future investigations on transferring ePTFE trileaflet design to transcatheter devices should be considered.
Collapse
Affiliation(s)
- Te-I Chang
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Kang-Hong Hsu
- Division of Cardiovascular Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Jung Li
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min-Kai Chuang
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chi-Wen Luo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chung-I Chang
- Division of Cardiovascular Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Poulis N, Zaytseva P, Gähwiler EKN, Motta SE, Fioretta ES, Cesarovic N, Falk V, Hoerstrup SP, Emmert MY. Tissue engineered heart valves for transcatheter aortic valve implantation: current state, challenges, and future developments. Expert Rev Cardiovasc Ther 2020; 18:681-696. [DOI: 10.1080/14779072.2020.1792777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nikolaos Poulis
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Polina Zaytseva
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Eric K. N. Gähwiler
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | - Nikola Cesarovic
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
| | - Volkmar Falk
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- German Center of Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
15
|
Waqanivavalagi SWFR, Bhat S, Ground MB, Milsom PF, Cornish J. Clinical performance of decellularized heart valves versus standard tissue conduits: a systematic review and meta-analysis. J Cardiothorac Surg 2020; 15:260. [PMID: 32948234 PMCID: PMC7501674 DOI: 10.1186/s13019-020-01292-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Background Valve replacement surgery is the definitive management strategy for patients with severe valvular disease. However, valvular conduits currently in clinical use are associated with significant limitations. Tissue-engineered (decellularized) heart valves are alternative prostheses that have demonstrated promising early results. The purpose of this systematic review and meta-analysis is to perform robust evaluation of the clinical performance of decellularized heart valves implanted in either outflow tract position, in comparison with standard tissue conduits. Methods Systematic searches were conducted in the PubMed, Scopus, and Web of Science databases for articles in which outcomes between decellularized heart valves surgically implanted within either outflow tract position of human subjects and standard tissue conduits were compared. Primary endpoints included postoperative mortality and reoperation rates. Meta-analysis was performed using a random-effects model via the Mantel-Haenszel method. Results Seventeen articles were identified, of which 16 were included in the meta-analysis. In total, 1418 patients underwent outflow tract reconstructions with decellularized heart valves and 2725 patients received standard tissue conduits. Decellularized heart valves were produced from human pulmonary valves and implanted within the right ventricular outflow tract in all cases. Lower postoperative mortality (4.7% vs. 6.1%; RR 0.94, 95% CI: 0.60–1.47; P = 0.77) and reoperation rates (4.8% vs. 7.4%; RR 0.55, 95% CI: 0.36–0.84; P = 0.0057) were observed in patients with decellularized heart valves, although only reoperation rates were statistically significant. There was no statistically significant heterogeneity between the analyzed articles (I2 = 31%, P = 0.13 and I2 = 33%, P = 0.10 respectively). Conclusions Decellularized heart valves implanted within the right ventricular outflow tract have demonstrated significantly lower reoperation rates when compared to standard tissue conduits. However, in order to allow for more accurate conclusions about the clinical performance of decellularized heart valves to be made, there need to be more high-quality studies with greater consistency in the reporting of clinical outcomes.
Collapse
Affiliation(s)
- Steve W F R Waqanivavalagi
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand. .,Adult Emergency Department, Auckland City Hospital, Auckland District Health Board, Grafton, Auckland, 1023, New Zealand.
| | - Sameer Bhat
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand.,Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Marcus B Ground
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand.,Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Paget F Milsom
- Green Lane Cardiothoracic Surgical Unit, Auckland City Hospital, Auckland District Health Board, Grafton, Auckland, 1023, New Zealand
| | - Jillian Cornish
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
16
|
Smart I, Goecke T, Ramm R, Petersen B, Lenz D, Haverich A, Niemann H, Hilfiker A. Dot blots of solubilized extracellular matrix allow quantification of human antibodies bound to epitopes present in decellularized porcine pulmonary heart valves. Xenotransplantation 2020; 28:e12646. [PMID: 32945050 DOI: 10.1111/xen.12646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND The present study reports the development of a sensitive dot blot protocol for determining the level of preformed antibodies against porcine heart valve tissue derived from wild-type (WT) and α-Gal-KO (GGTA1-KO) pigs in human sera. METHODS The assay uses decellularized and solubilized heart valve tissue; antibody binding found in this dot blot assay could be correlated with antibody titers of preformed anti-α-Gal and anti-Neu5Gc antibodies detected by a sensitive ELISA. RESULTS The ultimate protocol had an inter-assay variance of 9.5% and an intra-assay variance of 9.2%, showing that the test is reliable and highly reproducible. With the aid of this dot blot assay, we found significant variation with regard to antibody contents among twelve human sera. Binding of preformed antibodies to WT tissue was significantly higher than to GGTA1-KO tissue. CONCLUSIONS The dot blot assay described herein could be a valuable tool to measure preformed antibody levels in human sera against unknown epitopes on decellularized tissue prior to implantation. Ultimately, this prescreening may allow a matching of the porcine xenograft with the respective human recipients in demand and thus may become an important tool for graft long-term survival similar to current allotransplantation settings.
Collapse
Affiliation(s)
- Isabel Smart
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Robert Ramm
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Björn Petersen
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Neustadt, Germany
| | - Doreen Lenz
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Heiner Niemann
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat Rev Cardiol 2020; 18:92-116. [PMID: 32908285 DOI: 10.1038/s41569-020-0422-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Valvular heart disease is a major cause of morbidity and mortality worldwide. Surgical valve repair or replacement has been the standard of care for patients with valvular heart disease for many decades, but transcatheter heart valve therapy has revolutionized the field in the past 15 years. However, despite the tremendous technical evolution of transcatheter heart valves, to date, the clinically available heart valve prostheses for surgical and transcatheter replacement have considerable limitations. The design of next-generation tissue-engineered heart valves (TEHVs) with repair, remodelling and regenerative capacity can address these limitations, and TEHVs could become a promising therapeutic alternative for patients with valvular disease. In this Review, we present a comprehensive overview of current clinically adopted heart valve replacement options, with a focus on transcatheter prostheses. We discuss the various concepts of heart valve tissue engineering underlying the design of next-generation TEHVs, focusing on off-the-shelf technologies. We also summarize the latest preclinical and clinical evidence for the use of these TEHVs and describe the current scientific, regulatory and clinical challenges associated with the safe and broad clinical translation of this technology.
Collapse
|
18
|
Gonzalez de Torre I, Alonso M, Rodriguez-Cabello JC. Elastin-Based Materials: Promising Candidates for Cardiac Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:657. [PMID: 32695756 PMCID: PMC7338576 DOI: 10.3389/fbioe.2020.00657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/27/2020] [Indexed: 11/15/2022] Open
Abstract
Stroke and cardiovascular episodes are still some of the most common diseases worldwide, causing millions of deaths and costing billions of Euros to healthcare systems. The use of new biomaterials with enhanced biological and physical properties has opened the door to new approaches in cardiovascular applications. Elastin-based materials are biomaterials with some of the most promising properties. Indeed, these biomaterials have started to yield good results in cardiovascular and angiogenesis applications. In this review, we explore the latest trends in elastin-derived materials for cardiac regeneration and the different possibilities that are being explored by researchers to regenerate an infarcted muscle and restore its normal function. Elastin-based materials can be processed in different manners to create injectable systems or hydrogel scaffolds that can be applied by simple injection or as patches to cover the damaged area and regenerate it. Such materials have been applied to directly regenerate the damaged cardiac muscle and to create complex structures, such as heart valves or new bio-stents that could help to restore the normal function of the heart or to minimize damage after a stroke. We will discuss the possibilities that elastin-based materials offer in cardiac tissue engineering, either alone or in combination with other biomaterials, in order to illustrate the wide range of options that are being explored. Moreover, although tremendous advances have been achieved with such elastin-based materials, there is still room for new approaches that could trigger advances in cardiac tissue regeneration.
Collapse
|
19
|
Li X, Burlak C. Xenotransplantation literature update, March/April 2020. Xenotransplantation 2020; 27:e12607. [PMID: 32472558 DOI: 10.1111/xen.12607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaohang Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
20
|
Chang TI, Hsu KH, Luo CW, Yen JH, Lu PC, Chang CI. In vitro study of trileaflet polytetrafluoroethylene conduit and its valve-in-valve transformation. Interact Cardiovasc Thorac Surg 2020; 30:408-416. [DOI: 10.1093/icvts/ivz274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
OBJECTIVES
Handmade trileaflet expanded polytetrafluoroethylene valved conduit developed using the flip-over method has been tailored for pulmonary valve reconstruction with satisfactory outcomes. We investigated the in vitro performance of the valve design in a mock circulatory system with various conduit sizes. In our study, the design was transformed into a transcatheter stent graft system which could fit in original valved conduits in a valve-in-valve fashion.
METHODS
Five different sizes of valved polytetrafluoroethylene vascular grafts (16, 18, 20, 22 and 24 mm) were mounted onto a mock circulatory system with a prism window for direct leaflets motion observation. Transvalvular pressure gradients were recorded using pressure transducers. Mean and instant flows were determined via a rotameter and a flowmeter. Similar flip-over trileaflet valve design was then carried out in 3 available stent graft sizes (23, 26 and 28.5 mm, Gore aortic extender), which were deployed inside the valved conduits.
RESULTS
Peak pressure gradient across 5 different sized graft valves, in their appropriate flow setting (2.0, 2.5 and 5.0 l/min), ranged from 4.7 to 13.2 mmHg. No significant valve regurgitation was noted (regurgitant fraction: 1.6–4.9%) in all valve sizes and combinations. Three sizes of the trileaflet-valved stent grafts were implanted in the 4 sizes of valved conduits except for the 16-mm conduit. Peak pressure gradient increase after valved-stent graft-in-valved-conduit setting was <10 mmHg in all 4 conduits.
CONCLUSIONS
The study showed excellent in vitro performance of trileaflet polytetrafluoroethylene valved conduits. Its valved stent graft transformation provided data which may serve as a reference for transcatheter valve-in-valve research in the future.
Collapse
Affiliation(s)
- Te-I Chang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Kang-Hong Hsu
- Division of Cardiovascular Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chi-Wen Luo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jen-Hong Yen
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City, Taiwan
| | - Po-Chien Lu
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City, Taiwan
| | - Chung-I Chang
- Division of Cardiovascular Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Ramm R, Goecke T, Theodoridis K, Hoeffler K, Sarikouch S, Findeisen K, Ciubotaru A, Cebotari S, Tudorache I, Haverich A, Hilfiker A. Decellularization combined with enzymatic removal of N-linked glycans and residual DNA reduces inflammatory response and improves performance of porcine xenogeneic pulmonary heart valves in an ovine in vivo model. Xenotransplantation 2019; 27:e12571. [PMID: 31769101 DOI: 10.1111/xen.12571] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Limited availability of decellularized allogeneic heart valve substitutes restricts the clinical application thereof. Decellularized xenogeneic valves might constitute an attractive alternative; however, increased immunological hurdles have to be overcome. This study aims for the in vivo effect in sheep of decellularized porcine pulmonary heart valves (dpPHV) enzymatically treated for N-glycan and DNA removal. METHODS dpPHV generated by nine different decelluarization methods were characterized in respect of DNA, hydroxyproline, GAGs, and SDS content. Orthotopic implantation in sheep for six months of five groups of dpPHV (n = 3 each; 3 different decellularization protocols w/o PNGase F and DNase I treatment) allowed the analysis of function and immunological reaction in the ovine host. Allogenic doPHV implantations (n = 3) from a previous study served as control. RESULTS Among the decellularization procedures, Triton X-100 & SDS as well as trypsin & Triton X-100 resulted in highly efficient removal of cellular components, while the extracellular matrix remained intact. In vivo, the functional performance of dpPHV was comparable to that of allogeneic controls. Removal of N-linked glycans and DNA by enzymatic PNGase F and DNase I treatment had positive effects on the clinical performance of Triton X-100 & SDS dpPHV, whereas this treatment of trypsin & Triton X-100 dpPHV induced the lowest degree of inflammation of all tested xenogeneic implants. CONCLUSION Functional xenogeneic heart valve substitutes with a low immunologic load can be produced by decellularization combined with enzymatic removal of DNA and partial deglycosylation of dpPHV.
Collapse
Affiliation(s)
- Robert Ramm
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Karolina Theodoridis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Klaus Hoeffler
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Samir Sarikouch
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Katja Findeisen
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Anatol Ciubotaru
- Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.,Cardiac Surgery Center, State Medical and Pharmaceutical University, Chisinau, Moldova
| | - Serghei Cebotari
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Igor Tudorache
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Williams DF. Challenges With the Development of Biomaterials for Sustainable Tissue Engineering. Front Bioeng Biotechnol 2019; 7:127. [PMID: 31214584 PMCID: PMC6554598 DOI: 10.3389/fbioe.2019.00127] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
The field of tissue engineering has tantalizingly offered the possibility of regenerating new tissue in order to treat a multitude of diseases and conditions within the human body. Nevertheless, in spite of significant progress with in vitro and small animal studies, progress toward realizing the clinical and commercial endpoints has been slow and many would argue that ultimate goals, especially in treating those conditions which, as yet, do not have acceptable conventional therapies, may never be reached because of flawed scientific rationale. In other words, sustainable tissue engineering may not be achievable with current approaches. One of the major factors here is the choice of biomaterial that is intended, through its use as a "scaffold," to guide the regeneration process. For many years, effective specifications for these biomaterials have not been well-articulated, and the requirements for biodegradability and prior FDA approval for use in medical devices, have dominated material selection processes. This essay argues that these considerations are not only wrong in principle but counter-productive in practice. Materials, such as many synthetic bioabsorbable polymers, which are designed to have no biological activity that could stimulate target cells to express new and appropriate tissue, will not be effective. It is argued here that a traditional 'scaffold' represents the wrong approach, and that tissue-engineering templates that are designed to replicate the niche, or microenvironment, of these target cells are much more likely to succeed.
Collapse
Affiliation(s)
- David F. Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, United States
- Strait Access Technologies, Cape Town, South Africa
| |
Collapse
|
23
|
Koenig F, Kilzer M, Hagl C, Thierfelder N. Successful decellularization of thick-walled tissue: Highlighting pitfalls and the need for a multifactorial approach. Int J Artif Organs 2018; 42:17-24. [PMID: 30442045 DOI: 10.1177/0391398818805624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION: Decellularization of thick tissue is challenging and varying. Therefore, we tried to establish a multifactorial approach for reliable aortic wall decellularization. METHODS: Porcine aortic walls were decellularized according to different procedures. Decellularization was performed for 24 (G1), 48 (G2), and 72 h (G3) with a solution of 0.5% desoxycholate and 0.5% dodecyl sulfate. The procedure was characterized using intermittent washing steps, the inclusion of sonication as well as DNase and α-galactosidase treatment. The decellularization efficiency was measured by the evaluation of 4',6-diamidino-2-phenylindole and hematoxylin and eosin staining and quantitative DNA assays. Pentachrome and picrosirius red staining, scanning electron microscopy as well as glycosaminoglycan assays were performed to evaluate the effect of the procedure on the extracellular matrix. RESULTS: 4',6-Diamidino-2-phenylindole and hematoxylin and eosin staining revealed a large amount of remaining nuclei in all groups. However, consecutive DNase treatment had a significant effect. While the remaining DNA was detected in some samples of G1 and G2, samples of G3 were fully decellularized. Glycosaminoglycan content was significantly reduced to 50% after 24 h (G1) but remained constant for G2 and G3. Picrosirius red staining revealed an intact and stable collagen network without any visible defects. Pentachrome staining substantiated these results. Nonetheless, the fiber network remains intact, which could be confirmed by reflection electron microscopy analysis. CONCLUSION: In this study, we developed a procedure that grants successful decellularization of porcine aortic wall while maintaining the fibrous microstructure. We highlighted the significant effect of DNase and α-galactosidase treatment. In addition, we could show the need for a multifactorial treatment and comprehensive evaluation protocols for thick tissue decellularization.
Collapse
Affiliation(s)
- Fabian Koenig
- Department of Cardiac Surgery, Laboratory for Tissue Engineering, Grosshadern Medical Centre, Ludwig-Maximilians-University, Munich, Germany
| | - Marie Kilzer
- Department of Cardiac Surgery, Laboratory for Tissue Engineering, Grosshadern Medical Centre, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, Laboratory for Tissue Engineering, Grosshadern Medical Centre, Ludwig-Maximilians-University, Munich, Germany
| | - Nikolaus Thierfelder
- Department of Cardiac Surgery, Laboratory for Tissue Engineering, Grosshadern Medical Centre, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
24
|
Ghafarzadeh M, Namdari P, Tarhani M, Tarhani F. A review of application of stem cell therapy in the management of congenital heart disease. J Matern Fetal Neonatal Med 2018; 33:1607-1615. [PMID: 30185081 DOI: 10.1080/14767058.2018.1520829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Research on stem cells has been rapidly growing with impressive breakthroughs. Although merely a few of the laboratory researches have successfully transited to the clinical trial phase, the application of stem cells as a therapeutic option for some currently incapacitating diseases hold fascinating potentials. This review emphasis the various opportunities for the application of stem cell in the treatment of fetal diseases. First, we provide a brief commentary on the common stem cell strategy used in the treatment of congenital anomalies, thereafter we discuss how stem cell is being used in the management of some fetal disorders.
Collapse
Affiliation(s)
- Masoumeh Ghafarzadeh
- Faculty of Medicine, Department of Obstetrics and Genecology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parsa Namdari
- University of Debrecen Medical School, Debrecen, Hungary
| | - Mehrnoosh Tarhani
- Research Committee Student, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fariba Tarhani
- Faculty of Medicine, Department of Paediatrics, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
25
|
Onwuka E, King N, Heuer E, Breuer C. The Heart and Great Vessels. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031922. [PMID: 28289246 DOI: 10.1101/cshperspect.a031922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cardiovascular disease is the leading cause of mortality worldwide. We have made large strides over the past few decades in management, but definitive therapeutic options to address this health-care burden are still limited. Given the ever-increasing need, much effort has been spent creating engineered tissue to replaced diseased tissue. This article gives a general overview of this work as it pertains to the development of great vessels, myocardium, and heart valves. In each area, we focus on currently studied methods, limitations, and areas for future study.
Collapse
Affiliation(s)
- Ekene Onwuka
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205.,College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Nakesha King
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205.,College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Eric Heuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Christopher Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205.,College of Medicine, The Ohio State University, Columbus, Ohio 43210.,Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio 43205
| |
Collapse
|
26
|
Blum KM, Drews JD, Breuer CK. Tissue-Engineered Heart Valves: A Call for Mechanistic Studies. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:240-253. [PMID: 29327671 DOI: 10.1089/ten.teb.2017.0425] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heart valve disease carries a substantial risk of morbidity and mortality. Outcomes are significantly improved by valve replacement, but currently available mechanical and biological replacement valves are associated with complications of their own. Mechanical valves have a high rate of thromboembolism and require lifelong anticoagulation. Biological prosthetic valves have a much shorter lifespan, and they are prone to tearing and degradation. Both types of valves lack the capacity for growth, making them particularly problematic in pediatric patients. Tissue engineering has the potential to overcome these challenges by creating a neovalve composed of native tissue that is capable of growth and remodeling. The first tissue-engineered heart valve (TEHV) was created more than 20 years ago in an ovine model, and the technology has been advanced to clinical trials in the intervening decades. Some TEHVs have had clinical success, whereas others have failed, with structural degeneration resulting in patient deaths. The etiologies of these complications are poorly understood because much of the research in this field has been performed in large animals and humans, and, therefore, there are few studies of the mechanisms of neotissue formation. This review examines the need for a TEHV to treat pediatric patients with valve disease, the history of TEHVs, and a future that would benefit from extension of the reverse translational trend in this field to include small animal studies.
Collapse
Affiliation(s)
- Kevin M Blum
- 1 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,2 The Ohio State University College of Medicine , Columbus, Ohio
| | - Joseph D Drews
- 1 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,3 Department of Surgery, The Ohio State University Wexner Medical Center , Columbus, Ohio
| | - Christopher K Breuer
- 1 Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,3 Department of Surgery, The Ohio State University Wexner Medical Center , Columbus, Ohio
| |
Collapse
|
27
|
D'Amore A, Luketich SK, Raffa GM, Olia S, Menallo G, Mazzola A, D'Accardi F, Grunberg T, Gu X, Pilato M, Kameneva MV, Badhwar V, Wagner WR. Heart valve scaffold fabrication: Bioinspired control of macro-scale morphology, mechanics and micro-structure. Biomaterials 2018; 150:25-37. [PMID: 29031049 PMCID: PMC5988585 DOI: 10.1016/j.biomaterials.2017.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Abstract
Valvular heart disease is currently treated with mechanical valves, which benefit from longevity, but are burdened by chronic anticoagulation therapy, or with bioprosthetic valves, which have reduced thromboembolic risk, but limited durability. Tissue engineered heart valves have been proposed to resolve these issues by implanting a scaffold that is replaced by endogenous growth, leaving autologous, functional leaflets that would putatively eliminate the need for anticoagulation and avoid calcification. Despite the diversity in fabrication strategies and encouraging results in large animal models, control over engineered valve structure-function remains at best partial. This study aimed to overcome these limitations by introducing double component deposition (DCD), an electrodeposition technique that employs multi-phase electrodes to dictate valve macro and microstructure and resultant function. Results in this report demonstrate the capacity of the DCD method to simultaneously control scaffold macro-scale morphology, mechanics and microstructure while producing fully assembled stent-less multi-leaflet valves composed of microscopic fibers. DCD engineered valve characterization included: leaflet thickness, biaxial properties, bending properties, and quantitative structural analysis of multi-photon and scanning electron micrographs. Quasi-static ex-vivo valve coaptation testing and dynamic organ level functional assessment in a pressure pulse duplicating device demonstrated appropriate acute valve functionality.
Collapse
Affiliation(s)
- Antonio D'Amore
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Fondazione RiMED, Italy; Dipartimento innovazione industriale e digitale (DIIT), Università di Palermo, Italy
| | - Samuel K Luketich
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Giuseppe M Raffa
- Istituto mediterraneo trapianti e terapie ad alta specializzazione (ISMETT), UPMC, Italy
| | - Salim Olia
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Artificial Heart Program, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Giorgio Menallo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Antonino Mazzola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Dipartimento innovazione industriale e digitale (DIIT), Università di Palermo, Italy
| | - Flavio D'Accardi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Dipartimento innovazione industriale e digitale (DIIT), Università di Palermo, Italy
| | - Tamir Grunberg
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; ORT Braude College of Engineering, Israel
| | - Xinzhu Gu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michele Pilato
- Istituto mediterraneo trapianti e terapie ad alta specializzazione (ISMETT), UPMC, Italy
| | - Marina V Kameneva
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vinay Badhwar
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Dep. of Cardiovascular and Thoracic Surgery, West Virginia University, Morgantown, WV, USA
| | - William R Wagner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Schneider M, Stamm C, Brockbank KGM, Stock UA, Seifert M. The choice of cryopreservation method affects immune compatibility of human cardiovascular matrices. Sci Rep 2017; 7:17027. [PMID: 29208929 PMCID: PMC5717054 DOI: 10.1038/s41598-017-17288-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Conventional frozen cryopreservation (CFC) is currently the gold standard for cardiovascular allograft preservation. However, inflammation and structural deterioration limit transplant durability. Ice-free cryopreservation (IFC) already demonstrated matrix structure preservation combined with attenuated immune responses. In this study, we aim to explore the mechanisms of this diminished immunogenicity in vitro. First, we characterized factors released by human aortic tissue after CFC and IFC. Secondly, we analyzed co-cultures with human peripheral blood mononuclear cells, purified monocytes, T cells and monocyte-derived macrophages to examine functional immune effects triggered by the tissue or released cues. IFC tissue exhibited significantly lower metabolic activity and release of pro-inflammatory cytokines than CFC tissue, but surprisingly, more active transforming growth factor β. Due to reduced cytokine release by IFC tissue, less monocyte and T cell migration was detected in a chemotaxis system. Moreover, only cues from CFC tissue but not from IFC tissue amplified αCD3 triggered T cell proliferation. In a specifically designed macrophage-tissue assay, we could show that macrophages did not upregulate M1 polarization markers (CD80 or HLA-DR) on either tissue type. In conclusion, IFC selectively modulates tissue characteristics and thereby attenuates immune cell attraction and activation. Therefore, IFC treatment creates improved opportunities for cardiovascular graft preservation.
Collapse
Affiliation(s)
- Maria Schneider
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Heart Center (DHZB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kelvin G M Brockbank
- Tissue Testing Technologies LLC, North Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Ulrich A Stock
- Royal Brompton and Harefield NHS Trust Imperial College London, London, UK
| | - Martina Seifert
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
29
|
VeDepo MC, Detamore MS, Hopkins RA, Converse GL. Recellularization of decellularized heart valves: Progress toward the tissue-engineered heart valve. J Tissue Eng 2017; 8:2041731417726327. [PMID: 28890780 PMCID: PMC5574480 DOI: 10.1177/2041731417726327] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023] Open
Abstract
The tissue-engineered heart valve portends a new era in the field of valve replacement. Decellularized heart valves are of great interest as a scaffold for the tissue-engineered heart valve due to their naturally bioactive composition, clinical relevance as a stand-alone implant, and partial recellularization in vivo. However, a significant challenge remains in realizing the tissue-engineered heart valve: assuring consistent recellularization of the entire valve leaflets by phenotypically appropriate cells. Many creative strategies have pursued complete biological valve recellularization; however, identifying the optimal recellularization method, including in situ or in vitro recellularization and chemical and/or mechanical conditioning, has proven difficult. Furthermore, while many studies have focused on individual parameters for increasing valve interstitial recellularization, a general understanding of the interacting dynamics is likely necessary to achieve success. Therefore, the purpose of this review is to explore and compare the various processing strategies used for the decellularization and subsequent recellularization of tissue-engineered heart valves.
Collapse
Affiliation(s)
- Mitchell C VeDepo
- Cardiac Regenerative Surgery Research Laboratories of the Ward Family Heart Center, Children's Mercy Kansas City, Kansas City, MO, USA.,Bioengineering Program, The University of Kansas, Lawrence, KS, USA
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, USA
| | - Richard A Hopkins
- Cardiac Regenerative Surgery Research Laboratories of the Ward Family Heart Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Gabriel L Converse
- Cardiac Regenerative Surgery Research Laboratories of the Ward Family Heart Center, Children's Mercy Kansas City, Kansas City, MO, USA
| |
Collapse
|
30
|
Helder MRK, Stoyles NJ, Tefft BJ, Hennessy RS, Hennessy RRC, Dyer R, Witt T, Simari RD, Lerman A. Xenoantigenicity of porcine decellularized valves. J Cardiothorac Surg 2017; 12:56. [PMID: 28716099 PMCID: PMC5514525 DOI: 10.1186/s13019-017-0621-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/12/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The xenoantigenicity of porcine bioprosthetic valves is implicated as an etiology leading to calcification and subsequent valve failure. Decellularization of porcine valves theoretically could erase the antigenicity of the tissue leading to more durable prosthetic valves, but the effectiveness of decellularization protocols in regard to completely removing antigens has yet to be verified. Our hypothesis was that decellularization would remove the more abundant α-gal antigens but not remove all the non α-gal antigens, which could mount a response. METHODS Porcine aortic valves were decellularized with 1% sodium dodecyl sulfate for 4 days. Decellularized cusps were evaluated for α-gal epitopes by ELISA. To test for non α-gal antigens, valves were implanted into sheep. Serum was obtained from the sheep preoperatively and 1 week, 1 month, and 2 months postoperatively. This serum was utilized for anti-porcine antibody staining and for quantification of anti-pig IgM and IgG antibodies and complement. RESULTS Decellularized porcine cusps had 2.8 ± 2.0% relative α-gal epitope as compared to fresh porcine aortic valve cusps and was not statistically significantly different (p = 0.4) from the human aortic valve cusp which had a 2.0 ± 0.4% relative concentration. Anti-pig IgM and IgG increased postoperatively from baseline levels. Preoperatively anti-pig IgM was 27.7 ± 1.7 μg/mL and it increased to 71.9 ± 12.1 μg/mL average of all time points postoperatively (p = 0.04). Preoperatively anti-pig IgG in sheep serum was 44.9 ± 1.5 μg/mL and it increased to 72.6 ± 6.0 μg/mL average of all time points postoperatively (p = 0.01). There was a statistically significant difference (p = 0.00007) in the serum C1q concentration before valve implantation (2.5 ± 0.2 IU/mL) and at averaged time points after valve implantation (5.3 ± 0.3 IU/mL). CONCLUSIONS Decellularization with 1% sodium dodecyl sulfate does not fully eliminate non α-gal antigens; however, significant reduction in α-gal presence on decellularized cusps was observed. Clinical implications of the non α-gal antigenic response are yet to be determined. As such, evaluation of any novel decellularized xenografts must include rigorous antigen testing prior to human trials.
Collapse
Affiliation(s)
| | - Nicholas J. Stoyles
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA
| | - Brandon J. Tefft
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA
| | - Ryan S. Hennessy
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA
| | - Rebecca R. C. Hennessy
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA
| | - Roy Dyer
- Divisions of Immunochemical Core Lab, Mayo Clinic, Rochester, MN USA
| | - Tyra Witt
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA
| | - Robert D. Simari
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA
| |
Collapse
|
31
|
Lisy M, Kalender G, Schenke-Layland K, Brockbank KG, Biermann A, Stock UA. Allograft Heart Valves: Current Aspects and Future Applications. Biopreserv Biobank 2017; 15:148-157. [DOI: 10.1089/bio.2016.0070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Milan Lisy
- Department of General, Visceral, Thoracic and Vascular Surgery, Frankfurt-Höchst City Hospital, Frankfurt am Main, Germany
| | - Guenay Kalender
- Department of General, Visceral, Thoracic and Vascular Surgery, Frankfurt-Höchst City Hospital, Frankfurt am Main, Germany
| | - Katja Schenke-Layland
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering, Stuttgart, Germany
- Department of Women's Health, Research Institute for Women's Health, University Tuebingen, Tuebingen, Germany
- Cardiovascular Research Laboratories, Department of Medicine/Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Kelvin G.M. Brockbank
- Tissue Testing Technologies LLC, North Charleston, South Carolina
- Department of Bioengineering, Clemson University, Clemson, South Carolina
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, South Carolina
| | - Anna Biermann
- Department of Thoracic, Cardiac and Thoracic Vascular Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Ulrich Alfred Stock
- Department of Thoracic, Cardiac and Thoracic Vascular Surgery, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
32
|
VeDepo MC, Buse EE, Quinn RW, Williams TD, Detamore MS, Hopkins RA, Converse GL. Species-specific effects of aortic valve decellularization. Acta Biomater 2017; 50:249-258. [PMID: 28069510 DOI: 10.1016/j.actbio.2017.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/05/2016] [Accepted: 01/05/2017] [Indexed: 01/12/2023]
Abstract
Decellularized heart valves have great potential as a stand-alone valve replacement or as a scaffold for tissue engineering heart valves. Before decellularized valves can be widely used clinically, regulatory standards require pre-clinical testing in an animal model, often sheep. Numerous decellularization protocols have been applied to both human and ovine valves; however, the ways in which a specific process may affect valves of these species differently have not been reported. In the current study, the comparative effects of decellularization were evaluated for human and ovine aortic valves by measuring mechanical and biochemical properties. Cell removal was equally effective for both species. The initial cell density of the ovine valve leaflets (2036±673cells/mm2) was almost triple the cell density of human leaflets (760±386cells/mm2; p<0.001). Interestingly, post-decellularization ovine leaflets exhibited significant increases in biaxial areal strain (p<0.001) and circumferential peak stretch (p<0.001); however, this effect was not observed in the human counterparts (p>0.10). This species-dependent difference in the effect of decellularization was likely due to the higher initial cellularity in ovine valves, as well as a significant decrease in collagen crosslinking following the decellularization of ovine leaflets that was not observed in the human leaflet. Decellularization also caused a significant decrease in the circumferential relaxation of ovine leaflets (p<0.05), but not human leaflets (p>0.30), which was credited to a greater reduction of glycosaminoglycans in the ovine tissue post-decellularization. These results indicate that an identical decellularization process can have differing species-specific effects on heart valves. STATEMENT OF SIGNIFICANCE The decellularized heart valve offers potential as an improved heart valve substitute and as a scaffold for the tissue engineered heart valve; however, the consequences of processing must be fully characterized. To date, the effects of decellularization on donor valves from different species have not been evaluated in such a way that permits direct comparison between species. In this manuscript, we report species-dependent variation in the biochemical and biomechanical properties of human and ovine aortic heart valve leaflets following decellularization. This is of clinical significance, as current regulatory guidelines required pre-clinical use of the ovine model to evaluate candidate heart valve substitutes.
Collapse
Affiliation(s)
- Mitchell C VeDepo
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO 64108, United States; Bioengineering Program, University of Kansas, 3135A Learned Hall, 1530 W. 15th St., Lawrence, KS 66045, United States
| | - Eric E Buse
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO 64108, United States
| | - Rachael W Quinn
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO 64108, United States
| | - Todd D Williams
- University of Kansas Mass Spectrometry Laboratory, 3006 Malott Hall, 1251 Wescoe Hall Drive, Lawrence, KS 66045, United States
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, United States
| | - Richard A Hopkins
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO 64108, United States
| | - Gabriel L Converse
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO 64108, United States.
| |
Collapse
|
33
|
Assmann A, Struß M, Schiffer F, Heidelberg F, Munakata H, Timchenko EV, Timchenko PE, Kaufmann T, Huynh K, Sugimura Y, Leidl Q, Pinto A, Stoldt VR, Lichtenberg A, Akhyari P. Improvement of the in vivo
cellular repopulation of decellularized cardiovascular tissues by a detergent-free, non-proteolytic, actin-disassembling regimen. J Tissue Eng Regen Med 2017; 11:3530-3543. [DOI: 10.1002/term.2271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Alexander Assmann
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Duesseldorf Germany
| | - Marc Struß
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Duesseldorf Germany
| | - Franziska Schiffer
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Duesseldorf Germany
| | - Friederike Heidelberg
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Duesseldorf Germany
| | - Hiroshi Munakata
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Duesseldorf Germany
| | - Elena V. Timchenko
- Department of Laser and Biotechnical Systems; Samara State Aerospace University; Samara Russia
| | - Pavel E. Timchenko
- Department of Laser and Biotechnical Systems; Samara State Aerospace University; Samara Russia
| | - Tim Kaufmann
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute; RWTH Aachen University; Aachen Germany
| | - Khon Huynh
- Institute of Haemostaseology, Haemotherapy and Transfusion Medicine; Heinrich Heine University, Medical Faculty; Duesseldorf Germany
| | - Yukiharu Sugimura
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Duesseldorf Germany
| | - Quentin Leidl
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Duesseldorf Germany
| | - Antonio Pinto
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Duesseldorf Germany
| | - Volker R. Stoldt
- Institute of Haemostaseology, Haemotherapy and Transfusion Medicine; Heinrich Heine University, Medical Faculty; Duesseldorf Germany
| | - Artur Lichtenberg
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Duesseldorf Germany
| | - Payam Akhyari
- Department of Cardiovascular Surgery and Research Group for Experimental Surgery; Heinrich Heine University, Medical Faculty; Duesseldorf Germany
| |
Collapse
|
34
|
Nozynska J, Stiller B, Grohmann J. Management of a dissection of matrix P right ventricular-to-pulmonary artery conduit by implanting two pre-stents and a melody valve. Catheter Cardiovasc Interv 2016; 91:E64-E67. [PMID: 27246262 DOI: 10.1002/ccd.26581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/21/2016] [Indexed: 11/05/2022]
Abstract
Reconstructing the right ventricular outflow tract and pulmonary valve via a bovine-derived valve conduit such as Matrix-P-Xenograft is a common surgical repair technique for pulmonary atresia and ventricular septal defect. After conduit degeneration due to calcification or aneurysmal dilatation, percutaneous transvenous stenting of the right ventricular outflow tract followed by pulmonary valve implantation has become the standard interventional treatment. Applied to stenotic conduits, the method is considered safe and effective. An important but seldom-reported problem is graft failure related to the formation of a Matrix membrane due to inflammation and fibrosis inside the xenograft, which can cause serious problems when dissection and rupture occur during transcatheter intervention. The torn pseudomembrane may cause the complete obstruction of both pulmonary arteries, resulting in a life-threatening situation requiring rapid intervention, as in this case presentation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna Nozynska
- Department of Congenital Heart Defects and Pediatric Cardiology, Heart Centre, University of Freiburg, Freiburg, Germany
| | - Brigitte Stiller
- Department of Congenital Heart Defects and Pediatric Cardiology, Heart Centre, University of Freiburg, Freiburg, Germany
| | - Jochen Grohmann
- Department of Congenital Heart Defects and Pediatric Cardiology, Heart Centre, University of Freiburg, Freiburg, Germany
| |
Collapse
|
35
|
Lei Y, Ferdous Z. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering. Biotechnol Prog 2016; 32:543-53. [PMID: 26929197 DOI: 10.1002/btpr.2256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/19/2016] [Indexed: 01/05/2023]
Abstract
With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016.
Collapse
Affiliation(s)
- Ying Lei
- Dept. of Mechanical, Aerospace, and Biomedical Engineering, the University of Tennessee, Knoxville, TN, 37996
| | - Zannatul Ferdous
- Dept. of Mechanical, Aerospace, and Biomedical Engineering, the University of Tennessee, Knoxville, TN, 37996
| |
Collapse
|
36
|
Parmaksiz M, Dogan A, Odabas S, Elçin AE, Elçin YM. Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed Mater 2016; 11:022003. [DOI: 10.1088/1748-6041/11/2/022003] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Sun Z, Xu W, Huang S, Chen Y, Guo X, Shi Z. Dual-Source Computed Tomography Evaluation of Children with Congenital Pulmonary Valve Stenosis. IRANIAN JOURNAL OF RADIOLOGY 2016; 13:e34399. [PMID: 27703660 PMCID: PMC5037969 DOI: 10.5812/iranjradiol.34399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Despite dual-source computed tomography (DSCT) technology has been performed well on adults or infants with heart disease, specific knowledge about children with congenital pulmonary valve stenosis (PS) remained to be established. OBJECTIVES This original research aimed to establish a professional approach of DSCT performing technology on children and to assess the image quality performed by DSCT to establish a diagnostic evaluation for children with PS. PATIENTS AND METHODS Ninety-eight children with congenital PS referred to affiliated hospital of Jining medical college were recruited from October 2013 to March 2015. Participants were divided into four groups according to different ages (0 - 1, 1 - 3, 3 - 7, 7 - 14), or three groups according to different heart rates (< 90, 90 - 110, > 110). Image quality of pulmonary valves was assessed based on a four-point grading scale (1 - 4 points). Those cases achieving a score of ≥ 3 points were selected for further investigation, which played a critical role in our analysis. Correlation analysis was used to identify the effects of age and heart rate on image quality. Additionally, the results evaluated by DSCT were compared with those evaluated from the operation, further confirming the accuracy of DSCT. RESULTS Seventy-two cases (73.4%) achieved a score of ≥ 3 points based on pulmonary valve imaging, which were available for further diagnosis. There was a statistically significant difference (P < 0.05) between the four groups except 0 - 1 group and 1 - 3 group, 3 - 7 group and 7 - 14 group, and the image quality of elder group was higher than younger group. Image score was gradually decreased with increased heart rate (F = 19.05, P < 0.01). Heart rate was negatively correlated with pulmonary valve scores (r = -0.391, P < 0.001), while there was no correlation between age and scores (r = 0.185, P = 0.070). The number, shape, commissure, and opening status of pulmonary valves evaluated by DSCT were the same as the results of operation. CONCLUSION Heart rate serves a pivotal role in imaging quality of DSCT. DSCT provides a functional evaluation of children with congenital PS and consequently contributes to a theoretical basis for corresponding treatment protocols.
Collapse
Affiliation(s)
- Zhanguo Sun
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao City, China
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining, China
| | - Wenjian Xu
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao City, China
- Corresponding author: Wenjian Xu, Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao City, Shandong, 266071, China, E-mail:
| | - Shuran Huang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yueqin Chen
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiang Guo
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining, China
| | - Zhitao Shi
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
38
|
Hoxha S, Torre S, Rungatscher A, Sandrini C, Rossetti L, Barozzi L, Faggian G, Luciani GB. Twenty-Year Outcome After Right Ventricular Outflow Tract Repair Using Heterotopic Pulmonary Conduits in Infants and Children. Artif Organs 2015; 40:50-5. [DOI: 10.1111/aor.12648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Stiljan Hoxha
- Division of Cardiac Surgery; Department of Surgery; University of Verona; Verona Italy
| | - Salvatore Torre
- Division of Cardiac Surgery; Department of Surgery; University of Verona; Verona Italy
| | - Alessio Rungatscher
- Division of Cardiac Surgery; Department of Surgery; University of Verona; Verona Italy
| | - Camilla Sandrini
- Division of Cardiology; Department of Medicine; University of Verona; Verona Italy
| | - Lucia Rossetti
- Division of Cardiology; Department of Medicine; University of Verona; Verona Italy
| | - Luca Barozzi
- Division of Cardiac Surgery; Department of Surgery; University of Verona; Verona Italy
| | - Giuseppe Faggian
- Division of Cardiac Surgery; Department of Surgery; University of Verona; Verona Italy
| | | |
Collapse
|
39
|
Guided tissue regeneration in heart valve replacement: from preclinical research to first-in-human trials. BIOMED RESEARCH INTERNATIONAL 2015; 2015:432901. [PMID: 26495295 PMCID: PMC4606187 DOI: 10.1155/2015/432901] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022]
Abstract
Heart valve tissue-guided regeneration aims to offer a functional and viable alternative to current prosthetic replacements. Not requiring previous cell seeding and conditioning in bioreactors, such exceptional tissue engineering approach is a very fascinating translational regenerative strategy. After in vivo implantation, decellularized heart valve scaffolds drive their same repopulation by recipient's cells for a prospective autologous-like tissue reconstruction, remodeling, and adaptation to the somatic growth of the patient. With such a viability, tissue-guided regenerated conduits can be delivered as off-the-shelf biodevices and possess all the potentialities for a long-lasting resolution of the dramatic inconvenience of heart valve diseases, both in children and in the elderly. A review on preclinical and clinical investigations of this therapeutic concept is provided with evaluation of the issues still to be well deliberated for an effective and safe in-human application.
Collapse
|
40
|
Syedain Z, Reimer J, Schmidt J, Lahti M, Berry J, Bianco R, Tranquillo RT. 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials 2015; 73:175-84. [PMID: 26409002 DOI: 10.1016/j.biomaterials.2015.09.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023]
Abstract
Diseased aortic valves often require replacement, with over 30% of the current aortic valve surgeries performed in patients who will outlive a bioprosthetic valve. While many promising tissue-engineered valves have been created in the lab using the cell-seeded polymeric scaffold paradigm, none have been successfully tested long-term in the aortic position of a pre-clinical model. The high pressure gradients and dynamic flow across the aortic valve leaflets require engineering a tissue that has the strength and compliance to withstand high mechanical demand without compromising normal hemodynamics. A long-term preclinical evaluation of an off-the-shelf tissue-engineered aortic valve in the sheep model is presented here. The valves were made from a tube of decellularized cell-produced matrix mounted on a frame. The engineered matrix is primarily composed of collagen, with strength and organization comparable to native valve leaflets. In vitro testing showed excellent hemodynamic performance with low regurgitation, low systolic pressure gradient, and large orifice area. The implanted valves showed large-scale leaflet motion and maintained effective orifice area throughout the duration of the 6-month implant, with no calcification. After 24 weeks implantation (over 17 million cycles), the valves showed no change in tensile mechanical properties. In addition, histology and DNA quantitation showed repopulation of the engineered matrix with interstitial-like cells and endothelialization. New extracellular matrix deposition, including elastin, further demonstrates positive tissue remodeling in addition to recellularization and valve function. Long-term implantation in the sheep model resulted in functionality, matrix remodeling, and recellularization, unprecedented results for a tissue-engineered aortic valve.
Collapse
Affiliation(s)
- Zeeshan Syedain
- Departments of Biomedical Engineering, University of Minnesota, United States
| | - Jay Reimer
- Departments of Biomedical Engineering, University of Minnesota, United States
| | - Jillian Schmidt
- Departments of Biomedical Engineering, University of Minnesota, United States
| | - Matthew Lahti
- Experimental Surgical Services, University of Minnesota, United States
| | - James Berry
- Experimental Surgical Services, University of Minnesota, United States
| | - Richard Bianco
- Experimental Surgical Services, University of Minnesota, United States
| | - Robert T Tranquillo
- Departments of Biomedical Engineering, University of Minnesota, United States; Department of Chemical Engineering & Material Science, University of Minnesota, United States.
| |
Collapse
|
41
|
Avolio E, Caputo M, Madeddu P. Stem cell therapy and tissue engineering for correction of congenital heart disease. Front Cell Dev Biol 2015; 3:39. [PMID: 26176009 PMCID: PMC4485350 DOI: 10.3389/fcell.2015.00039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/10/2015] [Indexed: 01/08/2023] Open
Abstract
This review article reports on the new field of stem cell therapy and tissue engineering and its potential on the management of congenital heart disease. To date, stem cell therapy has mainly focused on treatment of ischemic heart disease and heart failure, with initial indication of safety and mild-to-moderate efficacy. Preclinical studies and initial clinical trials suggest that the approach could be uniquely suited for the correction of congenital defects of the heart. The basic concept is to create living material made by cellularized grafts that, once implanted into the heart, grows and remodels in parallel with the recipient organ. This would make a substantial improvement in current clinical management, which often requires repeated surgical corrections for failure of implanted grafts. Different types of stem cells have been considered and the identification of specific cardiac stem cells within the heterogeneous population of mesenchymal and stromal cells offers opportunities for de novo cardiomyogenesis. In addition, endothelial cells and vascular progenitors, including cells with pericyte characteristics, may be necessary to generate efficiently perfused grafts. The implementation of current surgical grafts by stem cell engineering could address the unmet clinical needs of patients with congenital heart defects.
Collapse
Affiliation(s)
- Elisa Avolio
- Division of Experimental Cardiovascular Medicine, School of Clinical Sciences, Bristol Heart Institute, University of Bristol Bristol, UK
| | - Massimo Caputo
- Congenital Heart Surgery, School of Clinical Sciences, Bristol Heart Institute, University of Bristol Bristol, UK
| | - Paolo Madeddu
- Division of Experimental Cardiovascular Medicine, School of Clinical Sciences, Bristol Heart Institute, University of Bristol Bristol, UK
| |
Collapse
|
42
|
Cheung DY, Duan B, Butcher JT. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin Biol Ther 2015; 15:1155-72. [PMID: 26027436 DOI: 10.1517/14712598.2015.1051527] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Heart valve disease is an increasingly prevalent and clinically serious condition. There are no clinically effective biological diagnostics or treatment strategies. The only recourse available is replacement with a prosthetic valve, but the inability of these devices to grow or respond biologically to their environments necessitates multiple resizing surgeries and life-long coagulation treatment, especially in children. Tissue engineering has a unique opportunity to impact heart valve disease by providing a living valve conduit, capable of growth and biological integration. AREAS COVERED This review will cover current tissue engineering strategies in fabricating heart valves and their progress towards the clinic, including molded scaffolds using naturally derived or synthetic polymers, decellularization, electrospinning, 3D bioprinting, hybrid techniques, and in vivo engineering. EXPERT OPINION Whereas much progress has been made to create functional living heart valves, a clinically viable product is not yet realized. The next leap in engineered living heart valves will require a deeper understanding of how the natural multi-scale structural and biological heterogeneity of the tissue ensures its efficient function. Related, improved fabrication strategies must be developed that can replicate this de novo complexity, which is likely instructive for appropriate cell differentiation and remodeling whether seeded with autologous stem cells in vitro or endogenously recruited cells.
Collapse
Affiliation(s)
- Daniel Y Cheung
- Cornell University, Department of Biomedical Engineering , Ithaca, NY , USA
| | | | | |
Collapse
|
43
|
James IA, Yi T, Tara S, Best CA, Stuber AJ, Shah KV, Austin BF, Sugiura T, Lee YU, Lincoln J, Trask AJ, Shinoka T, Breuer CK. Hemodynamic Characterization of a Mouse Model for Investigating the Cellular and Molecular Mechanisms of Neotissue Formation in Tissue-Engineered Heart Valves. Tissue Eng Part C Methods 2015; 21:987-94. [PMID: 25915105 DOI: 10.1089/ten.tec.2015.0011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Decellularized allograft heart valves have been used as tissue-engineered heart valve (TEHV) scaffolds with promising results; however, little is known about the cellular mechanisms underlying TEHV neotissue formation. To better understand this phenomenon, we developed a murine model of decellularized pulmonary heart valve transplantation using a hemodynamically unloaded heart transplant model. Furthermore, because the hemodynamics of blood flow through a heart valve may influence morphology and subsequent function, we describe a modified loaded heterotopic heart transplant model that led to an increase in blood flow through the pulmonary valve. We report host cell infiltration and endothelialization of implanted decellularized pulmonary valves (dPV) and provide an experimental approach for the study of TEHVs using mouse models.
Collapse
Affiliation(s)
- Iyore A James
- 1 Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Tai Yi
- 1 Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Shuhei Tara
- 1 Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Cameron A Best
- 1 Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | | | - Kejal V Shah
- 2 The Ohio State University College of Medicine , Columbus, Ohio
| | - Blair F Austin
- 3 Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Tadahisa Sugiura
- 1 Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Yong-Ung Lee
- 1 Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Joy Lincoln
- 3 Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Aaron J Trask
- 3 Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Toshiharu Shinoka
- 1 Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Christopher K Breuer
- 1 Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| |
Collapse
|
44
|
The Immune Response to Crosslinked Tissue is Reduced in Decellularized Xenogeneic and Absent in Decellularized Allogeneic Heart Valves. Int J Artif Organs 2015; 38:199-209. [DOI: 10.5301/ijao.5000395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 11/20/2022]
Abstract
Background The degeneration and failure of xenogeneic heart valves, such as the Matrix P Plus valve (MP-V) consisting of decellularized porcine valves (dec-pV) and equine glutaraldehyde-fixed conduits (ga-eC) have been linked to tissue immunogenicity accompanied by antibody formation. In contrast, decellularized allograft valves (dec-aV) are well-tolerated. Here, we determined tissue-specific antibody levels in patients after implantation of MP-V or dec-aV and related them to valve failure or time period after implantation. Methods and Results Specific antibodies toward whole tissue-homogenates or alphaGal were determined retrospectively by ELISA analyses from patients who received MP-V with an uneventful course of 56.1 ± 5.1 months (n = 15), or with valve failure after 25.3 ± 14.6 months (n = 3), dec-aV for various times from 4 to 46 months (n = 14, uneventful) and from healthy controls (n = 4). All explanted valves were assessed histopathologically. MP-V induced antibodies toward both tissue components with significantly higher levels toward ga-eC than toward dec-pV (68.7 and 26.65 μg/ml IgG). In patients with valve failure, levels were not significantly higher and were related to inflammatory tissue infiltration. Anti-Gal antibodies in MP-V patients were significantly increased in both, the uneventful and the failure group. In contrast, in dec-aV patients only a slight tissue-specific antibody formation was observed after 4 months (6.24 μg/ml) that normalized to control levels after 1 year. Conclusions The strong humoral immune response to glutaraldehyde-fixed tissues is reduced in decellularized xenogeneic valves and almost absent in decellularized allogeneic tissue up to 4.5 years after implantation.
Collapse
|
45
|
Finosh GT, Jayabalan M. Hybrid amphiphilic bimodal hydrogels having mechanical and biological recognition characteristics for cardiac tissue engineering. RSC Adv 2015. [DOI: 10.1039/c5ra04448k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tissue engineering strategies rely on the favourable microniche scaffolds for 3D cell growth.
Collapse
Affiliation(s)
- G. T. Finosh
- Sree Chitra Tirunal Institute for Medical Sciences and Technology
- Polymer Science Division
- Thiruvananthapuram-695 012
- India
| | - M. Jayabalan
- Sree Chitra Tirunal Institute for Medical Sciences and Technology
- Polymer Science Division
- Thiruvananthapuram-695 012
- India
| |
Collapse
|
46
|
Paniagua Gutierrez JR, Berry H, Korossis S, Mirsadraee S, Lopes SV, da Costa F, Kearney J, Watterson K, Fisher J, Ingham E. Regenerative potential of low-concentration SDS-decellularized porcine aortic valved conduits in vivo. Tissue Eng Part A 2014; 21:332-42. [PMID: 25156153 DOI: 10.1089/ten.tea.2014.0003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aims of this study were to determine the functional biocompatibility of low-concentration SDS-decellularized porcine aortic roots in vivo. A previously developed process was modified for 9- and 15-mm-diameter aortic roots to facilitate implantation into the porcine abdominal aorta (n=3) and juvenile sheep right ventricular outflow tract (n=7), respectively. Native allogeneic aortic roots were used as controls. Acellular porcine roots explanted from pigs at weeks were largely repopulated with stromal cells of appropriate phenotype, and there was evidence that macrophages were involved in the regenerative process. Native allogeneic roots were subject to a classic allograft rejection response. Acellular porcine roots explanted from sheep at 6 months showed evidence of appropriate cellular repopulation, again with evidence of a role for macrophages in the regenerative process. There was some degree of calcification of two of the explanted acellular roots, likely due to incomplete removal of DNA before implantation. Native allogeneic ovine roots were subject to a classic allograft rejection response involving T cells, which resulted in overtly calcified and damaged tissues. The study highlighted (1) the importance of removal of DNA from acellular porcine valved roots to avoid calcification and (2) a role for macrophages in the regeneration of low-concentration SDS-decellularized aortic roots, as has been reported for other acellular biological extracellular matrix scaffolds.
Collapse
|
47
|
Backhoff D, Steinmetz M, Sigler M, Schneider H. Formation of multiple conduit aneurysms following Matrix P conduit implantation in a boy with tetralogy of Fallot and pulmonary atresia. Eur J Cardiothorac Surg 2014; 46:500-2. [PMID: 24448074 DOI: 10.1093/ejcts/ezt635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report on a 6-year old boy with tetralogy of Fallot and pulmonary atresia in whom a 16 m Matrix P conduit was implanted between the pulmonary artery and the right ventricle at the age of 16 months. Five years later he developed severe stenosis of the distal conduit anastomosis. The notable findings were several aneurysms of the conduit proximal to the distal stenosis within the high-pressure region. The wall of the aneurysms contained xenogeneic conduit tissue without inflammatory or foreign-body response. We believe that aneurysm formation of the conduit was a result of fatigue of the conduit wall under suprasystemic pressure.
Collapse
Affiliation(s)
- David Backhoff
- Department of Paediatric Cardiology and Intensive Care Medicine, Georg-August-University Hospital Göttingen, University of Göttingen, Göttingen, Germany
| | - Michael Steinmetz
- Department of Paediatric Cardiology and Intensive Care Medicine, Georg-August-University Hospital Göttingen, University of Göttingen, Göttingen, Germany
| | - Matthias Sigler
- Department of Paediatric Cardiology and Intensive Care Medicine, Georg-August-University Hospital Göttingen, University of Göttingen, Göttingen, Germany
| | - Heike Schneider
- Department of Paediatric Cardiology and Intensive Care Medicine, Georg-August-University Hospital Göttingen, University of Göttingen, Göttingen, Germany
| |
Collapse
|
48
|
Le Huu A, Shum-Tim D. Tissue engineering of autologous heart valves: a focused update. Future Cardiol 2013; 10:93-104. [PMID: 24344666 DOI: 10.2217/fca.13.96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The prevalence of valvular heart disease is expected to increase in the coming decades, with an associated rise in valve-related surgeries. Current options for valve prostheses remain limited, essentially confined to mechanical or biological valves. Neither selection provides an optimal balance between structural integrity and associated morbidity. Mechanical valves offer exceptional durability coupled with a considerable risk of thrombogenesis. Conversely, a biological prosthesis affords freedom from anticoagulation, but with a truncated valve lifespan. Tissue-engineered heart valves have been touted as a solution to this dilemma, by offering an immunopriviledged prosthesis combined with resistance from degeneration and the potential to grow. Although the reality of commercially available tissue-engineered heart valves remains distant, this article will highlight the cellular and clinical advancements in recent years.
Collapse
Affiliation(s)
- Alice Le Huu
- Division of Cardiac Surgery & Surgical Research, Department of Surgery, The Royal Victoria Hospital, McGill University Health Center, 687 Pine Avenue West, Suite S8.73b, Montreal, Quebec, H3A 1A1, Canada
| | | |
Collapse
|
49
|
Köhler D, Arnold R, Loukanov T, Gorenflo M. Right ventricular failure and pathobiology in patients with congenital heart disease - implications for long-term follow-up. Front Pediatr 2013; 1:37. [PMID: 24400283 PMCID: PMC3864255 DOI: 10.3389/fped.2013.00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/04/2013] [Indexed: 11/13/2022] Open
Abstract
Right ventricular dysfunction represents a common problem in patients with congenital heart defects, such as Tetralogy of Fallot or pulmonary arterial hypertension. Patients with congenital heart defects may present with a pressure or volume overloaded right ventricle (RV) in a bi-ventricular heart or in a single ventricular circulation in which the RV serves as systemic ventricle. Both subsets of patients are at risk of developing right ventricular failure. Obtaining functional and morphological imaging data of the right heart is technically more difficult than imaging of the left ventricle. In contrast to findings on mechanisms of left ventricular dysfunction, very little is known about the pathophysiologic alterations of the right heart. The two main causes of right ventricular dysfunction are pressure and/or volume overload of the RV. Until now, there are no appropriate models available analyzing the effects of pressure and/or volume overload on the RV. This review intends to summarize clinical aspects mainly focusing on the current research in this field. In future, there will be increasing attention to individual care of patients with right heart diseases. Hence, further investigations are essential for understanding the right ventricular pathobiology.
Collapse
Affiliation(s)
- Doreen Köhler
- Department of Pediatric Cardiology, University of Heidelberg , Heidelberg , Germany
| | - Raoul Arnold
- Department of Pediatric Cardiology, University of Heidelberg , Heidelberg , Germany
| | - Tsvetomir Loukanov
- Department of Cardiac Surgery, Division of Congenital Cardiac Surgery, University of Heidelberg , Heidelberg , Germany
| | - Matthias Gorenflo
- Department of Pediatric Cardiology, University of Heidelberg , Heidelberg , Germany
| |
Collapse
|
50
|
Converse GL, Buse EE, Hopkins RA. Bioreactors and operating room centric protocols for clinical heart valve tissue engineering. PROGRESS IN PEDIATRIC CARDIOLOGY 2013. [DOI: 10.1016/j.ppedcard.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|