1
|
Scott R, Varley I, Sale C, Tarum J, James R, Barnett CT, Santos L. Intermittent tensile strain induces an increased response in bone formation markers compared to continuous load in mouse pre-osteoblasts when loading magnitude is matched. J Mech Behav Biomed Mater 2024; 159:106683. [PMID: 39180891 DOI: 10.1016/j.jmbbm.2024.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Intermittent and continuous mechanical loads are known to influence osteogenic activity. The present study examines the effects of matched intermittent and continuous load in vitro on bone formation markers. MC3T3 (mouse pre-osteoblasts) were cultured and placed in a bioreactor to undergo continuous, intermittent, or unloading for 1, 3 and 12 days. Loading conditions were matched for magnitude, duration and frequency. Each time point was analysed for alkaline phosphatase (ALP) activity, procollagen 1 N-terminal propeptide (PINP) and alizarin red staining (ARS). Intermittent load caused an increase in ALP activity across all time points compared to continuous loading (↑30%-59%) and unloaded conditions (↑70%-90%). PINP concentrations from intermittent load were lower than continuous load (↓112%) on day 3. However, no differences were observed in PINP concentrations between loading conditions at other time points. No differences were observed for ARS between loading conditions. Intermittent load caused an increase in bone formation marker ALP, but not PINP, when compared to continuous loading and unloaded conditions. These findings further our knowledge in bone formation response and provide additional tools for the analysis of osteogenesis in vitro.
Collapse
Affiliation(s)
- Reece Scott
- Musculoskeltal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
| | - Ian Varley
- Musculoskeltal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Craig Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, UK
| | - Janelle Tarum
- Musculoskeltal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ruth James
- Musculoskeltal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Cleveland T Barnett
- Musculoskeltal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Lívia Santos
- Musculoskeltal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
2
|
Skedros JG, Dayton MR, Bloebaum RD, Bachus KN, Cronin JT. Strain-mode-specific mechanical testing and the interpretation of bone adaptation in the deer calcaneus. J Anat 2024; 244:411-423. [PMID: 37953064 PMCID: PMC10862189 DOI: 10.1111/joa.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023] Open
Abstract
The artiodactyl (deer and sheep) calcaneus is a model that helps in understanding how many bones achieve anatomical optimization and functional adaptation. We consider how the dorsal and plantar cortices of these bones are optimized in quasi-isolation (the conventional view) versus in the context of load sharing along the calcaneal shaft by "tension members" (the plantar ligament and superficial digital flexor tendon). This load-sharing concept replaces the conventional view, as we have argued in a recent publication that employs an advanced analytical model of habitual loading and fracture risk factors of the deer calcaneus. Like deer and sheep calcanei, many mammalian limb bones also experience prevalent bending, which seems problematic because the bone is weaker and less fatigue-resistant in tension than compression. To understand how bones adapt to bending loads and counteract deleterious consequences of tension, it is important to examine both strain-mode-specific (S-M-S) testing (compression testing of bone habitually loaded in compression; tension testing of bone habitually loaded in tension) and non-S-M-S testing. Mechanical testing was performed on individually machined specimens from the dorsal "compression cortex" and plantar "tension cortex" of adult deer calcanei and were independently tested to failure in one of these two strain modes. We hypothesized that the mechanical properties of each cortex region would be optimized for its habitual strain mode when these regions are considered independently. Consistent with this hypothesis, energy absorption parameters were approximately three times greater in S-M-S compression testing in the dorsal/compression cortex when compared to non-S-M-S tension testing of the dorsal cortex. However, inconsistent with this hypothesis, S-M-S tension testing of the plantar/tension cortex did not show greater energy absorption compared to non-S-M-S compression testing of the plantar cortex. When compared to the dorsal cortex, the plantar cortex only had a higher elastic modulus (in S-M-S testing of both regions). Therefore, the greater strength and capacity for energy absorption of the dorsal cortex might "protect" the weaker plantar cortex during functional loading. However, this conventional interpretation (i.e., considering adaptation of each cortex in isolation) is rejected when critically considering the load-sharing influences of the ligament and tendon that course along the plantar cortex. This important finding/interpretation has general implications for a better understanding of how other similarly loaded bones achieve anatomical optimization and functional adaptation.
Collapse
Affiliation(s)
- John G Skedros
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Michael R Dayton
- Department of Orthopedics, University of Colorado, Aurora, Colorado, USA
| | - Roy D Bloebaum
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Kent N Bachus
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
- Research Service, Veterans Affair Medical Center, Salt Lake City, Utah, USA
| | - John T Cronin
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Sanaei R, Pagel CN, Ayodele BA, Lozanovski B, Beths T, Leary M, Shidid D, Kastrati E, Elambasseril J, Bühner U, Williamson T, Ryan S, Brandt M. Reducing the prosthesis modulus by inclusion of an open space lattice improves osteogenic response in a sheep model of extraarticular defect. Front Bioeng Biotechnol 2023; 11:1301454. [PMID: 38130824 PMCID: PMC10733966 DOI: 10.3389/fbioe.2023.1301454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: Stress shielding is a common complication following endoprosthetic reconstruction surgery. The resulting periprosthetic osteopenia often manifests as catastrophic fractures and can significantly limit future treatment options. It has been long known that bone plates with lower elastic moduli are key to reducing the risk of stress shielding in orthopedics. Inclusion of open space lattices in metal endoprostheses is believed to reduce the prosthesis modulus potentially improving stress shielding. However, no in vivo data is currently available to support this assumption in long bone reconstruction. This manuscript aims to address this hypothesis using a sheep model of extraarticular bone defect. Methods: Initially, CT was used to create a virtual resection plan of the distal femoral metaphyses and to custom design endoprostheses specific to each femur. The endoprostheses comprised additively manufactured Ti6Al4V-ELI modules that either had a solid core with a modulus of ∼120 GPa (solid implant group) or an open space lattice core with unit cells that had a modulus of 3-6 GPa (lattice implant group). Osteotomies were performed using computer-assisted navigation followed by implantations. The periprosthetic, interfacial and interstitial regions of interest were evaluated by a combination of micro-CT, back-scattered scanning electron microscopy (BSEM), as well as epifluorescence and brightfield microscopy. Results: In the periprosthetic region, mean pixel intensity (a proxy for tissue mineral density in BSEM) in the caudal cortex was found to be higher in the lattice implant group. This was complemented by BSEM derived porosity being lower in the lattice implant group in both caudal and cranial cortices. In the interfacial and interstitial regions, most pronounced differences were observed in the axial interfacial perimeter where the solid implant group had greater bone coverage. In contrast, the lattice group had a greater coverage in the cranial interfacial region. Conclusion: Our findings suggest that reducing the prosthesis modulus by inclusion of an open-space lattice in its design has a positive effect on bone material and morphological parameters particularly within the periprosthetic regions. Improved mechanics appears to also have a measurable effect on the interfacial osteogenic response and osteointegration.
Collapse
Affiliation(s)
- Reza Sanaei
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Charles Neil Pagel
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Babatunde A. Ayodele
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Bill Lozanovski
- RMIT Centre for Additive Manufacturing, RMIT University, Carlton, VIC, Australia
| | - Thierry Beths
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Martin Leary
- RMIT Centre for Additive Manufacturing, RMIT University, Carlton, VIC, Australia
| | - Darpan Shidid
- RMIT Centre for Additive Manufacturing, RMIT University, Carlton, VIC, Australia
| | - Endri Kastrati
- RMIT Centre for Additive Manufacturing, RMIT University, Carlton, VIC, Australia
- Stryker Australia Pty Ltd., St Leonards, NSW, Australia
| | - Joe Elambasseril
- RMIT Centre for Additive Manufacturing, RMIT University, Carlton, VIC, Australia
| | | | - Tom Williamson
- RMIT Centre for Additive Manufacturing, RMIT University, Carlton, VIC, Australia
- Stryker Australia Pty Ltd., St Leonards, NSW, Australia
| | - Stewart Ryan
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Milan Brandt
- RMIT Centre for Additive Manufacturing, RMIT University, Carlton, VIC, Australia
| |
Collapse
|
4
|
Schmitter C, Di-Luoffo M, Guillermet-Guibert J. Transducing compressive forces into cellular outputs in cancer and beyond. Life Sci Alliance 2023; 6:e202201862. [PMID: 37364915 PMCID: PMC10292664 DOI: 10.26508/lsa.202201862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
In living organisms, cells sense mechanical forces (shearing, tensile, and compressive) and respond to those physical cues through a process called mechanotransduction. This process includes the simultaneous activation of biochemical signaling pathways. Recent studies mostly on human cells revealed that compressive forces selectively modulate a wide range of cell behavior, both in compressed and in neighboring less compressed cells. Besides participating in tissue homeostasis such as bone healing, compression is also involved in pathologies, including intervertebral disc degeneration or solid cancers. In this review, we will summarize the current scattered knowledge of compression-induced cell signaling pathways and their subsequent cellular outputs, both in physiological and pathological conditions, such as solid cancers.
Collapse
Affiliation(s)
- Céline Schmitter
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse-III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Labex Toucan, Toulouse, France
- Master de Biologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Mickaël Di-Luoffo
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse-III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Labex Toucan, Toulouse, France
| | - Julie Guillermet-Guibert
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse-III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Labex Toucan, Toulouse, France
| |
Collapse
|
5
|
Skedros JG, Cronin JT, Dayton MR, Bloebaum RD, Bachus KN. Exploration of the synergistic role of cortical thickness asymmetry ("Trabecular Eccentricity" concept) in reducing fracture risk in the human femoral neck and a control bone (Artiodactyl Calcaneus). J Theor Biol 2023; 567:111495. [PMID: 37068584 DOI: 10.1016/j.jtbi.2023.111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
The mechanobiology of the human femoral neck is a focus of research for many reasons including studies that aim to curb age-related bone loss that contributes to a near-exponential rate of hip fractures. Many believe that the femoral neck is often loaded in rather simple bending, which causes net tension stress in the upper (superior) femoral neck and net compression stress in its inferior aspect ("T/C paradigm"). This T/C loading regime lacks in vivo proof. The "C/C paradigm" is a plausible alternative simplified load history that is characterized by a gradient of net compression across the entire femoral neck; action of the gluteus medius and external rotators of the hip are important in this context. It is unclear which paradigm is at play in natural loading due to lack of in vivo bone strain data and deficiencies in understanding mechanisms and manifestations of bone adaptation in tension vs. compression. For these reasons, studies of the femoral neck would benefit from being compared to a 'control bone' that has been proven, by strain data, to be habitually loaded in bending. The artiodactyl (sheep and deer) calcaneus model has been shown to be a very suitable control in this context. However, the application of this control in understanding the load history of the femoral neck has only been attempted in two prior studies, which did not examine the interplay between cortical and trabecular bone, or potential load-sharing influences of tendons and ligaments. Our first goal is to compare fracture risk factors of the femoral neck in both paradigms. Our second goal is to compare and contrast the deer calcaneus to the human femoral neck in terms of fracture risk factors in the T/C paradigm (the C/C paradigm is not applicable in the artiodactyl calcaneus due to its highly constrained loading). Our third goal explores interplay between dorsal/compression and plantar/tension regions of the deer calcaneus and the load-sharing roles of a nearby ligament and tendon, with insights for translation to the femoral neck. These goals were achieved by employing the analytical model of Fox and Keaveny (J. Theoretical Biology 2001, 2003) that estimates fracture risk factors of the femoral neck. This model focuses on biomechanical advantages of the asymmetric distribution of cortical bone in the direction of habitual loading. The cortical thickness asymmetry of the femoral neck (thin superior cortex, thick inferior cortex) reflects the superior-inferior placement of trabecular bone (i.e., "trabecular eccentricity," TE). TE helps the femoral neck adapt to typical stresses and strains through load-sharing between superior and inferior cortices. Our goals were evaluated in the context of TE. Results showed the C/C paradigm has lower risk factors for the superior cortex and for the overall femoral neck, which is clinically relevant. TE analyses of the deer calcaneus revealed important synergism in load-sharing between the plantar/tension cortex and adjacent ligament/tendon, which challenges conventional understanding of how this control bone achieves functional adaptation. Comparisons with the control bone also exposed important deficiencies in current understanding of human femoral neck loading and its potential histocompositional adaptations.
Collapse
Affiliation(s)
- John G Skedros
- University of Utah, Department of Orthopaedics, Salt Lake City, UT, USA; Research Service, Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - John T Cronin
- University of Utah, Department of Orthopaedics, Salt Lake City, UT, USA
| | - Michael R Dayton
- University of Colorado, Department of Orthopedics, Aurora, CO, USA
| | - Roy D Bloebaum
- University of Utah, Department of Orthopaedics, Salt Lake City, UT, USA; Research Service, Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Kent N Bachus
- University of Utah, Department of Orthopaedics, Salt Lake City, UT, USA; Research Service, Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
6
|
Zhang Y, Wang L, Kang H, Lin CY, Fan Y. Unlocking the Therapeutic Potential of Irisin: Harnessing Its Function in Degenerative Disorders and Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24076551. [PMID: 37047523 PMCID: PMC10095399 DOI: 10.3390/ijms24076551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Physical activity is well-established as an important protective factor against degenerative conditions and a promoter of tissue growth and renewal. The discovery of Fibronectin domain-containing protein 5 (FNDC5) as the precursor of Irisin in 2012 sparked significant interest in its potential as a diagnostic biomarker and a therapeutic agent for various diseases. Clinical studies have examined the correlation between plasma Irisin levels and pathological conditions using a range of assays, but the lack of reliable measurements for endogenous Irisin has led to uncertainty about its prognostic/diagnostic potential as an exercise surrogate. Animal and tissue-engineering models have shown the protective effects of Irisin treatment in reversing functional impairment and potentially permanent damage, but dosage ambiguities remain unresolved. This review provides a comprehensive examination of the clinical and basic studies of Irisin in the context of degenerative conditions and explores its potential as a therapeutic approach in the physiological processes involved in tissue repair/regeneration.
Collapse
Affiliation(s)
- Yuwei Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Correspondence:
| | - Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chia-Ying Lin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Department of Biomedical, Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
7
|
Yang Z, Zhang J, Xu Z, Liu X, Yang J, Tan J. Biomechanical evaluation of custom-made short implants with wing retention applied in severe atrophic maxillary posterior region restoration: A three-dimensional finite element analysis. Front Bioeng Biotechnol 2023; 11:1137779. [PMID: 36845197 PMCID: PMC9948400 DOI: 10.3389/fbioe.2023.1137779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Severe bone atrophy in the maxillary posterior region poses a big challenge to implant restoration. Digitally designed and customized short implants with wing retention provide a safer and minimally invasive implant restoration scheme in such circumstances. Small titanium wings are integrated with the short implant supporting the prosthesis. Using digital designing and processing technology, the wings fixed by titanium screws can be flexibly designed, providing the main fixation. The design of the wings will influence the stress distribution and implant stability. This study analyzes the position, structure, and spread area of the wings fixture scientifically by means of three-dimensional finite element analysis. The design of the wings is set to linear, triangular, and planar styles. Under the simulated vertical and oblique occlusal forces, the implant displacement and stress between the implant and the bone surface are analyzed at different bone heights of 1 mm, 2 mm, and 3 mm. The finite element results show that the planar form can better disperse the stress. By adjusting the cusp slope to reduce the influence of lateral force, short implants with planar wing fixtures can be used safely even if the residual bone height is only 1 mm. The results of the study provide a scientific basis for the clinical application of this new customized implant.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China,Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Jingran Zhang
- Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China,Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zexian Xu
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China,School of Stomatology of Qingdao University, Qingdao, China
| | - Xiaoqiang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China,Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Jianjun Yang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China,School of Stomatology of Qingdao University, Qingdao, China,*Correspondence: Jianjun Yang, ; Jianguo Tan,
| | - Jianguo Tan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China,Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China,*Correspondence: Jianjun Yang, ; Jianguo Tan,
| |
Collapse
|
8
|
Liu J, Leng F, Gao Y, He W, Wang J, Xian CJ, Ma H, Chen K. Protection of primary cilia is an effective countermeasure against the impairment of osteoblast function induced by simulated microgravity. J Cell Mol Med 2022; 27:36-51. [PMID: 36512344 PMCID: PMC9806295 DOI: 10.1111/jcmm.17628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
The molecular mechanism for the microgravity-induced decrease in bone formation remains unclear and there is a lack of effective specific preventative therapies. We recently reported that primary cilia of osteoblasts became shorter and even disappeared when the cells were exposed to random positioning machine (RPM)-simulated microgravity and that the microgravity-induced loss of osteogenic potential of osteoblasts could be attenuated when the resorption of primary cilia was prevented by treatment with 0.1 μM cytochalasin D. In the current study, it was further found that the loss of the osteogenic capacity of rat calvarial osteoblasts (ROBs) was associated with the inhibition of the BMP-2/Smad1/5/8 signalling pathway, of which most of the signalling proteins including BMP-2, BMPRII, Smad1/5/8 and p-Smad1/5/8 were found localized to primary cilia. Accompanying the resorption of primary cilia following the cells being exposed to simulated microgravity, the expression levels of these signalling proteins were reduced significantly. Furthermore, the expression of miRNA-129-3p, a microRNA previously reported to control cilium biogenesis, was found to be reduced quickly and changed in a similar tendency with the length of primary cilia. Moreover, overexpression of miRNA-129-3p in ROBs significantly attenuated microgravity-induced inhibition of BMP-2 signalling and loss of osteogenic differentiation and mineralization. These results indicated the important role of miRNA-129-3p in microgravity-induced resorption of primary cilia of osteoblasts and the potential of replenishing the miRNA-129-3p as an effective countermeasure against microgravity-induced loss of primary cilia and impairment of osteoblast function.
Collapse
Affiliation(s)
- Jing Liu
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support ForcePeople's Liberation Army of ChinaLanzhouChina
| | - Fei‐Fan Leng
- Department of Bioengineering, School of Life Science and EngineeringLanzhou University of TechnologyLanzhouChina
| | - Yu‐Hai Gao
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support ForcePeople's Liberation Army of ChinaLanzhouChina
| | - Wen‐Fang He
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support ForcePeople's Liberation Army of ChinaLanzhouChina
| | - Ju‐Fang Wang
- Gansu Key Laboratory of Space RadiobiologyInstitute of Modern Physics, Chinese Academy of SciencesLanzhouChina
| | - Cory J. Xian
- UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Hui‐Ping Ma
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support ForcePeople's Liberation Army of ChinaLanzhouChina
| | - Ke‐Ming Chen
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support ForcePeople's Liberation Army of ChinaLanzhouChina
| |
Collapse
|
9
|
An in silico model for woven bone adaptation to heavy loading conditions in murine tibia. Biomech Model Mechanobiol 2022; 21:1425-1440. [PMID: 35796844 DOI: 10.1007/s10237-022-01599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
Existing in silico models for lamellar bone adaptation to mechanical loading are unsuitable for predicting woven bone growth. This anomaly is due to the difference in mechanobiology of the woven bone with respect to that of the lamellar bone. The present study is aimed at developing an in silico bone-adaptation model for woven bone at cellular and tissue levels. The diffusion of Ca2+ ions reaching lining cells from the osteocytic network and the bone cortex in response to a mechanical loading on the cortical bone has been considered as a stimulus. The diffusion of ions within osteocytic network has been computed with a lacunar-canalicular network (LCN) in which bone cells are uniformly arranged. Strain energy density is assumed to regulate ion flow within the network when the induced normal strain is above a threshold level. If the induced strain exceeds another higher threshold level, then the strain with a power constant is additionally assumed to regulate the stimulus. The intracellular flow of Ca2+ ions within the LCN has been simulated using Fick's laws of diffusion, using a finite element method. The ion diffusion from bone cortex to vesicles has been formulated as a normal strain with a power constant. The stimuli reaching the surface cells are assumed to form the new bone. The mathematical model closely predicts woven bone growth in mouse and rat tibia for various in vivo loading conditions. This model is the first to predict woven bone growth at tissue and cellular levels in response to heavy mechanical loading.
Collapse
|
10
|
Mitteroecker P, Bartsch S, Erkinger C, Grunstra NDS, Le Maître A, Bookstein FL. Morphometric Variation at Different Spatial Scales: Coordination and Compensation in the Emergence of Organismal Form. Syst Biol 2021; 69:913-926. [PMID: 32011716 PMCID: PMC7440742 DOI: 10.1093/sysbio/syaa007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
It is a classic aim of quantitative and evolutionary biology to infer genetic architecture and potential evolutionary responses to selection from the variance–covariance structure of measured traits. But a meaningful genetic or developmental interpretation of raw covariances is difficult, and classic concepts of morphological integration do not directly apply to modern morphometric data. Here, we present a new morphometric strategy based on the comparison of morphological variation across different spatial scales. If anatomical elements vary completely independently, then their variance accumulates at larger scales or for structures composed of multiple elements: morphological variance would be a power function of spatial scale. Deviations from this pattern of “variational self-similarity” (serving as a null model of completely uncoordinated growth) indicate genetic or developmental coregulation of anatomical components. We present biometric strategies and R scripts for identifying patterns of coordination and compensation in the size and shape of composite anatomical structures. In an application to human cranial variation, we found that coordinated variation and positive correlations are prevalent for the size of cranial components, whereas their shape was dominated by compensatory variation, leading to strong canalization of cranial shape at larger scales. We propose that mechanically induced bone formation and remodeling are key mechanisms underlying compensatory variation in cranial shape. Such epigenetic coordination and compensation of growth are indispensable for stable, canalized development and may also foster the evolvability of complex anatomical structures by preserving spatial and functional integrity during genetic responses to selection.[Cranial shape; developmental canalization; evolvability; morphological integration; morphometrics; phenotypic variation; self-similarity.]
Collapse
Affiliation(s)
- Philipp Mitteroecker
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.,KLI Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| | - Silvester Bartsch
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Corinna Erkinger
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Nicole D S Grunstra
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.,KLI Institute for Evolution and Cognition Research, Klosterneuburg, Austria.,Mammal Collection, Natural History Museum Vienna, Vienna, Austria
| | - Anne Le Maître
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.,Laboratoire Paléontologie Evolution Paléoécosystèmes Paléoprimatologie (PALEVOPRIM) - UMR 7262 CNRS INEE, Université de Poitiers, Poitiers, France.,Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Fred L Bookstein
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.,Department of Statistics, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Huang Q, Xu S, Ouyang Z, Yang Y, Liu Y. Multi-scale nacre-inspired lamella-structured Ti-Ta composites with high strength and low modulus for load-bearing orthopedic and dental applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111458. [PMID: 33255043 DOI: 10.1016/j.msec.2020.111458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Mimicking the hierarchical structure of nacre in artificial materials is a promising approach to obtain high mechanical performance. In this work, nacre-inspired lamella-structured Ti-Ta composites were fabricated by successive spark plasma sintering, mechanical processing and annealing. The specimen sintered at 1200 °C and then hot rolled with 60% height reduction exhibited multi-scale lamellar microstructure. At micro-scale, the composite was composed of alternate Ti-enriched and Ta-enriched micro-bands. At nano-scale, highly-ordered lamellar structures consisted of Ti-enriched and Ta-enriched nano-lamellae were found near Ti/Ta micro-bands. The biomimetic-structured Ti-Ta composite possessed appropriate combination of strength (1030 MPa ultimate tensile strength) and ductility (10.2% elongation), which is much stronger than pure Ti and comparably strong as Ti-6Al-4 V. Moreover, the biomimetic-structured Ti-Ta composite possessed low modulus (80.6 GPa). In vitro cell culture experiment revealed that the biomimetic-structured Ti-Ta composite was cytocompatible, evidenced by the well-spread morphology and favorable growth of human bone mesenchymal stem cells (hBMSCs) on material surface. A rat femoral fracture model was employed to evaluate the therapeutic performance of biomimetic-structured Ti-Ta composite implant on fracture healing compared to that of pure Ti. In vivo results showed that the composite implant enhanced fracture healing in rats. Together, the findings obtained in the current work suggest that mimicking the hierarchical structure of nacre in Ti-Ta composite is an effective way for material strengthening. Moreover, the biomimetic-structured Ti-Ta composite with high strength, good ductility, low modulus and favorable biocompatibility is promising for load-bearing applications in orthopedic and dental area.
Collapse
Affiliation(s)
- Qianli Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Shenghang Xu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410083, PR China
| | - Yan Yang
- Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha 410083, PR China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China.
| |
Collapse
|
12
|
Zhang W, Huang G, Xu F. Engineering Biomaterials and Approaches for Mechanical Stretching of Cells in Three Dimensions. Front Bioeng Biotechnol 2020; 8:589590. [PMID: 33154967 PMCID: PMC7591716 DOI: 10.3389/fbioe.2020.589590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical stretch is widely experienced by cells of different tissues in the human body and plays critical roles in regulating their behaviors. Numerous studies have been devoted to investigating the responses of cells to mechanical stretch, providing us with fruitful findings. However, these findings have been mostly observed from two-dimensional studies and increasing evidence suggests that cells in three dimensions may behave more closely to their in vivo behaviors. While significant efforts and progresses have been made in the engineering of biomaterials and approaches for mechanical stretching of cells in three dimensions, much work remains to be done. Here, we briefly review the state-of-the-art researches in this area, with focus on discussing biomaterial considerations and stretching approaches. We envision that with the development of advanced biomaterials, actuators and microengineering technologies, more versatile and predictive three-dimensional cell stretching models would be available soon for extensive applications in such fields as mechanobiology, tissue engineering, and drug screening.
Collapse
Affiliation(s)
- Weiwei Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Guoyou Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing University, Chongqing, China
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Tyson J, Bundy K, Roach C, Douglas H, Ventura V, Segars MF, Schwartz O, Simpson CL. Mechanisms of the Osteogenic Switch of Smooth Muscle Cells in Vascular Calcification: WNT Signaling, BMPs, Mechanotransduction, and EndMT. Bioengineering (Basel) 2020; 7:bioengineering7030088. [PMID: 32781528 PMCID: PMC7552614 DOI: 10.3390/bioengineering7030088] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022] Open
Abstract
Characterized by the hardening of arteries, vascular calcification is the deposition of hydroxyapatite crystals in the arterial tissue. Calcification is now understood to be a cell-regulated process involving the phenotypic transition of vascular smooth muscle cells into osteoblast-like cells. There are various pathways of initiation and mechanisms behind vascular calcification, but this literature review highlights the wingless-related integration site (WNT) pathway, along with bone morphogenic proteins (BMPs) and mechanical strain. The process mirrors that of bone formation and remodeling, as an increase in mechanical stress causes osteogenesis. Observing the similarities between the two may aid in the development of a deeper understanding of calcification. Both are thought to be regulated by the WNT signaling cascade and bone morphogenetic protein signaling and can also be activated in response to stress. In a pro-calcific environment, integrins and cadherins of vascular smooth muscle cells respond to a mechanical stimulus, activating cellular signaling pathways, ultimately resulting in gene regulation that promotes calcification of the vascular extracellular matrix (ECM). The endothelium is also thought to contribute to vascular calcification via endothelial to mesenchymal transition, creating greater cell plasticity. Each of these factors contributes to calcification, leading to increased cardiovascular mortality in patients, especially those suffering from other conditions, such as diabetes and kidney failure. Developing a better understanding of the mechanisms behind calcification may lead to the development of a potential treatment in the future.
Collapse
|
14
|
Araki H, Nakano T, Ono S, Yatani H. Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials. Int J Implant Dent 2020; 6:5. [PMID: 31993827 PMCID: PMC6987289 DOI: 10.1186/s40729-019-0202-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
AIM When using short implants, fracture of the implant body and bone resorption are a concern because stress concentrates on and around a short implant. The purpose of this research is to investigate the differences in stress distribution between tissue level (TL) and bone level (BL) implant body designs, and between commercially pure titanium (cpTi) and the newer titanium-zirconium (TiZr) alloy in using short implants. MATERIALS AND METHODS Models of TL and BL implants were prepared for three-dimensional finite element analysis. The implants were produced in 10 mm, 8 mm, and 6 mm lengths, and the TL was also produced in a 4-mm length. A static load of 100 N inclined at 30° to the long axis was applied to the buccal side of the model. The largest maximum principal stress value in the cortical bone and the largest von Mises stress value in the implant body were evaluated. RESULTS Stress concentration was observed at the connection part of the implant, especially above the bone in TL and within the bone in BL. In the TL design, tensile stress occurred on the buccal side and compressive stress on the lingual side of the cortical bone. Conversely, in the BL design, tensile stress occurred on the lingual side of the cortical bone. CpTi and TiZr showed a similar stress distribution pattern. The maximum stress values were lower in the TL design than the BL design, and they were lower with TiZr than cpTi for both the cortical bone and implant body. The maximum value tended to increase as the length of the implant body decreased. In addition, the implant body design was more influential than its length, with the TL design showing a stress value similar to the longer BL design. CONCLUSION Using TiZr and a TL design may be more useful mechanically than cpTi and a BL design when the length of the implant body must be shorter because of insufficient vertical bone mass in the mandible.
Collapse
Affiliation(s)
- Haruka Araki
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan
| | - Tamaki Nakano
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan.
| | - Shinji Ono
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan
| | - Hirofumi Yatani
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Zhang J, Xu S, Zhang Y, Zou S, Li X. Effects of equibiaxial mechanical stretch on extracellular matrix-related gene expression in human calvarial osteoblasts. Eur J Oral Sci 2018; 127:10-18. [PMID: 30474904 DOI: 10.1111/eos.12595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanical stretch commonly promotes craniofacial suture remodeling during interceptive orthodontics. The mechanical responses of osteoblasts in craniofacial sutures play a role in suture remodeling. Moreover, the extracellular matrix (ECM) produced by osteoblasts is crucial for the transduction of mechanical signals that promote cell differentiation. Therefore, we aimed to investigate the effect of mechanical stretch on cell viability and ECM-related gene-expression changes in human osteoblasts. Human calvarial osteoblasts (HCObs) were subjected to 2% deformation. Caspase activity, MTT, and cell viability assays were used to estimate osteoblast apoptosis, proliferation, and viability, respectively. Real-time RT-PCR (RT2 -PCR) arrays were used to assess expression of cytoskeletal-, apoptosis-, osteogenesis-, and ECM-related genes. We found that mechanical stretch significantly increased osteoblast viability and cell proliferation, and decreased the activities of caspases 3 and 7. Moreover, the expression of 18 genes related to osteoblast differentiation, apoptosis, and ECM remodeling changed by more than two-fold in a time-dependent manner. Therefore, mechanical stretch promotes HCOb viability and alters expression of genes that are closely related to suture remodeling under mechanical stretch.
Collapse
Affiliation(s)
- Jiawei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuhao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanggen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Baudequin T, Legallais C, Bedoui F. In Vitro Bone Cell Response to Tensile Mechanical Solicitations: Is There an Optimal Protocol? Biotechnol J 2018; 14:e1800358. [PMID: 30350925 DOI: 10.1002/biot.201800358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/10/2018] [Indexed: 11/07/2022]
Abstract
Bone remodeling is strongly linked to external mechanical signals. Such stimuli are widely used in vitro for bone tissue engineering by applying mechanical solicitations to cell cultures so as to trigger specific cell responses. However, the literature highlights considerable variability in devices and protocols. Here the major biological, mechanical, and technical parameters implemented for in vitro tensile loading applications are reviewed. The objective is to identify which values are used most, and whether there is an optimal protocol to obtain a functional tissue-engineering construct. First, a shift that occurred from fundamental comprehension of bone formation, to its application in rebuilt tissues and clinical fields is shown. Despite the lack of standardized protocols, consensual conditions relevant for in vitro bone development, in particular cell differentiation, could be highlighted. Culture processes are guided by physiological considerations, although out-of-range conditions are sometimes used without implying negative results for the development of rebuilt tissue. Consensus can be found on several parameters, such as strain frequency (1 Hz) or the use of rest periods, but other points have not yet been fully established, especially synergies with other solicitations. It is believed that the present work will be useful to develop new tissue-engineering processes based on stretching.
Collapse
Affiliation(s)
- Timothée Baudequin
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomécanique - Bioingénierie, Compiègne 60205, France
| | - Cécile Legallais
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomécanique - Bioingénierie, Compiègne 60205, France
| | - Fahmi Bedoui
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7337 Laboratoire Roberval, Compiègne 60205, France
| |
Collapse
|
17
|
Shuai C, Yang W, Peng S, Gao C, Guo W, Lai Y, Feng P. Physical stimulations and their osteogenesis-inducing mechanisms. Int J Bioprint 2018; 4:138. [PMID: 33102916 PMCID: PMC7581999 DOI: 10.18063/ijb.v4i2.138] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022] Open
Abstract
Physical stimulations such as magnetic, electric and mechanical stimulation could enhance cell activity and promote bone formation in bone repair process via activating signal pathways, modulating ion channels, regulating bonerelated gene expressions, etc. In this paper, bioeffects of physical stimulations on cell activity, tissue growth and bone healing were systematically summarized, which especially focused on their osteogenesis-inducing mechanisms. Detailedly, magnetic stimulation could produce Hall effect which improved the permeability of cell membrane and promoted the migration of ions, especially accelerating the extracellular calcium ions to pass through cell membrane. Electric stimulation could induce inverse piezoelectric effect which generated electric signals, accordingly up-regulating intracellular calcium levels and growth factor synthesis. And mechanical stimulation could produce mechanical signals which were converted into corresponding biochemical signals, thus activating various signaling pathways on cell membrane and inducing a series of gene expressions. Besides, bioeffects of physical stimulations combined with bone scaffolds which fabricated using 3D printing technology on bone cells were discussed. The equipments of physical stimulation system were described. The opportunities and challenges of physical stimulations were also presented from the perspective of bone repair.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China.,Jiangxi University of Science and Technology, Ganzhou, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Wenjing Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Wang Guo
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Yuxiao Lai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| |
Collapse
|
18
|
Shen XQ, Geng YM, Liu P, Huang XY, Li SY, Liu CD, Zhou Z, Xu PP. Magnitude-dependent response of osteoblasts regulated by compressive stress. Sci Rep 2017; 7:44925. [PMID: 28317941 PMCID: PMC5357902 DOI: 10.1038/srep44925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/30/2017] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to investigate the role of magnitude in adaptive response of osteoblasts exposed to compressive stress. Murine primary osteoblasts and MC3T3-E1 cells were exposed to compressive stress (0, 1, 2, 3, 4, and 5 g/cm2) in 3D culture. Cell viability was evaluated, and expression levels of Runx2, Alp, Ocn, Rankl, and Opg were examined. ALP activity in osteoblasts and TRAP activity in RAW264.7 cells co-cultured with MC3T3-E1 cells were assayed. Results showed that compressive stress within 5.0 g/cm2 did not influence cell viability. Both osteoblastic and osteoblast-regulated osteoclastic differentiation were enhanced at 2 g/cm2. An increase in stress above 2 g/cm2 did not enhance osteoblastic differentiation further but significantly inhibited osteoblast-regualted osteoclastic differentiation. This study suggested that compressive stress regulates osteoblastic and osteoclastic differentiation through osteoblasts in a magnitude-dependent manner.
Collapse
Affiliation(s)
- Xiao-qing Shen
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Dentistry, University of Detroit Mercy, Detroit, Michigan, USA
| | - Yuan-ming Geng
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Liu
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiang-yu Huang
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Shu-yi Li
- Key laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chun-dong Liu
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zheng Zhou
- School of Dentistry, University of Detroit Mercy, Detroit, Michigan, USA
| | - Ping-ping Xu
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Chen X, Guo J, Yuan Y, Sun Z, Chen B, Tong X, Zhang L, Shen C, Zou J. Cyclic compression stimulates osteoblast differentiation via activation of the Wnt/β-catenin signaling pathway. Mol Med Rep 2017; 15:2890-2896. [DOI: 10.3892/mmr.2017.6327] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/23/2017] [Indexed: 11/06/2022] Open
|
20
|
Choi HJ, Lee JJ, Park YJ, Shin JW, Sung HJ, Shin JW, Wu Y, Kim JK. MG-63 osteoblast-like cell proliferation on auxetic PLGA scaffold with mechanical stimulation for bone tissue regeneration. Biomater Res 2016; 20:33. [PMID: 27807475 PMCID: PMC5087120 DOI: 10.1186/s40824-016-0080-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/08/2016] [Indexed: 12/04/2022] Open
Abstract
Background Auxetic scaffolds (experimental) was fabricated by using poly(D, L-lactic-co-glycolic acid), 50:50, (PLGA) for effective bone cell proliferation with mechanical stimulation. Methods Negative Poisson’s ratio in scaffold, 3-directional volumetric compression was applied during the scaffold fabrication at adequate temperature (60 °C). The pore size of scaffold ranged between 355 and 400 μm. Results The porous morphology of the prepared auxetic scaffolds had shown partially concave and dent shapes in SEM image as expected. The lowest Poisson’s ratios of experimental group was −0.07 at 60 °C/10 min. Compressive strength of experimental group was shown about 3.12 times higher than control group (conventional scaffold) in dry state at 25 °C. The compressive strengths of both groups were tended to be decreased dramatically in wet state compared to in dry state. However, compressive strengths of experimental group were higher 3.08 times and 1.88 times in EtOH/PBS (25 °C) and EtOH/PBS/DMEM (37 °C) than control group in wet state, respectively. Degradation rate of the scaffolds showed about 16 % weight loss in 5 weeks. In cell attachment test, experimental group showed 1.46 times higher cell proliferation than control group at 1-day with compressive stimulation. In 3-day culture, the experimental group showed 1.32 times higher than control group. However, there was no significant difference in cell proliferation in 5-day cultivation. Conclusion Overall, negative Poisson’s ratio scaffolds with static mechanical stimulation could affect the cell proliferation at initial cultivation time.
Collapse
Affiliation(s)
- Hong Jin Choi
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 Korea
| | - Jun Jae Lee
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 Korea
| | - Yeong Jun Park
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 Korea
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Ji Won Shin
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 Korea
| | - Yanru Wu
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 Korea
| | - Jeong Koo Kim
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 Korea
| |
Collapse
|
21
|
Ravichandran A, Lim J, Chong MSK, Wen F, Liu Y, Pillay YT, Chan JKY, Teoh SH. In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue. J Biomed Mater Res B Appl Biomater 2016; 105:2366-2375. [PMID: 27527120 DOI: 10.1002/jbm.b.33772] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/14/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022]
Abstract
Application of dynamic mechanical loads on bone and bone explants has been reported to enhance osteogenesis and mineralization. To date, published studies have incorporated a range of cyclic strains on 3D scaffolds and platforms to demonstrate the effect of mechanical loading on osteogenesis. However, most of the loading parameters used in these studies do not emulate the in vivo loading conditions. In addition, the scaffolds/platforms are not representative of the native osteoinductive environment of bone tissue and hence may not be entirely accurate to study the in vivo mechanical loading. We hypothesized that biomimicry of physiological loading will potentiate accelerated osteogenesis in bone grafts. In this study, we present a compression bioreactor system that applies cyclic compression to cellular grafts in a controlled manner. Polycaprolactone-β Tricalcium Phosphate (PCL-TCP) scaffolds seeded with Mesenchymal Stem Cells (MSC) were cyclically compressed in bioreactor for a period of 4 weeks at 1 Hz and physiological strain value of 0.22% for 4 h per day. Gene expression studies revealed increased expressions of osteogenesis-related genes (Osteonectin and COL1A1) on day 7 of cyclic loading group relative to its static controls. Cyclic compression resulted in a 3.76-fold increase in the activity of Alkaline Phosphatase (ALP) on day 14 when compared to its static group (p < 0.001). In addition, calcium deposition of cyclic loading group was found to attain saturation on day 14 (1.96 fold higher than its static scaffolds). The results suggested that cyclic, physiological compression of stem cell-seeded scaffolds generated highly mineralized bone grafts. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2366-2375, 2017.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- Centre for Bone Tissue Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Jing Lim
- Centre for Bone Tissue Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Mark Seow Khoon Chong
- Centre for Bone Tissue Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Feng Wen
- Centre for Bone Tissue Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Yuchun Liu
- Centre for Bone Tissue Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.,Academic Clinical Program (Research), National Dental Centre of Singapore, Singapore 168938, Singapore
| | - Yaesshna T Pillay
- Department of Medicine and Medical Science, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jerry K Y Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.,Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Swee-Hin Teoh
- Centre for Bone Tissue Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
22
|
Fang M, Alfieri CM, Hulin A, Conway SJ, Yutzey KE. Loss of β-catenin promotes chondrogenic differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol 2014; 34:2601-8. [PMID: 25341799 DOI: 10.1161/atvbaha.114.304579] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The Wnt/β-catenin signaling pathway has been implicated in human heart valve disease and is required for early heart valve formation in mouse and zebrafish. However, the specific functions of Wnt/β-catenin signaling activity in heart valve maturation and maintenance in adults have not been determined previously. APPROACH AND RESULTS Here, we show that Wnt/β-catenin signaling inhibits Sox9 nuclear localization and proteoglycan expression in cultured chicken embryo aortic valves. Loss of β-catenin in vivo in mice, using Periostin(Postn)Cre-mediated tissue-restricted loss of β-catenin (Ctnnb1) in valvular interstitial cells, leads to the formation of aberrant chondrogenic nodules and induction of chondrogenic gene expression in adult aortic valves. These nodular cells strongly express nuclear Sox9 and Sox9 downstream chondrogenic extracellular matrix genes, including Aggrecan, Col2a1, and Col10a1. Excessive chondrogenic proteoglycan accumulation and disruption of stratified extracellular matrix maintenance in the aortic valve leaflets are characteristics of myxomatous valve disease. Both in vitro and in vivo data demonstrate that the loss of Wnt/β-catenin signaling leads to increased nuclear expression of Sox9 concomitant with induced expression of chondrogenic extracellular matrix proteins. CONCLUSIONS β-Catenin limits Sox9 nuclear localization and inhibits chondrogenic differentiation during valve development and in adult aortic valve homeostasis.
Collapse
Affiliation(s)
- Ming Fang
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (M.F., C.M.A., A.H., K.E.Y.); and Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis (S.J.C.)
| | - Christina M Alfieri
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (M.F., C.M.A., A.H., K.E.Y.); and Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis (S.J.C.)
| | - Alexia Hulin
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (M.F., C.M.A., A.H., K.E.Y.); and Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis (S.J.C.)
| | - Simon J Conway
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (M.F., C.M.A., A.H., K.E.Y.); and Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis (S.J.C.)
| | - Katherine E Yutzey
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (M.F., C.M.A., A.H., K.E.Y.); and Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis (S.J.C.).
| |
Collapse
|
23
|
Mechanotransduction in musculoskeletal tissue regeneration: effects of fluid flow, loading, and cellular-molecular pathways. BIOMED RESEARCH INTERNATIONAL 2014; 2014:863421. [PMID: 25215295 PMCID: PMC4151828 DOI: 10.1155/2014/863421] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/13/2014] [Indexed: 12/28/2022]
Abstract
While mechanotransductive signal is proven essential for tissue regeneration, it is critical to determine specific cellular responses to such mechanical signals and the underlying mechanism. Dynamic fluid flow induced by mechanical loading has been shown to have the potential to regulate bone adaptation and mitigate bone loss. Mechanotransduction pathways are of great interests in elucidating how mechanical signals produce such observed effects, including reduced bone loss, increased bone formation, and osteogenic cell differentiation. The objective of this review is to develop a molecular understanding of the mechanotransduction processes in tissue regeneration, which may provide new insights into bone physiology. We discussed the potential for mechanical loading to induce dynamic bone fluid flow, regulation of bone adaptation, and optimization of stimulation parameters in various loading regimens. The potential for mechanical loading to regulate microcirculation is also discussed. Particularly, attention is allotted to the potential cellular and molecular pathways in response to loading, including osteocytes associated with Wnt signaling, elevation of marrow stem cells, and suppression of adipotic cells, as well as the roles of LRP5 and microRNA. These data and discussions highlight the complex yet highly coordinated process of mechanotransduction in bone tissue regeneration.
Collapse
|
24
|
The adaptive nature of the bone-periodontal ligament-cementum complex in a ligature-induced periodontitis rat model. BIOMED RESEARCH INTERNATIONAL 2013; 2013:876316. [PMID: 23936854 PMCID: PMC3713652 DOI: 10.1155/2013/876316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/18/2013] [Accepted: 03/24/2013] [Indexed: 01/12/2023]
Abstract
The novel aspect of this study involves illustrating significant adaptation of a functionally loaded bone-PDL-cementum complex in a ligature-induced periodontitis rat model. Following 4, 8, and 15 days of ligation, proinflammatory cytokines (TNF-α and RANKL), a mineral resorption indicator (TRAP), and a cell migration and adhesion molecule for tissue regeneration (fibronectin) within the complex were localized and correlated with changes in PDL-space (functional space). At 4 days of ligation, the functional space of the distal complex was widened compared to controls and was positively correlated with an increased expression of TNF-α. At 8 and 15 days, the number of RANKL(+) cells decreased near the mesial alveolar bone crest (ABC) but increased at the distal ABC. TRAP(+) cells on both sides of the complex significantly increased at 8 days. A gradual change in fibronectin expression from the distal PDL-secondary cementum interfaces through precementum layers was observed when compared to increased and abrupt changes at the mesial PDL-cementum and PDL-bone interfaces in ligated and control groups. Based on our results, we hypothesize that compromised strain fields can be created in a diseased periodontium, which in response to prolonged function can significantly alter the original bone and apical cementum formations.
Collapse
|
25
|
Riehl BD, Park JH, Kwon IK, Lim JY. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:288-300. [PMID: 22335794 DOI: 10.1089/ten.teb.2011.0465] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.
Collapse
Affiliation(s)
- Brandon D Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | | | | | |
Collapse
|