1
|
He W, Meng J. CDC20: a novel therapeutic target in cancer. Am J Transl Res 2023; 15:678-693. [PMID: 36915766 PMCID: PMC10006751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/27/2022] [Indexed: 03/16/2023]
Abstract
Cell division cycle protein 20 (Cdc20) is a member of the cell cyclin family. In the early stage of mitosis, it activates the anaphase-promoting complex (APC) and forms the E3 ubiquitin ligase complex APCCdc20, which destroys key regulators of the cell cycle and promotes mitosis. Cdc20 serves as a target for the spindle checkpoint, ensuring proper chromosome segregation. As an oncoprotein, Cdc20 is highly expressed in a variety of malignant tumors, and Cdc20 overexpression is associated with poor prognosis of these tumors. This review aims to dissect the tumorigenic role of Cdc20 in human malignancies and its targeting strategies.
Collapse
Affiliation(s)
- Wenning He
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China
| | - Jun Meng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China
| |
Collapse
|
2
|
Bai GY, Choe MH, Kim JS, Oh JS. Mis12 controls cyclin B1 stabilization via Cdc14B-mediated APC/C Cdh1 regulation during meiotic G2/M transition in mouse oocytes. Development 2020; 147:147/8/dev185322. [PMID: 32341029 DOI: 10.1242/dev.185322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/18/2020] [Indexed: 01/02/2023]
Abstract
Mammalian oocytes are arrested at G2/prophase of the first meiosis. After a hormone surge, oocytes resume meiosis, undergoing germinal vesicle breakdown (GVBD). This process is regulated by Cdk1/cyclin B1. Here, we report that Mis12 is required for G2/M transition by regulating cyclin B1 accumulation via Cdc14B-mediated APC/CCdh1 regulation, but is not essential for spindle and chromosome dynamics during meiotic maturation. Depletion of Mis12 severely compromised GVBD by impairing cyclin B1 accumulation. Importantly, impaired GVBD after Mis12 depletion was rescued not only by overexpressing cyclin B1 but also by depleting Cdc14B or Cdh1. Notably, oocytes rescued by cyclin B1 overexpression exhibited normal spindle and chromosome organization with intact kinetochore-microtubule attachments. In addition, after being rescued by cyclin B1 overexpression, Mis12-depleted oocytes normally extruded polar bodies. Moreover, Mis12-depleted oocytes formed pronuclear structures after fertilization but failed to develop beyond zygotes. Interestingly, Mis12 was localized in the cytoplasm and spindle poles in oocytes, in contrast to kinetochore localization in somatic cells. Therefore, our results demonstrate that Mis12 is required for meiotic G2/M transition but is dispensable for meiotic progression through meiosis I and II.
Collapse
Affiliation(s)
- Guang-Yu Bai
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Korea
| | - Min Ho Choe
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea .,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
3
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
4
|
Vigneron S, Sundermann L, Labbé JC, Pintard L, Radulescu O, Castro A, Lorca T. Cyclin A-cdk1-Dependent Phosphorylation of Bora Is the Triggering Factor Promoting Mitotic Entry. Dev Cell 2018; 45:637-650.e7. [PMID: 29870721 DOI: 10.1016/j.devcel.2018.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/04/2018] [Accepted: 05/02/2018] [Indexed: 10/14/2022]
Abstract
Mitosis is induced by the activation of the cyclin B/cdk1 feedback loop that creates a bistable state. The triggering factor promoting active cyclin B/cdk1 switch has been assigned to cyclin B/cdk1 accumulation during G2. However, this complex is rapidly inactivated by Wee1/Myt1-dependent phosphorylation of cdk1 making unlikely a triggering role of this kinase in mitotic commitment. Here we show that cyclin A/cdk1 kinase is the factor triggering mitosis. Cyclin A/cdk1 phosphorylates Bora to promote Aurora A-dependent Plk1 phosphorylation and activation and mitotic entry. We demonstrate that Bora phosphorylation by cyclin A/cdk1 is both necessary and sufficient for mitotic commitment. Finally, we identify a site in Bora whose phosphorylation by cyclin A/cdk1 is required for mitotic entry. We constructed a mathematical model confirming the essential role of this kinase in mitotic commitment. Overall, our results uncover the molecular mechanism by which cyclin A/cdk1 triggers mitotic entry.
Collapse
Affiliation(s)
- Suzanne Vigneron
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Lena Sundermann
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jean-Claude Labbé
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Lionel Pintard
- Equipe Labelisée Ligue Contre le Cancer, Institut Jacques Monod, UMR7592, Université Paris-Diderot, Sorbonne Paris Cité, CNRS, Paris, France
| | - Ovidiu Radulescu
- Dynamique des Interactions Membranaires Normales et Pathologiques (DIMNP), CNRS UMR5235, Université de Montpellier, Place E Bataillon, 34095 Montpellier, France
| | - Anna Castro
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.
| | - Thierry Lorca
- Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
5
|
Alfieri C, Zhang S, Barford D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol 2017; 7:170204. [PMID: 29167309 PMCID: PMC5717348 DOI: 10.1098/rsob.170204] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes.
Collapse
Affiliation(s)
- Claudio Alfieri
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Suyang Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
6
|
APC/C and retinoblastoma interaction: cross-talk of retinoblastoma protein with the ubiquitin proteasome pathway. Biosci Rep 2016; 36:BSR20160152. [PMID: 27402801 PMCID: PMC5025812 DOI: 10.1042/bsr20160152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin (Ub) ligase anaphase promoting complex/cyclosome (APC/C) and the tumour suppressor retinoblastoma protein (pRB) play key roles in cell cycle regulation. APC/C is a critical regulator of mitosis and G1-phase of the cell cycle whereas pRB keeps a check on proliferation by inhibiting transition to the S-phase. APC/C and pRB interact with each other via the co-activator of APC/C, FZR1, providing an alternative pathway of regulation of G1 to S transition by pRB using a post-translational mechanism. Both pRB and FZR1 have complex roles and are implicated not only in regulation of cell proliferation but also in differentiation, quiescence, apoptosis, maintenance of chromosomal integrity and metabolism. Both are also targeted by transforming viruses. We discuss recent advances in our understanding of the involvement of APC/C and pRB in cell cycle based decisions and how these insights will be useful for development of anti-cancer and anti-viral drugs.
Collapse
|
7
|
Malhotra S, Vinod PK, Mansfeld J, Stemmann O, Mayer TU. RETRACTED: The Anaphase-Promoting Complex/Cyclosome Is Essential for Entry into Meiotic M-Phase. Dev Cell 2016; 36:94-102. [DOI: 10.1016/j.devcel.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 11/16/2022]
|
8
|
Yang Y, Tsuchiya D, Lacefield S. Bub3 promotes Cdc20-dependent activation of the APC/C in S. cerevisiae. ACTA ACUST UNITED AC 2015; 209:519-27. [PMID: 25987604 PMCID: PMC4442811 DOI: 10.1083/jcb.201412036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/16/2015] [Indexed: 12/19/2022]
Abstract
Bub3 and its kinetochore localization are required for the normal timing of anaphase onset and for normal binding of APC/C and Cdc20 in S. cerevisiae. The spindle checkpoint ensures accurate chromosome segregation by sending a signal from an unattached kinetochore to inhibit anaphase onset. Numerous studies have described the role of Bub3 in checkpoint activation, but less is known about its functions apart from the spindle checkpoint. In this paper, we demonstrate that Bub3 has an unexpected role promoting metaphase progression in budding yeast. Loss of Bub3 resulted in a metaphase delay that was not a consequence of aneuploidy or the activation of a checkpoint. Instead, bub3Δ cells had impaired binding of the anaphase-promoting complex/cyclosome (APC/C) with its activator Cdc20, and the delay could be rescued by Cdc20 overexpression. Kinetochore localization of Bub3 was required for normal mitotic progression, and Bub3 and Cdc20 colocalized at the kinetochore. Although Bub1 binds Bub3 at the kinetochore, bub1Δ cells did not have compromised APC/C and Cdc20 binding. The results demonstrate that Bub3 has a previously unknown function at the kinetochore in activating APC/C-Cdc20 for normal mitotic progression.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Dai Tsuchiya
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
9
|
Calcium signaling and meiotic exit at fertilization in Xenopus egg. Int J Mol Sci 2014; 15:18659-76. [PMID: 25322156 PMCID: PMC4227238 DOI: 10.3390/ijms151018659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/01/2014] [Accepted: 10/09/2014] [Indexed: 11/16/2022] Open
Abstract
Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation.
Collapse
|
10
|
Sharaby Y, Lahmi R, Amar O, Elbaz I, Lerer-Goldshtein T, Weiss AM, Appelbaum L, Tzur A. Gas2l3 is essential for brain morphogenesis and development. Dev Biol 2014; 394:305-13. [PMID: 25131197 DOI: 10.1016/j.ydbio.2014.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 11/19/2022]
Abstract
Growth arrest-specific 2-like 3 (Gas2l3) is a newly discovered cell cycle protein and a cytoskeleton orchestrator that binds both actin filament and microtubule networks. Studies of cultured mammalian cells established Gas2l3 as a regulator of the cell division process, in particular cytokinesis and cell abscission. Thus far, the role of Gas2l3 in vivo remains entirely unknown. In order to investigate Gas2l3 in developing vertebrates, we cloned the zebrafish gene. Spatiotemporal analysis of gas2l3 expression revealed a ubiquitous maternal transcript as well as a zygotic transcript primarily restricted to brain tissues. We next conducted a series of loss-of-function experiments, and searched for developmental anomalies at the end of the segmentation period. Our analysis revealed abnormal brain morphogenesis and ventricle formation in gas2l3 knockdown embryos. This signature phenotype could be rescued by elevated levels of gas2l3 RNA. At the tissue level, gas2l3 downregulation interferes with cell proliferation, suggesting that the cell cycle activities of Gas2l3 are essential for brain tissue homeostasis. Altogether, this study provides the first insight into the function of gas2l3 in vivo, demonstrating its essential role in brain development.
Collapse
Affiliation(s)
- Yaara Sharaby
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Roxane Lahmi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Omer Amar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Idan Elbaz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tali Lerer-Goldshtein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Aryeh M Weiss
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Amit Tzur
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
11
|
Hainline SG, Rickmyre JL, Neitzel LR, Lee LA, Lee E. The Drosophila MCPH1-B isoform is a substrate of the APCCdh1 E3 ubiquitin ligase complex. Biol Open 2014; 3:669-76. [PMID: 24972868 PMCID: PMC4154303 DOI: 10.1242/bio.20148318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that coordinates progression through the cell cycle by temporally and spatially promoting the degradation of key proteins. Many of these targeted proteins have been shown to play important roles in regulating orderly progression through the cell cycle. Using a previously described Drosophila in vitro expression cloning approach, we screened for new substrates of the APC in Xenopus egg extract and identified Drosophila MCPH1 (dMCPH1), a protein encoded by the homolog of a causative gene for autosomal recessive primary microcephaly in humans. The dMCPH1-B splice form, but not the dMCPH1-C splice form, undergoes robust degradation in Xenopus interphase egg extract in a Cdh1-dependent manner. Degradation of dMCPH1-B is controlled by an N-terminal destruction box (D-box) motif as its deletion or mutation blocks dMCPH1-B degradation. dMCPH1 levels are increased in Drosophila morula (APC2) mutant embryos, consistent with dMCPH1 being an APC substrate in vivo. Using a purified, reconstituted system, we show that dMCPH1-B is ubiquitinated by APCCdh1, indicating that the effect of APC on dMCPH1-B ubiquitination and degradation is direct. Full-length human MCPH1 (hMCPH1) has been predicted to be an APC substrate based on its interaction with the APC subunit Cdc27. We were not able to detect changes in hMCPH1 levels during the cell cycle in cultured human cells. Overexpression of hMCPH1 (or dMCPH1-B) in developing Xenopus embryos, however, disrupts cell division, suggesting that proper regulation of hMCPH1 and dMCPH1-B activity plays a critical role in proper cell-cycle progression.
Collapse
Affiliation(s)
- Sarah G Hainline
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA Present address: Sarah Cannon Research Institute, Nashville, TN 37203, USA
| | - Jamie L Rickmyre
- Present address: Sarah Cannon Research Institute, Nashville, TN 37203, USA
| | - Leif R Neitzel
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA Present address: Sarah Cannon Research Institute, Nashville, TN 37203, USA
| | - Laura A Lee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA Present address: Sarah Cannon Research Institute, Nashville, TN 37203, USA.
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA Present address: Sarah Cannon Research Institute, Nashville, TN 37203, USA.
| |
Collapse
|
12
|
Singh SA, Winter D, Kirchner M, Chauhan R, Ahmed S, Ozlu N, Tzur A, Steen JA, Steen H. Co-regulation proteomics reveals substrates and mechanisms of APC/C-dependent degradation. EMBO J 2014; 33:385-99. [PMID: 24510915 DOI: 10.1002/embj.201385876] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using multiplexed quantitative proteomics, we analyzed cell cycle-dependent changes of the human proteome. We identified >4,400 proteins, each with a six-point abundance profile across the cell cycle. Hypothesizing that proteins with similar abundance profiles are co-regulated, we clustered the proteins with abundance profiles most similar to known Anaphase-Promoting Complex/Cyclosome (APC/C) substrates to identify additional putative APC/C substrates. This protein profile similarity screening (PPSS) analysis resulted in a shortlist enriched in kinases and kinesins. Biochemical studies on the kinesins confirmed KIFC1, KIF18A, KIF2C, and KIF4A as APC/C substrates. Furthermore, we showed that the APC/C(CDH1)-dependent degradation of KIFC1 regulates the bipolar spindle formation and proper cell division. A targeted quantitative proteomics experiment showed that KIFC1 degradation is modulated by a stabilizing CDK1-dependent phosphorylation site within the degradation motif of KIFC1. The regulation of KIFC1 (de-)phosphorylation and degradation provides insights into the fidelity and proper ordering of substrate degradation by the APC/C during mitosis.
Collapse
Affiliation(s)
- Sasha A Singh
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tsai TYC, Theriot JA, Ferrell JE. Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos. PLoS Biol 2014; 12:e1001788. [PMID: 24523664 PMCID: PMC3921120 DOI: 10.1371/journal.pbio.1001788] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
During the early development of Xenopus laevis embryos, the first mitotic cell cycle is long (∼85 min) and the subsequent 11 cycles are short (∼30 min) and clock-like. Here we address the question of how the Cdk1 cell cycle oscillator changes between these two modes of operation. We found that the change can be attributed to an alteration in the balance between Wee1/Myt1 and Cdc25. The change in balance converts a circuit that acts like a positive-plus-negative feedback oscillator, with spikes of Cdk1 activation, to one that acts like a negative-feedback-only oscillator, with a shorter period and smoothly varying Cdk1 activity. Shortening the first cycle, by treating embryos with the Wee1A/Myt1 inhibitor PD0166285, resulted in a dramatic reduction in embryo viability, and restoring the length of the first cycle in inhibitor-treated embryos with low doses of cycloheximide partially rescued viability. Computations with an experimentally parameterized mathematical model show that modest changes in the Wee1/Cdc25 ratio can account for the observed qualitative changes in the cell cycle. The high ratio in the first cycle allows the period to be long and tunable, and decreasing the ratio in the subsequent cycles allows the oscillator to run at a maximal speed. Thus, the embryo rewires its feedback regulation to meet two different developmental requirements during early development.
Collapse
Affiliation(s)
- Tony Y.-C. Tsai
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Julie A. Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - James E. Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
14
|
Listovsky T, Sale JE. Sequestration of CDH1 by MAD2L2 prevents premature APC/C activation prior to anaphase onset. ACTA ACUST UNITED AC 2013; 203:87-100. [PMID: 24100295 PMCID: PMC3798251 DOI: 10.1083/jcb.201302060] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MAD2L2 is rapidly degraded by APC/CCDC20 at the onset of anaphase, allowing release of sequestered CDH1 to activate the dephosphorylated APC/C. The switch from activation of the anaphase-promoting complex/cyclosome (APC/C) by CDC20 to CDH1 during anaphase is crucial for accurate mitosis. APC/CCDC20 ubiquitinates a limited set of substrates for subsequent degradation, including Cyclin B1 and Securin, whereas APC/CCDH1 has a broader specificity. This switch depends on dephosphorylation of CDH1 and the APC/C, and on the degradation of CDC20. Here we show, in human cells, that the APC/C inhibitor MAD2L2 also contributes to ensuring the sequential activation of the APC/C by CDC20 and CDH1. In prometaphase, MAD2L2 sequestered free CDH1 away from the APC/C. At the onset of anaphase, MAD2L2 was rapidly degraded by APC/CCDC20, releasing CDH1 to activate the dephosphorylated APC/C. Loss of MAD2L2 led to premature association of CDH1 with the APC/C, early destruction of APC/CCDH1 substrates, and accelerated mitosis with frequent mitotic aberrations. Thus, MAD2L2 helps to ensure a robustly bistable switch between APC/CCDC20 and APC/CCDH1 during the metaphase-to-anaphase transition, thereby contributing to mitotic fidelity.
Collapse
Affiliation(s)
- Tamar Listovsky
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, England, UK
| | | |
Collapse
|
15
|
Vinod P, Zhou X, Zhang T, Mayer TU, Novak B. The role of APC/C inhibitor Emi2/XErp1 in oscillatory dynamics of early embryonic cell cycles. Biophys Chem 2013; 177-178:1-6. [DOI: 10.1016/j.bpc.2013.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
16
|
Pe’er T, Lahmi R, Sharaby Y, Chorni E, Noach M, Vecsler M, Zlotorynski E, Steen H, Steen JA, Tzur A. Gas2l3, a novel constriction site-associated protein whose regulation is mediated by the APC/C Cdh1 complex. PLoS One 2013; 8:e57532. [PMID: 23469016 PMCID: PMC3585356 DOI: 10.1371/journal.pone.0057532] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/23/2013] [Indexed: 12/05/2022] Open
Abstract
Growth arrest-specific 2-like protein 3 (Gas2l3) was recently identified as an Actin/Tubulin cross-linker protein that regulates cytokinesis. Using cell-free systems from both frog eggs and human cells, we show that the Gas2l3 protein is targeted for ubiquitin-mediated proteolysis by the APC/CCdh1 complex, but not by the APC/CCdc20 complex, and is phosphorylated by Cdk1 in mitosis. Moreover, late in cytokinesis, Gas2l3 is exclusively localized to the constriction sites, which are the narrowest parts of the intercellular bridge connecting the two daughter cells. Overexpression of Gas2l3 specifically interferes with cell abscission, which is the final stage of cell division, when the cutting of the intercellular bridge at the constriction sites occurs. We therefore suggest that Gas2l3 is part of the cellular mechanism that terminates cell division.
Collapse
Affiliation(s)
- Tal Pe’er
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Roxane Lahmi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Yaara Sharaby
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Evelin Chorni
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Meirav Noach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Manuela Vecsler
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Eitan Zlotorynski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hanno Steen
- Proteomics Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Judith A. Steen
- Proteomics Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Neurobiology, Harvard Medical School and F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Amit Tzur
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|
17
|
The phosphatase-transcription activator EYA1 is targeted by anaphase-promoting complex/Cdh1 for degradation at M-to-G1 transition. Mol Cell Biol 2012; 33:927-36. [PMID: 23263983 DOI: 10.1128/mcb.01516-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The phosphatase and transactivator EYA family proteins are overexpressed in many cancer cell lines and are abundantly distributed in undifferentiated cells during development. Loss-of-function studies have shown that EYA1 is required for cell proliferation and survival during mammalian organogenesis. However, how EYA1 is regulated during development is unknown. Here, we report that EYA1 is regulated throughout the cell cycle via ubiquitin-mediated proteolysis. The level of EYA1 protein fluctuates in the cell cycle, peaking during mitosis and dropping drastically as cells exit into G(1). We found that EYA1 is efficiently degraded during mitotic exit in a Cdh1-dependent manner and that these two proteins physically interact. Overexpression of Cdh1 reduces the protein levels of ectopically expressed or endogenous EYA1, whereas depletion of Cdh1 by RNA interference stabilizes the EYA1 protein. Together, our results indicate that anaphase-promoting complex/cyclosome (APC/C)-Cdh1 specifically targets EYA1 for degradation during M-to-G(1) transition, failure of which may compromise cell proliferation and survival.
Collapse
|
18
|
Sinclair M, Huang JY. Studying mitotic checkpoint by illustrating dynamic kinetochore protein behavior and chromosome motion in living Drosophila syncytial embryos. J Vis Exp 2012:e3763. [PMID: 22733107 PMCID: PMC3471286 DOI: 10.3791/3763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The spindle assembly checkpoint (SAC) mechanism is an active signal, which monitors the interaction between chromosome kinetochores and spindle microtubules to prevent anaphase onset until the chromosomes are properly connected. Cells use this mechanism to prevent aneuploidy or genomic instability, and hence cancers and other human diseases like birth defects and Alzheimer's1. A number of the SAC components such as Mad1, Mad2, Bub1, BubR1, Bub3, Mps1, Zw10, Rod and Aurora B kinase have been identified and they are all kinetochore dynamic proteins2. Evidence suggests that the kinetochore is where the SAC signal is initiated. The SAC prime regulatory target is Cdc20. Cdc20 is one of the essential APC/C (Anaphase Promoting Complex or Cyclosome) activators3 and is also a kinetochore dynamic protein4-6. When activated, the SAC inhibits the activity of the APC/C to prevent the destruction of two key substrates, cyclin B and securin, thereby preventing the metaphase to anaphase transition7,8. Exactly how the SAC signal is initiated and assembled on the kinetochores and relayed onto the APC/C to inhibit its function still remains elusive. Drosophila is an extremely tractable experimental system; a much simpler and better-understood organism compared to the human but one that shares fundamental processes in common. It is, perhaps, one of the best organisms to use for bio-imaging studies in living cells, especially for visualization of the mitotic events in space and time, as the early embryo goes through 13 rapid nuclear division cycles synchronously (8-10 minutes for each cycle at 25 °C) and gradually organizes the nuclei in a single monolayer just underneath the cortex9. Here, I present a bio-imaging method using transgenic Drosophila expressing GFP (Green Fluorescent Protein) or its variant-targeted proteins of interest and a Leica TCS SP2 confocal laser scanning microscope system to study the SAC function in flies, by showing images of GFP fusion proteins of some of the SAC components, Cdc20 and Mad2, as the example.
Collapse
Affiliation(s)
- Maureen Sinclair
- Institute for Cell and Molecular Biosciences, University of Newcastle, United Kingdom
| | | |
Collapse
|
19
|
Barford D. Structural insights into anaphase-promoting complex function and mechanism. Philos Trans R Soc Lond B Biol Sci 2012; 366:3605-24. [PMID: 22084387 DOI: 10.1098/rstb.2011.0069] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The anaphase-promoting complex or cyclosome (APC/C) controls sister chromatid segregation and the exit from mitosis by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. This unusually large E3 RING-cullin ubiquitin ligase is assembled from 13 different proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D box and KEN box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. Recent structural and biochemical studies of the APC/C are beginning to reveal an understanding of the roles of individual APC/C subunits and co-activators and how they mutually interact to mediate APC/C functions. This review focuses on the findings showing how information on the structural organization of the APC/C provides insights into the role of co-activators and core APC/C subunits in mediating substrate recognition. Mechanisms of regulating and modulating substrate recognition are discussed in the context of controlling the binding of the co-activator to the APC/C, and the accessibility and conformation of the co-activator when bound to the APC/C.
Collapse
Affiliation(s)
- David Barford
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
20
|
Seah MKY, Holt JE, García-Higuera I, Moreno S, Jones KT. The Anaphase-Promoting Complex activator Fizzy-Related-1 (FZR1) is involved in the establishment of a single mitotic spindle in 1-cell embryos and in the mitotic divisions of early mammalian embryos. J Cell Sci 2012; 125:6030-7. [DOI: 10.1242/jcs.110155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In early embryos of a number of species the Anaphase-Promoting Complex (APC), an important cell cycle regulator, requires only CDC20 for cell division. In contrast FZR1, a non-essential gene in many cell types, is thought to play a role in APC activation at later cell cycles, and especially in endoreplication. In keeping with this, FZR1 knockout mouse embryos show normal preimplantation development but die due to a lack of endoreplication needed for placentation. However, interpretation of the role of FZR1 during this period is hindered by the presence of maternal stores. Here, therefore, we used an oocyte-specific knockout to examine FZR1 function in early mouse embryo development. Maternal FZR1 was not critical for completion of meiosis, and furthermore viable pups were born to these females mated with normal males. However, in early embryos the absence of both maternal and paternal FZR1 led to a dramatic loss in genome integrity, such that the majority of embryos arrested having undergone only a single mitotic division and contained many γ-H2AX foci, consistent with fragmented DNA. A prominent feature of such embryos was a the establishment of two independent spindles following pronuclear fusion and thus a failure of the chromosomes to mix (syngamy). These generated binucleate 2-cell embryos. In the 10% of embryos that progressed to the 4-cell stage, division was so slow that compaction occurred prematurely. No embryo development to the blastocyst stage was ever observed. We conclude that FZR1 is a surprisingly essential gene involved in the establishment of a single spindle from the two pronuclei in 1-cell embryos as well as being involved in the maintainence of genomic integrity during the mitotic divisions of early mammalian embryos.
Collapse
|
21
|
Shakina LA, Strashnyuk VY. Genetic, molecular, and humoral endocycle-regulating mechanisms. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411100164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Gotoh T, Villa LM, Capelluto DGS, Finkielstein CV. Regulatory pathways coordinating cell cycle progression in early Xenopus development. Results Probl Cell Differ 2011; 53:171-99. [PMID: 21630146 DOI: 10.1007/978-3-642-19065-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The African clawed frog, Xenopus laevis, is used extensively as a model organism for studying both cell development and cell cycle regulation. For over 20 years now, this model organism has contributed to answering fundamental questions concerning the mechanisms that underlie cell cycle transitions--the cellular components that synthesize, modify, repair, and degrade nucleic acids and proteins, the signaling pathways that allow cells to communicate, and the regulatory pathways that lead to selective expression of subsets of genes. In addition, the remarkable simplicity of the Xenopus early cell cycle allows for tractable manipulation and dissection of the basic components driving each transition. In this organism, early cell divisions are characterized by rapid cycles alternating phases of DNA synthesis and division. The post-blastula stages incorporate gap phases, lengthening progression, and allowing more time for DNA repair. Various cyclin/Cdk complexes are differentially expressed during the early cycles with orderly progression being driven by both the combined action of cyclin synthesis and degradation and the appropriate selection of specific substrates by their Cdk components. Like other multicellular organisms, chief developmental events in early Xenopus embryogenesis coincide with profound remodeling of the cell cycle, suggesting that cell proliferation and differentiation events are linked and coordinated through crosstalk mechanisms acting on signaling pathways involving the expression of cell cycle control genes.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
23
|
Abstract
In the nematode Caenorhabditis elegans, temperature-sensitive mutants of emb-1 arrest as one-cell embryos in metaphase of meiosis I in a manner that is indistinguishable from embryos that have been depleted of known subunits of the anaphase-promoting complex or cyclosome (APC/C). Here we show that the emb-1 phenotype is enhanced in double mutant combinations with known APC/C subunits and suppressed in double mutant combinations with known APC/C suppressors. In addition to its meiotic function, emb-1 is required for mitotic proliferation of the germline. These studies reveal that emb-1 encodes K10D2.4, a homolog of the small, recently discovered APC/C subunit, APC16.
Collapse
|
24
|
Abstract
Here we investigate the mechanisms regulating Greatwall (Gwl), a serine/threonine kinase essential for promoting the correct timing of mitosis. We identify Gwl as a unique AGC kinase that, unlike most AGC members, appears to be devoid of a hydrophobic motif despite the presence of a functional hydrophobic pocket. Our results suggest that Gwl activation could be mediated by the binding of its hydrophobic pocket to the hydrophobic motif of another AGC kinase. Our molecular modeling and mutagenic analysis also indicate that Gwl displays a conserved tail/linker site whose phosphorylation mediates kinase activation by promoting the interaction of this phosphorylated residue with two lysines at the N terminus. This interaction could stabilize the αC-helix and maintain kinase activity. Finally, the different phosphorylation sites on Gwl are identified, and the role of each one in the regulation of Gwl kinase activity is determined. Our data suggest that only the phosphorylation of the tail/linker site, located outside the putative T loop, appears to be essential for Gwl activation. In summary, our results identify Gwl as a member of the AGC family of kinases that appears to be regulated by unique mechanisms and that differs from the other members of this family.
Collapse
|
25
|
Hörmanseder E, Tischer T, Heubes S, Stemmann O, Mayer TU. Non-proteolytic ubiquitylation counteracts the APC/C-inhibitory function of XErp1. EMBO Rep 2011; 12:436-43. [PMID: 21399619 DOI: 10.1038/embor.2011.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 11/09/2022] Open
Abstract
Mature Xenopus oocytes are arrested in meiosis by the activity of XErp1/Emi2, an inhibitor of the ubiquitin-ligase anaphase-promoting complex/cyclosome (APC/C). On fertilization, XErp1 is degraded, resulting in APC/C activation and the consequent degradation of cell-cycle regulators and exit from meiosis. In this study, we show that a modest increase in the activity of the ubiquitin-conjugating enzyme UbcX overrides the meiotic arrest in an APC/C-dependent reaction. Intriguingly, XErp1 remains stable in these conditions. We found that UbcX causes the ubiquitylation of XErp1, followed by its dissociation from the APC/C. Our data support the idea that ubiquitylation regulates the APC/C-inhibitory activity of XErp1.
Collapse
Affiliation(s)
- Eva Hörmanseder
- Department of Molecular Genetics, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
26
|
Preechaphol R, Klinbunga S, Khamnamtong B, Menasveta P. Isolation and characterization of genes functionally involved in ovarian development of the giant tiger shrimp Penaeus monodon by suppression subtractive hybridization (SSH). Genet Mol Biol 2010; 33:676-85. [PMID: 21637577 PMCID: PMC3036150 DOI: 10.1590/s1415-47572010000400014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 06/29/2010] [Indexed: 12/05/2022] Open
Abstract
Suppression subtractive hybridization (SSH) libraries between cDNA in stages I (previtellogenic) and III (cortical rod) ovaries of the giant tiger shrimp (Penaeus monodon) were established. In all, 452 ESTs were unidirectionally sequenced. Sequence assembly generated 28 contigs and 201 singletons, 109 of which (48.0%) corresponding to known sequences previously deposited in GenBank. Several reproduction-related transcripts were identified. The full-length cDNA of anaphase promoting complex subunit 11 (PmAPC11; 600 bp with an ORF of 255 bp corresponding to a polypeptide of 84 amino acids) and selenoprotein Mprecursor (PmSePM; 904 bp with an ORF of 396 bp corresponding to a polypeptide of 131 amino acids) were characterized and reported for the first time in penaeid shrimp. Semiquantitative RT-PCR revealed that the expression levels of PmSePM and keratinocyte-associated protein 2 significantly diminished throughout ovarian development, whereas Ser/Thrcheckpoint kinase 1 (Chk1), DNA replication licensing factor mcm2 and egalitarian were down-regulated in mature ovaries of wild P. monodon (p < 0.05). Accordingly, the expression profiles of PmSePM and keratinocyte-associated protein 2 could be used as biomarkers for evaluating the degree of reproductive maturation in domesticated P. monodon.
Collapse
Affiliation(s)
- Rachanimuk Preechaphol
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok Thailand
| | | | | | | |
Collapse
|
27
|
Abstract
AbstractThe complex molecular events responsible for coordinating chromosome replication and segregation with cell division and growth are collectively known as the cell cycle. Progression through the cell cycle is orchestrated by the interplay between controlled protein synthesis and degradation and protein phosphorylation. Protein degradation is primarily regulated through the ubiquitin proteasome system, mediated by two related E3 protein ubiquitin ligases, the Skp1 cullin F-box (SCF) and the anaphase promoting complex (also known as the cyclosome) (APC/C). The APC/C is a multi-subunit cullin-RING E3 ubiquitin ligase that regulates progression through the mitotic phase of the cell cycle and controls entry into S phase by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D-box and KEN-box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. The aim of this article is to discuss the APC/C from a structural and mechanistic perspective. Although an atomic structure of the APC/C is still lacking, a combination of genetic, biochemical, electron microscopy studies of intact APC/C and crystallographic analysis of individual subunits, together with analogies to evolutionarily related E3 ligases of the RING family, has provided deep insights into the molecular mechanisms of catalysis and substrate recognition, and structural organisation of the APC/C.
Collapse
|
28
|
Lorca T, Bernis C, Vigneron S, Burgess A, Brioudes E, Labbé JC, Castro A. Constant regulation of both the MPF amplification loop and the Greatwall-PP2A pathway is required for metaphase II arrest and correct entry into the first embryonic cell cycle. J Cell Sci 2010; 123:2281-91. [PMID: 20554897 DOI: 10.1242/jcs.064527] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recent results indicate that regulating the balance between cyclin-B-Cdc2 kinase, also known as M-phase-promoting factor (MPF), and protein phosphatase 2A (PP2A) is crucial to enable correct mitotic entry and exit. In this work, we studied the regulatory mechanisms controlling the cyclin-B-Cdc2 and PP2A balance by analysing the activity of the Greatwall kinase and PP2A, and the different components of the MPF amplification loop (Myt1, Wee1, Cdc25) during the first embryonic cell cycle. Previous data indicated that the Myt1-Wee1-Cdc25 equilibrium is tightly regulated at the G2-M and M-G1 phase transitions; however, no data exist regarding the regulation of this balance during M phase and interphase. Here, we demonstrate that constant regulation of the cyclin-B-Cdc2 amplification loop is required for correct mitotic division and to promote correct timing of mitotic entry. Our results show that removal of Cdc25 from metaphase-II-arrested oocytes promotes mitotic exit, whereas depletion of either Myt1 or Wee1 in interphase egg extracts induces premature mitotic entry. We also provide evidence that, besides the cyclin-B-Cdc2 amplification loop, the Greatwall-PP2A pathway must also be tightly regulated to promote correct first embryonic cell division. When PP2A is prematurely inhibited in the absence of cyclin-B-Cdc2 activation, endogenous cyclin-A-Cdc2 activity induces irreversible aberrant mitosis in which there is, first, partial transient phosphorylation of mitotic substrates and, second, subsequent rapid and complete degradation of cyclin A and cyclin B, thus promoting premature and rapid exit from mitosis.
Collapse
Affiliation(s)
- Thierry Lorca
- Universités Montpellier 2 et 1, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, IFR 122, 1919 Route de Mende, 34293 Montpellier CEDEX 5, France.
| | | | | | | | | | | | | |
Collapse
|
29
|
Qiao X, Zhang L, Gamper AM, Fujita T, Wan Y. APC/C-Cdh1: from cell cycle to cellular differentiation and genomic integrity. Cell Cycle 2010; 9:3904-12. [PMID: 20935501 DOI: 10.4161/cc.9.19.13585] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets various substrates for proteolysis inside and outside of the cell cycle. The activation of APC/C is dependent on two WD-40 domain proteins, Cdc20 and Cdh1. While APC/Cdc20 principally regulates mitotic progression, APC/Cdh1 shows a broad spectrum of substrates in and beyond cell cycle. In the past several years, numerous biochemical and mouse genetic studies have greatly attracted our attention to the emerging role of APC/Cdh1 in genomic integrity, cellular differentiation and human diseases. This review will aim to summarize the recently expanded understanding of APC/Cdh1 in regulating biological function and how its dysfunction may lead to diseases.
Collapse
Affiliation(s)
- Xinxian Qiao
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
30
|
Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci U S A 2010; 107:12564-9. [PMID: 20538976 DOI: 10.1073/pnas.0914191107] [Citation(s) in RCA: 562] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we show that the functional human ortholog of Greatwall protein kinase (Gwl) is the microtubule-associated serine/threonine kinase-like protein, MAST-L. This kinase promotes mitotic entry and maintenance in human cells by inhibiting protein phosphatase 2A (PP2A), a phosphatase that dephosphorylates cyclin B-Cdc2 substrates. The complete depletion of Gwl by siRNA arrests human cells in G2. When the levels of this kinase are only partially depleted, however, cells enter into mitosis with multiple defects and fail to inactivate the spindle assembly checkpoint (SAC). The ability of cells to remain arrested in mitosis by the SAC appears to be directly proportional to the amount of Gwl remaining. Thus, when Gwl is only slightly reduced, cells arrest at prometaphase. More complete depletion correlates with the premature dephosphorylation of cyclin B-Cdc2 substrates, inactivation of the SAC, and subsequent exit from mitosis with severe cytokinesis defects. These phenotypes appear to be mediated by PP2A, as they could be rescued by either a double Gwl/PP2A knockdown or by the inhibition of this phosphatase with okadaic acid. These results suggest that the balance between cyclin B-Cdc2 and PP2A must be tightly regulated for correct mitotic entry and exit and that Gwl is crucial for mediating this regulation in somatic human cells.
Collapse
|
31
|
Wäsch R, Robbins JA, Cross FR. The emerging role of APC/CCdh1 in controlling differentiation, genomic stability and tumor suppression. Oncogene 2009; 29:1-10. [PMID: 19826416 DOI: 10.1038/onc.2009.325] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deregulation of the G1/G0 phase of the cell cycle can lead to cancer. During G1, most cells commit alternatively to DNA replication and division, or to cell-cycle exit and differentiation. The anaphase-promoting complex or cyclosome (APC/C) activated by Cdh1 coordinately eliminates positive cell-cycle regulators as well as inhibitors of differentiation, thereby coupling cell-cycle exit and differentiation. Misregulation of Cdh1 thus has the potential to promote both cell-cycle re-entry and either perturbed differentiation or dedifferentiation. In addition, APC/C(Cdh1) is required to maintain genomic stability. As a result, loss of Cdh1 can contribute to tumorigenesis in the form of proliferation of poorly differentiated and genetically unstable cells.
Collapse
Affiliation(s)
- R Wäsch
- Department of Hematology and Oncology, University Medical Center, Freiburg, Germany.
| | | | | |
Collapse
|
32
|
Vigneron S, Brioudes E, Burgess A, Labbé JC, Lorca T, Castro A. Greatwall maintains mitosis through regulation of PP2A. EMBO J 2009; 28:2786-93. [PMID: 19680222 DOI: 10.1038/emboj.2009.228] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 07/20/2009] [Indexed: 11/10/2022] Open
Abstract
Greatwall (GW) is a new kinase that has an important function in the activation and the maintenance of cyclin B-Cdc2 activity. Although the mechanism by which it induces this effect is unknown, it has been suggested that GW could maintain cyclin B-Cdc2 activity by regulating its activation loop. Using Xenopus egg extracts, we show that GW depletion promotes mitotic exit, even in the presence of a high cyclin B-Cdc2 activity by inducing dephosphorylation of mitotic substrates. These results indicate that GW does not maintain the mitotic state by regulating the cyclin B-Cdc2 activation loop but by regulating a phosphatase. This phosphatase is PP2A; we show that (1) PP2A binds GW, (2) the inhibition or the specific depletion of this phosphatase from mitotic extracts rescues the phenotype induced by GW inactivation and (3) the PP2A-dependent dephosphorylation of cyclin B-Cdc2 substrates is increased in GW-depleted Xenopus egg extracts. These results suggest that mitotic entry and maintenance is not only mediated by the activation of cyclin B-Cdc2 but also by the regulation of PP2A by GW.
Collapse
Affiliation(s)
- Suzanne Vigneron
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, IFR 122, Labellisée Ligue Nationale Contre le Cancer, Universités Montpellier 2 et 1, Montpellier, France
| | | | | | | | | | | |
Collapse
|
33
|
Zwolak J, Adjerid N, Bagci EZ, Tyson JJ, Sible JC. A quantitative model of the effect of unreplicated DNA on cell cycle progression in frog egg extracts. J Theor Biol 2009; 260:110-20. [PMID: 19490919 DOI: 10.1016/j.jtbi.2009.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 05/20/2009] [Indexed: 11/27/2022]
Abstract
A critical goal in cell biology is to develop a systems-level perspective of eukaryotic cell cycle controls. Among these controls, a complex signaling network (called 'checkpoints') arrests progression through the cell cycle when there is a threat to genomic integrity such as unreplicated or damaged DNA. Understanding the regulatory principles of cell cycle checkpoints is important because loss of checkpoint regulation may be a requisite step on the roadway to cancer. Mathematical modeling has proved to be a useful guide to cell cycle regulation by revealing the importance of bistability, hysteresis and time lags in governing cell cycle transitions and checkpoint mechanisms. In this report, we propose a mathematical model of the frog egg cell cycle including effects of unreplicated DNA on progression into mitosis. By a stepwise approach utilizing parameter estimation tools, we build a model that is grounded in fundamental behaviors of the cell cycle engine (hysteresis and time lags), includes new elements in the signaling network (Myt1 and Chk1 kinases), and fits a large and diverse body of data from the experimental literature. The model provides a validated framework upon which to build additional aspects of the cell cycle checkpoint signaling network, including those control signals in the mammalian cell cycle that are commonly mutated in cancer.
Collapse
Affiliation(s)
- Jason Zwolak
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, 24061, USA.
| | | | | | | | | |
Collapse
|
34
|
van Leuken R, Clijsters L, van Zon W, Lim D, Yao X, Wolthuis RMF, Yaffe MB, Medema RH, van Vugt MATM. Polo-like kinase-1 controls Aurora A destruction by activating APC/C-Cdh1. PLoS One 2009; 4:e5282. [PMID: 19390576 PMCID: PMC2668763 DOI: 10.1371/journal.pone.0005282] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 03/16/2009] [Indexed: 11/19/2022] Open
Abstract
Polo-like kinase-1 (Plk1) is activated before mitosis by Aurora A and its cofactor Bora. In mitosis, Bora is degraded in a manner dependent on Plk1 kinase activity and the E3 ubiquitin ligase SCF-betaTrCP. Here, we show that Plk1 is also required for the timely destruction of its activator Aurora A in late anaphase. It has been shown that Aurora A destruction is controlled by the auxiliary subunit Cdh1 of the Anaphase-Promoting Complex/Cyclosome (APC/C). Remarkably, we found that Plk1-depletion prevented the efficient dephosphorylation of Cdh1 during mitotic exit. Plk1 mediated its effect on Cdh1, at least in part, through direct phosphorylation of the human phosphatase Cdc14A, controlling the phosphorylation state of Cdh1. We conclude that Plk1 facilitates efficient Aurora A degradation through APC/C-Cdh1 activation after mitosis, with a potential role for hCdc14A.
Collapse
Affiliation(s)
- Renske van Leuken
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Linda Clijsters
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wouter van Zon
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dan Lim
- The David H. Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - XueBiao Yao
- University of Science and Technology, Hefei, China
| | - Rob M. F. Wolthuis
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michael B. Yaffe
- The David H. Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - René H. Medema
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht, the Netherlands
- The David H. Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Hara M, Mori M, Wada T, Tachibana K, Kishimoto T. Start of the embryonic cell cycle is dually locked in unfertilized starfish eggs. Development 2009; 136:1687-96. [PMID: 19369392 DOI: 10.1242/dev.035261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A key event in the oocyte-to-embryo transition is the start of the embryonic mitotic cell cycle. Prior to this start, the cell cycle in oocytes is generally arrested at a particular stage during meiosis, and the meiotic arrest is released by fertilization. However, it remains unclear how release from the meiotic arrest is implicated in the start of the embryonic cell cycle. To elucidate this link, we have used starfish eggs, in which G1 phase arrest occurs after completion of meiosis if the mature oocytes are not fertilized, and fertilization simply directs the start of the embryonic cell cycle. The starfish G1 arrest is known to rely on the Mos-MAPK-Rsk (p90 ribosomal S6 kinase) pathway, and inactivation of Rsk induces S phase in the absence of fertilization. However, here we show that this S phase is not followed by M phase when MAPK remains active, owing to poly(A)-independent repression of cyclin A and B synthesis. By contrast, inactivation of MAPK alone induces M phase, even when S phase is inhibited by constitutively active Rsk. Thus, there is a divergence of separate pathways downstream of MAPK that together block the start of the embryonic mitotic cycle. One is the previously known Rsk-dependent pathway that prevents S phase, and the other is a novel pathway that is not mediated by Rsk and that leads to prevention of the first mitotic M phase through suppression of protein synthesis of M phase cyclins. Release from such a 'dual-lock' by fertilization results in the start of the embryonic cell cycle.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of BioscienceTokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
36
|
In vitro assays for the anaphase-promoting complex/cyclosome (APC/C) in Xenopus egg extracts. Methods Mol Biol 2009; 545:287-300. [PMID: 19475396 DOI: 10.1007/978-1-60327-993-2_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C), a large (20S) multisubunit E3 ligase, has an essential role to ubiquitylate numerous substrates at specific times during mitosis and G1 phase as well as in meiosis. The deregulation of the APC/C causes cell death or genomic instability, which is a hallmark of cancers. Although 13 years have passed since its discovery, the molecular mechanisms of the APC/C-dependent ubiquitylation and proteolysis are still poorly understood. The development of in vitro systems enables the identification of new substrates and investigation of the molecular mechanisms by which the APC/C recognizes its substrates. This chapter describes in vitro assays reconstituted in Xenopus egg extracts.
Collapse
|
37
|
Bazile F, Gagné JP, Mercier G, Lo KS, Pascal A, Vasilescu J, Figeys D, Poirier GG, Kubiak JZ, Chesnel F. Differential proteomic screen to evidence proteins ubiquitinated upon mitotic exit in cell-free extract of Xenopus laevis embryos. J Proteome Res 2008; 7:4701-14. [PMID: 18823142 DOI: 10.1021/pr800250x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Post-translational modification of proteins via ubiquitination plays a crucial role in numerous vital functions of the cell. Polyubiquitination is one of the key regulatory processes involved in regulation of mitotic progression. Here we describe a differential proteomic screen dedicated to identification of novel proteins ubiquitinated upon mitotic exit in cell-free extract of Xenopus laevis embryo. Mutated recombinant His6-tagged ubiquitin (Ubi (K48R)) was added to mitotic extract from which we purified conjugated proteins, as well as associated proteins in nondenaturing conditions by cobalt affinity chromatography. Proteins eluted from Ubi (K48R) supplemented and control extracts were compared by LC-MS/MS analysis after monodimensional SDS-PAGE. A total of 144 proteins potentially ubiquitinated or associated with them were identified. Forty-one percent of these proteins were shown to be involved in ubiquitination and/or proteasomal degradation pathway confirming the specificity of the screen. Twelve proteins, among them ubiquitin itself, were shown to carry a "GG" or "LRGG" remnant tag indicating their direct ubiquitination. Interestingly, sequence analysis of ubiquitinated substrates carrying these tags indicated that in Xenopus cell-free embryo extract supplemented with Ubi (K48R) the majority of polyubiquitination occurred through lysine-11 specific ubiquitin chain polymerization. The potential interest in this atypical form of ubiquitination as well as usefulness of our method in analyzing atypical polyubiquitin species is discussed.
Collapse
Affiliation(s)
- Franck Bazile
- CNRS UMR 6061, Institute of Genetics & Development, University of Rennes 1, Mitosis & Meiosis Group, IFR 140 GFAS, 35 043 Rennes Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The anaphase-promoting complex/cyclosome controls repair and recombination by ubiquitylating Rhp54 in fission yeast. Mol Cell Biol 2008; 28:3905-16. [PMID: 18426916 DOI: 10.1128/mcb.02116-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination (HR) is important for maintaining genome integrity and for the process of meiotic chromosome segregation and the generation of variation. HR is regulated throughout the cell cycle, being prevalent in the S and G2 phases and suppressed in the G1 phase. Here we show that the anaphase-promoting complex/cyclosome (APC/C) regulates homologous recombination in the fission yeast Schizosaccharomyces pombe by ubiquitylating Rhp54 (an ortholog of Rad54). We show that Rhp54 is a novel APC/C substrate that is destroyed in G1 phase in a KEN-box- and Ste9/Fizzy-related manner. The biological consequences of failing to temporally regulate HR via Rhp54 degradation are seen in haploid cells only in the absence of antirecombinase Srs2 function and are more extensive in diploid cells, which become sensitive to a range of DNA-damaging agents, including hydroxyurea, methyl methanesulfonate, bleomycin, and UV. During meiosis, expression of nondegradable Rhp54 inhibits interhomolog recombination and stimulates sister chromatid recombination. We thus propose that it is critical to control levels of Rhp54 in G1 to suppress HR repair of double-strand breaks and during meiosis to coordinate interhomolog recombination.
Collapse
|
39
|
Regulation of the Aurora B chromosome passenger protein complex during oocyte maturation in Xenopus laevis. Mol Cell Biol 2008; 28:4196-203. [PMID: 18378691 DOI: 10.1128/mcb.00169-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dynamics of the Aurora B protein kinase during Xenopus oocyte meiotic maturation were examined. Resting G2 oocytes express inactive Aurora B that is not associated with other subunits of the chromosome passenger complex (CPC). Activity increases near the time of germinal vesicle breakdown in progesterone-treated oocytes, and this increase is correlated with the synthesis of inner centromere protein (INCENP) and survivin, components of the CPC. Ablation of INCENP synthesis led to the failure of progesterone treatment to activate Aurora B, but biochemical progression through the meiosis I-to-II transition and arrest at metaphase II were not affected. At fertilization, Aurora B was deactivated in concert with the degradation of INCENP, and the levels of Aurora B kinase activity and INCENP oscillated in subsequent embryonic cell cycles. Prevention of the decrease in Aurora B activity at fertilization by expression of ectopic wild-type INCENP, but not kinase-dead Aurora B INCENP, blocked calcium-induced exit from metaphase arrest in egg extracts.
Collapse
|
40
|
Sreenivasan R, Cai M, Bartfai R, Wang X, Christoffels A, Orban L. Transcriptomic analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain. PLoS One 2008; 3:e1791. [PMID: 18335061 PMCID: PMC2262149 DOI: 10.1371/journal.pone.0001791] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 02/07/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Our knowledge on zebrafish reproduction is very limited. We generated a gonad-derived cDNA microarray from zebrafish and used it to analyze large-scale gene expression profiles in adult gonads and other organs. METHODOLOGY/PRINCIPAL FINDINGS We have identified 116638 gonad-derived zebrafish expressed sequence tags (ESTs), 21% of which were isolated in our lab. Following in silico normalization, we constructed a gonad-derived microarray comprising 6370 unique, full-length cDNAs from differentiating and adult gonads. Labeled targets from adult gonad, brain, kidney and 'rest-of-body' from both sexes were hybridized onto the microarray. Our analyses revealed 1366, 881 and 656 differentially expressed transcripts (34.7% novel) that showed highest expression in ovary, testis and both gonads respectively. Hierarchical clustering showed correlation of the two gonadal transcriptomes and their similarities to those of the brains. In addition, we have identified 276 genes showing sexually dimorphic expression both between the brains and between the gonads. By in situ hybridization, we showed that the gonadal transcripts with the strongest array signal intensities were germline-expressed. We found that five members of the GTP-binding septin gene family, from which only one member (septin 4) has previously been implicated in reproduction in mice, were all strongly expressed in the gonads. CONCLUSIONS/SIGNIFICANCE We have generated a gonad-derived zebrafish cDNA microarray and demonstrated its usefulness in identifying genes with sexually dimorphic co-expression in both the gonads and the brains. We have also provided the first evidence of large-scale differential gene expression between female and male brains of a teleost. Our microarray would be useful for studying gonad development, differentiation and function not only in zebrafish but also in related teleosts via cross-species hybridizations. Since several genes have been shown to play similar roles in gonadogenesis in zebrafish and other vertebrates, our array may even provide information on genetic disorders affecting gonadal phenotypes and fertility in mammals.
Collapse
Affiliation(s)
- Rajini Sreenivasan
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Minnie Cai
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Richard Bartfai
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Xingang Wang
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Alan Christoffels
- Computational Biology, Temasek Life Sciences Laboratory, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Laszlo Orban
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Ducibella T, Fissore R. The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev Biol 2008; 315:257-79. [PMID: 18255053 DOI: 10.1016/j.ydbio.2007.12.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 12/12/2022]
Abstract
Reviews in Developmental Biology have covered the pathways that generate the all-important intracellular calcium (Ca(2+)) signal at fertilization [Miyazaki, S., Shirakawa, H., Nakada, K., Honda, Y., 1993a. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca(2+) release channel in Ca(2+) waves and Ca(2+) oscillations at fertilization of mammalian eggs. Dev. Biol. 158, 62-78; Runft, L., Jaffe, L., Mehlmann, L., 2002. Egg activation at fertilization: where it all begins. Dev. Biol. 245, 237-254] and the different temporal responses of Ca(2+) in many organisms [Stricker, S., 1999. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 211, 157-176]. Those reviews raise the importance of identifying how Ca(2+) causes the events of egg activation (EEA) and to what extent these temporal Ca(2+) responses encode developmental information. This review covers recent studies that have analyzed how these Ca(2+) signals are interpreted by specific proteins, and how these proteins regulate various EEA responsible for the onset of development. Many of these proteins are protein kinases (CaMKII, PKC, MPF, MAPK, MLCK) whose activity is directly or indirectly regulated by Ca(2+), and whose amount increases during late oocyte maturation. We cover biochemical progress in defining the signaling pathways between Ca(2+) and the EEA, as well as discuss how oscillatory or multiple Ca(2+) signals are likely to have specific advantages biochemically and/or developmentally. These emerging concepts are put into historical context, emphasizing that key contributions have come from many organisms. The intricate interdependence of Ca(2+), Ca(2+)-dependent proteins, and the EEA raise many new questions for future investigations that will provide insight into the extent to which fertilization-associated signaling has long-range implications for development. In addition, answers to these questions should be beneficial to establishing parameters of egg quality for human and animal IVF, as well as improving egg activation protocols for somatic cell nuclear transfer to generate stem cells and save endangered species.
Collapse
Affiliation(s)
- Tom Ducibella
- Department of OB/GYN, Tufts-New England Medical Center, Boston, MA 02111, USA.
| | | |
Collapse
|
42
|
Sible JC, Tyson JJ. Mathematical modeling as a tool for investigating cell cycle control networks. Methods 2007; 41:238-47. [PMID: 17189866 PMCID: PMC1993813 DOI: 10.1016/j.ymeth.2006.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2006] [Indexed: 11/30/2022] Open
Abstract
Although not a traditional experimental "method," mathematical modeling can provide a powerful approach for investigating complex cell signaling networks, such as those that regulate the eukaryotic cell division cycle. We describe here one modeling approach based on expressing the rates of biochemical reactions in terms of nonlinear ordinary differential equations. We discuss the steps and challenges in assigning numerical values to model parameters and the importance of experimental testing of a mathematical model. We illustrate this approach throughout with the simple and well-characterized example of mitotic cell cycles in frog egg extracts. To facilitate new modeling efforts, we describe several publicly available modeling environments, each with a collection of integrated programs for mathematical modeling. This review is intended to justify the place of mathematical modeling as a standard method for studying molecular regulatory networks and to guide the non-expert to initiate modeling projects in order to gain a systems-level perspective for complex control systems.
Collapse
Affiliation(s)
- Jill C Sible
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA.
| | | |
Collapse
|
43
|
Wang Y, Zhan Q. Cell Cycle-dependent Expression of Centrosomal Ninein-like Protein in Human Cells Is Regulated by the Anaphase-promoting Complex. J Biol Chem 2007; 282:17712-9. [PMID: 17403670 DOI: 10.1074/jbc.m701350200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The recently identified centrosome protein Nlp (ninein-like protein) is a key regulator in centrosome maturation, which contributes to chromosome segregation and cytokinesis. However, the mechanism(s) controlling Nlp expression remains largely unknown. Here we have shown that Nlp expression is cell cycle-dependent with a peak at G(2)/M transition in human cells. Nlp is a short-lived protein and degraded by the proteasome via the anaphase-promoting cyclosome complex (APC/c) pathway. It interacts with the APC/c through the APC2 or Cdc27 subunits and is ubiquitinated. Following treatment with proteasome inhibitors, its protein level is elevated. Nlp binds in vivo to the degradation-targeting proteins Cdh1 and Cdc20, and overexpression of Cdh1 and Cdc20 enhances Nlp degradation. Using point mutations of the two putative degradation signals in Nlp, we have found that its degradation requires intact KEN-box and D-box. Interestingly, the Lys-Glu-Asn-D-box-mutated Nlp exhibits a much stronger capability of inducing anchorage-independent growth and multinuclearity compared with the wild type Nlp. Taken together, these findings indicate that Nlp expression is cell cycle-dependent and regulated by APC-mediated protein degradation.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | |
Collapse
|
44
|
Ayad NG, Rankin S, Ooi D, Rape M, Kirschner MW. Identification of ubiquitin ligase substrates by in vitro expression cloning. Methods Enzymol 2007; 399:404-14. [PMID: 16338372 DOI: 10.1016/s0076-6879(05)99028-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The number of identified E3 ubiquitin ligases has dramatically increased in recent years. However, the substrates targeted for degradation by these particular ligases have not been easily identified. One reason for the inability of matching substrates and ligases is the finding that E3 recognition elements in substrates are often poorly defined. This minimizes the likelihood that bioinformatic approaches will lead to the identification of E3 substrates. For example, the multi-subunit complex the anaphase promoting complex (APC) is an E3 that recognizes destruction boxes (RXXLXXXXD/N/E) or KEN motifs within substrates (Glotzer et al., 1991; Pfleger and Kirschner, 2000). However, many proteins that contain either a potential destruction or a KEN motif are not recognized by the APC in vitro or in vivo, suggesting that there are other, less well-defined characteristics of substrates that contribute to their ability to serve as APC substrates (Ayad, Rankin, and Kirschner, unpublished observations). Aside from bioinformatic approaches of identifying APC substrates, several groups have also attempted to use affinity techniques to discover novel APC substrates. This has not been widely successful, because many APC substrates are not abundant. Also, as is the case with many ligase-substrate interactions, the affinity of substrates for the APC is likely to be very low. All these considerations have motivated a search for other techniques to assist in identifying substrates of this particular E3 ligase. Here, we describe the use of in vitro expression cloning to identify novel APC substrates.
Collapse
Affiliation(s)
- Nagi G Ayad
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
45
|
Arias EE, Walter JC. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 2007; 21:497-518. [PMID: 17344412 DOI: 10.1101/gad.1508907] [Citation(s) in RCA: 313] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In eukaryotic cells, prereplication complexes (pre-RCs) are assembled on chromatin in the G1 phase, rendering origins of DNA replication competent to initiate DNA synthesis. When DNA replication commences in S phase, pre-RCs are disassembled, and multiple initiations from the same origin do not occur because new rounds of pre-RC assembly are inhibited. In most experimental organisms, multiple mechanisms that prevent pre-RC assembly have now been identified, and rereplication within the same cell cycle can be induced through defined perturbations of these mechanisms. This review summarizes the diverse array of inhibitory pathways used by different organisms to prevent pre-RC assembly, and focuses on the challenge of understanding how in any one cell type, various mechanisms cooperate to strictly enforce once per cell cycle regulation of DNA replication.
Collapse
Affiliation(s)
- Emily E Arias
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
46
|
D'Angiolella V, Palazzo L, Santarpia C, Costanzo V, Grieco D. Role for non-proteolytic control of M-phase-promoting factor activity at M-phase exit. PLoS One 2007; 2:e247. [PMID: 17327911 PMCID: PMC1803016 DOI: 10.1371/journal.pone.0000247] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 01/29/2007] [Indexed: 11/25/2022] Open
Abstract
M-phase Promoting Factor (MPF; the cyclin B-cdk 1 complex) is activated at M-phase onset by removal of inhibitory phosphorylation of cdk1 at thr-14 and tyr-15. At M-phase exit, MPF is destroyed by ubiquitin-dependent cyclin proteolysis. Thus, control of MPF activity via inhibitory phosphorylation is believed to be particularly crucial in regulating transition into, rather than out of, M-phase. Using the in vitro cell cycle system derived form Xenopus eggs, here we show, however, that inhibitory phosphorylation of cdk1 contributes to control MPF activity during M-phase exit. By sampling extracts at very short intervals during both meiotic and mitotic exit, we found that cyclin B1-associated cdk1 underwent transient inhibitory phosphorylation at tyr-15 and that cyclin B1-cdk1 activity fell more rapidly than the cyclin B1 content. Inhibitory phosphorylation of MPF correlated with phosphorylation changes of cdc25C, the MPF phosphatase, and physical interaction of cdk1 with wee1, the MPF kinase, during M-phase exit. MPF down-regulation required Ca++/calmodulin-dependent kinase II (CaMKII) and cAMP-dependent protein kinase (PKA) activities at meiosis and mitosis exit, respectively. Treatment of M-phase extracts with a mutant cyclin B1-cdk1AF complex, refractory to inhibition by phosphorylation, impaired binding of the Anaphase Promoting Complex/Cyclosome (APC/C) to its co-activator Cdc20 and altered M-phase exit. Thus, timely M-phase exit requires a tight coupling of proteolysis-dependent and proteolysis-independent mechanisms of MPF inactivation.
Collapse
Affiliation(s)
- Vincenzo D'Angiolella
- Faculty of Biotechnological Sciences and Dipartimento di Biologia e Patologia Cellulare e Molecolare “L. Califano,” University of Napoli Federico II, Italy
- Department of Pathology, New York University, New York, United States of America
| | - Luca Palazzo
- Faculty of Biotechnological Sciences and Dipartimento di Biologia e Patologia Cellulare e Molecolare “L. Califano,” University of Napoli Federico II, Italy
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Concetta Santarpia
- Faculty of Biotechnological Sciences and Dipartimento di Biologia e Patologia Cellulare e Molecolare “L. Califano,” University of Napoli Federico II, Italy
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Vincenzo Costanzo
- Clare Hall Laboratories, London Research Institute, London, United Kingdom
| | - Domenico Grieco
- Faculty of Biotechnological Sciences and Dipartimento di Biologia e Patologia Cellulare e Molecolare “L. Califano,” University of Napoli Federico II, Italy
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Marangos P, Verschuren EW, Chen R, Jackson PK, Carroll J. Prophase I arrest and progression to metaphase I in mouse oocytes are controlled by Emi1-dependent regulation of APC(Cdh1). ACTA ACUST UNITED AC 2006; 176:65-75. [PMID: 17190794 PMCID: PMC2063628 DOI: 10.1083/jcb.200607070] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian oocytes are arrested in prophase of the first meiotic division. Progression into the first meiotic division is driven by an increase in the activity of maturation-promoting factor (MPF). In mouse oocytes, we find that early mitotic inhibitor 1 (Emi1), an inhibitor of the anaphase-promoting complex (APC) that is responsible for cyclin B destruction and inactivation of MPF, is present at prophase I and undergoes Skp1–Cul1–F-box/βTrCP-mediated destruction immediately after germinal vesicle breakdown (GVBD). Exogenous Emi1 or the inhibition of Emi1 destruction in prophase-arrested oocytes leads to a stabilization of cyclin B1–GFP that is sufficient to trigger GVBD. In contrast, the depletion of Emi1 using morpholino oligonucleotides increases cyclin B1–GFP destruction, resulting in an attenuation of MPF activation and a delay of entry into the first meiotic division. Finally, we show that Emi1-dependent effects on meiosis I require the presence of Cdh1. These observations reveal a novel mechanism for the control of entry into the first meiotic division: an Emi1-dependent inhibition of APCCdh1.
Collapse
Affiliation(s)
- Petros Marangos
- Department of Physiology, University College London, London WC1E 6BT, England, UK.
| | | | | | | | | |
Collapse
|
48
|
Batonnet-Pichon S, Tintignac LJ, Castro A, Sirri V, Leibovitch MP, Lorca T, Leibovitch SA. MyoD undergoes a distinct G2/M-specific regulation in muscle cells. Exp Cell Res 2006; 312:3999-4010. [PMID: 17014844 DOI: 10.1016/j.yexcr.2006.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/07/2006] [Accepted: 09/04/2006] [Indexed: 11/23/2022]
Abstract
The transcription factors MyoD and Myf5 present distinct patterns of expression during cell cycle progression and development. In contrast to the mitosis-specific disappearance of Myf5, which requires a D-box-like motif overlapping the basic domain, here we describe a stable and inactive mitotic form of MyoD phosphorylated on its serine 5 and serine 200 residues by cyclin B-cdc2. In mitosis, these modifications are required for releasing MyoD from condensed chromosomes and inhibiting its DNA-binding and transcriptional activation ability. Then, nuclear MyoD regains instability in the beginning of G1 phase due to rapid dephosphorylation events. Moreover, a non-phosphorylable MyoD S5A/S200A is not excluded from condensed chromatin and alters mitotic progression with apparent abnormalities. Thus, the drop of MyoD below a threshold level and its displacement from the mitotic chromatin could present another window in the cell cycle for resetting the myogenic transcriptional program and to maintain the myogenic determination of the proliferating cells.
Collapse
Affiliation(s)
- Sabrina Batonnet-Pichon
- Laboratoire de Génomique Fonctionnelle et Myogénèse, UMR 866 Différenciation, Cellulaire et Croissance, INRA UM II, Campus INRA/ENSA, 2 Place Pierre Viala, 34060, Montpellier, Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Gutierrez GJ, Vögtlin A, Castro A, Ferby I, Salvagiotto G, Ronai Z, Lorca T, Nebreda AR. Meiotic regulation of the CDK activator RINGO/Speedy by ubiquitin-proteasome-mediated processing and degradation. Nat Cell Biol 2006; 8:1084-94. [PMID: 16964245 DOI: 10.1038/ncb1472] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 08/10/2006] [Indexed: 01/17/2023]
Abstract
Xenopus RINGO/Speedy (XRINGO) is a potent inducer of oocyte meiotic maturation that can directly activate Cdk1 and Cdk2. Here, we show that endogenous XRINGO protein accumulates transiently during meiosis I entry and then is downregulated. This tight regulation of XRINGO expression is the consequence of two interconnected mechanisms: processing and degradation. XRINGO processing involves recognition of at least three distinct phosphorylated recognition motifs by the SCF(betaTrCP) ubiquitin ligase, followed by proteasome-mediated limited degradation, resulting in an amino-terminal XRINGO fragment. XRINGO processing is directly stimulated by several kinases, including protein kinase A and glycogen synthase kinase-3beta, and may contribute to the maintenance of G2 arrest. On the other hand, XRINGO degradation after meiosis I is mediated by the ubiquitin ligase Siah-2, which probably requires phosphorylation of XRINGO on Ser 243 and may be important for the omission of S phase at the meiosis-I-meiosis-II transition in Xenopus oocytes.
Collapse
|
50
|
Schmidt A, Rauh NR, Nigg EA, Mayer TU. Cytostatic factor: an activity that puts the cell cycle on hold. J Cell Sci 2006; 119:1213-8. [PMID: 16554437 DOI: 10.1242/jcs.02919] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fertilization is the fundamental process in which two gametes - sperm and oocyte - fuse to generate a zygote that will form a new multicellular organism. In most vertebrates, oocytes await fertilization while arrested at metaphase of meiosis II. This resting state can be stable for many hours and depends on a cytoplasmic activity termed cytostatic factor (CSF). Recently, members of the novel Emi/Erp family of proteins have been put forward as important components of CSF. These proteins inhibit the anaphase-promoting complex/cyclosome (APC/C), which acts at the very core of the cell cycle regulatory machinery. Initially, Xenopus early mitotic inhibitor 1 (Emi1) was proposed to be a component of CSF, but newer work suggests that a structural relative, Emi-related protein 1 (Erp1/Emi2), is essential for maintenance of CSF arrest in Xenopus. Most importantly, studies on Erp1/Emi2 regulation have led to a detailed molecular understanding of the Ca2+-mediated release from CSF arrest that occurs upon fertilization.
Collapse
Affiliation(s)
- Andreas Schmidt
- Chemical Genetics, Independent Research Group, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|