1
|
Jarzab M, Skorko-Glonek J. There Are No Insurmountable Barriers: Passage of the Helicobacter pylori VacA Toxin from Bacterial Cytoplasm to Eukaryotic Cell Organelle. MEMBRANES 2023; 14:11. [PMID: 38248700 PMCID: PMC10821523 DOI: 10.3390/membranes14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
The Gram-negative bacterium Helicobacter pylori is a very successful pathogen, one of the most commonly identified causes of bacterial infections in humans worldwide. H. pylori produces several virulence factors that contribute to its persistence in the hostile host habitat and to its pathogenicity. The most extensively studied are cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA). VacA is present in almost all H. pylori strains. As a secreted multifunctional toxin, it assists bacterial colonization, survival, and proliferation during long-lasting infections. To exert its effect on gastric epithelium and other cell types, VacA undergoes several modifications and crosses multiple membrane barriers. Once inside the gastric epithelial cell, VacA disrupts many cellular-signaling pathways and processes, leading mainly to changes in the efflux of various ions, the depolarization of membrane potential, and perturbations in endocytic trafficking and mitochondrial function. The most notable effect of VacA is the formation of vacuole-like structures, which may lead to apoptosis. This review focuses on the processes involved in VacA secretion, processing, and entry into host cells, with a particular emphasis on the interaction of the mature toxin with host membranes and the formation of transmembrane pores.
Collapse
Affiliation(s)
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| |
Collapse
|
2
|
Sweetman C, Khassanova G, Miller TK, Booth NJ, Kurishbayev A, Jatayev S, Gupta NK, Langridge P, Jenkins CLD, Soole KL, Day DA, Shavrukov Y. Salt-induced expression of intracellular vesicle trafficking genes, CaRab-GTP, and their association with Na + accumulation in leaves of chickpea (Cicer arietinum L.). BMC PLANT BIOLOGY 2020; 20:183. [PMID: 33050887 PMCID: PMC7557026 DOI: 10.1186/s12870-020-02331-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/06/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Chickpea is an important legume and is moderately tolerant to salinity stress during the growing season. However, the level and mechanisms for salinity tolerance can vary among accessions and cultivars. A large family of CaRab-GTP genes, previously identified in chickpea, is homologous to intracellular vesicle trafficking superfamily genes that play essential roles in response to salinity stress in plants. RESULTS To determine which of the gene family members are involved in the chickpea salt response, plants from six selected chickpea accessions (Genesis 836, Hattrick, ICC12726, Rupali, Slasher and Yubileiny) were exposed to salinity stress and expression profiles resolved for the major CaRab-GTP gene clades after 5, 9 and 15 days of salt exposure. Gene clade expression profiles (using degenerate primers targeting all members of each clade) were tested for their relationship to salinity tolerance measures, namely plant biomass and Na+ accumulation. Transcripts representing 11 out of the 13 CaRab clades could be detected by RT-PCR, but only six (CaRabA2, -B, -C, -D, -E and -H) could be quantified using qRT-PCR due to low expression levels or poor amplification efficiency of the degenerate primers for clades containing several gene members. Expression profiles of three gene clades, CaRabB, -D and -E, were very similar across all six chickpea accessions, showing a strongly coordinated network. Salt-induced enhancement of CaRabA2 expression at 15 days showed a very strong positive correlation (R2 = 0.905) with Na+ accumulation in leaves. However, salinity tolerance estimated as relative plant biomass production compared to controls, did not correlate with Na+ accumulation in leaves, nor with expression profiles of any of the investigated CaRab-GTP genes. CONCLUSION A coordinated network of CaRab-GTP genes, which are likely involved in intracellular trafficking, are important for the salinity stress response of chickpea plants.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, Australia
| | - Gulmira Khassanova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Troy K Miller
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, Australia
| | - Nicholas J Booth
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, Australia
| | - Akhylbek Kurishbayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan.
| | - Narendra K Gupta
- College of Agriculture, SKN Agriculture University, Jobner, Rajasthan, India
| | | | - Colin L D Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, Australia
| | - Kathleen L Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, Australia
| | - David A Day
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, Australia
- School of Life Science, AgriBio, LaTrobe University, Melbourne, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, Australia.
| |
Collapse
|
3
|
Avanzato D, Pupo E, Ducano N, Isella C, Bertalot G, Luise C, Pece S, Bruna A, Rueda OM, Caldas C, Di Fiore PP, Sapino A, Lanzetti L. High USP6NL Levels in Breast Cancer Sustain Chronic AKT Phosphorylation and GLUT1 Stability Fueling Aerobic Glycolysis. Cancer Res 2018; 78:3432-3444. [PMID: 29691252 DOI: 10.1158/0008-5472.can-17-3018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/16/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
USP6NL, also named RN-tre, is a GTPase-activating protein involved in control of endocytosis and signal transduction. Here we report that USP6NL is overexpressed in breast cancer, mainly of the basal-like/integrative cluster 10 subtype. Increased USP6NL levels were accompanied by gene amplification and were associated with worse prognosis in the METABRIC dataset, retaining prognostic value in multivariable analysis. High levels of USP6NL in breast cancer cells delayed endocytosis and degradation of the EGFR, causing chronic AKT (protein kinase B) activation. In turn, AKT stabilized the glucose transporter GLUT1 at the plasma membrane, increasing aerobic glycolysis. In agreement, elevated USP6NL sensitized breast cancer cells to glucose deprivation, indicating that their glycolytic capacity relies on this protein. Depletion of USP6NL accelerated EGFR/AKT downregulation and GLUT1 degradation, impairing cell proliferation exclusively in breast cancer cells that harbored increased levels of USP6NL. Overall, these findings argue that USP6NL overexpression generates a metabolic rewiring that is essential to foster the glycolytic demand of breast cancer cells and promote their proliferation.Significance: USP6NL overexpression leads to glycolysis addiction of breast cancer cells and presents a point of metabolic vulnerability for therapeutic targeting in a subset of aggressive basal-like breast tumors.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/13/3432/F1.large.jpg Cancer Res; 78(13); 3432-44. ©2018 AACR.
Collapse
Affiliation(s)
- Daniele Avanzato
- Department of Oncology, University of Torino Medical School, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Emanuela Pupo
- Department of Oncology, University of Torino Medical School, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Nadia Ducano
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Claudio Isella
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Giovanni Bertalot
- Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| | - Chiara Luise
- Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| | - Salvatore Pece
- Molecular Medicine Program, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alejandra Bruna
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Oscar M Rueda
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, United Kingdom
| | - Pier Paolo Di Fiore
- Molecular Medicine Program, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- IFOM, The FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Medical Sciences, University of Torino Medical School, Torino, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Torino, Italy.
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
4
|
Nishiumi F, Ogawa M, Nakura Y, Hamada Y, Nakayama M, Mitobe J, Hiraide A, Sakai N, Takeuchi M, Yoshimori T, Yanagihara I. Intracellular fate of Ureaplasma parvum entrapped by host cellular autophagy. Microbiologyopen 2017; 6. [PMID: 28088841 PMCID: PMC5458467 DOI: 10.1002/mbo3.441] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Genital mycoplasmas, including Ureaplasma spp., are among the smallest human pathogenic bacteria and are associated with preterm birth. Electron microscopic observation of U. parvum showed that these prokaryotes have a regular, spherical shape with a mean diameter of 146 nm. U. parvum was internalized into HeLa cells by clathrin‐mediated endocytosis and survived for at least 14 days around the perinuclear region. Intracellular U. parvum reached endosomes in HeLa cells labeled with EEA1, Rab7, and LAMP‐1 within 1 to 3 hr. After 3 hr of infection, U. parvum induced the cytosolic accumulation of galectin‐3 and was subsequently entrapped by the autophagy marker LC3. However, when using atg7−/−MEF cells, autophagy was inadequate for the complete elimination of U. parvum in HeLa cells. U. parvum also colocalized with the recycling endosome marker Rab11. Furthermore, the exosomes purified from infected HeLa cell culture medium included U. parvum. In these purified exosomes ureaplasma lipoprotein multiple banded antigen, host cellular annexin A2, CD9, and CD63 were detected. This research has successfully shown that Ureaplasma spp. utilize the host cellular membrane compartments possibly to evade the host immune system.
Collapse
Affiliation(s)
- Fumiko Nishiumi
- Department of Developmental Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Michinaga Ogawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukiko Nakura
- Department of Developmental Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Yusuke Hamada
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Nakayama
- Department of Pathology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Jiro Mitobe
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsushi Hiraide
- Critical Care Medical Center, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Norio Sakai
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Takeuchi
- Department of Pathology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| |
Collapse
|
5
|
Jaber N, Mohd-Naim N, Wang Z, DeLeon JL, Kim S, Zhong H, Sheshadri N, Dou Z, Edinger AL, Du G, Braga VMM, Zong WX. Vps34 regulates Rab7 and late endocytic trafficking through recruitment of the GTPase-activating protein Armus. J Cell Sci 2016; 129:4424-4435. [PMID: 27793976 DOI: 10.1242/jcs.192260] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/21/2016] [Indexed: 01/03/2023] Open
Abstract
The class III phosphoinositide 3-kinase (PI3K) Vps34 (also known as PIK3C3 in mammals) produces phosphatidylinositol 3-phosphate [PI(3)P] on both early and late endosome membranes to control membrane dynamics. We used Vps34-deficient cells to delineate whether Vps34 has additional roles in endocytic trafficking. In Vps34-/- mouse embryonic fibroblasts (MEFs), transferrin recycling and EEA1 membrane localization were unaffected despite elevated Rab5-GTP levels. Strikingly, a large increase in Rab7-GTP levels, an accumulation of enlarged late endosomes, and decreased EGFR degradation were observed in Vps34-deficient cells. The hyperactivation of Rab7 in Vps34-deficient cells stemmed from the failure to recruit the Rab7 GTPase-activating protein (GAP) Armus (also known as TBC1D2), which binds to PI(3)P, to late endosomes. Protein-lipid overlay and liposome-binding assays reveal that the putative pleckstrin homology (PH) domain in Armus can directly bind to PI(3)P. Elevated Rab7-GTP led to the failure of intraluminal vesicle (ILV) formation and lysosomal maturation. Rab7 silencing and Armus overexpression alleviated the vacuolization seen in Vps34-deficient cells. Taken together, these results demonstrate that Vps34 has a previously unknown role in regulating Rab7 activity and late endosomal trafficking.
Collapse
Affiliation(s)
- Nadia Jaber
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Noor Mohd-Naim
- Molecular Medicine, NHLI, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Ziqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jennifer L DeLeon
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Seong Kim
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Hua Zhong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Road, Piscataway NJ08854, USA
| | - Namratha Sheshadri
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Zhixun Dou
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Vania M M Braga
- Molecular Medicine, NHLI, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY11794, USA .,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Road, Piscataway NJ08854, USA.,Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick NJ08903, USA
| |
Collapse
|
6
|
Junaid M, Linn AK, Javadi MB, Al-Gubare S, Ali N, Katzenmeier G. Vacuolating cytotoxin A (VacA) - A multi-talented pore-forming toxin from Helicobacter pylori. Toxicon 2016; 118:27-35. [PMID: 27105670 DOI: 10.1016/j.toxicon.2016.04.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 03/12/2016] [Accepted: 04/18/2016] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori is associated with severe and chronic diseases of the stomach and duodenum such as peptic ulcer, non-cardial adenocarcinoma and gastric lymphoma, making Helicobacter pylori the only bacterial pathogen which is known to cause cancer. The worldwide rate of incidence for these diseases is extremely high and it is estimated that about half of the world's population is infected with H. pylori. Among the bacterial virulence factors is the vacuolating cytotoxin A (VacA), which represents an important determinant of pathogenicity. Intensive characterization of VacA over the past years has provided insight into an ample variety of mechanisms contributing to host-pathogen interactions. The toxin is considered as an important target for ongoing research for several reasons: i) VacA displays unique features and structural properties and its mechanism of action is unrelated to any other known bacterial toxin; ii) the toxin is involved in disease progress and colonization by H. pylori of the stomach; iii) VacA is a potential and promising candidate for the inclusion as antigen in a vaccine directed against H. pylori and iv) the vacA gene is characterized by a high allelic diversity, and allelic variants contribute differently to the pathogenicity of H. pylori. Despite the accumulation of substantial data related to VacA over the past years, several aspects of VacA-related activity have been characterized only to a limited extent. The biologically most significant effect of VacA activity on host cells is the formation of membrane pores and the induction of vacuole formation. This review discusses recent findings and advances on structure-function relations of the H. pylori VacA toxin, in particular with a view to membrane channel formation, oligomerization, receptor binding and apoptosis.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Pharmacy, Division of Pharmacology, University of Malakand, Khyber Pakhtunkhwa 18550, Pakistan; Bacterial Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand.
| | - Aung Khine Linn
- Bacterial Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand.
| | - Mohammad Bagher Javadi
- Bacterial Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand.
| | - Sarbast Al-Gubare
- Bacterial Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand.
| | - Niaz Ali
- Department of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan.
| | - Gerd Katzenmeier
- Bacterial Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand.
| |
Collapse
|
7
|
Kern B, Jain U, Utsch C, Otto A, Busch B, Jiménez-Soto L, Becher D, Haas R. Characterization of Helicobacter pylori VacA-containing vacuoles (VCVs), VacA intracellular trafficking and interference with calcium signalling in T lymphocytes. Cell Microbiol 2015; 17:1811-32. [PMID: 26078003 DOI: 10.1111/cmi.12474] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022]
Abstract
The human pathogen Helicobacter pylori colonizes half of the global population. Residing at the stomach epithelium, it contributes to the development of diseases such as gastritis, duodenal and gastric ulcers, and gastric cancer. A major factor is the secreted vacuolating toxin VacA, which forms anion-selective channels in the endosome membrane that cause the compartment to swell, but the composition and purpose of the resulting VacA-containing vacuoles (VCVs) are still unknown. VacA exerts influence on the host immune response in various ways, including inhibition of T-cell activation and proliferation and suppression of the host immune response. In this study, for the first time the composition of VCVs from T cells was comprehensively analysed to investigate VCV function. VCVs were successfully isolated via immunomagnetic separation, and the purified vacuoles were analysed by mass spectrometry. We detected a set of 122 VCV-specific proteins implicated among others in immune response, cell death and cellular signalling processes, all of which VacA is known to influence. One of the individual proteins studied further was stromal interaction molecule (STIM1), a calcium sensor residing in the endoplasmic reticulum (ER) that is important in store-operated calcium entry. Live cell imaging microscopy data demonstrated colocalization of VacA with STIM1 in the ER and indicated that VacA may interfere with the movement of STIM1 towards the plasma membrane-localized calcium release activated calcium channel protein ORAI1 in response to Ca(2+) store depletion. Furthermore, VacA inhibited the increase of cytosolic-free Ca(2+) in the Jurkat E6-1 T-cell line and human CD4(+) T cells. The presence of VacA in the ER and its trafficking to the Golgi apparatus was confirmed in HeLa cells, identifying these two cellular compartments as novel VacA target structures.
Collapse
Affiliation(s)
- Beate Kern
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Utkarsh Jain
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Ciara Utsch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Andreas Otto
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Benjamin Busch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Luisa Jiménez-Soto
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Rainer Haas
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
8
|
Shubin AV, Demidyuk IV, Lunina NA, Komissarov AA, Roschina MP, Leonova OG, Kostrov SV. Protease 3C of hepatitis A virus induces vacuolization of lysosomal/endosomal organelles and caspase-independent cell death. BMC Cell Biol 2015; 16:4. [PMID: 25886889 PMCID: PMC4355371 DOI: 10.1186/s12860-015-0050-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 01/26/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND 3C proteases, the main proteases of picornaviruses, play the key role in viral life cycle by processing polyproteins. In addition, 3C proteases digest certain host cell proteins to suppress antiviral defense, transcription, and translation. The activity of 3C proteases per se induces host cell death, which makes them critical factors of viral cytotoxicity. To date, cytotoxic effects have been studied for several 3C proteases, all of which induce apoptosis. This study for the first time describes the cytotoxic effect of 3C protease of human hepatitis A virus (3Cpro), the only proteolytic enzyme of the virus. RESULTS Individual expression of 3Cpro induced catalytic activity-dependent cell death, which was not abrogated by the pan-caspase inhibitor (z-VAD-fmk) and was not accompanied by phosphatidylserine externalization in contrast to other picornaviral 3C proteases. The cell survival was also not affected by the inhibitors of cysteine proteases (z-FA-fmk) and RIP1 kinase (necrostatin-1), critical enzymes involved in non-apoptotic cell death. A substantial fraction of dying cells demonstrated numerous non-acidic cytoplasmic vacuoles with not previously described features and originating from several types of endosomal/lysosomal organelles. The lysosomal protein Lamp1 and GTPases Rab5, Rab7, Rab9, and Rab11 were associated with the vacuolar membranes. The vacuolization was completely blocked by the vacuolar ATPase inhibitor (bafilomycin A1) and did not depend on the activity of the principal factors of endosomal transport, GTPases Rab5 and Rab7, as well as on autophagy and macropinocytosis. CONCLUSIONS 3Cpro, apart from other picornaviral 3C proteases, induces caspase-independent cell death, accompanying by cytoplasmic vacuolization. 3Cpro-induced vacuoles have unique properties and are formed from several organelle types of the endosomal/lysosomal compartment. The data obtained demonstrate previously undocumented morphological characters of the 3Cpro-induced cell death, which can reflect unknown aspects of the human hepatitis A virus-host cell interaction.
Collapse
Affiliation(s)
- Andrey V Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Ilya V Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Nataliya A Lunina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Alexey A Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Marina P Roschina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Olga G Leonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119992, Russia.
| | - Sergey V Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
- National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| |
Collapse
|
9
|
Liu Z, Zhao S, Wu S, Zhang J, Nie Z, Zeng S. A novel role of transient receptor potential mucolipin1 (TRPML1) in protecting against imidazole-induced cytotoxicity. Biochem Cell Biol 2014; 92:279-86. [DOI: 10.1139/bcb-2014-0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lysosomotropic amines cause serious side effects such as cytoplasmic vacuolation and cell death. TRPML1 (also known as mucolipin1), a member of the transient receptor potential (TRP) protein family, may regulate fusion/fission of vesicles along the endocytic pathway and some aspects of lysosomal ion homeostasis. Nevertheless, it is still unknown whether TRPML1 is involved in death of mammalian cells induced by lysosomotropic agents. In this study, imidazole was used as a model to investigate the role of TRPML1 in the cytotoxicity of lysosomotropic agents. Overexpression of wild-type TRPML1 inhibited imidazole-induced vacuole formation and cell death in human endometrial adenocarcinoma (HEC-1B) cells. In contrast, siRNA-mediated TRPML1 knockdown increased the cell death induced by imidazole. Bafilomycin A1 raises the pH of acidic organelles and therefore suppresses accumulation of weak bases in them. Similarly, lysosomal pH was raised in TRPML1-overexpressing cells; therefore, we inferred that TRPML1 protected against imidazole toxicity by regulating the pH of acidic organelles. We concluded that TRPML1 had a novel role in protecting against lysosomotropic amine toxicity.
Collapse
Affiliation(s)
- Zhenxing Liu
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Shuan Zhao
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Shuaishuai Wu
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Jingyou Zhang
- Reproduction and Breeding Research Center, Animal Husbandry and Veterinary 9 Research Institute, Heilongjiang Academy of Agricultural and Reclamation Science, Harbin 150038, P.R. China
| | - Zunyang Nie
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - Shenming Zeng
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
10
|
Mottola G, Boucherit N, Trouplin V, Oury Barry A, Soubeyran P, Mege JL, Ghigo E. Tropheryma whipplei, the agent of Whipple's disease, affects the early to late phagosome transition and survives in a Rab5- and Rab7-positive compartment. PLoS One 2014; 9:e89367. [PMID: 24586722 PMCID: PMC3933534 DOI: 10.1371/journal.pone.0089367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/20/2014] [Indexed: 12/18/2022] Open
Abstract
Tropheryma whipplei, the agent of Whipple's disease, inhibits phago-lysosome biogenesis to create a suitable niche for its survival and replication in macrophages. To understand the mechanism by which it subverts phagosome maturation, we used biochemical and cell biological approaches to purify and characterise the intracellular compartment where Tropheryma whipplei resides using mouse bone-marrow-derived macrophages. We showed that in addition to Lamp-1, the Tropheryma whipplei phagosome is positive for Rab5 and Rab7, two GTPases required for the early to late phagosome transition. Unlike other pathogens, inhibition of PI(3)P production was not the mechanism for Rab5 stabilisation at the phagosome. Overexpression of the inactive, GDP-bound form of Rab5 bypassed the pathogen-induced blockade of phago-lysosome biogenesis. This suggests that Tropheryma whipplei blocks the switch from Rab5 to Rab7 by acting on the Rab5 GTPase cycle. A bio-informatic analysis of the Tropheryma whipplei genome revealed a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) homologous with the GAPDH of Listeria monocytogenes, and this may be the bacterial protein responsible for blocking Rab5 activity. To our knowledge, Tropheryma whipplei is the first pathogen described to induce a “chimeric” phagosome stably expressing both Rab5 and Rab7, suggesting a novel and specific mechanism for subverting phagosome maturation.
Collapse
Affiliation(s)
- Giovanna Mottola
- UMR MD2, Aix-Marseille University and IRBA, Bd P Dramard, Marseille, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CNRS UMR 7278, IRD198, INSERM U1095, UM63, Aix-Marseille University, Marseille, France
| | - Nicolas Boucherit
- CNRS UMR 7278, IRD198, INSERM U1095, UM63, Aix-Marseille University, Marseille, France
| | - Virginie Trouplin
- CNRS UMR 7278, IRD198, INSERM U1095, UM63, Aix-Marseille University, Marseille, France
| | - Abdoulaye Oury Barry
- CNRS UMR 7278, IRD198, INSERM U1095, UM63, Aix-Marseille University, Marseille, France
| | - Philippe Soubeyran
- INSERM U1068, CNRS UMR7258, UM105, CRCM-Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Jean-Louis Mege
- CNRS UMR 7278, IRD198, INSERM U1095, UM63, Aix-Marseille University, Marseille, France
| | - Eric Ghigo
- CNRS UMR 7278, IRD198, INSERM U1095, UM63, Aix-Marseille University, Marseille, France
- * E-mail:
| |
Collapse
|
11
|
Karnik R, Ludlow MJ, Abuarab N, Smith AJ, Hardy MEL, Elliott DJS, Sivaprasadarao A. Endocytosis of HERG is clathrin-independent and involves arf6. PLoS One 2013; 8:e85630. [PMID: 24392021 PMCID: PMC3877390 DOI: 10.1371/journal.pone.0085630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/05/2013] [Indexed: 01/02/2023] Open
Abstract
The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6.
Collapse
Affiliation(s)
- Rucha Karnik
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Melanie J. Ludlow
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Faculty of Biological Sciences, Multidisciplinary Cardiovascular Centre, University of Leeds, Leeds, United Kingdom
| | - Nada Abuarab
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Andrew J. Smith
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | | | - Asipu Sivaprasadarao
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Faculty of Biological Sciences, Multidisciplinary Cardiovascular Centre, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
12
|
Abstract
Intracellular membrane trafficking requires the complex interplay of several classes of trafficking proteins. Rab proteins, the largest subfamily of the Ras superfamily of small G-proteins, are central regulators of all aspects of intracellular trafficking processes including vesicle budding and uncoating, motility, tethering and fusion. In the present paper, we discuss the discovery, evolution and characterization of the Rab GTPase family. We examine their basic functional roles, their important structural features and the regulatory proteins which mediate Rab function. We speculate on outstanding issues in the field, such as the mechanisms of Rab membrane association and the co-ordinated interplay between distinct Rab proteins. Finally, we summarize the data implicating Rab proteins in an ever increasing number of diseases.
Collapse
|
13
|
Stein MP, Müller MP, Wandinger-Ness A. Bacterial pathogens commandeer Rab GTPases to establish intracellular niches. Traffic 2012; 13:1565-88. [PMID: 22901006 DOI: 10.1111/tra.12000] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/13/2012] [Indexed: 12/11/2022]
Abstract
Intracellular bacterial pathogens deploy virulence factors termed effectors to inhibit degradation by host cells and to establish intracellular niches where growth and differentiation take place. Here, we describe mechanisms by which human bacterial pathogens (including Chlamydiae; Coxiella burnetii; Helicobacter pylori; Legionella pneumophila; Listeria monocytogenes; Mycobacteria; Pseudomonas aeruginosa, Salmonella enterica) modulate endocytic and exocytic Rab GTPases in order to thrive in host cells. Host cell Rab GTPases are critical for intracellular transport following pathogen phagocytosis or endocytosis. At the molecular level bacterial effectors hijack Rab protein function to: evade degradation, direct transport to particular intracellular locations and monopolize host vesicles carrying molecules that are needed for a stable niche and/or bacterial growth and differentiation. Bacterial effectors may serve as specific receptors for Rab GTPases or as enzymes that post-translationally modify Rab proteins or endosomal membrane lipids required for Rab function. Emerging data indicate that bacterial effector expression is temporally and spatially regulated and multiple virulence factors may act concertedly to usurp Rab GTPase function, alter signaling and ensure niche establishment and intracellular bacterial growth, making this field an exciting area for further study.
Collapse
Affiliation(s)
- Mary-Pat Stein
- Department of Biology, California State University, Northridge, Northridge, CA, USA.
| | | | | |
Collapse
|
14
|
Kim IJ, Blanke SR. Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Front Cell Infect Microbiol 2012; 2:37. [PMID: 22919629 PMCID: PMC3417592 DOI: 10.3389/fcimb.2012.00037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/05/2012] [Indexed: 12/13/2022] Open
Abstract
Virulence mechanisms underlying Helicobacter pylori persistence and disease remain poorly understood, in part, because the factors underlying disease risk are multifactorial and complex. Among the bacterial factors that contribute to the cumulative pathophysiology associated with H. pylori infections, the vacuolating cytotoxin (VacA) is one of the most important. Analogous to a number of H. pylori genes, the vacA gene exhibits allelic mosaicism, and human epidemiological studies have revealed that several families of toxin alleles are predictive of more severe disease. Animal model studies suggest that VacA may contribute to pathogenesis in several ways. VacA functions as an intracellular-acting protein exotoxin. However, VacA does not fit the current prototype of AB intracellular-acting bacterial toxins, which elaborate modulatory effects through the action of an enzymatic domain translocated inside host cells. Rather, VacA may represent an alternative prototype for AB intracellular acting toxins that modulate cellular homeostasis by forming ion-conducting intracellular membrane channels. Although VacA seems to form channels in several different membranes, one of the most important target sites is the mitochondrial inner membrane. VacA apparently take advantage of an unusual intracellular trafficking pathway to mitochondria, where the toxin is imported and depolarizes the inner membrane to disrupt mitochondrial dynamics and cellular energy homeostasis as a mechanism for engaging the apoptotic machinery within host cells. VacA remodeling of the gastric environment appears to be fine-tuned through the action of the Type IV effector protein CagA which, in part, limits the cytotoxic effects of VacA in cells colonized by H. pylori.
Collapse
Affiliation(s)
- Ik-Jung Kim
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana IL, USA
| | | |
Collapse
|
15
|
Abstract
Helicobacter pylori CagA and VacA are two critical virulence factors that modulate disease severity in the infected host. The following chapter outlines methods employed to study the effects of these virulence factors on several key signaling pathways in epithelial cells.
Collapse
Affiliation(s)
- Deepa Raju
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | | | | |
Collapse
|
16
|
Rassow J. Helicobacter pylori vacuolating toxin A and apoptosis. Cell Commun Signal 2011; 9:26. [PMID: 22044628 PMCID: PMC3266207 DOI: 10.1186/1478-811x-9-26] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/01/2011] [Indexed: 12/16/2022] Open
Abstract
VacA, the vacuolating cytotoxin A of Helicobacter pylori, induces apoptosis in epithelial cells of the gastic mucosa and in leukocytes. VacA is released by the bacteria as a protein of 88 kDa. At the outer surface of host cells, it binds to the sphingomyelin of lipid rafts. At least partially, binding to the cells is facilitated by different receptor proteins. VacA is internalized by a clathrin-independent mechanism and initially accumulates in GPI-anchored proteins-enriched early endosomal compartments. Together with early endosomes, VacA is distributed inside the cells. Most of the VacA is eventually contained in the membranes of vacuoles. VacA assembles in hexameric oligomers forming an anion channel of low conductivity with a preference for chloride ions. In parallel, a significant fraction of VacA can be transferred from endosomes to mitochondria in a process involving direct endosome-mitochondria juxtaposition. Inside the mitochondria, VacA accumulates in the mitochondrial inner membrane, probably forming similar chloride channels as observed in the vacuoles. Import into mitochondria is mediated by the hydrophobic N-terminus of VacA. Apoptosis is triggered by loss of the mitochondrial membrane potential, recruitment of Bax and Bak, and release of cytochrome c.
Collapse
Affiliation(s)
- Joachim Rassow
- Ruhr-Universität Bochum, Institut für Physiologische Chemie, Medizinische Fakultät, Gebäude MA3, D-44780 Bochum, Germany.
| |
Collapse
|
17
|
Nagahama M, Itohayashi Y, Hara H, Higashihara M, Fukatani Y, Takagishi T, Oda M, Kobayashi K, Nakagawa I, Sakurai J. Cellular vacuolation induced by Clostridium perfringens epsilon-toxin. FEBS J 2011; 278:3395-407. [PMID: 21781280 DOI: 10.1111/j.1742-4658.2011.08263.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The epsilon-toxin of Clostridium perfringens forms a heptamer in the membranes of Madin-Darby canine kidney cells, leading to cell death. Here, we report that it caused the vacuolation of Madin-Darby canine kidney cells. The toxin induced vacuolation in a dose-dependent and time-dependent manner. The monomer of the toxin formed oligomers on lipid rafts in membranes of the cells. Methyl-β-cyclodextrin and poly(ethylene glycol) 4000 inhibited the vacuolation. Epsilon-toxin was internalized into the cells. Confocal microscopy revealed that the internalized toxin was transported from early endosomes (early endosome antigen 1 staining) to late endosomes and lysosomes (lysosomal-associated membrane protein 2 staining) and then distributed to the membranes of vacuoles. Furthermore, the vacuolation was inhibited by bafilomycin A1, a V-type ATPase inhibitor, and colchicine and nocodazole, microtubule-depolymerizing agents. The early endosomal marker green fluorescent protein-Rab5 and early endosome antigen 1 did not localize to vacuolar membranes. In contrast, the vacuolar membranes were specifically stained by the late endosomal and lysosomal marker green fluorescent protein-Rab7 and lysosomal-associated membrane protein 2. The vacuoles in the toxin-treated cells were stained with LysoTracker Red DND-99, a marker for late endosomes and lysosomes. A dominant negative mutant of Rab7 prevented the vacuolization, whereas a mutant form of Rab5 was less effective. These results demonstrate, for the first time, that: (a) oligomers of epsilon-toxin formed in lipid rafts are endocytosed; and (b) the vacuoles originating from late endosomes and lysosomes are formed by an oligomer of epsilon-toxin.
Collapse
Affiliation(s)
- Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Javier-Reyna R, Hernández-Ramírez V, González-Robles A, Galván-Mendoza I, Osorio-Trujillo C, Talamás-Rohana P. Rab7 and actin cytoskeleton participate during mobilization of β1EHFNR in fibronectin-stimulated Entamoeba histolyticatrophozoites. Microsc Res Tech 2011; 75:285-93. [DOI: 10.1002/jemt.21056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/12/2011] [Indexed: 01/12/2023]
|
19
|
Johnson C, Kannan TR, Baseman JB. Cellular vacuoles induced by Mycoplasma pneumoniae CARDS toxin originate from Rab9-associated compartments. PLoS One 2011; 6:e22877. [PMID: 21829543 PMCID: PMC3146493 DOI: 10.1371/journal.pone.0022877] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/06/2011] [Indexed: 11/24/2022] Open
Abstract
Recently, we identified an ADP-ribosylating and vacuolating cytotoxin in Mycoplasma pneumoniae designated Community Acquired Respiratory Distress Syndrome (CARDS) toxin. In this study we show that vacuoles induced by recombinant CARDS (rCARDS) toxin are acidic and derive from the endocytic pathway as determined by the uptake of neutral red and the fluid-phase marker, Lucifer yellow, respectively. Also, we demonstrate that the formation of rCARDS toxin-associated cytoplasmic vacuoles is inhibited by the vacuolar ATPase inhibitor, bafilomycin A1, and the ionophore, monensin. To examine the ontogeny of these vacuoles, we analyzed the distribution of endosomal and lysosomal membrane markers during vacuole formation and observed the enrichment of the late endosomal GTPase, Rab9, around rCARDS toxin-induced vacuoles. Immunogold-labeled Rab9 and overexpression of green fluorescent-tagged Rab9 further confirmed vacuolar association. The late endosomal- and lysosomal-associated membrane proteins, LAMP1 and LAMP2, also localized to the vacuolar membranes, while the late endosomal protein, Rab7, and early endosomal markers, Rab5 and EEA1, were excluded. HeLa cells expressing dominant-negative (DN) Rab9 exhibited markedly reduced vacuole formation in the presence of rCARDS toxin, in contrast to cells expressing DN-Rab7, highlighting the importance of Rab9 function in rCARDS toxin-induced vacuolation. Our findings reveal the unique Rab9-association with rCARDS toxin-induced vacuoles and its possible relationship to the characteristic histopathology that accompanies M. pneumoniae infection.
Collapse
Affiliation(s)
- Coreen Johnson
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - T. R. Kannan
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Joel B. Baseman
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Ruck A, Attonito J, Garces KT, Núnez L, Palmisano NJ, Rubel Z, Bai Z, Nguyen KC, Sun L, Grant BD, Hall DH, Meléndez A. The Atg6/Vps30/Beclin 1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in C. elegans. Autophagy 2011; 7:386-400. [PMID: 21183797 PMCID: PMC3108013 DOI: 10.4161/auto.7.4.14391] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 12/05/2010] [Accepted: 12/06/2010] [Indexed: 02/05/2023] Open
Abstract
Autophagy and endocytosis are dynamic and tightly regulated processes that contribute to many fundamental aspects of biology including survival, longevity, and development. However, the molecular links between autophagy and endocytosis are not well understood. Here, we report that BEC-1, the C. elegans ortholog of Atg6/Vps30/Beclin1, a key regulator of the autophagic machinery, also contributes to endosome function. In particular we identify a defect in retrograde transport from endosomes to the Golgi in bec-1 mutants. MIG-14/Wntless is normally recycled from endosomes to the Golgi through the action of the retromer complex and its associated factor RME-8. Lack of retromer or RME-8 activity results in the aberrant transport of MIG-14/Wntless to the lysosome where it is degraded. Similarly, we find that lack of bec-1 also results in mislocalization and degradation of MIG-14::GFP, reduced levels of RME-8 on endosomal membranes, and the accumulation of morphologically abnormal endosomes. A similar phenotype was observed in animals treated with dsRNA against vps-34. We further identify a requirement for BEC-1 in the clearance of apoptotic corpses in the hermaphrodite gonad, suggesting a role for BEC-1 in phagosome maturation, a process that appears to depend upon retrograde transport. In addition, autophagy genes may also be required for cell corpse clearance, as we find that RNAi against atg-18 or unc-51 also results in a lack of cell corpse clearance.
Collapse
Affiliation(s)
- Alexander Ruck
- Department of Biology; Queens College; Flushing, NY USA
- The Graduate Center; The City University of New York; New York, NY USA
| | - John Attonito
- Department of Biology; Queens College; Flushing, NY USA
| | | | - Lizbeth Núnez
- Department of Biology; Queens College; Flushing, NY USA
| | - Nicholas J Palmisano
- Department of Biology; Queens College; Flushing, NY USA
- The Graduate Center; The City University of New York; New York, NY USA
| | - Zahava Rubel
- Department of Biology; Queens College; Flushing, NY USA
| | - Zhiyong Bai
- Department of Molecular Biology and Biochemistry; Rutgers University; Piscataway, NJ USA
| | - Ken C.Q Nguyen
- Center for C. elegans Anatomy; Albert Einstein College of Medicine; Bronx, NY USA
| | - Lei Sun
- Center for C. elegans Anatomy; Albert Einstein College of Medicine; Bronx, NY USA
- Center for Biological Imaging; Institute of Biophysics; Chinese Academy of Sciences; Beijing, China
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry; Rutgers University; Piscataway, NJ USA
| | - David H Hall
- Center for C. elegans Anatomy; Albert Einstein College of Medicine; Bronx, NY USA
| | - Alicia Meléndez
- Department of Biology; Queens College; Flushing, NY USA
- The Graduate Center; The City University of New York; New York, NY USA
| |
Collapse
|
21
|
Chotard L, Skorobogata O, Sylvain MA, Shrivastava S, Rocheleau CE. TBC-2 is required for embryonic yolk protein storage and larval survival during L1 diapause in Caenorhabditis elegans. PLoS One 2010; 5:e15662. [PMID: 21203392 PMCID: PMC3011002 DOI: 10.1371/journal.pone.0015662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/18/2010] [Indexed: 12/03/2022] Open
Abstract
C. elegans first stage (L1) larvae hatched in the absence of food, arrest development and enter an L1 diapause, whereby they can survive starvation for several weeks. The physiological and metabolic requirements for survival during L1 diapause are poorly understood. However, yolk, a cholesterol binding/transport protein, has been suggested to serve as an energy source. Here, we demonstrate that C. elegans TBC-2, a RAB-5 GTPase Activating Protein (GAP) involved in early-to-late endosome transition, is important for yolk protein storage during embryogenesis and for L1 survival during starvation. We found during embryogenesis, that a yolk::green fluorescent protein fusion (YP170::GFP), disappeared much more quickly in tbc-2 mutant embryos as compared with wild-type control embryos. The premature disappearance of YP170::GFP in tbc-2 mutants is likely due to premature degradation in the lysosomes as we found that YP170::GFP showed increased colocalization with Lysotracker Red, a marker for acidic compartments. Furthermore, YP170::GFP disappearance in tbc-2 mutants required RAB-7, a regulator of endosome to lysosome trafficking. Although tbc-2 is not essential in fed animals, we discovered that tbc-2 mutant L1 larvae have strongly reduced survival when hatched in the absence of food. We show that tbc-2 mutant larvae are not defective in maintaining L1 diapause and that mutants defective in yolk uptake, rme-1 and rme-6, also had strongly reduced L1 survival when hatched in the absence of food. Our findings demonstrate that TBC-2 is required for yolk protein storage during embryonic development and provide strong correlative data indicating that yolk constitutes an important energy source for larval survival during L1 diapause.
Collapse
Affiliation(s)
- Laëtitia Chotard
- Division of Endocrinology and Metabolism, Department of Medicine, Royal Victoria Hospital, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Olga Skorobogata
- Division of Endocrinology and Metabolism, Department of Medicine, Royal Victoria Hospital, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Marc-André Sylvain
- Division of Endocrinology and Metabolism, Department of Medicine, Royal Victoria Hospital, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Sanhita Shrivastava
- Division of Endocrinology and Metabolism, Department of Medicine, Royal Victoria Hospital, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Christian E. Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine, Royal Victoria Hospital, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
22
|
Gupta VR, Wilson BA, Blanke SR. Sphingomyelin is important for the cellular entry and intracellular localization of Helicobacter pylori VacA. Cell Microbiol 2010; 12:1517-33. [PMID: 20545942 DOI: 10.1111/j.1462-5822.2010.01487.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plasma membrane sphingomyelin (SM) binds the Helicobacter pylori vacuolating toxin (VacA) to the surface of epithelial cells. To evaluate the importance of SM for VacA cellular entry, we characterized toxin uptake and trafficking within cells enriched with synthetic variants of SM, whose intracellular trafficking properties are strictly dependent on the acyl chain lengths of their sphingolipid backbones. While toxin binding to the surface of cells was independent of acyl chain length, cells enriched with 12- or 18-carbon acyl chain variants of SM (e.g. C12-SM or C18-SM) were more sensitive to VacA, as indicated by toxin-induced cellular vacuolation, than those enriched with shorter 2- or 6-carbon variants (e.g. C2-SM or C6-SM). In C18-SM-enriched cells, VacA was taken into cells by a previously described Cdc42-dependent pinocytic mechanism, localized initially to GPI-enriched vesicles, and ultimately trafficked to Rab7/Lamp1 compartments. In contrast, within C2-SM-enriched cells, VacA was taken up at a slower rate by a Cdc42-independent mechanism and trafficked to Rab11 compartments. VacA-associated predominantly with detergent-resistant membranes (DRMs) in cells enriched with C18-SM, but predominantly with non-DRMs in C2-SM-enriched cells. These results suggest that SM is required for targeting VacA to membrane rafts important for subsequent Cdc42-dependent pinocytic cellular entry.
Collapse
Affiliation(s)
- Vijay R Gupta
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, B103 CLSL, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
23
|
Sewald X, Jiménez-Soto L, Haas R. PKC-dependent endocytosis of the Helicobacter pylori vacuolating cytotoxin in primary T lymphocytes. Cell Microbiol 2010; 13:482-96. [DOI: 10.1111/j.1462-5822.2010.01551.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Cha B, Lim JW, Kim KH, Kim H. HSP90β interacts with Rac1 to activate NADPH oxidase in Helicobacter pylori-infected gastric epithelial cells. Int J Biochem Cell Biol 2010; 42:1455-61. [DOI: 10.1016/j.biocel.2010.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/09/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
|
25
|
Peek RM, Fiske C, Wilson KT. Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiol Rev 2010; 90:831-58. [PMID: 20664074 DOI: 10.1152/physrev.00039.2009] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori colonizes the majority of persons worldwide, and the ensuing gastric inflammatory response is the strongest singular risk factor for peptic ulceration and gastric cancer. However, only a fraction of colonized individuals ever develop clinically significant outcomes. Disease risk is combinatorial and can be modified by bacterial factors, host responses, and/or specific interactions between host and microbe. Several H. pylori constituents that are required for colonization or virulence have been identified, and their ability to manipulate the host innate immune response will be the focus of this review. Identification of bacterial and host mediators that augment disease risk has profound ramifications for both biomedical researchers and clinicians as such findings will not only provide mechanistic insights into inflammatory carcinogenesis but may also serve to identify high-risk populations of H. pylori-infected individuals who can then be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Richard M Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, and Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37232-2279, USA.
| | | | | |
Collapse
|
26
|
Chotard L, Mishra AK, Sylvain MA, Tuck S, Lambright DG, Rocheleau CE. TBC-2 regulates RAB-5/RAB-7-mediated endosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 2010; 21:2285-96. [PMID: 20462958 PMCID: PMC2893991 DOI: 10.1091/mbc.e09-11-0947] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The RAB-5 and RAB-7 GTPases regulate endosome to lysosome trafficking. Here, we show that Caenorhabditis elegans TBC-2 functions as a RAB-5 GAP. TBC-2 colocalizes with RAB-7 on late endosomes, and requires RAB-7 for membrane localization where TBC-2 could function to antagonize RAB-5 activity during early to late endosome maturation. During endosome maturation the early endosomal Rab5 GTPase is replaced with the late endosomal Rab7 GTPase. It has been proposed that active Rab5 can recruit and activate Rab7, which in turn could inactivate and remove Rab5. However, many of the Rab5 and Rab7 regulators that mediate endosome maturation are not known. Here, we identify Caenorhabditis elegans TBC-2, a conserved putative Rab GTPase-activating protein (GAP), as a regulator of endosome to lysosome trafficking in several tissues. We show that tbc-2 mutant animals accumulate enormous RAB-7–positive late endosomes in the intestine containing refractile material. RAB-5, RAB-7, and components of the homotypic fusion and vacuole protein sorting (HOPS) complex, a RAB-7 effector/putative guanine nucleotide exchange factor (GEF), are required for the tbc-2(−) intestinal phenotype. Expression of activated RAB-5 Q78L in the intestine phenocopies the tbc-2(−) large late endosome phenotype in a RAB-7 and HOPS complex-dependent manner. TBC-2 requires the catalytic arginine-finger for function in vivo and displays the strongest GAP activity on RAB-5 in vitro. However, TBC-2 colocalizes primarily with RAB-7 on late endosomes and requires RAB-7 for membrane localization. Our data suggest that TBC-2 functions on late endosomes to inactivate RAB-5 during endosome maturation.
Collapse
Affiliation(s)
- Laëtitia Chotard
- Division of Endocrinology and Metabolism, Department of Medicine, Royal Victoria Hospital, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Isomoto H, Moss J, Hirayama T. Pleiotropic actions of Helicobacter pylori vacuolating cytotoxin, VacA. TOHOKU J EXP MED 2010; 220:3-14. [PMID: 20046046 DOI: 10.1620/tjem.220.3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori produces a vacuolating cytotoxin, VacA, and most virulent H. pylori strains secrete VacA. VacA binds to two types of receptor-like protein tyrosine phosphatase (RPTP), RPTPalpha and RPTPbeta, on the surface of host cells. VacA bound to RPTPbeta, relocates and concentrates in lipid rafts in the plasma membrane. VacA causes vacuolization, membrane anion-selective channel and pore formation, and disruption of endosomal and lysosomal activity in host cells. Secreted VacA is processed into p33 and p55 fragments. The p55 domain not only plays a role in binding to target cells but also in the formation of oligomeric structures and anionic membrane channels. Oral administration of VacA to wild-type mice, but not to RPTPbeta knockout mice, resulted in gastric ulcers, in agreement with the clinical effect of VacA. VacA with s1/m1 allele has more potent cytotoxic activity in relation to peptic ulcer disease and appears to be associated with human gastric cancer. VacA activates pro-apoptotic Bcl-2 family proteins, and induces apoptosis via a mitochondria-dependent pathway. VacA can disrupt other signal transduction pathways; VacA activates p38 MAPK, enhancing production of IL-8 and PGE(2), and PI3K/Akt, suppressing GSK-3beta activity. VacA has immunomodulatory actions on T cells and other immune cells, possibly contributing to the chronic infection seen with this organism. H. pylori virulence factors including VacA and CagA, which is encoded by cytotoxin-associated gene A, along with host genetic and environmental factors, constitute a complex network to regulate chronic gastric injury and inflammation, which is involved in a multistep process leading to gastric carcinogenesis.
Collapse
Affiliation(s)
- Hajime Isomoto
- Department of Endoscopy, Nagasaki University Hospital, Nagasaki, Japan
| | | | | |
Collapse
|
28
|
Mukhopadhyay S, Bachert C, Smith DR, Linstedt AD. Manganese-induced trafficking and turnover of the cis-Golgi glycoprotein GPP130. Mol Biol Cell 2010; 21:1282-92. [PMID: 20130081 PMCID: PMC2847531 DOI: 10.1091/mbc.e09-11-0985] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Manganese is an essential element that is also neurotoxic at elevated exposure. However, mechanisms regulating Mn homeostasis in mammalian cells are largely unknown. Because increases in cytosolic Mn induce rapid changes in the localization of proteins involved in regulating intracellular Mn concentrations in yeast, we were intrigued to discover that low concentrations of extracellular Mn induced rapid redistribution of the mammalian cis-Golgi glycoprotein Golgi phosphoprotein of 130 kDa (GPP130) to multivesicular bodies. GPP130 was subsequently degraded in lysosomes. The Mn-induced trafficking of GPP130 occurred from the Golgi via a Rab-7-dependent pathway and did not require its transit through the plasma membrane or early endosomes. Although the cytoplasmic domain of GPP130 was dispensable for its ability to respond to Mn, its lumenal stem domain was required and it had to be targeted to the cis-Golgi for the Mn response to occur. Remarkably, the stem domain was sufficient to confer Mn sensitivity to another cis-Golgi protein. Our results identify the stem domain of GPP130 as a novel Mn sensor in the Golgi lumen of mammalian cells.
Collapse
Affiliation(s)
- Somshuvra Mukhopadhyay
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
29
|
Backert S, Tegtmeyer N. the versatility of the Helicobacter pylori vacuolating cytotoxin vacA in signal transduction and molecular crosstalk. Toxins (Basel) 2010; 2:69-92. [PMID: 22069547 PMCID: PMC3206623 DOI: 10.3390/toxins2010069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 12/31/2009] [Accepted: 01/14/2010] [Indexed: 12/13/2022] Open
Abstract
By modulating important properties of eukaryotic cells, many bacterial protein toxins highjack host signalling pathways to create a suitable niche for the pathogen to colonize and persist. Helicobacter pylori VacA is paradigm of pore-forming toxins which contributes to the pathogenesis of peptic ulceration. Several cellular receptors have been described for VacA, which exert different effects on epithelial and immune cells. The crystal structure of VacA p55 subunit might be important for elucidating details of receptor interaction and pore formation. Here we discuss the multiple signalling activities of this important toxin and the molecular crosstalk between VacA and other virulence factors.
Collapse
Affiliation(s)
- Steffen Backert
- Ardmore House, School of Biomolecular and Biomedical Sciences, Belfield Campus, University College Dublin, Dublin-4, Ireland.
| | | |
Collapse
|
30
|
Abstract
Microbial pathogens contribute to the development of more than 1 million cases of cancer per year. Gastric adenocarcinoma is the second leading cause of cancer-related death in the world, and gastritis induced by Helicobacter pylori is the strongest known risk factor for this malignancy. H. pylori colonizes the stomach for years, not days or weeks, as is usually the case for bacterial pathogens and it always induces inflammation; however, only a fraction of colonized individuals ever develop disease. Identification of mechanisms through which H. pylori co-opts host defenses to facilitate its own persistence will not only improve diagnostic and therapeutic modalities, but may also provide insights into other diseases that arise within the context of long-term pathogen-initiated inflammatory states, such as chronic viral hepatitis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Dawn A Israel
- Department of Medicine; Division of Gastroenterology; Vanderbilt University Medical Center; Nashville, TN USA
| | - Richard M Peek
- Department of Medicine; Division of Gastroenterology; Vanderbilt University Medical Center; Nashville, TN USA,Department of Cancer Biology; Vanderbilt University Medical Center; Nashville, TN USA,Department of Veterans Affairs Medical Center; Nashville, TN USA
| |
Collapse
|
31
|
Abstract
The endocytosis pathway controls multiple cellular and physiological events. The lysosome is the destination of newly synthesized lysosomal hydrolytic enzymes. Internalized molecules or particles are delivered to the lysosome for degradation through sequential transport along the endocytic pathway. The endocytic pathway is also emerging as a signalling platform, in addition to the well-known role of the plasma membrane for signalling. Rab7 is a late endosome-/lysosome-associated small GTPase, perhaps the only lysosomal Rab protein identified to date. Rab7 plays critical roles in the endocytic processes. Through interaction with its partners (including upstream regulators and downstream effectors), Rab7 participates in multiple regulation mechanisms in endosomal sorting, biogenesis of lysosome [or LRO (lysosome-related organelle)] and phagocytosis. These processes are closely related to substrates degradation, antigen presentation, cell signalling, cell survival and microbial pathogen infection. Consistently, mutations or dysfunctions of Rab7 result in traffic disorders, which cause various diseases, such as neuropathy, cancer and lipid metabolism disease. Rab7 also plays important roles in microbial pathogen infection and survival, as well as in participating in the life cycle of viruses. Here, we give a brief review on the central role of Rab7 in endosomal traffic and summarize the studies focusing on the participation of Rab7 in disease pathogenesis. The underlying mechanism governed by Rab7 and its partners will also be discussed.
Collapse
|
32
|
Donelli LCG. Virulence Factors of Helicobacter pylori. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/089106000750060512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Luigina Cellini, Gianfranco Donelli
- Laboratory of Medical Bacteriology, Department of Biomedical Sciences, Universitá 'G. D'Annunzio', Chieti
- Laboratory of Ultrastructures, Istituto Superiore di Sanitá, Rome, Italy
| |
Collapse
|
33
|
Yuyama K, Yanagisawa K. Late endocytic dysfunction as a putative cause of amyloid fibril formation in Alzheimer’s disease. J Neurochem 2009; 109:1250-60. [DOI: 10.1111/j.1471-4159.2009.06046.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Tegtmeyer N, Zabler D, Schmidt D, Hartig R, Brandt S, Backert S. Importance of EGF receptor, HER2/Neu and Erk1/2 kinase signalling for host cell elongation and scattering induced by the Helicobacter pylori CagA protein: antagonistic effects of the vacuolating cytotoxin VacA. Cell Microbiol 2008; 11:488-505. [PMID: 19046339 DOI: 10.1111/j.1462-5822.2008.01269.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Helicobacter pylori is the causative agent of gastric pathologies ranging from chronic gastritis to peptic ulcers and even cancer. Virulent strains carrying both the cag pathogenicity island (cagPAI) and the vacuolating cytotoxin VacA are key players in disease development. The cagPAI encodes a type IV secretion system (T4SS) which forms a pilus for injection of the CagA protein into gastric epithelial cells. Injected CagA undergoes tyrosine phosphorylation and induces actin-cytoskeletal rearrangements involved in host cell scattering and elongation. We show here that the CagA-induced responses can be inhibited in strains expressing highly active VacA. Further investigations revealed that VacA does not interfere with known activities of phosphorylated CagA such as inactivation of Src kinase and cortactin dephosphorylation. Instead, we demonstrate that VacA exhibits inactivating activities on the epidermal growth factor receptor EGFR and HER2/Neu, and subsequently Erk1/2 MAP kinase which are important for cell scattering and elongation. Inactivation of vacA gene, downregulation of the VacA receptor RPTP-alpha, addition of EGF or expression of constitutive-active MEK1 kinase restored the capability of H. pylori to induce the latter phenotypes. These data demonstrate that VacA can downregulate CagA's effects on epithelial cells, a novel molecular mechanism showing how H. pylori can avoid excessive cellular damage.
Collapse
Affiliation(s)
- Nicole Tegtmeyer
- Department of Medical Microbiology, Otto von Guericke University, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Del Conte-Zerial P, Brusch L, Rink JC, Collinet C, Kalaidzidis Y, Zerial M, Deutsch A. Membrane identity and GTPase cascades regulated by toggle and cut-out switches. Mol Syst Biol 2008; 4:206. [PMID: 18628746 PMCID: PMC2516367 DOI: 10.1038/msb.2008.45] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 06/04/2008] [Indexed: 01/17/2023] Open
Abstract
Key cellular functions and developmental processes rely on cascades of GTPases. GTPases of the Rab family provide a molecular ID code to the generation, maintenance and transport of intracellular compartments. Here, we addressed the molecular design principles of endocytosis by focusing on the conversion of early endosomes into late endosomes, which entails replacement of Rab5 by Rab7. We modelled this process as a cascade of functional modules of interacting Rab GTPases. We demonstrate that intermodule interactions share similarities with the toggle switch described for the cell cycle. However, Rab5-to-Rab7 conversion is rather based on a newly characterized ‘cut-out switch' analogous to an electrical safety-breaker. Both designs require cooperativity of auto-activation loops when coupled to a large pool of cytoplasmic proteins. Live cell imaging and endosome tracking provide experimental support to the cut-out switch in cargo progression and conversion of endosome identity along the degradative pathway. We propose that, by reconciling module performance with progression of activity, the cut-out switch design could underlie the integration of modules in regulatory cascades from a broad range of biological processes.
Collapse
Affiliation(s)
- Perla Del Conte-Zerial
- Center for Information Services and High Performance Computing, University of Technology Dresden, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. PLoS Biol 2008; 6:e61. [PMID: 18351800 PMCID: PMC2267821 DOI: 10.1371/journal.pbio.0060061] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 01/24/2008] [Indexed: 02/07/2023] Open
Abstract
Apoptotic cells in animals are engulfed by phagocytic cells and subsequently degraded inside phagosomes. To study the mechanisms controlling the degradation of apoptotic cells, we developed time-lapse imaging protocols in developing Caenorhabditis elegans embryos and established the temporal order of multiple events during engulfment and phagosome maturation. These include sequential enrichment on phagocytic membranes of phagocytic receptor cell death abnormal 1 (CED-1), large GTPase dynamin (DYN-1), phosphatidylinositol 3-phosphate (PI(3)P), and the small GTPase RAB-7, as well as the incorporation of endosomes and lysosomes to phagosomes. Two parallel genetic pathways are known to control the engulfment of apoptotic cells in C. elegans. We found that null mutations in each pathway not only delay or block engulfment, but also delay the degradation of engulfed apoptotic cells. One of the pathways, composed of CED-1, the adaptor protein CED-6, and DYN-1, controls the rate of enrichment of PI(3)P and RAB-7 on phagosomal surfaces and the formation of phagolysosomes. We further identified an essential role of RAB-7 in promoting the recruitment and fusion of lysosomes to phagosomes. We propose that RAB-7 functions as a downstream effector of the CED-1 pathway to mediate phagolysosome formation. Our work suggests that phagocytic receptors, which were thought to act specifically in initiating engulfment, also control phagosome maturation through the sequential activation of multiple effectors such as dynamin, PI(3)P, and Rab GTPases. Cells undergoing programmed cell death, or apoptosis, within an animal are swiftly engulfed by phagocytes and degraded inside phagosomes, vesicles in which the apoptotic cell is bounded by the engulfing cell's membrane. Little is known about how the degradation process is triggered and controlled. We studied the degradation of apoptotic cells during the development of the nematode Caenorhabditis elegans. Aided by a newly developed live-cell imaging technique, we identified multiple cellular events occurring on phagosomal surfaces and tracked the initiation signal to CED-1, a phagocytic receptor known to recognize apoptotic cells and to initiate their engulfment. CED-1 activates DYN-1, a large GTPase, which further activates downstream events, leading intracellular organelles such as endosomes and lysosomes to deliver to phagosomes various molecules essential for the degradation of apoptotic cells. As well as establishing a temporal order of events that lead to the degradation of apoptotic cells, the results suggest that phagocytic receptors, in addition to initiating phagocytosis, promote phagosome maturation through the sequential activation of multiple effector molecules. The authors have identified multiple cellular events leading to the degradation of engulfed apoptotic cells in the nematodeC. elegans, and found that CED-1, a phagocytic receptor thought to specifically control apoptotic-cell engulfment, activates a signaling pathway that initiates phagosome maturation.
Collapse
|
37
|
Involvement of vesicle-associated membrane protein 7 in human gastric epithelial cell vacuolation induced by Helicobacter pylori-produced VacA. Infect Immun 2008; 76:2296-303. [PMID: 18362137 DOI: 10.1128/iai.01573-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori-produced cytotoxin VacA induces intracellular vacuolation. The VacA-induced vacuole is assumed to represent the pathological status of intracellular trafficking. The fusion mechanism of the endosomes requires the formation of a tight complex between the Q-SNAREs and the R-SNAREs. We recently reported that syntaxin 7, a family member of the Q-SNARE protein, is involved in VacA-induced vacuole formation. In order to further elucidate the molecular mechanism, we identified the participation of vesicle-associated membrane protein 7 (VAMP7) as a partner of syntaxin 7. Immunocytochemistry revealed endogenous VAMP7 to be localized to the vacuoles induced by VacA. A Northern blotting study demonstrated that VacA intoxication increased VAMP7 mRNA in a time-dependent manner. VAMP7 was coimmunoprecipitated with syntaxin 7, and the amounts of endogenous VAMP7 and syntaxin 7 bound to syntaxin 7 and VAMP7, respectively, increased in response to VacA. The down-regulation of VAMP7 using small interfering RNA inhibited VacA-induced vacuolation, and the transient transfection of dominant-negative mutant VAMP7, the N-terminal domain of VAMP7, also inhibited the vacuolation. We therefore conclude that R-SNARE VAMP7 plays an important role in VacA-induced vacuolation as a partner of Q-SNARE syntaxin 7.
Collapse
|
38
|
Manipulation of rab GTPase function by intracellular bacterial pathogens. Microbiol Mol Biol Rev 2008; 71:636-52. [PMID: 18063721 PMCID: PMC2168649 DOI: 10.1128/mmbr.00023-07] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intracellular bacterial pathogens have evolved highly specialized mechanisms to enter and survive within their eukaryotic hosts. In order to do this, bacterial pathogens need to avoid host cell degradation and obtain nutrients and biosynthetic precursors, as well as evade detection by the host immune system. To create an intracellular niche that is favorable for replication, some intracellular pathogens inhibit the maturation of the phagosome or exit the endocytic pathway by modifying the identity of their phagosome through the exploitation of host cell trafficking pathways. In eukaryotic cells, organelle identity is determined, in part, by the composition of active Rab GTPases on the membranes of each organelle. This review describes our current understanding of how selected bacterial pathogens regulate host trafficking pathways by the selective inclusion or retention of Rab GTPases on membranes of the vacuoles that they occupy in host cells during infection.
Collapse
|
39
|
Samuelson AV, Carr CE, Ruvkun G. Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. Genes Dev 2007; 21:2976-94. [PMID: 18006689 DOI: 10.1101/gad.1588907] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genetic and RNA interference (RNAi) screens for life span regulatory genes have revealed that the daf-2 insulin-like signaling pathway plays a major role in Caenorhabditis elegans longevity. This pathway converges on the DAF-16 transcription factor and may regulate life span by controlling the expression of a large number of genes, including free-radical detoxifying genes, stress resistance genes, and pathogen resistance genes. We conducted a genome-wide RNAi screen to identify genes necessary for the extended life span of daf-2 mutants and identified approximately 200 gene inactivations that shorten daf-2 life span. Some of these gene inactivations dramatically shorten daf-2 mutant life span but less dramatically shorten daf-2; daf-16 mutant or wild-type life span. Molecular and behavioral markers for normal aging and for extended life span in low insulin/IGF1 (insulin-like growth factor 1) signaling were assayed to distinguish accelerated aging from general sickness and to examine age-related phenotypes. Detailed demographic analysis, molecular markers of aging, and insulin signaling mutant test strains were used to filter progeric gene inactivations for specific acceleration of aging. Highly represented in the genes that mediate life span extension in the daf-2 mutant are components of endocytotic trafficking of membrane proteins to lysosomes. These gene inactivations disrupt the increased expression of the DAF-16 downstream gene superoxide dismutase sod-3 in a daf-2 mutant, suggesting trafficking between the insulin-like receptor and DAF-16. The activities of these genes may normally decline during aging.
Collapse
Affiliation(s)
- Andrew V Samuelson
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
40
|
Yu CTR, Li JH, Lee TC, Lin LF. Characterization of cocaine-elicited cell vacuolation: the involvement of calcium/calmodulin in organelle deregulation. J Biomed Sci 2007; 15:215-26. [PMID: 17922255 DOI: 10.1007/s11373-007-9213-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 09/13/2007] [Indexed: 11/30/2022] Open
Abstract
The sizes of organelles are tightly regulated in the cells. However, little is known on how cells maintain the homeostasis of these intracellular compartments. Using cocaine as a model compound, we have characterized the mechanism of deregulated vacuolation in cultured rat liver epithelial Clone 9 cells. The vacuoles were observed as early as 10 min following cocaine treatment. Removal of cocaine led to vacuole degeneration, indicating vacuolation is a reversible process. The vacuoles could devour intracellular materials and the vacuoles originated from late endosome/lysosome as indicated by immunofluorescence studies. Instant calcium influx and calmodulin were required for the initiation of vacuole formation. The unique properties of these late endosome/lysosome-derived vacuoles were further discussed. In summary, cocaine elicited a new type of deregulated vacuole and the involvement of calcium/calmodulin in vacuolation could shed light on prevention or treatment of cocaine-induced cytotoxicity.
Collapse
Affiliation(s)
- Chang-Tze R Yu
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Puli, Nantou, 545, Taiwan, ROC
| | | | | | | |
Collapse
|
41
|
Rahman MS. Allicin and Other Functional Active Components in Garlic: Health Benefits and Bioavailability. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2007. [DOI: 10.1080/10942910601113327] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
D'Elios MM, Montecucco C, de Bernard M. VacA and HP-NAP, Ying and Yang of Helicobacter pylori-associated gastric inflammation. Clin Chim Acta 2007; 381:32-8. [PMID: 17368441 DOI: 10.1016/j.cca.2007.02.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 02/13/2007] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium which infects almost half of the population worldwide and represents the major cause of gastroduodenal pathologies, such as duodenal and gastric ulcer, gastric cancer, B-cell lymphoma of mucosa-associated lymphoid tissue (MALT) and autoimmune gastritis. H. pylori colonization is followed by infiltration of the gastric mucosa by polymorphonuclear cells, macrophages and lymphocytes. Two of the major H. pylori virulence factors are the vacuolating cytotoxin (VacA) and the H. pylori neutrophil-activating protein (HP-NAP). VacA has been proposed as a modulator of immune cell function because of its capacity to interfere with antigen presentation and to inhibit T-cell activation. HP-NAP was designated as neutrophil-activating protein because it stimulates high production of oxygen radicals from neutrophils. We have recently demonstrated that HP-NAP is able to recruit leukocytes in vivo and to stimulate either neutrophils or monocytes to release IL-12, a key cytokine for the differentiation of naive Th cells into the Th1 phenotype. Altogether these evidences indicate that both VacA and HP-NAP play a major role in generating and maintaining the gastric inflammatory response associated with the H. pylori infection.
Collapse
|
43
|
Genisset C, Puhar A, Calore F, de Bernard M, Dell'Antone P, Montecucco C. The concerted action of the Helicobacter pylori cytotoxin VacA and of the v-ATPase proton pump induces swelling of isolated endosomes. Cell Microbiol 2007; 9:1481-90. [PMID: 17253977 DOI: 10.1111/j.1462-5822.2006.00886.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vacuolating cytotoxin (VacA) is a major virulence factor of Helicobacter pylori, the bacterium associated to gastroduodenal ulcers and stomach cancers. VacA induces formation of cellular vacuoles that originate from late endosomal compartments. VacA forms an anion-selective channel and its activity has been suggested to increase the osmotic pressure in the lumen of these acidic compartments, driving their swelling to vacuoles. Here, we have tested this proposal on isolated endosomes that allow one to manipulate at will the medium. We have found that VacA enhances the v-ATPase proton pump activity and the acidification of isolated endosomes in a Cl- dependent manner. Other counter-anions such as pyruvate, Br-, I- and SCN- can be transported by VacA with stimulation of the v-ATPase. The VacA action on isolated endosomes is associated with their increase in size. Single amino acid substituted VacA with no channel-forming and vacuolating activity is unable to induce swelling of endosomes. These data provide a direct evidence that the transmembrane VacA channel mediates an influx of anions into endosomes that stimulates the electrogenic v-ATPase proton pump, leading to their osmotic swelling and transformation into vacuoles.
Collapse
Affiliation(s)
- Christophe Genisset
- Dipartimento di Scienze Biomediche Sperimentali, Università di Padova, Padova, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Poteryaev D, Fares H, Bowerman B, Spang A. Caenorhabditis elegans SAND-1 is essential for RAB-7 function in endosomal traffic. EMBO J 2007; 26:301-12. [PMID: 17203072 PMCID: PMC1783445 DOI: 10.1038/sj.emboj.7601498] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 11/16/2006] [Indexed: 11/08/2022] Open
Abstract
The small rab-GTPase RAB-7 acts in endosome and endosome to lysosome traffic. We identified SAND-1 as a protein required for RAB-7 function based on similarities between SAND-1 and RAB-7 RNAi phenotypes. Although the initial uptake of yolk protein in oocytes, or of soluble secreted (ss) GFP in coelomocytes, appeared normal, further transport along the endocytic traffic route was delayed in the absence of SAND-1 function, and yolk proteins failed to reach yolk granules efficiently. Moreover, in coelomocytes, ssGFP and BSA-Texas-Red were endocytosed but not transported to lysosomes. We show that SAND-1 is essential for RAB-7 function at the transition from early to late endosomes, but not for RAB-7 function at lysosomes.
Collapse
Affiliation(s)
- Dmitry Poteryaev
- Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Hanna Fares
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Anne Spang
- Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
- Department of Biochemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland. Tel.: +41 61 267 2380; Fax: +41 61 267 2148; E-mail:
| |
Collapse
|
45
|
Brest P, Hofman V, Lassalle S, Césaro A, Ricci V, Selva E, Auberger P, Hofman P. Human polymorphonuclear leukocytes are sensitive in vitro to Helicobacter pylori vaca toxin. Helicobacter 2006; 11:544-55. [PMID: 17083376 DOI: 10.1111/j.1523-5378.2006.00457.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Interactions between bacterial components and polymorphonuclear leukocytes (PMNL) play a major pathogenic role in Helicobacter pylori-associated diseases. Activation of PMNL can be induced by contact with whole bacteria or by different H. pylori products released in the extracellular space either by active secretion or by bacterial autolysis. Among these products, H. pylori VacA is a secreted toxin inducing vacuolation and apoptosis of epithelial cells. METHODS AND RESULTS We found that non-opsonic human PMNL were sensitive to the vacuolating effect of VacA+ broth culture filtrate (BCF) and of purified VacA toxin. PMNL incubated with VacA+ BCF showed Rab7-positive large intracytoplasmic vacuoles. PMNL preincubation with H. pylori BCF of different phenotypes dramatically potentialized the oxidative burst induced by zymosan, increased phagocytosis of opsonized fluorescent beads, and up-regulated CD11b cell surface expression, but independently of the BCF VacA phenotype. Moreover, by using purified VacA toxin we showed that vacuolation induced in PMNL did not modify the rate of spontaneous PMNL apoptosis measured by caspase 3 activity. CONCLUSIONS Taken together, these data showed that human PMNL is a sensitive cell population to H. pylori VacA toxin. However, activation of PMNL (i.e., oxidative burst, phagocytosis, CD11b up-regulation) and PMNL apoptosis are not affected by VacA, raising question about the role of VacA toxin on PMNL in vivo.
Collapse
Affiliation(s)
- Patrick Brest
- INSERM ERI-21, Pasteur'Hospital and Faculty of Medicine, University of Nice, Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Morinaga N, Yahiro K, Matsuura G, Watanabe M, Nomura F, Moss J, Noda M. Two distinct cytotoxic activities of subtilase cytotoxin produced by shiga-toxigenic Escherichia coli. Infect Immun 2006; 75:488-96. [PMID: 17101670 PMCID: PMC1828409 DOI: 10.1128/iai.01336-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subtilase cytotoxin (SubAB) is a recently identified AB5 subunit toxin produced by Shiga-toxigenic Escherichia coli. The A subunit is thought to be a subtilase-like, serine protease, whereas the B subunit binds to the toxin receptor on the cell surface. We cloned the genes from a clinical isolate; the toxin was produced as His-tagged proteins. SubAB induced vacuolation at concentrations greater than 1 microg/ml after 8 h, in addition to the reported cytotoxicity induced at a ng/ml level after 48 h. Vacuolation was induced with the B, but not the A, subunit and was dependent on V-type ATPase. The cytotoxicity of SubAB at low concentrations was associated with the inhibition of protein synthesis; the 50% inhibitory dose was approximately 1 ng/ml. The A subunit, containing serine 272, which is thought to be a part of the catalytic triad of a subtilase-like serine protease, plus the B subunit was necessary for this activity, both in vivo and in vitro. SubAB did not cleave azocasein, bovine serum albumin, ovalbumin, or synthetic peptides. These data suggest that SubAB is a unique AB toxin: first, the B subunit alone can induce vacuolation; second, the A subunit containing serine 272 plus the B subunit inhibited protein synthesis, both in vivo and in vitro; and third, the A subunit proteolytic activity may have a strict range of substrate specificity.
Collapse
Affiliation(s)
- Naoko Morinaga
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Romano PS, Gutierrez MG, Berón W, Rabinovitch M, Colombo MI. The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell Microbiol 2006; 9:891-909. [PMID: 17087732 DOI: 10.1111/j.1462-5822.2006.00838.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The etiologic agent of Q fever Coxiella burnetii, is an intracellular obligate parasite that develops large vacuoles with phagolysosomal characteristics, containing multiple replicating bacteria. We have previously shown that Phase II C. burnetii replicative vacuoles generated after 24-48 h post infection are decorated with the autophagic protein LC3. The aim of the present study was to examine, at earlier stages of infection, the distribution and roles of the small GTPases Rab5 and Rab7, markers of early and late endosomes respectively, as well as of the protein LC3 on C. burnetii trafficking. Our results indicate that: (i) Coxiella phagosomes (Cph) acquire the two Rab proteins sequentially during infection; (ii) overexpression of a dominant negative mutant form of Rab5, but not of Rab7, impaired Coxiella entry, whereas both Rab5 and Rab7 dominant negative mutants inhibited vacuole formation; (iii) Cph colocalized with the protein LC3 as early as 5 min after infection; acquisition of this protein appeared to be a bacterially driven process, because it was inhibited by the bacteriostatic antibiotic chloramphenicol and (iv) C. burnetii delayed the arrival of the typical lysosomal protease cathepsin D to the Cph, which delay is further increased by starvation-induced autophagy. Based on our results we propose that C. burnetii transits through the normal endo/phagocytic pathway but actively interacts with autophagosomes at early times after infection. This intersection with the autophagic pathway delays fusion with the lysosomal compartment possibly favouring the intracellular differentiation and survival of the bacteria.
Collapse
Affiliation(s)
- Patricia S Romano
- Laboratorio de Biología Celular y Molecular, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo--Mendoza, 5500, Argentina
| | | | | | | | | |
Collapse
|
48
|
Terebiznik MR, Vazquez CL, Torbicki K, Banks D, Wang T, Hong W, Blanke SR, Colombo MI, Jones NL. Helicobacter pylori VacA toxin promotes bacterial intracellular survival in gastric epithelial cells. Infect Immun 2006; 74:6599-614. [PMID: 17000720 PMCID: PMC1698066 DOI: 10.1128/iai.01085-06] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Helicobacter pylori colonizes the gastric epithelium of at least 50% of the world's human population, playing a causative role in the development of chronic gastritis, peptic ulcers, and gastric adenocarcinoma. Current evidence indicates that H. pylori can invade epithelial cells in the gastric mucosa. However, relatively little is known about the biology of H. pylori invasion and survival in host cells. Here, we analyze both the nature of and the mechanisms responsible for the formation of H. pylori's intracellular niche. We show that in AGS cells infected with H. pylori, bacterium-containing vacuoles originate through the fusion of late endocytic organelles. This process is mediated by the VacA-dependent retention of the small GTPase Rab7. In addition, functional interactions between Rab7 and its downstream effector, Rab-interacting lysosomal protein (RILP), are necessary for the formation of the bacterial compartment since expression of mutant forms of RILP or Rab7 that fail to bind each other impaired the formation of this unique bacterial niche. Moreover, the VacA-mediated sequestration of active Rab7 disrupts the full maturation of vacuoles as assessed by the lack of both colocalization with cathepsin D and degradation of internalized cargo in the H. pylori-containing vacuole. Based on these findings, we propose that the VacA-dependent isolation of the H. pylori-containing vacuole from bactericidal components of the lysosomal pathway promotes bacterial survival and contributes to the persistence of infection.
Collapse
Affiliation(s)
- M R Terebiznik
- Hospital for Sick Children, 555 University Avenue, Toronto, Canada M5G 1X9
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Genisset C, Galeotti CL, Lupetti P, Mercati D, Skibinski DAG, Barone S, Battistutta R, de Bernard M, Telford JL. A Helicobacter pylori vacuolating toxin mutant that fails to oligomerize has a dominant negative phenotype. Infect Immun 2006; 74:1786-94. [PMID: 16495552 PMCID: PMC1418680 DOI: 10.1128/iai.74.3.1786-1794.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most Helicobacter pylori strains secrete a toxin (VacA) that causes massive vacuolization of target cells and which is a major virulence factor of H. pylori. The VacA amino-terminal region is required for the induction of vacuolization. The aim of the present study was a deeper understanding of the critical role of the N-terminal regions that are protected from proteolysis when VacA interacts with artificial membranes. Using a counterselection system, we constructed an H. pylori strain, SPM 326-Delta49-57, that produces a mutant toxin with a deletion of eight amino acids in one of these protected regions. VacA Delta49-57 was correctly secreted by H. pylori but failed to oligomerize and did not have any detectable vacuolating cytotoxic activity. However, the mutant toxin was internalized normally and stained the perinuclear region of HeLa cells. Moreover, the mutant toxin exhibited a dominant negative effect, completely inhibiting the vacuolating activity of wild-type VacA. This loss of activity was correlated with the disappearance of oligomers in electron microscopy. These findings indicate that the deletion in VacA Delta49-57 disrupts the intermolecular interactions required for the oligomerization of the toxin.
Collapse
|
50
|
Zehbe I, Höhn H, Pilch H, Neukirch C, Freitag K, Maeurer MJ. Differential MHC class II component expression in HPV-positive cervical cancer cells: implication for immune surveillance. Int J Cancer 2006; 117:807-15. [PMID: 15981207 DOI: 10.1002/ijc.21226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Effective eradication of human papillomavirus (HPV)-positive tumors may require CD8+ and CD4+ T-cell-mediated immune responses. Ectopic expression of MHC class II surface molecules has been described in the context of cervical cancer, but coexpression with other components of the MHC class II antigen presentation pathway has not been addressed. We have evaluated the MHC class II antigen presentation pathway in malignant squamous epithelium of HPV+ cervical cancer lesions by in situ costaining HLA-DR with CLIP or DMA/DMB. Cervical cancer cells exhibit 3 MHC class II phenotypes: (i) DR+/CLIP+ or DM+; (ii) DR+/CLIP- or DM-; and (iii) DR-/CLIP+ or DM+. The identical profile has been identified in HPV+ ME180 cells, which serve as a target for HLA-DR4-restricted and HPV68, E7-specific CD4+ T cells. IFN-gamma pretreatment of ME180 cells, associated with differential trafficking of MHC class II molecules, is necessary for effective T-cell recognition. Although proinflammatory cytokines may facilitate MHC class II-restricted antigen recognition in tumor cells, different phenotypes of the MHC class II antigen presentation pathway may be associated with evasion from CD4+-mediated cellular immune responses.
Collapse
Affiliation(s)
- Ingeborg Zehbe
- Department of Medical Microbiology, University of Mainz, Mainz, Germany
| | | | | | | | | | | |
Collapse
|