1
|
Gong S, Xiang K, Chen L, Zhuang H, Song Y, Chen J. Integrated bioinformatics analysis identified leucine rich repeat containing 15 and secreted phosphoprotein 1 as hub genes for calcific aortic valve disease and osteoarthritis. IET Syst Biol 2024; 18:77-91. [PMID: 38566328 PMCID: PMC11179158 DOI: 10.1049/syb2.12091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/05/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Calcific aortic valve disease (CAVD) and osteoarthritis (OA) are common diseases in the ageing population and share similar pathogenesis, especially in inflammation. This study aims to discover potential diagnostic and therapeutic targets in patients with CAVD and OA. Three CAVD datasets and one OA dataset were obtained from the Gene Expression Omnibus database. We used bioinformatics methods to search for key genes and immune infiltration, and established a ceRNA network. Immunohistochemical staining was performed to verify the expression of candidate genes in human and mice aortic valve tissues. Two key genes obtained, leucine rich repeat containing 15 (LRRC15) and secreted phosphoprotein 1 (SPP1), were further screened using machine learning and verified in human and mice aortic valve tissues. Compared to normal tissues, the infiltration of immune cells in CAVD tissues was significantly higher, and the expressions of LRRC15 and SPP1 were positively correlated with immune cells infiltration. Moreover, the ceRNA network showed extensive regulatory interactions based on LRRC15 and SPP1. The authors' findings identified LRRC15 and SPP1 as hub genes in immunological mechanisms during CAVD and OA initiation and progression, as well as potential targets for drug development.
Collapse
Affiliation(s)
- Shuji Gong
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Kun Xiang
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Le Chen
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Huanwei Zhuang
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yaning Song
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jinlan Chen
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
2
|
Zhu Z, Liu Z, Zhang D, Li L, Pei J, Cai L. Models for calcific aortic valve disease in vivo and in vitro. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:6. [PMID: 38424219 PMCID: PMC10904700 DOI: 10.1186/s13619-024-00189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Calcific Aortic Valve Disease (CAVD) is prevalent among the elderly as the most common valvular heart disease. Currently, no pharmaceutical interventions can effectively reverse or prevent CAVD, making valve replacement the primary therapeutic recourse. Extensive research spanning decades has contributed to the establishment of animal and in vitro cell models, which facilitates a deeper understanding of the pathophysiological progression and underlying mechanisms of CAVD. In this review, we provide a comprehensive summary and analysis of the strengths and limitations associated with commonly employed models for the study of valve calcification. We specifically emphasize the advancements in three-dimensional culture technologies, which replicate the structural complexity of the valve. Furthermore, we delve into prospective recommendations for advancing in vivo and in vitro model studies of CAVD.
Collapse
Affiliation(s)
- Zijin Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Zhirong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China.
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, China.
| | - Lin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
3
|
Neels JG, Gollentz C, Chinetti G. Macrophage death in atherosclerosis: potential role in calcification. Front Immunol 2023; 14:1215612. [PMID: 37469518 PMCID: PMC10352763 DOI: 10.3389/fimmu.2023.1215612] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Cell death is an important aspect of atherosclerotic plaque development. Insufficient efferocytosis of death cells by phagocytic macrophages leads to the buildup of a necrotic core that impacts stability of the plaque. Furthermore, in the presence of calcium and phosphate, apoptotic bodies resulting from death cells can act as nucleation sites for the formation of calcium phosphate crystals, mostly in the form of hydroxyapatite, which leads to calcification of the atherosclerotic plaque, further impacting plaque stability. Excessive uptake of cholesterol-loaded oxidized LDL particles by macrophages present in atherosclerotic plaques leads to foam cell formation, which not only reduces their efferocytosis capacity, but also can induce apoptosis in these cells. The resulting apoptotic bodies can contribute to calcification of the atherosclerotic plaque. Moreover, other forms of macrophage cell death, such as pyroptosis, necroptosis, parthanatos, and ferroptosis can also contribute by similar mechanisms to plaque calcification. This review focuses on macrophage death in atherosclerosis, and its potential role in calcification. Reducing macrophage cell death and/or increasing their efferocytosis capacity could be a novel therapeutic strategy to reduce the formation of a necrotic core and calcification and thereby improving atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Jaap G. Neels
- Université Côte d’Azur, Institut national de la santé et de la recherche médicale (INSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Claire Gollentz
- Université Côte d’Azur, Centre Hospitalier Universitaire (CHU), Institut national de la santé et de la recherche médicale (NSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Giulia Chinetti
- Université Côte d’Azur, Centre Hospitalier Universitaire (CHU), Institut national de la santé et de la recherche médicale (NSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| |
Collapse
|
4
|
Belmadani S, Matrougui K. Role of High Mobility Group Box 1 in Cardiovascular Diseases. Inflammation 2022; 45:1864-1874. [PMID: 35386038 PMCID: PMC11145736 DOI: 10.1007/s10753-022-01668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 11/05/2022]
Abstract
High Mobility Group Box 1 (HMGB1) is a ubiquitous, highly conserved nuclear and cytosolic protein that has diverse biological roles depending on its cellular location and posttranslational modifications. The HMGB1 is localized in the nucleus but can be translocated to the cytoplasm to modulate the intracellular signaling and eventually secreted outside the cells. It is widely established that HMGB1 plays a key role in inflammation; however, the role of HMGB1 in the cardiovascular diseases is not well understood. In this review, we will discuss the latest reports on the pathophysiological link between HMGB1 and cardiovascular complications, with special emphasis on the inflammation. Thus, the understanding of the role of HMGB1 may provide new insights into developing new HMGB1-based therapies.
Collapse
Affiliation(s)
- Souad Belmadani
- Department of Physiological Sciences, EVMS, Norfolk, Virginia, 23501, USA
| | - Khalid Matrougui
- Department of Physiological Sciences, EVMS, Norfolk, Virginia, 23501, USA.
| |
Collapse
|
5
|
Turner ME, Bartoli‐Leonard F, Aikawa E. Small particles with large impact: Insights into the unresolved roles of innate immunity in extracellular vesicle‐mediated cardiovascular calcification. Immunol Rev 2022; 312:20-37. [DOI: 10.1111/imr.13134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mandy E Turner
- Division of Cardiovascular Medicine Department of Medicine Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| | - Francesca Bartoli‐Leonard
- Division of Cardiovascular Medicine Department of Medicine Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine Department of Medicine Center for Interdisciplinary Cardiovascular Sciences Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
- Division of Cardiovascular Medicine Department of Medicine Center for Excellence in Vascular Biology Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
6
|
Matilla L, Jover E, Garaikoetxea M, Martín-Nuñez E, Arrieta V, García-Peña A, Navarro A, Fernández-Celis A, Gainza A, Álvarez V, Álvarez de la Rosa D, Sádaba R, Jaisser F, López-Andrés N. Sex-Related Signaling of Aldosterone/Mineralocorticoid Receptor Pathway in Calcific Aortic Stenosis. Hypertension 2022; 79:1724-1737. [PMID: 35549329 DOI: 10.1161/hypertensionaha.122.19526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND There are sex differences in the pathophysiology of aortic valve (AV) calcification in patients with aortic stenosis, although the molecular and cellular mechanisms have not been elucidated. Aldosterone (Aldo) promotes proteoglycan synthesis in valve interstitial cells (VICs) from mitral valves via the mineralocorticoid receptor (MR). We investigated the influence of sex in the role of Aldo/MR pathway in AV alterations in patients with aortic stenosis. METHODS AND RESULTS MR was expressed by primary aortic VICs and in AVs from patients with aortic stenosis. MR expression positively correlated with VIC activation markers in AVs from both sexes. However, MR expression was positively associated with molecules involved in AV calcification only in AV from men. Aldo enhanced VIC activation markers in cells from men and women. Interestingly, Aldo increased the expression of calcification markers only in VICs isolated from men. In female VICs, Aldo enhanced fibrotic molecules. MR antagonism (spironolactone) blocked all the above effects. Cytokine arrays showed ICAM (intercellular adhesion molecule)-1 and osteopontin to be specifically increased by Aldo in male VICs. In AVs from men, MR expression positively associated with both ICAM-1 (intercellular adhesion molecule-1) and osteopontin. Only in female VICs, estradiol treatment blocked Aldo-induced VICs activation, inflammation, and fibrosis. CONCLUSIONS These findings demonstrate that the Aldo/MR pathway could play a role in early stages of aortic stenosis by promoting VICs activation, fibrosis, and ulterior calcification. Importantly, Aldo/MR pathway is involved in fibrosis in women and in early AV calcification only in men. Accordingly, MR antagonism emerges as a new sex-specific pharmacological treatment to prevent AV alterations.
Collapse
Affiliation(s)
- Lara Matilla
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Eva Jover
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Mattie Garaikoetxea
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Ernesto Martín-Nuñez
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Vanessa Arrieta
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Amaia García-Peña
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Adela Navarro
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Alicia Gainza
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Virginia Álvarez
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Diego Álvarez de la Rosa
- Department of Physiology, Institute of Biomedical Technology, University of Laguna, La Laguna, Spain (D.A.d.l.R.)
| | - Rafael Sádaba
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Frederic Jaisser
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Team Diabetes, Metabolic Diseases and Comorbidities, Paris, France (F.J.)
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| |
Collapse
|
7
|
Niazy N, Barth M, Selig JI, Feichtner S, Shakiba B, Candan A, Albert A, Preuß K, Lichtenberg A, Akhyari P. Degeneration of Aortic Valves in a Bioreactor System with Pulsatile Flow. Biomedicines 2021; 9:biomedicines9050462. [PMID: 33922670 PMCID: PMC8145810 DOI: 10.3390/biomedicines9050462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve disease is the most common valvular heart disease in industrialized countries. Pulsatile pressure, sheer and bending stress promote initiation and progression of aortic valve degeneration. The aim of this work is to establish an ex vivo model to study the therein involved processes. Ovine aortic roots bearing aortic valve leaflets were cultivated in an elaborated bioreactor system with pulsatile flow, physiological temperature, and controlled pressure and pH values. Standard and pro-degenerative treatment were studied regarding the impact on morphology, calcification, and gene expression. In particular, differentiation, matrix remodeling, and degeneration were also compared to a static cultivation model. Bioreactor cultivation led to shrinking and thickening of the valve leaflets compared to native leaflets while gross morphology and the presence of valvular interstitial cells were preserved. Degenerative conditions induced considerable leaflet calcification. In comparison to static cultivation, collagen gene expression was stable under bioreactor cultivation, whereas expression of hypoxia-related markers was increased. Osteopontin gene expression was differentially altered compared to protein expression, indicating an enhanced protein turnover. The present ex vivo model is an adequate and effective system to analyze aortic valve degeneration under controlled physiological conditions without the need of additional growth factors.
Collapse
Affiliation(s)
- Naima Niazy
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Mareike Barth
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Jessica I. Selig
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Sabine Feichtner
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Babak Shakiba
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Asya Candan
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| | - Alexander Albert
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
- Department of Cardiovascular Surgery, Klinikum Dortmund gGmbH, Beurhausstraße 40, 44137 Dortmund, Germany
| | - Karlheinz Preuß
- Faculty of Biotechnology, Bioprocessing, Modulation and Simulation, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany;
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
- Correspondence:
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.N.); (M.B.); (J.I.S.); (S.F.); (B.S.); (A.C.); (A.A.); (P.A.)
| |
Collapse
|
8
|
Chen Z, Li R, Pei LG, Wei ZH, Xie J, Wu H, Xu B. High-mobility group box-1 promotes vascular calcification in diabetic mice via endoplasmic reticulum stress. J Cell Mol Med 2021; 25:3724-3734. [PMID: 33724642 PMCID: PMC8051722 DOI: 10.1111/jcmm.16075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022] Open
Abstract
Several studies reported the role of endoplasmic reticulum stress (ERS) in vascular calcification. High-mobility group box-1 (HMGB-1) plays a substantial role in diabetes and its complications. However, relatively little information is available regarding the association between HMGB-1 and calcification, and the underlying mechanism has still remained elusive. Therefore, in the present study, we attempted to indicate whether HMGB-1 could promote vascular calcification via ERS in diabetes. After induction of diabetes by Streptozotocin (STZ), mice were treated with glycyrrhizin (Gly) or 4-phenylbutyrate (4-PBA). Mineral deposition was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and calcium assay. In cell experiments, calcification of vascular smooth muscle cells (VSMCs) was performed with Alizarin Red staining, alkaline phosphatase (ALP) activity and RT-PCR. Expression and location of HMGB-1 in aortic tissue were detected by Western blotting, immunocytochemistry (ICC) and immunohistochemistry (IHC). Diabetic mice demonstrated increased HMGB-1 expression, ERS and vascular calcification. However, inhibition of HMGB-1 with Gly or inhibition of ERS with 4-PBA ameliorated the enhanced vascular calcification and ERS in diabetic mice. In vitro experiments unveiled that inhibition of HMGB-1 attenuated advanced glycation end products (AGEs)-induced ERS in VSMCs. In addition, AGEs promoted translocation and secretion of HMGB-1 in VSMCs, which was reversed by 4-PBA. Moreover, VSMCs exhibited increased mineralization and osteogenic gene expressions in response to HMGB-1 and AGEs. However, inhibition of ERS with 4-PBA partially, although noticeably, attenuated VSMC calcification induced by HMGB-1. Thus, diabetes induced translocation and secretion of HMGB-1 via ERS, which resulted in calcification in diabetic mice and in AGEs-treated VSMCs.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ran Li
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Li-Gang Pei
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhong-Hai Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Xie
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Han Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
9
|
Osteopontin: The Molecular Bridge between Fat and Cardiac-Renal Disorders. Int J Mol Sci 2020; 21:ijms21155568. [PMID: 32759639 PMCID: PMC7432729 DOI: 10.3390/ijms21155568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
Osteopontin (OPN) is a multifaceted matricellular protein, with well-recognized roles in both the physiological and pathological processes in the body. OPN is expressed in the main organs and cell types, in which it induces different biological actions. During physiological conditioning, OPN acts as both an intracellular protein and soluble excreted cytokine, regulating tissue remodeling and immune-infiltrate in adipose tissue the heart and the kidney. In contrast, the increased expression of OPN has been correlated with the severity of the cardiovascular and renal outcomes associated with obesity. Indeed, OPN expression is at the “cross roads” of visceral fat extension, cardiovascular diseases (CVDs) and renal disorders, in which OPN orchestrates the molecular interactions, leading to chronic low-grade inflammation. The common factor associated with OPN overexpression in adipose, cardiac and renal tissues seems attributable to the concomitant increase in visceral fat size and the increase in infiltrated OPN+ macrophages. This review underlines the current knowledge on the molecular interactions between obesity and the cardiac–renal disorders ruled by OPN.
Collapse
|
10
|
New Insights into the Roles of Monocytes/Macrophages in Cardiovascular Calcification Associated with Chronic Kidney Disease. Toxins (Basel) 2019; 11:toxins11090529. [PMID: 31547340 PMCID: PMC6784181 DOI: 10.3390/toxins11090529] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is an important cause of death in patients with chronic kidney disease (CKD), and cardiovascular calcification (CVC) is one of the strongest predictors of CVD in this population. Cardiovascular calcification results from complex cellular interactions involving the endothelium, vascular/valvular cells (i.e., vascular smooth muscle cells, valvular interstitial cells and resident fibroblasts), and monocyte-derived macrophages. Indeed, the production of pro-inflammatory cytokines and oxidative stress by monocyte-derived macrophages is responsible for the osteogenic transformation and mineralization of vascular/valvular cells. However, monocytes/macrophages show the ability to modify their phenotype, and consequently their functions, when facing environmental modifications. This plasticity complicates efforts to understand the pathogenesis of CVC-particularly in a CKD setting, where both uraemic toxins and CKD treatment may affect monocyte/macrophage functions and thereby influence CVC. Here, we review (i) the mechanisms by which each monocyte/macrophage subset either promotes or prevents CVC, and (ii) how both uraemic toxins and CKD therapies might affect these monocyte/macrophage functions.
Collapse
|
11
|
Differential expression patterns of Toll Like Receptors and Interleukin-37 between calcific aortic and mitral valve cusps in humans. Cytokine 2019; 116:150-160. [PMID: 30716659 DOI: 10.1016/j.cyto.2019.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/23/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Significant differences are mentioned in the progress of calcification between aortic and mitral valve. Evidence of inflammation in calcific aortic and mitral valve disease suggests that pathways of Toll Like Receptors (TLR) and Interleukin (IL)-37 expression may contribute to this process. We sought to investigate the role of TLR-mediated inflammatory response and IL-37 pathway expression on aortic and mitral valve calcification. MATERIAL AND METHODS One-hundred twenty stenotic valve cusps/leaflets (60 aortic, 60 mitral) were excised during surgery and were collected for histological, immunohistochemistry and morphometric analysis at our department. After total RNA isolation from a second part of valve cusps/leaflets, cDNA synthesis and quantitative reverse transcription polymerase chain reaction (qRT-PCR) protocols were performed and relative mRNA levels of target genes were assessed. RESULTS By histological analysis, the anti-inflammatory IL-37 levels were increased in mitral valve leaflets (MVL) compared to aortic valve cusps (AVCu) while all other biomarkers, including TLR, presented a reverse pattern with decreased levels as compared to AVCu. In terms of calcification biomarkers, only osteopontin differed between AVCu and MVL. mRNA analysis confirmed increased expression of IL-37 and decreased levels of TLR in MVL compared to AVCu. CONCLUSIONS Stenotic cusps of aortic valves express lower IL-37 and increased TLRs levels than stenotic mitral valve leaflets, suggesting a differential pro-calcification and pro-inflammatory profile between the two valves. This may explain the higher incidence of calcification of AVCu than MVL and offer therapeutic considerations.
Collapse
|
12
|
Mazur P, Mielimonka A, Natorska J, Wypasek E, Gawęda B, Sobczyk D, Kapusta P, Malinowski KP, Kapelak B. Lymphocyte and monocyte subpopulations in severe aortic stenosis at the time of surgical intervention. Cardiovasc Pathol 2018; 35:1-7. [PMID: 29727769 DOI: 10.1016/j.carpath.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Aortic stenosis (AS) is the most common acquired valvular heart disease in adults. Immune system involvement becomes evident during AS development. We sought to investigate the role of different circulating lymphocyte and monocyte subpopulations, with focus on CD4+CD8+ and natural killer T (NKT) cells, in AS. MATERIAL AND METHODS Blood samples and aortic valves were obtained from patients undergoing elective aortic valve surgery. Valves were dissected and underwent genetic analyses and calcium content assessment. Lymphocytes and monocytes subsets were assessed by flow cytometry. RESULTS Thirty-eight AS patients were studied. Maximal transvalvular pressure gradient (PGmax) as well as mean transvalvular pressure gradient (PGmean) correlated with the CD4+CD8+ lymphocyte count (r=0.35, P=.03 and r=0.43, P=.006, respectively) and fraction (r=0.43, P=.007 and r=0.48, P=.002, respectively). PGmax and PGmean correlated with CD16+CD56+CD3+ NKT cell count (r=0.39, P=.01 and r=0.43, P=.007, respectively) and fraction (r=0.49, P=.002 and r=0.47, P=.003, respectively). The classical monocyte subpopulation increased after the surgery by 68% (P<.0001). Patients after mini-sternotomy surgery had 47% lower nonclassical monocyte counts than those with full-sternotomy (P=.03). Patients treated with statins had significantly lower postoperative levels of both classical (-25%, P=.04) and nonclassical monocytes (-37%, P=.004) than nontreated individuals. CONCLUSIONS In patients with severe isolated AS, CD4+CD8+ T cells and CD16+CD56+CD3+ NKT cells are associated with AV pressure gradients. Postoperative monocyte levels are affected by procedure invasiveness and use of statins.
Collapse
Affiliation(s)
- Piotr Mazur
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; The John Paul II Hospital, Krakow, Poland.
| | | | - Joanna Natorska
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; The John Paul II Hospital, Krakow, Poland
| | - Ewa Wypasek
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; The John Paul II Hospital, Krakow, Poland; Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | | | | | | | | | - Bogusław Kapelak
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; The John Paul II Hospital, Krakow, Poland
| |
Collapse
|
13
|
García-Rodríguez C, Parra-Izquierdo I, Castaños-Mollor I, López J, San Román JA, Sánchez Crespo M. Toll-Like Receptors, Inflammation, and Calcific Aortic Valve Disease. Front Physiol 2018; 9:201. [PMID: 29593562 PMCID: PMC5857550 DOI: 10.3389/fphys.2018.00201] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/23/2018] [Indexed: 01/13/2023] Open
Abstract
Inflammation, the primary response of innate immunity, is essential to initiate the calcification process underlying calcific aortic valve disease (CAVD), the most prevalent valvulopathy in Western countries. The pathogenesis of CAVD is multifactorial and includes inflammation, hemodynamic factors, fibrosis, and active calcification. In the development of CAVD, both innate and adaptive immune responses are activated, and accumulating evidences show the central role of inflammation in the initiation and propagation phases of the disease, being the function of Toll-like receptors (TLR) particularly relevant. These receptors act as sentinels of the innate immune system by recognizing pattern molecules from both pathogens and host-derived molecules released after tissue damage. TLR mediate inflammation via NF-κB routes within and beyond the immune system, and play a crucial role in the control of infection and the maintenance of tissue homeostasis. This review outlines the current notions about the association between TLR signaling and the ensuing development of inflammation and fibrocalcific remodeling in the pathogenesis of CAVD. Recent data provide new insights into the inflammatory and osteogenic responses underlying the disease and further support the hypothesis that inflammation plays a mechanistic role in the initiation and progression of CAVD. These findings make TLR signaling a potential target for therapeutic intervention in CAVD.
Collapse
Affiliation(s)
- Carmen García-Rodríguez
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Iván Parra-Izquierdo
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Irene Castaños-Mollor
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Javier López
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Hospital Clínico Universitario, Valladolid, Spain
| | - J Alberto San Román
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Hospital Clínico Universitario, Valladolid, Spain
| | - Mariano Sánchez Crespo
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
14
|
Different Notch signaling in cells from calcified bicuspid and tricuspid aortic valves. J Mol Cell Cardiol 2017; 114:211-219. [PMID: 29158034 DOI: 10.1016/j.yjmcc.2017.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
AIMS Calcific aortic valve disease is the most common heart valve disease in the Western world. Bicuspid and tricuspid aortic valve calcifications are traditionally considered together although the dynamics of the disease progression is different between the two groups of patients. Notch signaling is critical for bicuspid valve development and NOTCH1 mutations are associated with bicuspid valve and calcification. We hypothesized that Notch-dependent mechanisms of valve mineralization might be different in the two groups. METHODS AND RESULTS We used aortic valve interstitial cells and valve endothelial cells from patients with calcific aortic stenosis with bicuspid or tricuspid aortic valve. Expression of Notch-related genes in valve interstitial cells by qPCR was different between bicuspid and tricuspid groups. Discriminant analysis of gene expression pattern in the interstitial cells revealed that the cells from calcified bicuspid valves formed a separate group from calcified tricuspid and control cells. Interstitial cells from bicuspid calcified valves demonstrated significantly higher sensitivity to stimuli at early stages of induced proosteogenic differentiation and were significantly more sensitive to the activation of proosteogenic OPN, ALP and POSTIN expression by Notch activation. Notch-activated endothelial-to-mesenchymal transition and the corresponding expression of HEY1 and SLUG were also more prominent in bicuspid valve derived endothelial cells compared to the cells from calcified tricuspid and healthy valves. CONCLUSION Early signaling events including Notch-dependent mechanisms that are responsible for the initiation of aortic valve calcification are different between the patients with bicuspid and tricuspid aortic valves.
Collapse
|
15
|
Rutkovskiy A, Malashicheva A, Sullivan G, Bogdanova M, Kostareva A, Stensløkken KO, Fiane A, Vaage J. Valve Interstitial Cells: The Key to Understanding the Pathophysiology of Heart Valve Calcification. J Am Heart Assoc 2017; 6:e006339. [PMID: 28912209 PMCID: PMC5634284 DOI: 10.1161/jaha.117.006339] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arkady Rutkovskiy
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
- Centre for Heart Failure Research, University of Oslo, Norway
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital, Oslo, Norway
- Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- ITMO University, St. Petersburg, Russia
| | - Anna Malashicheva
- Almazov National Medical Research Centre, St. Petersburg, Russia
- ITMO University, St. Petersburg, Russia
| | - Gareth Sullivan
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Norway
- Institute of Immunology, Oslo University Hospital, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo, Norway
| | - Maria Bogdanova
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Anna Kostareva
- Almazov National Medical Research Centre, St. Petersburg, Russia
- ITMO University, St. Petersburg, Russia
| | - Kåre-Olav Stensløkken
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
- Centre for Heart Failure Research, University of Oslo, Norway
| | - Arnt Fiane
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Jarle Vaage
- Institute of Clinical Medicine, University of Oslo, Norway
- Department of Emergency Medicine and Intensive Care, Oslo University Hospital, Oslo, Norway
- ITMO University, St. Petersburg, Russia
| |
Collapse
|
16
|
Human interstitial cellular model in therapeutics of heart valve calcification. Amino Acids 2017; 49:1981-1997. [DOI: 10.1007/s00726-017-2432-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 12/27/2022]
|
17
|
Prakoura N, Chatziantoniou C. Matricellular Proteins and Organ Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0138-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Mazur P, Wypasek E, Gawęda B, Sobczyk D, Kapusta P, Natorska J, Malinowski KP, Tarasiuk J, Bochenek M, Wroński S, Chmielewska K, Kapelak B, Undas A. Stenotic Bicuspid and Tricuspid Aortic Valves - Micro-Computed Tomography and Biological Indices of Calcification. Circ J 2017; 81:1043-1050. [PMID: 28344201 DOI: 10.1253/circj.cj-16-1166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Valve calcification is well estimated by ex-vivo micro-computed tomography (micro-CT). The objective of this study was to investigate the associations between micro-CT findings and biological indices of calcification in aortic stenosis (AS), as well as differences between bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV).Methods and Results:Aortic valves and plasma were obtained from patients undergoing valve surgery. Valves were dissected and underwent micro-CT, genetic analyses, and calcium content assessment. Plasma levels of calcification markers were measured. Forty-two patients with isolated severe AS, including 22 with BAV, were studied. BAV patients had a lower median CT value (140.0 [130.0-152.0] vs. 157.0 [147.0-176.0], P=0.002) and high-density calcification (HDC) fraction (9.3 [5.7-23.3] % vs. 21.3 [14.3-31.2] %, P=0.01), as compared with TAV. Calcification fraction (CF) correlated with AS severity (measured as maximal transvalvular pressure gradient [r=0.34, P=0.03], maximal flow velocity [r=0.38, P=0.02], and indexed aortic valve area [r=-0.37, P=0.02]). For TAV patients only, mRNA expression of integrin-binding sialoprotein correlated with CF (r=0.45, P=0.048), and the receptor activator of the nuclear factor κ-B ligand transcript correlated with HDC corrugation (r=0.54, P=0.01). CONCLUSIONS TAV patients with AS present more mineralized calcifications in micro-CT than BAV subjects. The relative volume of calcifications increases with the AS severity. In TAV patients, upregulated expression of genes involved in osteoblastogenesis in AS correlates with leaflet mineralization in micro-CT.
Collapse
Affiliation(s)
- Piotr Mazur
- John Paul II Hospital.,Institute of Cardiology, Jagiellonian University Medical College Krakow
| | - Ewa Wypasek
- John Paul II Hospital.,Institute of Cardiology, Jagiellonian University Medical College Krakow
| | - Bogusław Gawęda
- Institute of Cardiology, Jagiellonian University Medical College Krakow
| | - Dorota Sobczyk
- Institute of Cardiology, Jagiellonian University Medical College Krakow
| | - Przemysław Kapusta
- John Paul II Hospital.,Institute of Cardiology, Jagiellonian University Medical College Krakow
| | - Joanna Natorska
- John Paul II Hospital.,Institute of Cardiology, Jagiellonian University Medical College Krakow
| | | | - Jacek Tarasiuk
- Department of Condensed Matter Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology
| | - Maciej Bochenek
- John Paul II Hospital.,Institute of Cardiology, Jagiellonian University Medical College Krakow
| | - Sebastian Wroński
- Department of Condensed Matter Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology
| | - Katarzyna Chmielewska
- Department of Condensed Matter Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology
| | - Bogusław Kapelak
- John Paul II Hospital.,Institute of Cardiology, Jagiellonian University Medical College Krakow
| | - Anetta Undas
- John Paul II Hospital.,Institute of Cardiology, Jagiellonian University Medical College Krakow
| |
Collapse
|
19
|
RAGE deficiency alleviates aortic valve calcification in ApoE −/− mice via the inhibition of endoplasmic reticulum stress. Biochim Biophys Acta Mol Basis Dis 2017; 1863:781-792. [DOI: 10.1016/j.bbadis.2016.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023]
|
20
|
Wang B, Wei G, Liu B, Zhou X, Xiao H, Dong N, Li F. The Role of High Mobility Group Box 1 Protein in Interleukin-18-Induced Myofibroblastic Transition of Valvular Interstitial Cells. Cardiology 2016; 135:168-178. [PMID: 27395056 DOI: 10.1159/000447483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/07/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Increased levels of interleukin-18 (IL-18) and high mobility group box 1 protein (HMGB1) have been reported in patients with calcific aortic valve disease (CAVD). However, the role of IL-18 and HMGB1 in the modulation of the valvular interstitial cell (VIC) phenotype remains unclear. We hypothesized that HMGB1 mediates IL-18-induced myofibroblastic transition of VICs. METHODS The expression of IL-18, HMGB1 and α-smooth muscle actin (α-SMA) in human aortic valves was evaluated by immunohistochemical staining, real-time polymerase chain reaction and immunoblotting. Plasma concentrations of IL-18 and HMGB1 were measured using the ELISA kit. Cultured human aortic VICs were used as an in vitro model. RESULTS Immunohistochemistry and immunoblotting revealed increased levels of IL-18, HMGB1 and α-SMA in calcific valves. Circulating IL-18 and HMGB1 levels were also higher in CAVD patients. In vitro, IL-18 induced upregulation of HMGB1 and α-SMA in VICs. Moreover, IL-18 induced secretion of HMGB1 to the extracellular space and activation of nuclear factor kappa-B (NF-κB). Blockade of NF-κB abrogated the upregulation and release of HMGB1 induced by IL-18. Whereas HMGB1 inhibition attenuated the IL-18-induced expression of α-SMA, HMGB1 enhanced the effect of IL-18. CONCLUSIONS We demonstrated for the first time that both tissue and plasma levels of IL-18 and HMGB1 were increased in patients with CAVD. Mechanically, HMGB1 mediated IL-18-induced VIC myofibroblastic transition.
Collapse
Affiliation(s)
- Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Chen Q, Bei JJ, Liu C, Feng SB, Zhao WB, Zhou Z, Yu ZP, Du XJ, Hu HY. HMGB1 Induces Secretion of Matrix Vesicles by Macrophages to Enhance Ectopic Mineralization. PLoS One 2016; 11:e0156686. [PMID: 27243975 PMCID: PMC4887028 DOI: 10.1371/journal.pone.0156686] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/18/2016] [Indexed: 12/14/2022] Open
Abstract
Numerous clinical conditions have been linked to ectopic mineralization (EM). This process of pathological biomineralization is complex and not fully elucidated, but thought to be started within matrix vesicles (MVs). We hypothesized that high mobility group box 1 (HMGB1), a cytokine associated with biomineralizing process under physiological and pathological conditions, induces EM via promoting MVs secretion from macrophages. In this study, we found that HMGB1 significantly promoted secretion of MVs from macrophages and subsequently led to mineral deposition in elevated Ca/Pi medium in vitro. Transmission electron microscopy of calcifying MVs showed formation of hydroxyapatite crystals in the vesicle interior. Subcutaneous injection into mice with MVs derived from HMGB1-treated cells showed a greater potential to initiate regional mineralization. Mechanistic experiments revealed that HMGB1 activated neutral sphingomyelinase2 (nSMase2) that involved the receptor for advanced glycation end products (RAGE) and p38 MAPK (upstream of nSMase2). Inhibition of nSMase2 with GW4869 or p38 MAPK with SB-239063 prevented MVs secretion and mineral deposition. Collectively, HMGB1 induces MVs secretion from macrophages at least in part, via the RAGE/p38 MAPK/nSMase2 signaling pathway. Our findings thus reveal a novel mechanism by which HMGB1 induces ectopic mineralization.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Department of Out-patient, Naval University of Engineering, Wuhan, China
| | - Jun-Jie Bei
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chuan Liu
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Shi-Bin Feng
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei-Bo Zhao
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhou Zhou
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zheng-Ping Yu
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xiao-Jun Du
- Experimental Cardiology, Baker IDI Heart and Diabetes Institute, and Central Clinical School, Monash University, Melbourne, Australia
| | - Hou-Yuan Hu
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
22
|
Cells and extracellular matrix interplay in cardiac valve disease: because age matters. Basic Res Cardiol 2016; 111:16. [PMID: 26830603 DOI: 10.1007/s00395-016-0534-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/27/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022]
Abstract
Cardiovascular aging is a physiological process affecting all components of the heart. Despite the interest and experimental effort lavished on aging of cardiac cells, increasing evidence is pointing at the pivotal role of extracellular matrix (ECM) in cardiac aging. Structural and molecular changes in ECM composition during aging are at the root of significant functional modifications at the level of cardiac valve apparatus. Indeed, calcification or myxomatous degeneration of cardiac valves and their functional impairment can all be explained in light of age-related ECM alterations and the reciprocal interplay between altered ECM and cellular elements populating the leaflet, namely valvular interstitial cells and valvular endothelial cells, is additionally affecting valve function with striking reflexes on the clinical scenario. The initial experimental findings on this argument are underlining the need for a more comprehensive understanding on the biological mechanisms underlying ECM aging and remodeling as potentially constituting a pharmacological therapeutic target or a basis to improve existing prosthetic devices and treatment options. Given the lack of systematic knowledge on this topic, this review will focus on the ECM changes that occur during aging and on their clinical translational relevance and implications in the bedside scenario.
Collapse
|