1
|
Freeman KG, Lauer MJ, Jiang D, Roscher J, Sandler S, Mercado N, Fryberger R, Kovalski J, Lutz AR, Hughes LE, VanDemark AP, Hatfull GF. Characterization of mycobacteriophage Adephagia cytotoxic proteins. G3 (BETHESDA, MD.) 2024; 14:jkae166. [PMID: 39031590 PMCID: PMC11373665 DOI: 10.1093/g3journal/jkae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
Mycobacterium phage Adephagia is a cluster K phage that infects Mycobacterium smegmatis and some strains of Mycobacterium pathogens. Adephagia has a siphoviral virion morphology and is temperate. Its genome is 59,646 bp long and codes for one tRNA gene and 94 predicted protein-coding genes; most genes not associated with virion structure and assembly are functionally ill-defined. Here, we determined the Adephagia gene expression patterns in lytic and lysogenic growth and used structural predictions to assign additional gene functions. We characterized 66 nonstructural genes for their toxic phenotypes when expressed in M. smegmatis, and we show that 25 of these (38%) are either toxic or strongly inhibit growth, resulting in either reduced viability or small colony sizes. Some of these genes are predicted to be involved in DNA metabolism or regulation, but others are of unknown function. We also characterize the HicAB-like toxin-antitoxin (TA) system encoded by Adephagia (gp91 and gp90, respectively) and show that the gp90 antitoxin is lysogenically expressed, abrogates gp91 toxicity, and is required for normal lytic and lysogenic growth.
Collapse
Affiliation(s)
- Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael J Lauer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Danny Jiang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jennifer Roscher
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sterling Sandler
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nicholas Mercado
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Robert Fryberger
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Julia Kovalski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Abigail R Lutz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lee E Hughes
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
German GJ, DeGiulio JV, Ramsey J, Kropinski AM, Misra R. The TolC and Lipopolysaccharide-Specific Escherichia coli Bacteriophage TLS-the Tlsvirus Archetype Virus. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:173-183. [PMID: 39372356 PMCID: PMC11447400 DOI: 10.1089/phage.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Introduction TLS is a virulent bacteriophage of Escherichia coli that utilizes TolC and lipopolysaccharide as its cell surface receptors. Methods The genome was reannotated using the latest online resources and compared to other T1-like phages. Results The TLS genome consists of 49,902 base pairs, encoding 86 coding sequences that display considerable sequence similarity with the T1 phage genome. It also contains 18 intergenic 21-base long repeats, each of them upstream of a predicted start codon and in the direction of transcription. Data revealed that DNA packaging occurs through the pac site-mediated headful mechanism. Conclusions Based on sequence analysis of its genome, TLS belongs to the Drexlerviridae family and represents the type member of the Tlsvirus genus.
Collapse
Affiliation(s)
- Gregory J. German
- St. Joseph’s Health Centre, Unity Health Toronto, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | | | - Jolene Ramsey
- Texas A&M University, Biology Department, College Station, TX USA
| | - Andrew M. Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Rajeev Misra
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Das R, Arora R, Nadar K, Saroj S, Singh AK, Patil SA, Raman SK, Misra A, Bajpai U. Insights into the genomic features and lifestyle of B1 subcluster mycobacteriophages. J Basic Microbiol 2024; 64:e2400027. [PMID: 38548701 DOI: 10.1002/jobm.202400027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/24/2024] [Indexed: 06/06/2024]
Abstract
Bacteriophages infecting Mycobacterium smegmatis mc2155 are numerous and, hence, are classified into clusters based on nucleotide sequence similarity. Analyzing phages belonging to clusters/subclusters can help gain deeper insights into their biological features and potential therapeutic applications. In this study, for genomic characterization of B1 subcluster mycobacteriophages, a framework of online tools was developed, which enabled functional annotation of about 55% of the previously deemed hypothetical proteins in B1 phages. We also studied the phenotype, lysogeny status, and antimycobacterial activity of 10 B1 phages against biofilm and an antibiotic-resistant M. smegmatis strain (4XR1). All 10 phages belonged to the Siphoviridae family, appeared temperate based on their spontaneous release from the putative lysogens and showed antibiofilm activity. The highest inhibitory and disruptive effects on biofilm were 64% and 46%, respectively. This systematic characterization using a combination of genomic and experimental tools is a promising approach to furthering our understanding of viral dark matter.
Collapse
Affiliation(s)
- Ritam Das
- Department of Life Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Ritu Arora
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Kanika Nadar
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Saroj Saroj
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| | - Amit K Singh
- Experimental Animal Facility, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Shripad A Patil
- Experimental Animal Facility, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sunil K Raman
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amit Misra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Pharmaceutics and Pharmacokinetic Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, India
| |
Collapse
|
4
|
Amarh ED, Dedrick RM, Garlena RA, Russell DA, Gauthier CH, Aull HG, Abad L, Jacobs-Sera D, Akusobi C, Rubin EJ, Hatfull GF. Unusual prophages in Mycobacterium abscessus genomes and strain variations in phage susceptibilities. PLoS One 2023; 18:e0281769. [PMID: 36795728 PMCID: PMC9934374 DOI: 10.1371/journal.pone.0281769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Mycobacterium abscessus infections are relatively common in patients with cystic fibrosis and are clinically challenging, with frequent intrinsic resistance to antibiotics. Therapeutic treatment with bacteriophages offers some promise but faces many challenges including substantial variation in phage susceptibilities among clinical isolates, and the need to personalize therapies for individual patients. Many strains are not susceptible to any phages or are not efficiently killed by lytic phages, including all smooth colony morphotype strains tested to-date. Here, we analyze a set of new M. abscessus isolates for the genomic relationships, prophage content, spontaneous phage release, and phage susceptibilities. We find that prophages are common in these M. abscessus genomes, but some have unusual arrangements, including tandemly integrated prophages, internal duplications, and they participate in active exchange of polymorphic toxin-immunity cassettes secreted by ESX systems. Relatively few strains are efficiently infected by any mycobacteriophages, and the infection patterns do not reflect the overall phylogenetic relationships of the strains. Characterization of these strains and their phage susceptibility profiles will help to advance the broader application of phage therapies for NTM infections.
Collapse
Affiliation(s)
- Elizabeth D. Amarh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rebekah M. Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rebecca A. Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Daniel A. Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christian H. Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Haley G. Aull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Chidiebere Akusobi
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
5
|
Barman A, Shaw R, Bhawsinghka N, Das Gupta SK. A CRISPRi-based investigation reveals that multiple promoter elements drive gene expression from the genome of mycobacteriophage D29. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748635 DOI: 10.1099/mic.0.001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A unique feature found in the genomes of mycobacteriophages such as L5 belonging to the A cluster is the presence of multiple dispersed repeated elements known as stoperators. The phage repressor binds these repeat elements, shutting off transcription globally and thereby promoting lysogeny. Interestingly, the sequence of these stoperators closely matches that of the consensus -35 region of prokaryotic promoters, leading us to propose that they may have a role to play in the initiation of transcription by serving as RNA polymerase binding sites. Mycobacteriophage D29 is closely related to phage L5, and their genome organizations are very similar. As in L5, there are multiple stoperators in the genome of D29. The positions occupied by the stoperators in the two genomes are almost identical. The significant difference between the two phages is that D29 lacks the gene encoding the equivalent of the L5 repressor. Since phage D29 does not produce a repressor, we considered it to be a suitable model for testing our hypothesis that the stoperators function as promoters in the absence of the repressor. To prove our point, we targeted CRISPR guide RNAs against six stoperators. In the case of five out of the six, we found a significant reduction in downstream gene expression and phage growth. Based on this observation and primer extension assays, we conclude that promoting gene expression is likely to be the primary function of stoperators.
Collapse
Affiliation(s)
- Anik Barman
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata-700054, India
| | - Rahul Shaw
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata-700054, India
| | - Niketa Bhawsinghka
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata-700054, India.,Present address: Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Sujoy K Das Gupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata-700054, India
| |
Collapse
|
6
|
A monomeric mycobacteriophage immunity repressor utilizes two domains to recognize an asymmetric DNA sequence. Nat Commun 2022; 13:4105. [PMID: 35835745 PMCID: PMC9283540 DOI: 10.1038/s41467-022-31678-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Regulation of bacteriophage gene expression involves repressor proteins that bind and downregulate early lytic promoters. A large group of mycobacteriophages code for repressors that are unusual in also terminating transcription elongation at numerous binding sites (stoperators) distributed across the phage genome. Here we provide the X-ray crystal structure of a mycobacteriophage immunity repressor bound to DNA, which reveals the binding of a monomer to an asymmetric DNA sequence using two independent DNA binding domains. The structure is supported by small-angle X-ray scattering, DNA binding, molecular dynamics, and in vivo immunity assays. We propose a model for how dual DNA binding domains facilitate regulation of both transcription initiation and elongation, while enabling evolution of other superinfection immune specificities. Bacteriophage repressor proteins downregulate viral lytic gene expression. Herein, the authors present the X-ray crystal structure of a monomeric repressor that binds an asymmetric DNA sequence using two independent domains.
Collapse
|
7
|
Abstract
Mycobacteriophages-bacteriophages infecting Mycobacterium hosts-contribute substantially to our understanding of viral diversity and evolution, provide resources for advancing Mycobacterium genetics, are the basis of high-impact science education programs, and show considerable therapeutic potential. Over 10,000 individual mycobacteriophages have been isolated by high school and undergraduate students using the model organism Mycobacterium smegmatis mc2155 and 2,100 have been completely sequenced, giving a high-resolution view of the phages that infect a single common host strain. The phage genomes are revealed to be highly diverse and architecturally mosaic and are replete with genes of unknown function. Mycobacteriophages have provided many widely used tools for Mycobacterium genetics including integration-proficient vectors and recombineering systems, as well as systems for efficient delivery of reporter genes, transposons, and allelic exchange substrates. The genomic insights and engineering tools have facilitated exploration of phages for treatment of Mycobacterium infections, although their full therapeutic potential has yet to be realized.
Collapse
Affiliation(s)
- Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
8
|
Abstract
Actinobacteriophages are viruses that infect bacterial hosts in the phylum Actinobacteria. More than 17,000 actinobacteriophages have been described and over 3,000 complete genome sequences reported, resulting from large-scale, high-impact, integrated research-education initiatives such as the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) program. Their genomic diversity is enormous; actinobacteriophages comprise many architecturally mosaic genomes with distinct DNA sequences. Their genome diversity is driven by the highly dynamic interactions between phages and their hosts, and prophages can confer a variety of systems that defend against attack by genetically distinct phages; phages can neutralize these defense systems by coding for counter-defense proteins. These phages not only provide insights into diverse and dynamic phage populations but also have provided numerous tools for mycobacterial genetics. A case study using a three-phage cocktail to treat a patient with a drug-resistant Mycobacterium abscessus suggests that phages may have considerable potential for the therapeutic treatment of mycobacterial infections.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA;
| |
Collapse
|
9
|
Characterization of a Novel Bacteriophage Henu2 and Evaluation of the Synergistic Antibacterial Activity of Phage-Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10020174. [PMID: 33572473 PMCID: PMC7916345 DOI: 10.3390/antibiotics10020174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus phage Henu2 was isolated from a sewage sample collected in Kaifeng, China, in 2017. In this study, Henu2, a linear double-stranded DNA virus, was sequenced and found to be 43,513 bp long with 35% G + C content and 63 putative open reading frames (ORFs). Phage Henu2 belongs to the family Siphoviridae and possesses an isometric head (63 nm in diameter). The latent time and burst size of Henu2 were approximately 20 min and 7.8 plaque forming unit (PFU)/infected cells. The Henu2 maintained infectivity over a wide range of temperature (10–60 °C) and pH values (4–12). Phylogenetic and comparative genomic analyses indicate that Staphylococcus aureus phage Henu2 should be a new member of the family of Siphoviridae class-II. In this paper, Phage Henu2 alone exhibited weak inhibitory activity on the growth of S. aureus. However, the combination of phage Henu2 and some antibiotics or oxides could effectively inhibit the growth of S. aureus, with a decrease of more than three logs within 24 h in vitro. These results provide useful information that phage Henu2 can be combined with antibiotics to increase the production of phage Henu2 and thus enhance the efficacy of bacterial killing.
Collapse
|
10
|
Nanoluciferase Reporter Mycobacteriophage for Sensitive and Rapid Detection of Mycobacterium tuberculosis Drug Susceptibility. J Bacteriol 2020; 202:JB.00411-20. [PMID: 32900827 PMCID: PMC7585058 DOI: 10.1128/jb.00411-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis disease, remains a public health crisis on a global scale, and development of new interventions and identification of drug resistance are pillars in the World Health Organization End TB Strategy. Leveraging the tractability of the TM4 mycobacteriophage and the sensitivity of the nanoluciferase reporter enzyme, the present work describes an evolution of phage-mediated detection and drug susceptibility testing of M. tuberculosis, adding a valuable tool in drug discovery and basic biology research. With additional validation, this system may play a role as a quantitative phenotypic reference method and complement to genotypic methods for diagnosis and antibiotic susceptibility testing. Phenotypic testing for drug susceptibility of Mycobacterium tuberculosis is critical to basic research and managing the evolving problem of antimicrobial resistance in tuberculosis management, but it remains a specialized technique to which access is severely limited. Here, we report on the development and validation of an improved phage-mediated detection system for M. tuberculosis. We incorporated a nanoluciferase (Nluc) reporter gene cassette into the TM4 mycobacteriophage genome to create phage TM4-nluc. We assessed the performance of this reporter phage in the context of cellular limit of detection and drug susceptibility testing using multiple biosafety level 2 drug-sensitive and -resistant auxotrophs as well as virulent M. tuberculosis strains. For both limit of detection and drug susceptibility testing, we developed a standardized method consisting of a 96-hour cell preculture followed by a 72-hour experimental window for M. tuberculosis detection with or without antibiotic exposure. The cellular limit of detection of M. tuberculosis in a 96-well plate batch culture was ≤102 CFU. Consistent with other phenotypic methods for drug susceptibility testing, we found TM4-nluc to be compatible with antibiotics representing multiple classes and mechanisms of action, including inhibition of core central dogma functions, cell wall homeostasis, metabolic inhibitors, compounds currently in clinical trials (SQ109 and Q203), and susceptibility testing for bedaquiline, pretomanid, and linezolid (components of the BPaL regimen for the treatment of multi- and extensively drug-resistant tuberculosis). Using the same method, we accurately identified rifampin-resistant and multidrug-resistant M. tuberculosis strains. IMPORTANCEMycobacterium tuberculosis, the causative agent of tuberculosis disease, remains a public health crisis on a global scale, and development of new interventions and identification of drug resistance are pillars in the World Health Organization End TB Strategy. Leveraging the tractability of the TM4 mycobacteriophage and the sensitivity of the nanoluciferase reporter enzyme, the present work describes an evolution of phage-mediated detection and drug susceptibility testing of M. tuberculosis, adding a valuable tool in drug discovery and basic biology research. With additional validation, this system may play a role as a quantitative phenotypic reference method and complement to genotypic methods for diagnosis and antibiotic susceptibility testing.
Collapse
|
11
|
Eniyan K, Sinha A, Ahmad S, Bajpai U. Functional characterization of the endolysins derived from mycobacteriophage PDRPxv. World J Microbiol Biotechnol 2020; 36:83. [PMID: 32468233 DOI: 10.1007/s11274-020-02858-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Bacteriophage-derived endolysin enzymes play a critical role in disintegration of the host bacterial cell wall and hence have gained considerable attention as possible therapeutics for the treatment of drug-resistant infections. Endolysins can target both dividing and non-dividing cells and given the vital role peptidoglycan plays in bacterial survival, bacteria are less likely to modify it even if continuously exposed to lysins. Hence, probability of bacteria developing resistance to lysins appear bleak. Endolysins from mycobacteriophages offer great potential as alternative therapeutics for the drug-resistant TB. However, considering that a large number of mycobacteriophages have been discovered so far, the information on endolysins come from only a few mycobacteriophages. In this study, we report the structural and functional characterization of endolysins (LysinA and LysinB) encoded by mycobacteriophage PDRPxv which belongs to B1 sub cluster. On in silico analysis, we found LysinA to be a modular protein having peptidase domain at the N-terminal (104 aa), a central amidase domain (174 aa) and the peptidoglycan binding domain (62 aa) at the C-terminal. Additionally, 'H-X-H', which is a conserved motif and characteristic of peptidase domains, and the conserved residues His-His-Asp, which are characteristic of amidase domain were also observed. In LysinB enzyme, a single α/β hydrolase domain having a catalytic triad (Ser-Asp-His) and G-X-S-X-G motif, which are characteristic of the serine esterase enzymes were predicted to be present. Both the enzymes were purified as recombinant proteins and their antimycobacterial activity against M. smegmatis was demonstrated through turbidimetric experiments and biochemical assay. Interesting observation in this study is the secretory nature of LysinA evident by its periplasmic expression in E.coli, which might explain the ability of PDRPxv to lyse the bacterial host in the absence of transmembrane Holin protein.
Collapse
Affiliation(s)
- Kandasamy Eniyan
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi), Govindpuri, New Delhi, 110019, India
| | - Avni Sinha
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi), Govindpuri, New Delhi, 110019, India
| | - Shazeb Ahmad
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi), Govindpuri, New Delhi, 110019, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi), Govindpuri, New Delhi, 110019, India.
| |
Collapse
|
12
|
Complete Genome Sequences of Cluster G Mycobacteriophage Darionha, Cluster A Mycobacteriophage Salz, and Cluster J Mycobacteriophage ThreeRngTarjay. Microbiol Resour Announc 2020; 9:9/20/e00160-20. [PMID: 32409529 PMCID: PMC7225528 DOI: 10.1128/mra.00160-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacteriophages Darionha, Salz, and ThreeRngTarjay are mycobacteriophages isolated using the host Mycobacterium smegmatis mc2155. Following isolation from soil samples, all three siphoviridae phages were characterized, and their genomes were sequenced and annotated. Mycobacteriophages Darionha, Salz, and ThreeRngTarjay are mycobacteriophages isolated using the host Mycobacterium smegmatis mc2155. Following isolation from soil samples, all three siphoviridae phages were characterized, and their genomes were sequenced and annotated.
Collapse
|
13
|
Sinha A, Eniyan K, Manohar P, Ramesh N, Bajpai U. Characterization and genome analysis of B1 sub-cluster mycobacteriophage PDRPxv. Virus Res 2020; 279:197884. [PMID: 31981773 DOI: 10.1016/j.virusres.2020.197884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 11/15/2022]
Abstract
Mycobacteriophages are viruses specific to mycobacteria that have gained attention as alternative therapeutic strategies for treating antibiotic-resistant infections. Mycobacteriophages are highly diverse and have been grouped into 29 clusters, 71 sub-clusters and 10 singletons based on the genome sequence. Here, we annotate the genome of PDRPxv, a lytic mycobacteriophage isolated from New Delhi; it belongs to the Siphoviridae family as determined by transmission electron microscopy. This phage survives at higher temperatures (up to 55 °C) and in alkaline conditions (up to pH11). PDRPxv phage genome is 69,171 bp in length with 66.35 % GC content and encodes 107 putative open reading frames and belongs to the B1 sub-cluster. Genome annotation indicated that genes for DNA encapsidation, structural proteins, replication/transcription and lysis of the host are present in functional clusters. Structural proteins encoded by Gp10-Gp12, Gp18, Gp25 and Gp28-Gp33 were identified by mass spectrometry. Interestingly, no gene encoding a holin function was found. Single-step growth curve revealed that PDRPxv has an adsorption time of 45 min, a latency time of 135 min and an average burst size of 99 phage particles per infected cell. The short latency period and the large burst size mark the lytic nature of the PDRPxv phage, which could therefore be a promising therapeutic candidate against pathogenic Mycobacterium species.
Collapse
Affiliation(s)
- Avni Sinha
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi) Govindpuri, Kalkaji, New-Delhi, 110019, India
| | - Kandasamy Eniyan
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi) Govindpuri, Kalkaji, New-Delhi, 110019, India; Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Prasanth Manohar
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Nachimuthu Ramesh
- Antibiotic Resistance and Phage Therapy Laboratory, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College (University of Delhi) Govindpuri, Kalkaji, New-Delhi, 110019, India.
| |
Collapse
|
14
|
Abstract
Many aspects regarding superinfection, immunity, virulence, and the evolution of immune specificities are poorly understood due to the lack of large collections of isolated and sequenced phages with a spectrum of genetic diversity. Using a genetically diverse collection of Cluster A phages, we show that the classical and relatively straightforward patterns of homoimmunity, heteroimmunity, and virulence result from interactions between homotypic and heterotypic phages at the extreme edges of an evolutionary continuum of immune specificities. Genetic interactions between mesotypic phages result in more complex mesoimmunity phenotypes and virulence profiles. These results highlight that the evolution of immune specificities can be shaped by homotypic and mesotypic interactions and may be more dynamic than previously considered. Temperate phages encode an immunity system to control lytic gene expression during lysogeny. This gene regulatory circuit consists of multiple interacting genetic elements, and although it is essential for controlling phage growth, it is subject to conflicting evolutionary pressures. During superinfection of a lysogen, the prophage’s circuit interacts with the superinfecting phage’s circuit and prevents lytic growth if the two circuits are closely related. The circuitry is advantageous since it provides the prophage with a defense mechanism, but the circuitry is also disadvantageous since it limits the phage’s host range during superinfection. Evolutionarily related phages have divergent, orthogonal immunity systems that no longer interact and are heteroimmune, but we do not understand how immunity systems evolve new specificities. Here, we use a group of Cluster A mycobacteriophages that exhibit a spectrum of genetic diversity to examine how immunity system evolution impacts superinfection immunity. We show that phages with mesotypic (i.e., genetically related but distinct) immunity systems exhibit asymmetric and incomplete superinfection phenotypes. They form complex immunity networks instead of well-defined immunity groups, and mutations conferring escape (i.e., virulence) from homotypic or mesotypic immunity have various escape specificities. Thus, virulence and the evolution of new immune specificities are shaped by interactions with homotypic and mesotypic immunity systems.
Collapse
|
15
|
Abstract
Mycobacteriophages are viruses that infect mycobacterial hosts. A large number of mycobacteriophages have been isolated and genomically characterized, providing insights into viral diversity and evolution, as well as fueling development of tools for mycobacterial genetics. Mycobacteriophages have intimate relationships with their hosts and provide insights into the genetics and physiology of the mycobacteria and tools for potential clinical applications such as drug development, diagnosis, vaccines, and potentially therapy.
Collapse
|
16
|
Bhawsinghka N, Dutta A, Mukhopadhyay J, Das Gupta SK. A transcriptomic analysis of the mycobacteriophage D29 genome reveals the presence of novel stoperator-associated promoters in its right arm. Microbiology (Reading) 2018; 164:1168-1179. [DOI: 10.1099/mic.0.000693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Niketa Bhawsinghka
- 1Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Arkajyoti Dutta
- 2Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | | | - Sujoy K. Das Gupta
- 1Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
17
|
Genome Sequences of 19 Rhodococcus erythropolis Cluster CA Phages. GENOME ANNOUNCEMENTS 2017; 5:5/49/e01201-17. [PMID: 29217789 PMCID: PMC5721134 DOI: 10.1128/genomea.01201-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the complete genome sequences of 19 cluster CA bacteriophages isolated from environmental samples using Rhodococcus erythropolis as a host. All of the phages are Siphoviridae, have similar genome lengths (46,314 to 46,985 bp) and G+C contents (58.5 to 58.8%), and share nucleotide sequence similarity.
Collapse
|
18
|
Dedrick RM, Mavrich TN, Ng WL, Hatfull GF. Expression and evolutionary patterns of mycobacteriophage D29 and its temperate close relatives. BMC Microbiol 2017; 17:225. [PMID: 29197343 PMCID: PMC5712189 DOI: 10.1186/s12866-017-1131-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022] Open
Abstract
Background Mycobacteriophages are viruses that infect Mycobacterium hosts. A large collection of phages known to infect the same bacterial host strain – Mycobacterium smegmatis mc2155 – exhibit substantial diversity and characteristically mosaic architectures. The well-studied lytic mycobacteriophage D29 appears to be a deletion derivative of a putative temperate parent, although its parent has yet to be identified. Results Here we describe three newly-isolated temperate phages – Kerberos, Pomar16 and StarStuff – that are related to D29, and are predicted to be very close relatives of its putative temperate parent, revealing the repressor and additional genes that are lost in D29. Transcriptional profiles show the patterns of both lysogenic and lytic gene expression and identify highly-expressed, abundant, stable, small non-coding transcripts made from the Pleft early lytic promoter, and which are toxic to M. smegmatis. Conclusions Comparative genomics of phages D29, Kerberos, Pomar16 and StarStuff provide insights into bacteriophage evolution, and comparative transcriptomics identifies the pattern of lysogenic and lytic expression with unusual features including highly expressed, small, non-coding RNAs. Electronic supplementary material The online version of this article (10.1186/s12866-017-1131-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Travis N Mavrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Wei L Ng
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
19
|
Abstract
The global bacteriophage population is large, dynamic, old, and highly diverse genetically. Many phages are tailed and contain double-stranded DNA, but these remain poorly characterized genomically. A collection of over 1,000 phages infecting Mycobacterium smegmatis reveals the diversity of phages of a common bacterial host, but their relationships to phages of phylogenetically proximal hosts are not known. Comparative sequence analysis of 79 phages isolated on Gordonia shows these also to be diverse and that the phages can be grouped into 14 clusters of related genomes, with an additional 14 phages that are “singletons” with no closely related genomes. One group of six phages is closely related to Cluster A mycobacteriophages, but the other Gordonia phages are distant relatives and share only 10% of their genes with the mycobacteriophages. The Gordonia phage genomes vary in genome length (17.1 to 103.4 kb), percentage of GC content (47 to 68.8%), and genome architecture and contain a variety of features not seen in other phage genomes. Like the mycobacteriophages, the highly mosaic Gordonia phages demonstrate a spectrum of genetic relationships. We show this is a general property of bacteriophages and suggest that any barriers to genetic exchange are soft and readily violable. Despite the numerical dominance of bacteriophages in the biosphere, there is a dearth of complete genomic sequences. Current genomic information reveals that phages are highly diverse genomically and have mosaic architectures formed by extensive horizontal genetic exchange. Comparative analysis of 79 phages of Gordonia shows them to not only be highly diverse, but to present a spectrum of relatedness. Most are distantly related to phages of the phylogenetically proximal host Mycobacterium smegmatis, although one group of Gordonia phages is more closely related to mycobacteriophages than to the other Gordonia phages. Phage genome sequence space remains largely unexplored, but further isolation and genomic comparison of phages targeted at related groups of hosts promise to reveal pathways of bacteriophage evolution.
Collapse
|
20
|
Dual-Reporter Mycobacteriophages (Φ2DRMs) Reveal Preexisting Mycobacterium tuberculosis Persistent Cells in Human Sputum. mBio 2016; 7:mBio.01023-16. [PMID: 27795387 PMCID: PMC5080378 DOI: 10.1128/mbio.01023-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Persisters are the minor subpopulation of bacterial cells that lack alleles conferring resistance to a specific bactericidal antibiotic but can survive otherwise lethal concentrations of that antibiotic. In infections with Mycobacterium tuberculosis, such persisters underlie the need for long-term antibiotic therapy and contribute to treatment failure in tuberculosis cases. Here, we demonstrate the value of dual-reporter mycobacteriophages (Φ2DRMs) for characterizing M. tuberculosis persisters. The addition of isoniazid (INH) to exponentially growing M. tuberculosis cells consistently resulted in a 2- to 3-log decrease in CFU within 4 days, and the remaining ≤1% of cells, which survived despite being INH sensitive, were INH-tolerant persisters with a distinct transcriptional profile. We fused the promoters of several genes upregulated in persisters to the red fluorescent protein tdTomato gene in Φ2GFP10, a mycobacteriophage constitutively expressing green fluorescent protein (GFP), thus generating Φ2DRMs. A population enriched in INH persisters exhibited strong red fluorescence, by microscopy and flow cytometry, using a Φ2DRM with tdTomato controlled from the dnaK promoter. Interestingly, we demonstrated that, prior to INH exposure, a population primed for persistence existed in M. tuberculosis cells from both cultures and human sputa and that this population was highly enriched following INH exposure. We conclude that Φ2DRMs provide a new tool to identify and quantitate M. tuberculosis persister cells. IMPORTANCE Tuberculosis (TB) is again the leading cause of death from a single infectious disease, having surpassed HIV. The recalcitrance of the TB pandemic is largely due to the ability of the pathogen Mycobacterium tuberculosis to enter a persistent state in which it is less susceptible to antibiotics and immune effectors, necessitating lengthy treatment. It has been difficult to study persister cells, as we have lacked tools to isolate these rare cells. In this article, we describe the development of dual-reporter mycobacteriophages that encode a green fluorescent marker of viability and in which the promoters of genes we have identified as induced in the persister state are fused to a gene encoding a red fluorescent protein. We show that these tools can identify heterogeneity in a cell population that correlates with propensity to survive antibiotic treatment and that the proportions of these subpopulations change in M. tuberculosis cells within human sputum during the course of treatment.
Collapse
|
21
|
Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B. mBio 2016; 7:mBio.00667-16. [PMID: 27302758 PMCID: PMC4916379 DOI: 10.1128/mbio.00667-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages. IMPORTANCE Filamentous cyanobacteria belonging to the genus Nostoc are widespread and ecologically important in freshwater, yet little is known about the genomic content of their viruses. Here we report the first genomic analysis of cyanophages infecting filamentous freshwater cyanobacteria, revealing that their gene content is unlike that of other cyanophages. In addition to sharing many gene homologues with freshwater cyanobacteria, cyanophage N-1 encodes a CRISPR array and expresses it upon infection. Also, both viruses contain a DNA polymerase B-encoding gene with high similarity to genes found in proteobacterial plasmids of filamentous cyanobacteria. The observation that phages can acquire CRISPRs from their hosts suggests that phages can also move them among hosts, thereby conferring resistance to competing phages. The presence in these cyanophages of CRISPR and DNA polymerase B sequences, as well as a suite of other host-related genes, illustrates the long and complex evolutionary history of these viruses and their hosts.
Collapse
|
22
|
Dedrick RM, Mavrich TN, Ng WL, Cervantes Reyes JC, Olm MR, Rush RE, Jacobs-Sera D, Russell DA, Hatfull GF. Function, expression, specificity, diversity and incompatibility of actinobacteriophage parABS systems. Mol Microbiol 2016; 101:625-44. [PMID: 27146086 DOI: 10.1111/mmi.13414] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 11/27/2022]
Abstract
More than 180 individual phages infecting hosts in the phylum Actinobacteria have been sequenced and grouped into Cluster A because of their similar overall nucleotide sequences and genome architectures. These Cluster A phages are either temperate or derivatives of temperate parents, and most have an integration cassette near the centre of the genome containing an integrase gene and attP. However, about 20% of the phages lack an integration cassette, which is replaced by a 1.4 kbp segment with predicted partitioning functions, including plasmid-like parA and parB genes. Phage RedRock forms stable lysogens in Mycobacterium smegmatis in which the prophage replicates at 2.4 copies/chromosome and the partitioning system confers prophage maintenance. The parAB genes are expressed upon RedRock infection of M. smegmatis, but are downregulated once lysogeny is established by binding of RedRock ParB to parS-L, one of two centromere-like sites flanking the parAB genes. The RedRock parS-L and parS-R sites are composed of eight directly repeated copies of an 8 bp motif that is recognized by ParB. The actinobacteriophage parABS cassettes span considerable sequence diversity and specificity, providing a suite of tools for use in mycobacterial genetics.
Collapse
Affiliation(s)
- Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Travis N Mavrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Wei L Ng
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | - Matthew R Olm
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Rachael E Rush
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
23
|
Villanueva VM, Oldfield LM, Hatfull GF. An Unusual Phage Repressor Encoded by Mycobacteriophage BPs. PLoS One 2015; 10:e0137187. [PMID: 26332854 PMCID: PMC4557955 DOI: 10.1371/journal.pone.0137187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/14/2015] [Indexed: 01/05/2023] Open
Abstract
Temperate bacteriophages express transcription repressors that maintain lysogeny by down-regulating lytic promoters and confer superinfection immunity. Repressor regulation is critical to the outcome of infection—lysogenic or lytic growth—as well as prophage induction into lytic replication. Mycobacteriophage BPs and its relatives use an unusual integration-dependent immunity system in which the phage attachment site (attP) is located within the repressor gene (33) such that site-specific integration leads to synthesis of a prophage-encoded product (gp33103) that is 33 residues shorter at its C-terminus than the virally-encoded protein (gp33136). However, the shorter form of the repressor (gp33103) is stable and active in repression of the early lytic promoter PR, whereas the longer virally-encoded form (gp33136) is inactive due to targeted degradation via a C-terminal ssrA-like tag. We show here that both forms of the repressor bind similarly to the 33–34 intergenic regulatory region, and that BPs gp33103 is a tetramer in solution. The BPs gp33103 repressor binds to five regulatory regions spanning the BPs genome, and regulates four promoters including the early lytic promoter, PR. BPs gp33103 has a complex pattern of DNA recognition in which a full operator binding site contains two half sites separated by a variable spacer, and BPs gp33103 induces a DNA bend at the full operator site but not a half site. The operator site structure is unusual in that one half site corresponds to a 12 bp palindrome identified previously, but the other half site is a highly variable variant of the palindrome.
Collapse
Affiliation(s)
- Valerie M. Villanueva
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States of America
| | - Lauren M. Oldfield
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States of America
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States of America
- * E-mail:
| |
Collapse
|
24
|
Petrova ZO, Broussard GW, Hatfull GF. Mycobacteriophage-repressor-mediated immunity as a selectable genetic marker: Adephagia and BPs repressor selection. MICROBIOLOGY-SGM 2015; 161:1539-1551. [PMID: 26066798 DOI: 10.1099/mic.0.000120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacteriophages provide an abundance of systems for use in mycobacterial genetics, including manipulation of Mycobacterium tuberculosis. Because of the dearth of antibiotic resistance cassettes and biosafety concerns in constructing recombinant virulent M. tuberculosis strains, we developed the use of mycobacteriophage-encoded repressor genes that can be selected in the presence of lytic versions of their cognate phages. The phage Adephagia repressor gene (43) was identified through its ability to confer immunity to Adephagia superinfection, together with the mapping of mutations in gene 43 that confer a clear-phage phenotype. Plasmid transformants containing either Adephagia 43 or the previously identified BPs repressor 33 can be readily selected following electroporation using engineered lytic derivatives of Adephagia and BPs, respectively. Selection is as efficient as antibiotic selection, can be used with either single-copy integration vectors or with extrachromosomal vectors, and works similarly in both Mycobacterium smegmatis and M. tuberculosis.
Collapse
Affiliation(s)
- Zaritza O Petrova
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gregory W Broussard
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
25
|
Pope WH, Bowman CA, Russell DA, Jacobs-Sera D, Asai DJ, Cresawn SG, Jacobs WR, Hendrix RW, Lawrence JG, Hatfull GF. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife 2015; 4:e06416. [PMID: 25919952 PMCID: PMC4408529 DOI: 10.7554/elife.06416] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/19/2015] [Indexed: 01/21/2023] Open
Abstract
The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery. DOI:http://dx.doi.org/10.7554/eLife.06416.001 Viruses are unable to replicate independently. To generate copies of itself, a virus must instead invade a target cell and commandeer that cell's replication machinery. Different viruses are able to invade different types of cell, and a group of viruses known as bacteriophages (or phages for short) replicate within bacteria. The enormous number and diversity of phages in the world means that they play an important role in virtually every ecosystem. Despite their importance, relatively little is known about how different phage populations are related to each other and how they evolved. Many phages contain their genetic information in the form of strands of DNA. Using genetic sequencing to find out where and how different genes are encoded in the DNA can reveal information about how different viruses are related to each other. These relationships are particularly complicated in phages, as they can exchange genes with other viruses and microbes. Previous studies comparing the genomes—the complete DNA sequence—of reasonably small numbers of phages that infect the Mycobacterium group of bacteria have found that the phages can be sorted into ‘clusters’ based on similarities in their genes and where these are encoded in their DNA. However, the number of phages investigated so far has been too small to conclude how different clusters are related. Are the clusters separate, or do they form a ‘continuum’ with different genes and DNA sequences shared between different clusters? Here, Pope, Bowman, Russell et al. compare the individual genomes of 627 bacteriophages that infect the bacterial species Mycobacterium smegmatis. This is by far the largest number of phage genomes analyzed from a single host species. The large number of genomes analyzed allowed a much clearer understanding of the complexity and diversity of these phages to be obtained. The isolation, sequencing and analysis of the hundreds of M. smegmatis bacteriophage genomes was performed by an integrated research and education program, called the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program. This enabled thousands of undergraduate students from different institutions to contribute to the phage discovery and sequencing project, and co-author the report. SEA-PHAGES therefore shows that it is possible to successfully incorporate genuine scientific research into an undergraduate course, and that doing so can benefit both the students and researchers involved. The results show that while the genomes could be categorized into 28 clusters, the genomes are not completely unrelated. Instead, a spread of diversity is seen, as genes and groups of genes are shared between different clusters. Pope, Bowman, Russell et al. further reveal that the phage population is in a constant state of change, and continuously acquires genes from other microorganisms and viruses. DOI:http://dx.doi.org/10.7554/eLife.06416.002
Collapse
Affiliation(s)
- Welkin H Pope
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Charles A Bowman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - David J Asai
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Steven G Cresawn
- Department of Biology, James Madison University, Harrisonburg, United States
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, United States
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Jeffrey G Lawrence
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | | | | | | |
Collapse
|
26
|
Abstract
Mycobacteriophages--viruses of mycobacterial hosts--are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages--Corndog, Catdawg, Dylan, Firecracker, and YungJamal--designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange.
Collapse
|
27
|
Abstract
Citrobacter freundii is an opportunistic pathogen responsible for many urinary tract infections acquired in hospitals and is thus a concern for public health. C. freundii phage Stevie might prove beneficial as a treatment against these infections. The complete genome of Stevie and its key features are described here.
Collapse
|
28
|
Genomics and proteomics of mycobacteriophage patience, an accidental tourist in the Mycobacterium neighborhood. mBio 2014; 5:e02145. [PMID: 25467442 PMCID: PMC4324244 DOI: 10.1128/mbio.02145-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Newly emerging human viruses such as Ebola virus, severe acute respiratory syndrome (SARS) virus, and HIV likely originate within an extant population of viruses in nonhuman hosts and acquire the ability to infect and cause disease in humans. Although several mechanisms preventing viral infection of particular hosts have been described, the mechanisms and constraints on viral host expansion are ill defined. We describe here mycobacteriophage Patience, a newly isolated phage recovered using Mycobacterium smegmatis mc(2)155 as a host. Patience has genomic features distinct from its M. smegmatis host, including a much lower GC content (50.3% versus 67.4%) and an abundance of codons that are rarely used in M. smegmatis. Nonetheless, it propagates well in M. smegmatis, and we demonstrate the use of mass spectrometry to show expression of over 75% of the predicted proteins, to identify new genes, to refine the genome annotation, and to estimate protein abundance. We propose that Patience evolved primarily among lower-GC hosts and that the disparities between its genomic profile and that of M. smegmatis presented only a minimal barrier to host expansion. Rapid adaptions to its new host include recent acquisition of higher-GC genes, expression of out-of-frame proteins within predicted genes, and codon selection among highly expressed genes toward the translational apparatus of its new host. IMPORTANCE The mycobacteriophage Patience genome has a notably lower GC content (50.3%) than its Mycobacterium smegmatis host (67.4%) and has markedly different codon usage biases. The viral genome has an abundance of codons that are rare in the host and are decoded by wobble tRNA pairing, although the phage grows well and expression of most of the genes is detected by mass spectrometry. Patience thus has the genomic profile of a virus that evolved primarily in one type of host genetic landscape (moderate-GC bacteria) but has found its way into a distinctly different high-GC environment. Although Patience genes are ill matched to the host expression apparatus, this is of little functional consequence and has not evidently imposed a barrier to migration across the microbial landscape. Interestingly, comparison of expression levels and codon usage profiles reveals evidence of codon selection as the genome evolves and adapts to its new environment.
Collapse
|
29
|
Mutational analysis of the mycobacteriophage BPs promoter PR reveals context-dependent sequences for mycobacterial gene expression. J Bacteriol 2014; 196:3589-97. [PMID: 25092027 DOI: 10.1128/jb.01801-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PR promoter of mycobacteriophage BPs directs early lytic gene expression and is under the control of the BPs repressor, gp33. Reporter gene fusions showed that PR has modest activity in an extrachromosomal context but has activity that is barely detectable in an integrated context, even in the absence of its repressor. Mutational dissection of PR showed that it uses a canonical -10 hexamer recognized by SigA, and mutants with mutations to the sequence 5'-TATAMT had the greatest activities. It does not contain a 5'-TGN-extended -10 sequence, although mutants with mutations creating an extended -10 sequence had substantially increased promoter activity. Mutations in the -35 hexamer also influenced promoter activity but were strongly context dependent, and similar substitutions in the -35 hexamer differentially affected promoter activity, depending on the -10 and extended -10 motifs. This warrants caution in the construction of synthetic promoters or the bioinformatic prediction of promoter activity. Combinations of mutations throughout PR generated a calibrated series of promoters for expression of stably integrated recombinant genes in both Mycobacterium smegmatis and M. tuberculosis, with maximal promoter activity being more than 2-fold that of the strong hsp60 promoter.
Collapse
|
30
|
Abstract
ABSTRACT
Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.
Collapse
|
31
|
Hatfull GF. Molecular Genetics of Mycobacteriophages. Microbiol Spectr 2014; 2:1-36. [PMID: 25328854 PMCID: PMC4199240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
32
|
Cluster M mycobacteriophages Bongo, PegLeg, and Rey with unusually large repertoires of tRNA isotypes. J Virol 2013; 88:2461-80. [PMID: 24335314 DOI: 10.1128/jvi.03363-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Genomic analysis of a large set of phages infecting the common host Mycobacterium smegmatis mc(2)155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode. IMPORTANCE The bacteriophage population is vast, dynamic, and old and plays a central role in bacterial pathogenicity. We know surprisingly little about the genetic diversity of the phage population, although metagenomic and phage genome sequencing indicates that it is great. Probing the depth of genetic diversity of phages of a common host, Mycobacterium smegmatis, provides a higher resolution of the phage population and how it has evolved. Three new phages constituting a new cluster M further expand the diversity of the mycobacteriophages and introduce novel features. As such, they provide insights into phage genome architecture, virion structure, and gene regulation at the transcriptional and translational levels.
Collapse
|
33
|
Smith MCM, Hendrix RW, Dedrick R, Mitchell K, Ko CC, Russell D, Bell E, Gregory M, Bibb MJ, Pethick F, Jacobs-Sera D, Herron P, Buttner MJ, Hatfull GF. Evolutionary relationships among actinophages and a putative adaptation for growth in Streptomyces spp. J Bacteriol 2013; 195:4924-35. [PMID: 23995638 PMCID: PMC3807479 DOI: 10.1128/jb.00618-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/14/2013] [Indexed: 11/20/2022] Open
Abstract
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, Hau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage Hau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species.
Collapse
Affiliation(s)
| | - Roger W. Hendrix
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebekah Dedrick
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kaitlin Mitchell
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ching-Chung Ko
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Russell
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emma Bell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | - Maureen J. Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Florence Pethick
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Deborah Jacobs-Sera
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Graham F. Hatfull
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Generation of affinity-tagged fluoromycobacteriophages by mixed assembly of phage capsids. Appl Environ Microbiol 2013. [PMID: 23851082 DOI: 10.1128/aem.01016-13; 10.1128/aem.01016-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Addition of affinity tags to bacteriophage particles facilitates a variety of applications, including vaccine construction and diagnosis of bacterial infections. Addition of tags to phage capsids is desirable, as modification of the tails can lead to poor adsorption and loss of infectivity. Although tags can readily be included as fusions to head decoration proteins, many phages do not have decoration proteins as virion components. The addition of a small (10-amino-acid) Strep-tag II (STAG II) to the mycobacteriophage TM4 capsid subunit, gp9, was not tolerated as a genetically homogenous recombinant phage but could be incorporated into the head by growth of wild-type phage on a host expressing the capsid-STAG fusion. Particles with capsids composed of wild-type and STAG-tagged subunit mixtures could be grown to high titers, showed good infectivities, and could be used to isolate phage-bacterium complexes. Preparation of a STAG-labeled fluoromycobacteriophage enabled capture of bacterial complexes and identification of infected bacteria by fluorescence.
Collapse
|
35
|
Generation of affinity-tagged fluoromycobacteriophages by mixed assembly of phage capsids. Appl Environ Microbiol 2013; 79:5608-15. [PMID: 23851082 DOI: 10.1128/aem.01016-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Addition of affinity tags to bacteriophage particles facilitates a variety of applications, including vaccine construction and diagnosis of bacterial infections. Addition of tags to phage capsids is desirable, as modification of the tails can lead to poor adsorption and loss of infectivity. Although tags can readily be included as fusions to head decoration proteins, many phages do not have decoration proteins as virion components. The addition of a small (10-amino-acid) Strep-tag II (STAG II) to the mycobacteriophage TM4 capsid subunit, gp9, was not tolerated as a genetically homogenous recombinant phage but could be incorporated into the head by growth of wild-type phage on a host expressing the capsid-STAG fusion. Particles with capsids composed of wild-type and STAG-tagged subunit mixtures could be grown to high titers, showed good infectivities, and could be used to isolate phage-bacterium complexes. Preparation of a STAG-labeled fluoromycobacteriophage enabled capture of bacterial complexes and identification of infected bacteria by fluorescence.
Collapse
|
36
|
Abstract
The study of mycobacteriophages provides insights into viral diversity and evolution, as well as the genetics and physiology of their pathogenic hosts. Genomic characterization of 80 mycobacteriophages reveals a high degree of genetic diversity and an especially rich reservoir of interesting genes. These include a vast number of genes of unknown function that do not match known database entries and many genes whose functions can be predicted but which are not typically found as components of phage genomes. Thus many mysteries surround these genomes, such as why the genes are there, what do they do, how are they expressed and regulated, how do they influence the physiology of the host bacterium, and what forces of evolution directed them to their genomic homes? Although the genetic diversity and novelty of these phages is full of intrigue, it is a godsend for the mycobacterial geneticist, presenting an abundantly rich toolbox that can be exploited to devise new and effective ways for understanding the genetics and physiology of human tuberculosis. As the number of sequenced genomes continues to grow, their mysteries continue to thicken, and the time has come to learn more about the secret lives of mycobacteriophages.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennslyvania, USA
| |
Collapse
|
37
|
Broussard GW, Oldfield LM, Villanueva VM, Lunt BL, Shine EE, Hatfull GF. Integration-dependent bacteriophage immunity provides insights into the evolution of genetic switches. Mol Cell 2012; 49:237-48. [PMID: 23246436 DOI: 10.1016/j.molcel.2012.11.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/05/2012] [Accepted: 11/07/2012] [Indexed: 02/06/2023]
Abstract
Genetic switches are critical components of developmental circuits. Because temperate bacteriophages are vastly abundant and greatly diverse, they are rich resources for understanding the mechanisms and evolution of switches and the molecular control of genetic circuitry. Here, we describe a new class of small, compact, and simple switches that use site-specific recombination as the key decision point. The phage attachment site attP is located within the phage repressor gene such that chromosomal integration results in removal of a C-terminal tag that destabilizes the virally encoded form of the repressor. Integration thus not only confers prophage stability but also is a requirement for lysogenic establishment. The variety of these self-contained integration-dependent immunity systems in different genomic contexts suggests that these represent ancestral states in switch evolution from which more-complex switches have evolved. They also provide a powerful toolkit for building synthetic biological circuits.
Collapse
Affiliation(s)
- Gregory W Broussard
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
38
|
Bandhu A, Ganguly T, Jana B, Chakravarty A, Biswas A, Sau S. Biochemical characterization of L1 repressor mutants with altered operator DNA binding activity. BACTERIOPHAGE 2012; 2:79-88. [PMID: 23050218 PMCID: PMC3442829 DOI: 10.4161/bact.21157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A mycobacteriophage-specific repressor with the enhanced operator DNA binding activity at 32°C and no activity at 42°C has not been generated yet though it has potential in developing a temperature-controlled expression vector for mycobacterial system. To create such an invaluable repressor, here we have characterized four substitution mutants of mycobacteriophage L1 repressor by various probes. The W69C repressor mutant displayed no operator DNA binding activity, whereas, P131L repressor mutant exhibited very little DNA binding at 32°C. In contrast, both E36K and E39Q repressor mutants showed significantly higher DNA binding activity at 32°C, particularly, under in vivo conditions. Various mutations also had different effects on the structure, stability and the dimerization ability of L1 repressor. While the W69C mutant possessed a distorted tertiary structure, the P131L mutant dimerized poorly in solution at 32°C. Interestingly, both these mutants lost their two-domain structure and aggregated rapidly at 42°C. Of the native and mutant L1 repressor proteins, W69C and E36K mutants appeared to be the least stable at 32°C. Studies together suggest that the mutants, particularly P131L and E39Q mutants, could be used for creating a high affinity temperature-sensitive repressor in the future.
Collapse
Affiliation(s)
- Amitava Bandhu
- Department of Biochemistry; Bose Institute; P1/12-CIT Scheme VII M; Kolkata, India
| | | | | | | | | | | |
Collapse
|
39
|
Generation of a novel nucleic acid-based reporter system to detect phenotypic susceptibility to antibiotics in Mycobacterium tuberculosis. mBio 2012; 3:mBio.00312-11. [PMID: 22415006 PMCID: PMC3312217 DOI: 10.1128/mbio.00312-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We designed, constructed, and evaluated a prototype novel reporter system comprised of two functional cassettes: (i) the SP6 RNA polymerase gene under transcriptional control of a promoter active in mycobacteria and (ii) the consensus SP6 polymerase promoter that directs expression of an otherwise unexpressed sequence. We incorporated the reporter system into a mycobacteriophage for delivery into viable Mycobacterium tuberculosis, and introduction led to synthesis of an SP6 polymerase-dependent surrogate marker RNA that we detected by reverse transcriptase PCR (RT-PCR). The reporter confirmed the susceptibility profile of both drug-susceptible and drug-resistant M. tuberculosis strains exposed to first-line antitubercular drugs and required as little as 16 h of exposure to antibacterial agents targeting bacterial metabolic processes to accurately read the reaction. The reporter system translated the bacterial phenotype into a language interpretable by rapid and sensitive nucleic acid detection. As a phenotypic assay that works only on viable M. tuberculosis, it could be used to rapidly assess resistance to any drug, including drugs for which the mechanism of resistance is unknown or which result from many potential known (and unknown) genetic alterations. The ability to detect antibiotic resistance of slow-growing bacteria (i.e., Mycobacterium tuberculosis) is hampered by two factors, the time to detection (weeks to months) and the resistance mechanism (unknown for many drugs), delaying the appropriate treatment of patients with drug-resistant or multidrug-resistant tuberculosis (TB). The novel technique described in this article uses a unique surrogate nucleic acid marker produced by phage that infects M. tuberculosis to record phenotypic antibiotic susceptibility in less than a day.
Collapse
|
40
|
φ(2)GFP10, a high-intensity fluorophage, enables detection and rapid drug susceptibility testing of Mycobacterium tuberculosis directly from sputum samples. J Clin Microbiol 2012. [PMID: 22278833 DOI: 10.1128/jcm.06192-11; 10.1128/jcm.06192-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The difficulty of diagnosing active tuberculosis (TB) and lack of rapid drug susceptibility testing (DST) at the point of care remain critical obstacles to TB control. This report describes a high-intensity mycobacterium-specific-fluorophage (φ(2)GFP10) that for the first time allows direct visualization of Mycobacterium tuberculosis in clinical sputum samples. Engineered features distinguishing φ(2)GFP10 from previous reporter phages include an improved vector backbone with increased cloning capacity and superior expression of fluorescent reporter genes through use of an efficient phage promoter. φ(2)GFP10 produces a 100-fold increase in fluorescence per cell compared to existing reporter phages. DST for isoniazid and oxofloxacin, carried out in cultured samples, was complete within 36 h. Use of φ(2)GFP10 detected M. tuberculosis in clinical sputum samples collected from TB patients. DST for rifampin and kanamycin from sputum samples yielded results after 12 h of incubation with φ(2)GFP10. Fluorophage φ(2)GFP10 has potential for clinical development as a rapid, sensitive, and inexpensive point-of-care diagnostic tool for M. tuberculosis infection and for rapid DST.
Collapse
|
41
|
φ(2)GFP10, a high-intensity fluorophage, enables detection and rapid drug susceptibility testing of Mycobacterium tuberculosis directly from sputum samples. J Clin Microbiol 2012; 50:1362-9. [PMID: 22278833 DOI: 10.1128/jcm.06192-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The difficulty of diagnosing active tuberculosis (TB) and lack of rapid drug susceptibility testing (DST) at the point of care remain critical obstacles to TB control. This report describes a high-intensity mycobacterium-specific-fluorophage (φ(2)GFP10) that for the first time allows direct visualization of Mycobacterium tuberculosis in clinical sputum samples. Engineered features distinguishing φ(2)GFP10 from previous reporter phages include an improved vector backbone with increased cloning capacity and superior expression of fluorescent reporter genes through use of an efficient phage promoter. φ(2)GFP10 produces a 100-fold increase in fluorescence per cell compared to existing reporter phages. DST for isoniazid and oxofloxacin, carried out in cultured samples, was complete within 36 h. Use of φ(2)GFP10 detected M. tuberculosis in clinical sputum samples collected from TB patients. DST for rifampin and kanamycin from sputum samples yielded results after 12 h of incubation with φ(2)GFP10. Fluorophage φ(2)GFP10 has potential for clinical development as a rapid, sensitive, and inexpensive point-of-care diagnostic tool for M. tuberculosis infection and for rapid DST.
Collapse
|
42
|
Pope WH, Ferreira CM, Jacobs-Sera D, Benjamin RC, Davis AJ, DeJong RJ, Elgin SCR, Guilfoile FR, Forsyth MH, Harris AD, Harvey SE, Hughes LE, Hynes PM, Jackson AS, Jalal MD, MacMurray EA, Manley CM, McDonough MJ, Mosier JL, Osterbann LJ, Rabinowitz HS, Rhyan CN, Russell DA, Saha MS, Shaffer CD, Simon SE, Sims EF, Tovar IG, Weisser EG, Wertz JT, Weston-Hafer KA, Williamson KE, Zhang B, Cresawn SG, Jain P, Piuri M, Jacobs WR, Hendrix RW, Hatfull GF. Cluster K mycobacteriophages: insights into the evolutionary origins of mycobacteriophage TM4. PLoS One 2011; 6:e26750. [PMID: 22053209 PMCID: PMC3203893 DOI: 10.1371/journal.pone.0026750] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/03/2011] [Indexed: 01/21/2023] Open
Abstract
Five newly isolated mycobacteriophages –Angelica, CrimD, Adephagia, Anaya, and Pixie – have similar genomic architectures to mycobacteriophage TM4, a previously characterized phage that is widely used in mycobacterial genetics. The nucleotide sequence similarities warrant grouping these into Cluster K, with subdivision into three subclusters: K1, K2, and K3. Although the overall genome architectures of these phages are similar, TM4 appears to have lost at least two segments of its genome, a central region containing the integration apparatus, and a segment at the right end. This suggests that TM4 is a recent derivative of a temperate parent, resolving a long-standing conundrum about its biology, in that it was reportedly recovered from a lysogenic strain of Mycobacterium avium, but it is not capable of forming lysogens in any mycobacterial host. Like TM4, all of the Cluster K phages infect both fast- and slow-growing mycobacteria, and all of them – with the exception of TM4 – form stable lysogens in both Mycobacterium smegmatis and Mycobacterium tuberculosis; immunity assays show that all five of these phages share the same immune specificity. TM4 infects these lysogens suggesting that it was either derived from a heteroimmune temperate parent or that it has acquired a virulent phenotype. We have also characterized a widely-used conditionally replicating derivative of TM4 and identified mutations conferring the temperature-sensitive phenotype. All of the Cluster K phages contain a series of well conserved 13 bp repeats associated with the translation initiation sites of a subset of the genes; approximately one half of these contain an additional sequence feature composed of imperfectly conserved 17 bp inverted repeats separated by a variable spacer. The K1 phages integrate into the host tmRNA and the Cluster K phages represent potential new tools for the genetics of M. tuberculosis and related species.
Collapse
Affiliation(s)
- Welkin H. Pope
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Christina M. Ferreira
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Deborah Jacobs-Sera
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert C. Benjamin
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Ariangela J. Davis
- Department of Biology, Calvin College, Grand Rapids , Michigan, United States of America
| | - Randall J. DeJong
- Department of Biology, Calvin College, Grand Rapids , Michigan, United States of America
| | - Sarah C. R. Elgin
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Forrest R. Guilfoile
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mark H. Forsyth
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Alexander D. Harris
- Department of Biology, Calvin College, Grand Rapids , Michigan, United States of America
| | - Samuel E. Harvey
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Lee E. Hughes
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Peter M. Hynes
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Arrykka S. Jackson
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Marilyn D. Jalal
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Elizabeth A. MacMurray
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Coreen M. Manley
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Molly J. McDonough
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Jordan L. Mosier
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Larissa J. Osterbann
- Department of Biology, Calvin College, Grand Rapids , Michigan, United States of America
| | - Hannah S. Rabinowitz
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Corwin N. Rhyan
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Daniel A. Russell
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Christopher D. Shaffer
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Stephanie E. Simon
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Erika F. Sims
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Isabel G. Tovar
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Emilie G. Weisser
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - John T. Wertz
- Department of Biology, Calvin College, Grand Rapids , Michigan, United States of America
| | | | - Kurt E. Williamson
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Bo Zhang
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Steven G. Cresawn
- Department of Biology, James Madison University, Harrisonburg , Virginia, United States of America
| | - Paras Jain
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Mariana Piuri
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Roger W. Hendrix
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Graham F. Hatfull
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
43
|
Pope WH, Jacobs-Sera D, Russell DA, Peebles CL, Al-Atrache Z, Alcoser TA, Alexander LM, Alfano MB, Alford ST, Amy NE, Anderson MD, Anderson AG, Ang AAS, Ares M, Barber AJ, Barker LP, Barrett JM, Barshop WD, Bauerle CM, Bayles IM, Belfield KL, Best AA, Borjon A, Bowman CA, Boyer CA, Bradley KW, Bradley VA, Broadway LN, Budwal K, Busby KN, Campbell IW, Campbell AM, Carey A, Caruso SM, Chew RD, Cockburn CL, Cohen LB, Corajod JM, Cresawn SG, Davis KR, Deng L, Denver DR, Dixon BR, Ekram S, Elgin SCR, Engelsen AE, English BEV, Erb ML, Estrada C, Filliger LZ, Findley AM, Forbes L, Forsyth MH, Fox TM, Fritz MJ, Garcia R, George ZD, Georges AE, Gissendanner CR, Goff S, Goldstein R, Gordon KC, Green RD, Guerra SL, Guiney-Olsen KR, Guiza BG, Haghighat L, Hagopian GV, Harmon CJ, Harmson JS, Hartzog GA, Harvey SE, He S, He KJ, Healy KE, Higinbotham ER, Hildebrandt EN, Ho JH, Hogan GM, Hohenstein VG, Holz NA, Huang VJ, Hufford EL, Hynes PM, Jackson AS, Jansen EC, Jarvik J, Jasinto PG, Jordan TC, Kasza T, Katelyn MA, Kelsey JS, Kerrigan LA, Khaw D, Kim J, Knutter JZ, Ko CC, Larkin GV, Laroche JR, Latif A, Leuba KD, Leuba SI, Lewis LO, Loesser-Casey KE, Long CA, Lopez AJ, Lowery N, Lu TQ, Mac V, Masters IR, McCloud JJ, McDonough MJ, Medenbach AJ, Menon A, Miller R, Morgan BK, Ng PC, Nguyen E, Nguyen KT, Nguyen ET, Nicholson KM, Parnell LA, Peirce CE, Perz AM, Peterson LJ, Pferdehirt RE, Philip SV, Pogliano K, Pogliano J, Polley T, Puopolo EJ, Rabinowitz HS, Resiss MJ, Rhyan CN, Robinson YM, Rodriguez LL, Rose AC, Rubin JD, Ruby JA, Saha MS, Sandoz JW, Savitskaya J, Schipper DJ, Schnitzler CE, Schott AR, Segal JB, Shaffer CD, Sheldon KE, Shepard EM, Shepardson JW, Shroff MK, Simmons JM, Simms EF, Simpson BM, Sinclair KM, Sjoholm RL, Slette IJ, Spaulding BC, Straub CL, Stukey J, Sughrue T, Tang TY, Tatyana LM, Taylor SB, Taylor BJ, Temple LM, Thompson JV, Tokarz MP, Trapani SE, Troum AP, Tsay J, Tubbs AT, Walton JM, Wang DH, Wang H, Warner JR, Weisser EG, Wendler SC, Weston-Hafer KA, Whelan HM, Williamson KE, Willis AN, Wirtshafter HS, Wong TW, Wu P, Yang YJ, Yee BC, Zaidins DA, Zhang B, Zúniga MY, Hendrix RW, Hatfull GF. Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution. PLoS One 2011; 6:e16329. [PMID: 21298013 PMCID: PMC3029335 DOI: 10.1371/journal.pone.0016329] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/09/2010] [Indexed: 11/25/2022] Open
Abstract
Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists.
Collapse
Affiliation(s)
- Welkin H. Pope
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daniel A. Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Craig L. Peebles
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Zein Al-Atrache
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Turi A. Alcoser
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Lisa M. Alexander
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Matthew B. Alfano
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Samantha T. Alford
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Nichols E. Amy
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Marie D. Anderson
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Alexander G. Anderson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Andrew A. S. Ang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Manuel Ares
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Amanda J. Barber
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Lucia P. Barker
- Howard Hughes Medical Institute, Science Education Alliance, Chevy Chase, Maryland United States of America
| | - Jonathan M. Barrett
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - William D. Barshop
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Cynthia M. Bauerle
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Ian M. Bayles
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Katherine L. Belfield
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Aaron A. Best
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Agustin Borjon
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Charles A. Bowman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Christine A. Boyer
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Kevin W. Bradley
- Howard Hughes Medical Institute, Science Education Alliance, Chevy Chase, Maryland United States of America
| | - Victoria A. Bradley
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Lauren N. Broadway
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Keshav Budwal
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Kayla N. Busby
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ian W. Campbell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Anne M. Campbell
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Alyssa Carey
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Steven M. Caruso
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Rebekah D. Chew
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Chelsea L. Cockburn
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Lianne B. Cohen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey M. Corajod
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Steven G. Cresawn
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Kimberly R. Davis
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Lisa Deng
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Dee R. Denver
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Breyon R. Dixon
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Sahrish Ekram
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Sarah C. R. Elgin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Angela E. Engelsen
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Belle E. V. English
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Marcella L. Erb
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Crystal Estrada
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Laura Z. Filliger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Ann M. Findley
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Lauren Forbes
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Mark H. Forsyth
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Tyler M. Fox
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Melissa J. Fritz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Roberto Garcia
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Zindzi D. George
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Anne E. Georges
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | | | - Shannon Goff
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Rebecca Goldstein
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Kobie C. Gordon
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Russell D. Green
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Stephanie L. Guerra
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Krysta R. Guiney-Olsen
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Bridget G. Guiza
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Leila Haghighat
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Garrett V. Hagopian
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Catherine J. Harmon
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Jeremy S. Harmson
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Grant A. Hartzog
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Samuel E. Harvey
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Siping He
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Kevin J. He
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kaitlin E. Healy
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Ellen R. Higinbotham
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Erin N. Hildebrandt
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Jason H. Ho
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Gina M. Hogan
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Victoria G. Hohenstein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nathan A. Holz
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Vincent J. Huang
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ericka L. Hufford
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Peter M. Hynes
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Arrykka S. Jackson
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Erica C. Jansen
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Jonathan Jarvik
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Paul G. Jasinto
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Tuajuanda C. Jordan
- Howard Hughes Medical Institute, Science Education Alliance, Chevy Chase, Maryland United States of America
| | - Tomas Kasza
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Murray A. Katelyn
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Jessica S. Kelsey
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Larisa A. Kerrigan
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Daryl Khaw
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Junghee Kim
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Justin Z. Knutter
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Ching-Chung Ko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gail V. Larkin
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Jennifer R. Laroche
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Asma Latif
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Kohana D. Leuba
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sequoia I. Leuba
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lynn O. Lewis
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Kathryn E. Loesser-Casey
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Courtney A. Long
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - A. Javier Lopez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Nicholas Lowery
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Tina Q. Lu
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Victor Mac
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Isaac R. Masters
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Jazmyn J. McCloud
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Molly J. McDonough
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Andrew J. Medenbach
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Anjali Menon
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Rachel Miller
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Brandon K. Morgan
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Patrick C. Ng
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Elvis Nguyen
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Katrina T. Nguyen
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Emilie T. Nguyen
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kaylee M. Nicholson
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Lindsay A. Parnell
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Caitlin E. Peirce
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Allison M. Perz
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Luke J. Peterson
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Rachel E. Pferdehirt
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Seegren V. Philip
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Tamsen Polley
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Erica J. Puopolo
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Hannah S. Rabinowitz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Michael J. Resiss
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Corwin N. Rhyan
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Yetta M. Robinson
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Lauren L. Rodriguez
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Andrew C. Rose
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Jeffrey D. Rubin
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jessica A. Ruby
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Margaret S. Saha
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - James W. Sandoz
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Judith Savitskaya
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Dale J. Schipper
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | | | - Amanda R. Schott
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - J. Bradley Segal
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Christopher D. Shaffer
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kathryn E. Sheldon
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Erica M. Shepard
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jonathan W. Shepardson
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Madav K. Shroff
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jessica M. Simmons
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Erika F. Simms
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Brandy M. Simpson
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Kathryn M. Sinclair
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Robert L. Sjoholm
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Ingrid J. Slette
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Blaire C. Spaulding
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Clark L. Straub
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Joseph Stukey
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Trevor Sughrue
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Tin-Yun Tang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Lyons M. Tatyana
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Stephen B. Taylor
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Barbara J. Taylor
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Louise M. Temple
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Jasper V. Thompson
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michael P. Tokarz
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Stephanie E. Trapani
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Alexander P. Troum
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Jonathan Tsay
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Anthony T. Tubbs
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jillian M. Walton
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Danielle H. Wang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Hannah Wang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - John R. Warner
- Department of Biology, University of Louisiana at Monroe, Monroe, Louisiana, United States of America
| | - Emilie G. Weisser
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Samantha C. Wendler
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, Virginia, United States of America
| | - Kathleen A. Weston-Hafer
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Hilary M. Whelan
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Kurt E. Williamson
- Biology Department, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Angelica N. Willis
- Biology Department, A. Paul Schaap Science Center, Hope College, Holland, Michigan, United States of America
| | - Hannah S. Wirtshafter
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Theresa W. Wong
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Phillip Wu
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Yun jeong Yang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Brandon C. Yee
- Biological Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - David A. Zaidins
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Bo Zhang
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Melina Y. Zúniga
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Roger W. Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Abstract
Viruses are powerful tools for investigating and manipulating their hosts, but the enormous size and amazing genetic diversity of the bacteriophage population have emerged as something of a surprise. In light of the evident importance of mycobacteria to human health--especially Mycobacterium tuberculosis, which causes tuberculosis--and the difficulties that have plagued their genetic manipulation, mycobacteriophages are especially appealing subjects for discovery, genomic characterization, and manipulation. With more than 70 complete genome sequences available, the mycobacteriophages have provided a wealth of information on the diversity of phages that infect a common bacterial host, revealed the pervasively mosaic nature of phage genome architectures, and identified a huge number of genes of unknown function. Mycobacteriophages have provided key tools for tuberculosis genetics, and new methods for simple construction of mycobacteriophage recombinants will facilitate postgenomic explorations into mycobacteriophage biology.
Collapse
Affiliation(s)
- Graham F Hatfull
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
45
|
Bandhu A, Ganguly T, Jana B, Mondal R, Sau S. Regions and residues of an asymmetric operator DNA interacting with the monomeric repressor of temperate mycobacteriophage L1. Biochemistry 2010; 49:4235-43. [PMID: 20377203 DOI: 10.1021/bi9020956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, the repressor protein of mycobacteriophage L1 bound to two operator DNAs with dissimilar affinity. Surprisingly, the putative operator consensus sequence, 5'GGTGGa/cTGTCAAG, lacks the dyad symmetry reported for the repressor binding operators of lambda and related phages. To gain insight into the structure of the L1 repressor-asymmetric operator DNA complex, we have performed various in vitro experiments. A dimethyl sulfate protection assay revealed that five guanine bases, mostly distributed in the two adjacent major grooves of the 13 bp operator DNA helix, participate in repressor binding. Hydroxyl radical footprinting demonstrated that interaction between the repressor and operator DNA is asymmetric in nature and occurs primarily through one face of the DNA helix. Genetic studies not only confirmed the results of the dimethyl sulfate protection assay but also indicated that other bases in the 13 bp operator DNA are critical for repressor binding. Interestingly, repressor that weakly induced bending in the asymmetric operator DNA interacted with this operator as a monomer. The tertiary structure of the L1 repressor-operator DNA complex therefore appears to be distinct from those of the lambdoid phages even though the number of repressor molecules per operator site closely matched that of the lambda phage system.
Collapse
Affiliation(s)
- Amitava Bandhu
- Department of Biochemistry, Bose Institute, P1/12-CIT Scheme VII M, Kolkata, WB 700 054, India
| | | | | | | | | |
Collapse
|
46
|
Sampson T, Broussard GW, Marinelli LJ, Jacobs-Sera D, Ray M, Ko CC, Russell D, Hendrix RW, Hatfull GF. Mycobacteriophages BPs, Angel and Halo: comparative genomics reveals a novel class of ultra-small mobile genetic elements. MICROBIOLOGY-SGM 2009; 155:2962-2977. [PMID: 19556295 DOI: 10.1099/mic.0.030486-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacteriophages BPs, Angel and Halo are closely related viruses isolated from Mycobacterium smegmatis, and possess the smallest known mycobacteriophage genomes, 41,901 bp, 42,289 bp and 41,441 bp, respectively. Comparative genome analysis reveals a novel class of ultra-small mobile genetic elements; BPs and Halo each contain an insertion of the proposed mobile elements MPME1 and MPME2, respectively, at different locations, while Angel contains neither. The close similarity of the genomes provides a comparison of the pre- and post-integration sequences, revealing an unusual 6 bp insertion at one end of the element and no target duplication. Nine additional copies of these mobile elements are identified in a variety of different contexts in other mycobacteriophage genomes. In addition, BPs, Angel and Halo have an unusual lysogeny module in which the repressor and integrase genes are closely linked. The attP site is located within the repressor-coding region, such that prophage formation results in expression of a C-terminally truncated, but active, form of the repressor.
Collapse
Affiliation(s)
- Timothy Sampson
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gregory W Broussard
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Laura J Marinelli
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Deborah Jacobs-Sera
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mondira Ray
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ching-Chung Ko
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Daniel Russell
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Roger W Hendrix
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
47
|
Bandhu A, Ganguly T, Chanda PK, Das M, Jana B, Chakrabarti G, Sau S. Antagonistic effects Na+ and Mg2+ on the structure, function, and stability of mycobacteriophage L1 repressor. BMB Rep 2009; 42:293-8. [DOI: 10.5483/bmbrep.2009.42.5.293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Rybniker J, Plum G, Robinson N, Small PL, Hartmann P. Identification of three cytotoxic early proteins of mycobacteriophage L5 leading to growth inhibition in Mycobacterium smegmatis. Microbiology (Reading) 2008; 154:2304-2314. [DOI: 10.1099/mic.0.2008/017004-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jan Rybniker
- 1st Department of Internal Medicine, University of Cologne, 50924 Cologne, Germany
| | - Georg Plum
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, 50924 Cologne, Germany
| | - Nirmal Robinson
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, 50924 Cologne, Germany
| | - Pamela L. Small
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Pia Hartmann
- Department of Internal Medicine 1, Division of Infectious Diseases, University of Regensburg, 93042 Regensburg, Germany
- 1st Department of Internal Medicine, University of Cologne, 50924 Cologne, Germany
| |
Collapse
|
49
|
Pham TT, Jacobs-Sera D, Pedulla ML, Hendrix RW, Hatfull GF. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. MICROBIOLOGY-SGM 2007; 153:2711-2723. [PMID: 17660435 PMCID: PMC2884959 DOI: 10.1099/mic.0.2007/008904-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mycobacteriophage Tweety is a newly isolated phage of Mycobacterium smegmatis. It has a viral morphology with an isometric head and a long flexible tail, and forms turbid plaques from which stable lysogens can be isolated. The Tweety genome is 58 692 bp in length, contains 109 protein-coding genes, and shows significant but interrupted nucleotide sequence similarity with the previously described mycobacteriophages Llij, PMC and Che8. However, overall the genome possesses mosaic architecture, with gene products being related to other mycobacteriophages such as Che9d, Omega and Corndog. A gene encoding an integrase of the tyrosine-recombinase family is located close to the centre of the genome, and a putative attP site has been identified within a short intergenic region immediately upstream of int. This Tweety attP–int cassette was used to construct a new set of integration-proficient plasmid vectors that efficiently transform both fast- and slow-growing mycobacteria through plasmid integration at a chromosomal locus containing a tRNALys gene. These vectors are maintained well in the absence of selection and are completely compatible with integration vectors derived from mycobacteriophage L5, enabling the simple construction of complex recombinants with genes integrated simultaneously at different chromosomal positions.
Collapse
Affiliation(s)
- Thuy T. Pham
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Marisa L. Pedulla
- Department of Biology, Montana Tech, University of Montana, Butte, MT 59701, USA
| | - Roger W. Hendrix
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F. Hatfull
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
50
|
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71:495-548. [PMID: 17804669 PMCID: PMC2168647 DOI: 10.1128/mmbr.00005-07] [Citation(s) in RCA: 628] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Actinobacteria constitute one of the largest phyla among bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, parco Area delle Scienze 11a, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|