1
|
Vogele D, Wöhrle S, Saller BS, Fröhlich K, Barta BA, Cosenza-Contreras M, Groß O, Schilling O. Size exclusion chromatography based proteomic and degradomic profiling of inflammasome-activated, murine bone marrow-derived dendritic cells highlights complex retention and release of cleavage products. Mol Omics 2024; 20:595-610. [PMID: 39378052 PMCID: PMC11460583 DOI: 10.1039/d4mo00163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Coupling size exclusion chromatography (SEC) with mass spectrometry-based proteomics enables investigating protein complexes, with degradomic profiling providing deeper insights into complex-associated proteolytic processing and retaining of cleavage products. This study aims to map protein complex formation upon inflammasome activation in bone marrow-derived dendritic cells (BMDCs) from gasdermin D-deficient mice, focusing on proteolytic enzymes and truncated proteins in higher molecular weight complexes. Cultured BMDCs were primed with LPS and subsequently treated with nigericin or Val-boroPro (VbP). SEC-fractionated proteins were TMT-labelled and analyzed via liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified 6862 proteins and 70 802 peptides, including 14 714 semi-tryptic peptides indicating elevated endogenous proteolytic processing. The sequence motif of numerous cleavage sites maps to caspase-like activity. Inflammasome activation was corroborated by elevated levels of apoptosis-associated speck-like protein containing a CARD (ASC) in higher molecular weight (MW) fractions and increased IL-1β levels in low MW fractions upon nigericin or VbP treatment. The majority of truncated cleavage products remained within their corresponding, higher MW protein complexes while caspase-specific cleavage products of Rho-associated protein kinase 1, gelsolin, and AP-2 complex subunit alpha-2 dissociated to lower MW fractions. SEC profiles identified 174 proteases, with cell surface proteases forming high MW complexes, including ADAMs and DPP4 but not MMP14. VbP treatment led to the accumulation of ISG15 in low MW fractions while RNA polymerase II coactivator p15 shifted to higher MW fractions. This study demonstrates that SEC-coupled proteomics and degradomic profiling offer unique insights into protein complex dynamics and proteolytic processes upon inflammasome activation.
Collapse
Affiliation(s)
- Daniel Vogele
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Svenja Wöhrle
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Benedikt S Saller
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Klemens Fröhlich
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Bálint András Barta
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Scientific Research Laboratory, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Miguel Cosenza-Contreras
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Olaf Groß
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
2
|
Yang YH, Xie KF, Yang S, Wang H, Ma HH, Zhou M, Wang ZW, Gu Y, Jia XM. BLNK negatively regulates innate antifungal immunity through inhibiting c-Cbl-mediated macrophage migration. Proc Natl Acad Sci U S A 2024; 121:e2400920121. [PMID: 39413134 PMCID: PMC11513953 DOI: 10.1073/pnas.2400920121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024] Open
Abstract
B cell linker protein (BLNK) is crucial for orchestrating B cell receptor-associated spleen tyrosine kinase (Syk) signaling. However, the role of BLNK in Syk-coupled C-type lectin receptor (CLR) signaling in macrophages remains unclear. Here, we delineate that CLRs govern the Syk-mediated activation of BLNK, thereby impeding macrophage migration by disrupting podosome ring formation upon stimulation with fungal β-glucans or α-mannans. Mechanistically, BLNK instigates its association with casitas B-lineage lymphoma (c-Cbl), competitively impeding the interaction between c-Cbl and Src-family kinase Fyn. This interference disrupts Fyn-mediated phosphorylation of c-Cbl and subsequent c-Cbl-associated F-actin assembly. Consequently, BLNK deficiency intensifies CLR-mediated recruitment of the c-Cbl/phosphatidylinositol 3-kinase complex to the F-actin cytoskeleton, thereby enhancing macrophage migration. Notably, mice with monocyte-specific BLNK deficiency exhibit heightened resistance to infection with Candida albicans, a prominent human fungal pathogen. This resistance is attributed to the increased infiltration of Ly6C+ macrophages into renal tissue. These findings unveil a previously unrecognized role of BLNK for the negative regulation of macrophage migration through inhibiting CLR-mediated podosome ring formation during fungal infections.
Collapse
Affiliation(s)
- Yi-Heng Yang
- Department of Stomatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Ke-Fang Xie
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Shuai Yang
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Hui-Hui Ma
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Min Zhou
- Department of Periodontology, Stemmatological Hospital, Tongji University, Shanghai200072, China
| | - Zhong-Wei Wang
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Yebo Gu
- Department of Stomatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Xin-Ming Jia
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| |
Collapse
|
3
|
Chen M, Menon MC, Wang W, Fu J, Yi Z, Sun Z, Liu J, Li Z, Mou L, Banu K, Lee SW, Dai Y, Anandakrishnan N, Azeloglu EU, Lee K, Zhang W, Das B, He JC, Wei C. HCK induces macrophage activation to promote renal inflammation and fibrosis via suppression of autophagy. Nat Commun 2023; 14:4297. [PMID: 37463911 PMCID: PMC10354075 DOI: 10.1038/s41467-023-40086-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Renal inflammation and fibrosis are the common pathways leading to progressive chronic kidney disease (CKD). We previously identified hematopoietic cell kinase (HCK) as upregulated in human chronic allograft injury promoting kidney fibrosis; however, the cellular source and molecular mechanisms are unclear. Here, using immunostaining and single cell sequencing data, we show that HCK expression is highly enriched in pro-inflammatory macrophages in diseased kidneys. HCK-knockout (KO) or HCK-inhibitor decreases macrophage M1-like pro-inflammatory polarization, proliferation, and migration in RAW264.7 cells and bone marrow-derived macrophages (BMDM). We identify an interaction between HCK and ATG2A and CBL, two autophagy-related proteins, inhibiting autophagy flux in macrophages. In vivo, both global or myeloid cell specific HCK-KO attenuates renal inflammation and fibrosis with reduces macrophage numbers, pro-inflammatory polarization and migration into unilateral ureteral obstruction (UUO) kidneys and unilateral ischemia reperfusion injury (IRI) models. Finally, we developed a selective boron containing HCK inhibitor which can reduce macrophage pro-inflammatory activity, proliferation, and migration in vitro, and attenuate kidney fibrosis in the UUO mice. The current study elucidates mechanisms downstream of HCK regulating macrophage activation and polarization via autophagy in CKD and identifies that selective HCK inhibitors could be potentially developed as a new therapy for renal fibrosis.
Collapse
Affiliation(s)
- Man Chen
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Department of Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Madhav C Menon
- Division of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Wenlin Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhengzi Yi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeguo Sun
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lingyun Mou
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Khadija Banu
- Division of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Sui-Wan Lee
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying Dai
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA.
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Renal Section, James J. Peters VAMC, Bronx, NY, USA.
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Snail maintains the stem/progenitor state of skin epithelial cells and carcinomas through the autocrine effect of matricellular protein Mindin. Cell Rep 2022; 40:111390. [PMID: 36130502 DOI: 10.1016/j.celrep.2022.111390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 12/22/2022] Open
Abstract
Preservation of a small population of cancer stem cells (CSCs) within a heterogeneous carcinoma serves as a paradigm to understand how select cells in a tissue maintain their undifferentiated status. In both embryogenesis and cancer, Snail has been correlated with stemness, but the molecular underpinning of this phenomenon remains largely ill-defined. In models of cutaneous squamous cell carcinoma (cSCC), we discovered a non-epithelial-mesenchymal transition function for the transcription factor Snail in maintaining the stemness of epidermal keratinocytes. Snail-expressing cells secrete the matricellular protein Mindin, which functions in an autocrine fashion to activate a Src-STAT3 pathway to reinforce their stem/progenitor phenotype. This pathway is activated by the engagement of Mindin with the leukocyte-specific integrin, CD11b (ITGAM), which is also unexpectedly expressed by epidermal keratinocytes. Interestingly, disruption of this signaling module in human cSCC attenuates tumorigenesis, suggesting that targeting Mindin would be a promising therapeutic approach to hinder cancer recurrence.
Collapse
|
5
|
Li B, Liu F, Ye J, Cai X, Qian R, Zhang K, Zheng Y, Wu S, Han Y. Regulation of Macrophage Polarization Through Periodic Photo-Thermal Treatment to Facilitate Osteogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202691. [PMID: 35986434 DOI: 10.1002/smll.202202691] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The richened reactive oxygen species (ROS) and their derived excessive inflammation at bone injured sites hinder osteogenesis of endosseous Ti-based implants. Herein, anti-oxidized polydopamine (PDA) is deposited on hydrothermal growth formed hydroxyapatite (HA) nanorods on Ti to form a core-shell structural nanorod-like array with HA as a core and PDA as an amorphous shell (PDA@HA), showing not only ROS scavenging ability but also near-infrared (NIR) light derived photo-thermal effects. PDA@HA suppresses inflammation based on its ROS scavenging ability to a certain extent, while periodic photo-thermal treatment (PTT) at a mild temperature (41 ± 1 °C) further accelerates the transition of the macrophages (MΦs) adhered to PDA@HA from the pro-inflammatory (M1) phenotype to the anti-inflammatory (M2) phenotype in vitro and in vivo. Transcriptomic analysis reveals that the activation of the PI3K-Akt1 signaling pathway is responsible for the periodic PTT induced acceleration of the M1-to-M2 transition of MΦs. Acting on mesenchymal stem cells (MSCs) with paracrine cytokines of M2 macrophages, PDA@HA with mild PTT greatly promote the osteogenetic functions of MSCs and thus osteogenesis. This work paves a way of employing mildly periodic PTT to induce a favorable immunomodulatory microenvironment for osteogenesis and provides insights into its underlying immunomodulation mechanism.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fuli Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Ye
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinmei Cai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Runliu Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kaiwang Zhang
- N0.16 Institute of No.9 Academe of China Aerospace Technology Corporation, Xi'an, 710061, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710100, China
| |
Collapse
|
6
|
Neutrophil elastase promotes macrophage cell adhesion and cytokine production through the integrin-Src kinases pathway. Sci Rep 2020; 10:15874. [PMID: 32981934 PMCID: PMC7522083 DOI: 10.1038/s41598-020-72667-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/26/2020] [Indexed: 01/08/2023] Open
Abstract
There are a number of respiratory diseases characterized by the presence of excess neutrophil elastase (NE) activity in tissues, including cystic fibrosis and chronic obstructive pulmonary disease (COPD). NE is considered a primary contributor to disease development, but the precise mechanism has yet to be fully determined. We hypothesized that NE alters the function of macrophages (Mɸ) which play a critical role in many physiological processes in healthy lungs. We demonstrate that monocyte-derived Mɸ exposed to NE releases active matrix metalloproteinases (MMPs), increase expression of pro-inflammatory cytokines TNFα, IL-1β, and IL-8, and reduce capacity to phagocytose bacteria. Changes in Mɸ function following NE treatment were accompanied by increased adhesion and cytoskeleton re-arrangement, indicating the possibility of integrin involvement. To support this observation, we demonstrate that NE induces phosphorylation of kinases from the Src kinase family, a hallmark of integrin signaling activation. Moreover, pretreatment of Mɸ with a specific Src kinase inhibitor, PP2 completely prevents NE-induced pro-inflammatory cytokine production. Taken together these findings indicate that NE participates in lung destruction not only through direct proteolytic degradation of matrix proteins, but also through activation of Mɸ inflammatory and proteolytic functions.
Collapse
|
7
|
Roy NH, Kim SHJ, Buffone A, Blumenthal D, Huang B, Agarwal S, Schwartzberg PL, Hammer DA, Burkhardt JK. LFA-1 signals to promote actin polymerization and upstream migration in T cells. J Cell Sci 2020; 133:jcs248328. [PMID: 32907931 PMCID: PMC7502589 DOI: 10.1242/jcs.248328] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
T cell entry into inflamed tissue requires firm adhesion, cell spreading, and migration along and through the endothelial wall. These events require the T cell integrins LFA-1 and VLA-4 and their endothelial ligands ICAM-1 and VCAM-1, respectively. T cells migrate against the direction of shear flow on ICAM-1 and with the direction of shear flow on VCAM-1, suggesting that these two ligands trigger distinct cellular responses. However, the contribution of specific signaling events downstream of LFA-1 and VLA-4 has not been explored. Using primary mouse T cells, we found that engagement of LFA-1, but not VLA-4, induces cell shape changes associated with rapid 2D migration. Moreover, LFA-1 ligation results in activation of the phosphoinositide 3-kinase (PI3K) and ERK pathways, and phosphorylation of multiple kinases and adaptor proteins, whereas VLA-4 ligation triggers only a subset of these signaling events. Importantly, T cells lacking Crk adaptor proteins, key LFA-1 signaling intermediates, or the ubiquitin ligase cCbl (also known as CBL), failed to migrate against the direction of shear flow on ICAM-1. These studies identify novel signaling differences downstream of LFA-1 and VLA-4 that drive T cell migratory behavior.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Sarah Hyun Ji Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Buffone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Bonnie Huang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sangya Agarwal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pamela L Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel A Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Bieniasz-Krzywiec P, Mazzone M. PoEMs edit breast cancer outcome. Aging (Albany NY) 2020; 12:4045-4047. [PMID: 32200358 PMCID: PMC7093187 DOI: 10.18632/aging.102870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/19/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Pawel Bieniasz-Krzywiec
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| |
Collapse
|
9
|
Bieniasz-Krzywiec P, Martín-Pérez R, Ehling M, García-Caballero M, Pinioti S, Pretto S, Kroes R, Aldeni C, Di Matteo M, Prenen H, Tribulatti MV, Campetella O, Smeets A, Noel A, Floris G, Van Ginderachter JA, Mazzone M. Podoplanin-Expressing Macrophages Promote Lymphangiogenesis and Lymphoinvasion in Breast Cancer. Cell Metab 2019; 30:917-936.e10. [PMID: 31447322 PMCID: PMC7616630 DOI: 10.1016/j.cmet.2019.07.015] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/05/2019] [Accepted: 07/29/2019] [Indexed: 01/11/2023]
Abstract
Among mammary tumor-infiltrating immune cells, the highest expression of podoplanin (PDPN) is found in a subset of tumor-associated macrophages (TAMs). We hereby demonstrate that PDPN is involved in the attachment of this TAM subset to lymphatic endothelial cells (LECs). Mechanistically, the binding of PDPN to LEC-derived galectin 8 (GAL8) in a glycosylation-dependent manner promotes the activation of pro-migratory integrin β1. When proximal to lymphatics, PDPN-expressing macrophages (PoEMs) stimulate local matrix remodeling and promote vessel growth and lymphoinvasion. Anti-integrin β1 blockade, macrophage-specific Pdpn knockout, or GAL8 inhibition impairs TAM adhesion to LECs, restraining lymphangiogenesis and reducing lymphatic cancer spread. In breast cancer patients, association of PoEMs with tumor lymphatic vessels correlates with incidences of lymph node and distant organ metastasis.
Collapse
Affiliation(s)
- Paweł Bieniasz-Krzywiec
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium; Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels B1050, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels B1050, Belgium
| | - Rosa Martín-Pérez
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Manuel Ehling
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Melissa García-Caballero
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B4000 Liège, Belgium
| | - Sotiria Pinioti
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Samantha Pretto
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Roel Kroes
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Chiara Aldeni
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Hans Prenen
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium; Oncology Department, University Hospital Antwerp, 2650 Edegem, Belgium
| | - María Virginia Tribulatti
- Institute for Research in Biotechnology, National University of San Martín, CONICET, Buenos Aires 1650, Argentina
| | - Oscar Campetella
- Institute for Research in Biotechnology, National University of San Martín, CONICET, Buenos Aires 1650, Argentina
| | - Ann Smeets
- Surgical Oncology Unit, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B4000 Liège, Belgium
| | - Giuseppe Floris
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven B3000, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels B1050, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels B1050, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium.
| |
Collapse
|
10
|
Yu J, Adapala NS, Doherty L, Sanjay A. Cbl-PI3K interaction regulates Cathepsin K secretion in osteoclasts. Bone 2019; 127:376-385. [PMID: 31299383 PMCID: PMC6708784 DOI: 10.1016/j.bone.2019.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Effective bone resorption by osteoclasts is critical for balanced bone remodeling. We have previously reported that mice harboring a substitution mutation of tyrosine 737 to phenylalanine in the adapter protein Cbl (CblY737F, YF) have increased bone volume partly due to decreased osteoclast-mediated bone resorption. The CblY737F mutation abrogates interaction between Cbl and the p85 subunit of PI3K. Here, we studied the mechanism for defective resorptive function of YF mutant osteoclasts. The YF osteoclasts had intact actin cytoskeletons and sealing zones. Expression and localization of proteins needed for acidification of the resorptive lacunae were also comparable between the WT and YF osteoclasts. In contrast, secretion of Cathepsin K, a major protease needed to degrade collagen, was diminished in the conditioned media derived from YF osteoclasts. The targeting of Cathepsin K into LAMP2-positive vesicles was also compromised due to decreased number of LAMP2-positive vesicles in YF osteoclasts. Further, we found that in contrast to WT, conditioned media derived from YF osteoclasts promoted increased numbers of alkaline phosphatase positive colonies, and increased expression of osteogenic markers in WT calvarial cultures. Cumulatively, our results suggest that the Cbl-PI3K interaction regulates Cathepsin K secretion required for proper bone resorption, and secretion of factors which promote osteogenesis.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Naga Suresh Adapala
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Laura Doherty
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, United States of America.
| |
Collapse
|
11
|
Roy NH, MacKay JL, Robertson TF, Hammer DA, Burkhardt JK. Crk adaptor proteins mediate actin-dependent T cell migration and mechanosensing induced by the integrin LFA-1. Sci Signal 2018; 11:eaat3178. [PMID: 30538176 PMCID: PMC6333317 DOI: 10.1126/scisignal.aat3178] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T cell entry into inflamed tissue involves firm adhesion, spreading, and migration of the T cells across endothelial barriers. These events depend on "outside-in" signals through which engaged integrins direct cytoskeletal reorganization. We investigated the molecular events that mediate this process and found that T cells from mice lacking expression of the adaptor protein Crk exhibited defects in phenotypes induced by the integrin lymphocyte function-associated antigen 1 (LFA-1), namely, actin polymerization, leading edge formation, and two-dimensional cell migration. Crk protein was an essential mediator of LFA-1 signaling-induced phosphorylation of the E3 ubiquitin ligase c-Cbl and its subsequent interaction with the phosphatidylinositol 3-kinase (PI3K) subunit p85, thus promoting PI3K activity and cytoskeletal remodeling. In addition, we found that Crk proteins were required for T cells to respond to changes in substrate stiffness, as measured by alterations in cell spreading and differential phosphorylation of the force-sensitive protein CasL. These findings identify Crk proteins as key intermediates coupling LFA-1 signals to actin remodeling and provide mechanistic insights into how T cells sense and respond to substrate stiffness.
Collapse
Affiliation(s)
- Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna L MacKay
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanner F Robertson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Hammer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Chung IC, Yuan SN, OuYang CN, Lin HC, Huang KY, Chen YJ, Chung AK, Chu CL, Ojcius DM, Chang YS, Chen LC. Src-family kinase-Cbl axis negatively regulates NLRP3 inflammasome activation. Cell Death Dis 2018; 9:1109. [PMID: 30382081 PMCID: PMC6208430 DOI: 10.1038/s41419-018-1163-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Activation of the NLRP3 inflammasome is crucial for immune defense, but improper and excessive activation causes inflammatory diseases. We previously reported that Pyk2 is essential for NLRP3 inflammasome activation. Here we show that the Src-family kinases (SFKs)-Cbl axis plays a pivotal role in suppressing NLRP3 inflammasome activation in response to stimulation by nigericin or ATP, as assessed using gene knockout and gene knockdown cells, dominant active/negative mutants, and pharmacological inhibition. We reveal that the phosphorylation of Cbl is regulated by SFKs, and that phosphorylation of Cbl at Tyr371 suppresses NLRP3 inflammasome activation. Mechanistically, Cbl decreases the level of phosphorylated Pyk2 (p-Pyk2) through ubiquitination-mediated proteasomal degradation and reduces mitochondrial ROS (mtROS) production by contributing to the maintenance of mitochondrial size. The lower levels of p-Pyk2 and mtROS dampen NLRP3 inflammasome activation. In vivo, inhibition of Cbl with an analgesic drug, hydrocotarnine, increases inflammasome-mediated IL-18 secretion in the colon, and protects mice from dextran sulphate sodium-induced colitis. Together, our novel findings provide new insights into the role of the SFK-Cbl axis in suppressing NLRP3 inflammasome activation and identify a novel clinical utility of hydrocortanine for disease treatment.
Collapse
Affiliation(s)
- I-Che Chung
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Sheng-Ning Yuan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chun-Nan OuYang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Hsin-Chung Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, Taipei, 114, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yu-Jen Chen
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, 251, Taiwan.,Department of Radiation Oncology, Mackay Memorial Hospital, New Taipei City, 251, Taiwan
| | - An-Ko Chung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, 94103, USA.,Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, 333, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, 333, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, 333, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.
| |
Collapse
|
13
|
da Silva RA, Fernandes CJDC, Feltran GDS, Gomes AM, Andrade AF, Andia DC, Peppelenbosch MP, Zambuzzi WF. Laminar shear stress‐provoked cytoskeletal changes are mediated by epigenetic reprogramming of
TIMP1
in human primary smooth muscle cells. J Cell Physiol 2018; 234:6382-6396. [DOI: 10.1002/jcp.27374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/17/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Rodrigo A. da Silva
- Department of Chemistry and Biochemistry Laboratory of Bioassays and Cellular Dynamics, São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu Botucatu Brazil
| | - Célio Jr da C. Fernandes
- Department of Chemistry and Biochemistry Laboratory of Bioassays and Cellular Dynamics, São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu Botucatu Brazil
| | - Geórgia da S. Feltran
- Department of Chemistry and Biochemistry Laboratory of Bioassays and Cellular Dynamics, São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu Botucatu Brazil
| | - Anderson M. Gomes
- Department of Chemistry and Biochemistry Laboratory of Bioassays and Cellular Dynamics, São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu Botucatu Brazil
| | - Amanda Fantini Andrade
- Department of Chemistry and Biochemistry Laboratory of Bioassays and Cellular Dynamics, São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu Botucatu Brazil
| | - Denise C. Andia
- Faculdade de Odontologia Área de Pesquisa em Epigenética, Universidade Paulista, UNIP São Paulo São Paulo Brazil
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology & Hepatology Erasmus MC, University Medical Center Rotterdam Rotterdam The Netherlands
| | - Willian F. Zambuzzi
- Department of Chemistry and Biochemistry Laboratory of Bioassays and Cellular Dynamics, São Paulo State University (UNESP), Institute of Biosciences, Campus Botucatu Botucatu Brazil
- Electron Microscopy Center, São Paulo State University (UNESP), Institute of Biosciences, campus Botucatu Botucatu Brazil
| |
Collapse
|
14
|
Lee H, Zhang D, Wu J, Otterbein LE, Jin Y. Lung Epithelial Cell-Derived Microvesicles Regulate Macrophage Migration via MicroRNA-17/221-Induced Integrin β 1 Recycling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1453-1464. [PMID: 28674181 PMCID: PMC5561736 DOI: 10.4049/jimmunol.1700165] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022]
Abstract
Robust lung inflammation is one of the prominent features in the pathogenesis of acute lung injury (ALI). Macrophage migration and recruitment are often seen at the early stage of lung inflammatory responses to noxious stimuli. Using an acid inhalation-induced lung injury model, we explored the mechanisms by which acid exposure initiates macrophage recruitment and migration during development of ALI. The lung epithelium comprises a large surface area and functions as a first-line defense against noxious insults. We found that acid exposure induced a remarkable microvesicle (MV) release from lung epithelium as detected in bronchoalveolar lavage fluid. Significantly elevated RNA, rather than protein, was found in these epithelium-derived MVs after acid and included several highly elevated microRNAs, including microRNA (miR)-17 and miR-221. Acid-induced epithelial MV release promoted macrophage migration in vitro and recruitment into the lung in vivo and required, in part, MV shuttling of miR-17 and/or miR-221. Mechanistically, acid-induced epithelial MV miR-17/221 promoted β1 integrin recycling and presentation back onto the surface of macrophages, in part via a Rab11-mediated pathway. Integrin β1 is known to play an essential role in regulating macrophage migration. Taken together, acid-induced ALI results in epithelial MV shuttling of miR-17/221 that in turn modulates macrophage β1 integrin recycling, promoting macrophage recruitment and ultimately contributing to lung inflammation.
Collapse
Affiliation(s)
- Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Jingxuan Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| |
Collapse
|
15
|
Liu CS, Yang-Yen HF, Suen CS, Hwang MJ, Yen JJY. Cbl-mediated K63-linked ubiquitination of JAK2 enhances JAK2 phosphorylation and signal transduction. Sci Rep 2017; 7:4613. [PMID: 28676638 PMCID: PMC5496907 DOI: 10.1038/s41598-017-04078-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/09/2017] [Indexed: 01/18/2023] Open
Abstract
JAK2 activation is crucial for cytokine receptor signal transduction and leukemogenesis. However, the underlying processes that lead to full activation of JAK2 are unclear. Here, we report a positive role for ubiquitination of JAK2 during GM-CSF-induced activation. Upon GM-CSF stimulation, JAK2 ubiquitination is significantly enhanced through K63-linked poly-ubiquitination. Studies employing both knockout and overexpression of Cbl, an E3 ubiquitin ligase, led to the conclusion that Cbl specifically promotes JAK2 ubiquitination, and this was further confirmed in vitro using a Cbl ubiquitination assay. Moreover, following GM-CSF stimulation, the levels of phospho-JAK2 and -STAT5 and a STAT5 luciferase reporter assay were all reduced in Cbl knockout cells and this effect could be rescued by Cbl expression. Mechanistically, Cbl can interact with, and ubiquitinate JAK2 FERM and kinase domains via the Cbl TKB domain. Using lysine-to-arginine site-directed mutagenesis, K970 in the kinase domain of JAK2 was identified as the ubiquitination site important for promoting full JAK2 activation by Cbl via K63-conjugated poly-ubiquitination. Our study suggests that GM-CSF-induced JAK2 activation is enhanced by Cbl-mediated ubiquitination of JAK2. Targeting ubiquitination of JAK2 might offer a novel therapeutic strategy against JAK2-mediated disorders.
Collapse
Affiliation(s)
- Chun-Shan Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | | | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Jeffrey Jong-Young Yen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC.
| |
Collapse
|
16
|
Dwyer AR, Greenland EL, Pixley FJ. Promotion of Tumor Invasion by Tumor-Associated Macrophages: The Role of CSF-1-Activated Phosphatidylinositol 3 Kinase and Src Family Kinase Motility Signaling. Cancers (Basel) 2017; 9:E68. [PMID: 28629162 PMCID: PMC5483887 DOI: 10.3390/cancers9060068] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022] Open
Abstract
Macrophages interact with cells in every organ to facilitate tissue development, function and repair. However, the close interaction between macrophages and parenchymal cells can be subverted in disease, particularly cancer. Motility is an essential capacity for macrophages to be able to carry out their various roles. In cancers, the macrophage's interstitial migratory ability is frequently co-opted by tumor cells to enable escape from the primary tumor and metastatic spread. Macrophage accumulation within and movement through a tumor is often stimulated by tumor cell production of the mononuclear phagocytic growth factor, colony-stimulating factor-1 (CSF-1). CSF-1 also regulates macrophage survival, proliferation and differentiation, and its many effects are transduced by its receptor, the CSF-1R, via phosphotyrosine motif-activated signals. Mutational analysis of CSF-1R signaling indicates that the major mediators of CSF-1-induced motility are phosphatidyl-inositol-3 kinase (PI3K) and one or more Src family kinase (SFK), which activate signals to adhesion, actin polymerization, polarization and, ultimately, migration and invasion in macrophages. The macrophage transcriptome, including that of the motility machinery, is very complex and highly responsive to the environment, with selective expression of proteins and splice variants rarely found in other cell types. Thus, their unique motility machinery can be specifically targeted to block macrophage migration, and thereby, inhibit tumor invasion and metastasis.
Collapse
Affiliation(s)
- Amy R Dwyer
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Eloise L Greenland
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Fiona J Pixley
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
17
|
Németh T, Virtic O, Sitaru C, Mócsai A. The Syk Tyrosine Kinase Is Required for Skin Inflammation in an In Vivo Mouse Model of Epidermolysis Bullosa Acquisita. J Invest Dermatol 2017; 137:2131-2139. [PMID: 28576735 PMCID: PMC5624865 DOI: 10.1016/j.jid.2017.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/09/2017] [Accepted: 05/21/2017] [Indexed: 01/10/2023]
Abstract
The inflammatory form of epidermolysis bullosa acquisita is caused by autoantibodies against type VII collagen (C7), a component of the dermal-epidermal junction. We have previously shown that myeloid Src family kinases mediate skin inflammation triggered by anti-C7 antibodies. Here we identify the Syk tyrosine kinase as a critical component of autoantibody-induced skin inflammation downstream of Src family kinases. Immobilized C7–anti-C7 immune complexes triggered neutrophil activation and Syk phosphorylation in a Src family kinase-dependent manner. Bone marrow chimeric mice lacking Syk in their hematopoietic compartment were completely protected from skin inflammation triggered by anti-C7 antibodies despite normal circulating anti-C7 levels. Syk deficiency abrogated the accumulation of CXCL2, IL-1β, and leukotriene B4 at the site of inflammation and resulted in defective in vivo neutrophil recruitment. Syk–/– neutrophils had a normal intrinsic migratory capacity but failed to release CXCL2 or leukotriene B4 upon activation by immobilized C7–anti-C7 immune complexes, indicating a role for Syk in the amplification of the inflammation process. These results identify Syk as a critical component of skin inflammation in a mouse model of epidermolysis bullosa acquisita and as a potential therapeutic target in epidermolysis bullosa acquisita and other mechanistically related inflammatory skin diseases such as bullous pemphigoid.
Collapse
Affiliation(s)
- Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Oana Virtic
- Department of Dermatology, University Hospital Freiburg, Freiburg, Germany
| | - Cassian Sitaru
- Department of Dermatology, University Hospital Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary; MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
18
|
Wetzel DM, Rhodes EL, Li S, McMahon-Pratt D, Koleske AJ. The Src kinases Hck, Fgr and Lyn activate Arg to facilitate IgG-mediated phagocytosis and Leishmania infection. J Cell Sci 2016; 129:3130-43. [PMID: 27358479 DOI: 10.1242/jcs.185595] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022] Open
Abstract
Leishmaniasis is a devastating disease that disfigures or kills nearly two million people each year. Establishment and persistence of infection by the obligate intracellular parasite Leishmania requires repeated uptake by macrophages and other phagocytes. Therefore, preventing uptake could be a novel therapeutic strategy for leishmaniasis. Amastigotes, the life cycle stage found in the human host, bind Fc receptors and enter macrophages primarily through immunoglobulin-mediated phagocytosis. However, the host machinery that mediates amastigote uptake is poorly understood. We have previously shown that the Arg (also known as Abl2) non-receptor tyrosine kinase facilitates L. amazonensis amastigote uptake by macrophages. Using small-molecule inhibitors and primary macrophages lacking specific Src family kinases, we now demonstrate that the Hck, Fgr and Lyn kinases are also necessary for amastigote uptake by macrophages. Src-mediated Arg activation is required for efficient uptake. Interestingly, the dual Arg and Src kinase inhibitor bosutinib, which is approved to treat cancer, not only decreases amastigote uptake, but also significantly reduces disease severity and parasite burden in Leishmania-infected mice. Our results suggest that leishmaniasis could potentially be treated with host-cell-active agents such as kinase inhibitors.
Collapse
Affiliation(s)
- Dawn M Wetzel
- Department of Pediatrics, Yale University, New Haven, CT 06520, USA
| | - Emma L Rhodes
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shaoguang Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Diane McMahon-Pratt
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT 06520, USA
| | - Anthony J Koleske
- Department of Molecular Biochemistry and Biophysics, Yale University, CT 06520, USA Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
19
|
Katzav S, Schmitz ML. Mutations of c-Cbl in myeloid malignancies. Oncotarget 2016; 6:10689-96. [PMID: 26028666 PMCID: PMC4484412 DOI: 10.18632/oncotarget.3986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
Next generation sequencing has shown the frequent occurrence of point mutations in the ubiquitin E3 ligase c-Cbl in myeloid malignancies. Mouse models revealed a causal contribution of c-Cbl for the onset of such neoplasms. The point mutations typically cluster in the linker region and RING finger domain and affect both alleles by acquired uniparental disomy. The fast progress in the detection of c-Cbl mutations is contrasted by our scarce knowledge on their functional consequences. The c-Cbl protein displays several enzymatic functions by promoting the attachment of differentially composed ubiquitin chains and of the ubiquitin-like protein NEDD8 to its target proteins. In addition, c-Cbl functions as an adapter protein and undergoes phosphorylation-dependent inducible conformation changes. Studies on the impact of c-Cbl mutations on its functions as a dynamic and versatile adapter protein, its interactomes and on its various enzymatic activities are now important to allow the identification of druggable targets within the c-Cbl signaling network.
Collapse
Affiliation(s)
- Shulamit Katzav
- Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - M Lienhard Schmitz
- Institute of Biochemistry, University of Giessen, Friedrichstrasse, Giessen, Germany
| |
Collapse
|
20
|
Verma R, Venkatareddy M, Kalinowski A, Patel SR, Garg P. Integrin Ligation Results in Nephrin Tyrosine Phosphorylation In Vitro. PLoS One 2016; 11:e0148906. [PMID: 26848974 PMCID: PMC4743922 DOI: 10.1371/journal.pone.0148906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/24/2016] [Indexed: 11/19/2022] Open
Abstract
Nephrin is expressed at the basolateral aspect of podocytes and is an important signaling protein at the glomerular slit diaphragm. In vitro studies have demonstrated that Nephrin phosphorylation-dependent signaling is able to assemble a protein complex that is able to polymerize actin. However, proximal signaling events that result in nephrin tyrosine phosphorylation are not well understood. Nephrin deletion in mice and human nephrin mutations result in developmental failure of the podocyte intercellular junction resutling in proteinuria. This has been presumed to be due to a failure to respond to an external polarized cue in the absence of nephrin or a failure to transduce an outside-in signal in patients with nephrin mutations. The nephrin extracellular domain binds to itself or neph1 across the foot process intercellular junction. Nephrin is tyrosine phosphorylation-silent in healthy glomeruli when presumably the nephrin extracellular domain is in an engaged state. These observations raise the possibility of an alternate proximal signaling mechanism that might be responsible for nephrin tyrosine phosphorylation. Here we present data showing that integrin engagement at the basal aspect of cultured podocytes results in nephrin tyrosine phosphorylation. This is abrogated by incubating podocytes with an antibody that prevents integrin β1 ligation and activation in response to binding to extracellular matrix. Furthermore, nephrin tyrosine phosphorylation was observed in podocytes expressing a membrane-targeted nephrin construct that lacks the extracellular domain. We propose, integrin-activation based signaling might be responsible for nephrin phosphorylation rather than engagment of the nephrin extracellular domain by a ligand.
Collapse
Affiliation(s)
- Rakesh Verma
- Division of Nephroloigy, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Madhusudan Venkatareddy
- Division of Nephroloigy, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Anne Kalinowski
- Division of Nephroloigy, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Sanjeevkumar R. Patel
- Division of Nephroloigy, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Puneet Garg
- Division of Nephroloigy, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
21
|
Dwyer AR, Mouchemore KA, Steer JH, Sunderland AJ, Sampaio NG, Greenland EL, Joyce DA, Pixley FJ. Src family kinase expression and subcellular localization in macrophages: implications for their role in CSF-1-induced macrophage migration. J Leukoc Biol 2016; 100:163-75. [PMID: 26747837 DOI: 10.1189/jlb.2a0815-344rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/27/2015] [Indexed: 12/30/2022] Open
Abstract
A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1.
Collapse
Affiliation(s)
- Amy R Dwyer
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kellie A Mouchemore
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - James H Steer
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Andrew J Sunderland
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Natalia G Sampaio
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Eloise L Greenland
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - David A Joyce
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Fiona J Pixley
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
22
|
Osma-Garcia IC, Punzón C, Fresno M, Díaz-Muñoz MD. Dose-dependent effects of prostaglandin E2 in macrophage adhesion and migration. Eur J Immunol 2015; 46:677-88. [PMID: 26631603 DOI: 10.1002/eji.201545629] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/08/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022]
Abstract
Macrophage migration to the focus of infection is a hallmark of the innate immune response. Macrophage spreading, adhesion, and migration through the extracellular matrix require dynamic remodeling of the actin cytoskeleton associated to integrin clustering in podosomes and focal adhesions. Here, we show that prostaglandin E2 (PGE2 ), the main prostaglandin produced by macrophages during inflammation, promote the distinctive dose-dependent formation of podosomes or focal adhesions in macrophages. Low concentrations of PGE2 increased p110γ PI3K expression, phosphorylation of actin-related protein 2, and formation of podosomes, which enhanced macrophage migration in response to chemokines. However, high doses of PGE2 increased phosphorylation of paxillin and focal adhesion kinase, the expression of serine/threonine protein kinase 1, and promoted focal adhesion formation and macrophage adhesion, reducing macrophage chemotaxis. In summary, we describe the dual role of PGE2 as a promoter of macrophage chemotaxis and adhesion, proposing a new model of macrophage migration to the inflammatory focus in the presence of a gradient of PGE2 .
Collapse
Affiliation(s)
- Inés C Osma-Garcia
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Punzón
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel D Díaz-Muñoz
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
23
|
Scanlon V, Soung DY, Adapala NS, Morgan E, Hansen MF, Drissi H, Sanjay A. Role of Cbl-PI3K Interaction during Skeletal Remodeling in a Murine Model of Bone Repair. PLoS One 2015; 10:e0138194. [PMID: 26393915 PMCID: PMC4578922 DOI: 10.1371/journal.pone.0138194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022] Open
Abstract
Mice in which Cbl is unable to bind PI3K (YF mice) display increased bone volume due to enhanced bone formation and repressed bone resorption during normal bone homeostasis. We investigated the effects of disrupted Cbl-PI3K interaction on fracture healing to determine whether this interaction has an effect on bone repair. Mid-diaphyseal femoral fractures induced in wild type (WT) and YF mice were temporally evaluated via micro-computed tomography scans, biomechanical testing, histological and histomorphometric analyses. Imaging analyses revealed no change in soft callus formation, increased bony callus formation, and delayed callus remodeling in YF mice compared to WT mice. Histomorphometric analyses showed significantly increased osteoblast surface per bone surface and osteoclast numbers in the calluses of YF fractured mice, as well as increased incorporation of dynamic bone labels. Furthermore, using laser capture micro-dissection of the fracture callus we found that cells lacking Cbl-PI3K interaction have higher expression of Osterix, TRAP, and Cathepsin K. We also found increased expression of genes involved in propagating PI3K signaling in cells isolated from the YF fracture callus, suggesting that the lack of Cbl-PI3K interaction perhaps results in enhanced PI3K signaling, leading to increased bone formation, but delayed remodeling in the healing femora.
Collapse
Affiliation(s)
- Vanessa Scanlon
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Do Yu Soung
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Naga Suresh Adapala
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Elise Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
| | - Marc F. Hansen
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Hicham Drissi
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
- * E-mail: (AS); (HD)
| | - Archana Sanjay
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
- * E-mail: (AS); (HD)
| |
Collapse
|
24
|
Lee WY, Goh G, Chia J, Boey A, Gunko NV, Bard F. The Ubiquitin Ligase CBLC Maintains the Network Organization of the Golgi Apparatus. PLoS One 2015; 10:e0138789. [PMID: 26393512 PMCID: PMC4579092 DOI: 10.1371/journal.pone.0138789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/03/2015] [Indexed: 11/21/2022] Open
Abstract
The Golgi apparatus plays a pivotal role in the sorting and post-translational modifications of secreted and membrane proteins. In mammalian cells, the Golgi is organized in stacks of cisternae linked together to form a network with a ribbon shape. Regulation of Golgi ribbon formation is poorly understood. Here we find in an image-based RNAi screen that depletion of the ubiquitin-ligase CBLC induces Golgi fragmentation. Depletions of the close homologues CBL and CBLB do not induce any visible defects. In CBLC-depleted cells, Golgi stacks appear relatively unperturbed at both the light and electron microscopy levels, suggesting that CBLC controls mostly network organization. CBLC partially localizes on Golgi membranes and this localization is enhanced after activation of the SRC kinase. Inhibition of SRC reverts CBLC depletion effects, suggesting interplay between the two. CBLC's regulation of Golgi network requires its ubiquitin ligase activity. However, SRC levels are not significantly affected by CBLC, and CBLC knockdown does not phenocopy SRC activation, suggesting that CBLC's action at the Golgi is not direct downregulation of SRC. Altogether, our results demonstrate a role of CBLC in regulating Golgi ribbon by antagonizing the SRC tyrosine kinase.
Collapse
Affiliation(s)
- Wan Yin Lee
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Joanne Chia
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Adrian Boey
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Institute of Medical Biology, Singapore, Singapore
- IMB-IMCB Joint Electron Microscopy Suite, Singapore, Singapore
| | - Natalia V. Gunko
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Institute of Medical Biology, Singapore, Singapore
- IMB-IMCB Joint Electron Microscopy Suite, Singapore, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Abstract
Three classes of E3 ubiquitin ligases, members of the Cbl, Hakai, and SOCS-Cul5-RING ligase families, stimulate the ubiquitination of phosphotyrosine-containing proteins, including receptor and nonreceptor tyrosine kinases and their phosphorylated substrates. Because ubiquitination frequently routes proteins for degradation by the lysosome or proteasome, these E3 ligases are able to potently inhibit tyrosine kinase signaling. Their loss or mutational inactivation can contribute to cancer, autoimmunity, or endocrine disorders, such as diabetes. However, these ligases also have biological functions that are independent of their ubiquitination activity. Here we review relevant literature and then focus on more-recent developments in understanding the structures, substrates, and pathways through which the phosphotyrosine-specific ubiquitin ligases regulate diverse aspects of cell biology.
Collapse
|
26
|
Tauzin S, Starnes TW, Becker FB, Lam PY, Huttenlocher A. Redox and Src family kinase signaling control leukocyte wound attraction and neutrophil reverse migration. ACTA ACUST UNITED AC 2015; 207:589-98. [PMID: 25488917 PMCID: PMC4259815 DOI: 10.1083/jcb.201408090] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Redox and Src family kinase signaling in tissue adjacent to a wound coordinates initial attraction of leukocytes and the subsequent repulsion of neutrophils following contact with macrophages to resolve inflammation. Tissue damage induces early recruitment of neutrophils through redox-regulated Src family kinase (SFK) signaling in neutrophils. Redox-SFK signaling in epithelium is also necessary for wound resolution and tissue regeneration. How neutrophil-mediated inflammation resolves remains unclear. In this paper, we studied the interactions between macrophages and neutrophils in response to tissue damage in zebrafish and found that macrophages contact neutrophils and induce resolution via neutrophil reverse migration. We found that redox-SFK signaling through p22phox and Yes-related kinase is necessary for macrophage wound attraction and the subsequent reverse migration of neutrophils. Importantly, macrophage-specific reconstitution of p22phox revealed that macrophage redox signaling is necessary for neutrophil reverse migration. Thus, redox-SFK signaling in adjacent tissues is essential for coordinated leukocyte wound attraction and repulsion through pathways that involve contact-mediated guidance.
Collapse
Affiliation(s)
- Sebastien Tauzin
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Taylor W Starnes
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Francisco Barros Becker
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706 Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Pui-ying Lam
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706 Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, Microbiology Doctoral Training Program and Medical Scientist Training Program, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
27
|
Adapala NS, Barbe MF, Tsygankov AY, Lorenzo JA, Sanjay A. Loss of Cbl-PI3K interaction enhances osteoclast survival due to p21-Ras mediated PI3K activation independent of Cbl-b. J Cell Biochem 2015; 115:1277-89. [PMID: 24470255 DOI: 10.1002/jcb.24779] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/24/2014] [Indexed: 01/14/2023]
Abstract
Cbl family proteins, Cbl and Cbl-b, are E3 ubiquitin ligases and adaptor proteins, which play important roles in bone-resorbing osteoclasts. Loss of Cbl in mice decreases osteoclast migration, resulting in delayed bone development where as absence of Cbl-b decreases bone volume due to hyper-resorptive osteoclasts. A major structural difference between Cbl and Cbl-b is tyrosine 737 (in YEAM motif) only on Cbl, which upon phosphorylation interacts with the p85 subunit of phosphatidylinositol-3 Kinase (PI3K). In contrast to Cbl(-/-) and Cbl-b(-/-) , mice lacking Cbl-PI3K interaction due to a Y737F (tyrosine to phenylalanine, YF) mutation showed enhanced osteoclast survival, but defective bone resorption. To investigate whether Cbl-PI3K interaction contributes to distinct roles of Cbl and Cbl-b in osteoclasts, mice bearing CblY737F mutation in the Cbl-b(-/-) background (YF/YF;Cbl-b(-/-) ) were generated. The differentiation and survival were augmented similarly in YF/YF and YF/YF;Cbl-b(-/-) osteoclasts, associated with enhanced PI3K signaling suggesting an exclusive role of Cbl-PI3K interaction, independent of Cbl-b. In addition to PI3K, the small GTPase Ras also regulates osteoclast survival. In the absence of Cbl-PI3K interaction, increased Ras GTPase activity and Ras-PI3K binding were observed and inhibition of Ras activation attenuated PI3K mediated osteoclast survival. In contrast to differentiation and survival, increased osteoclast activity observed in Cbl-b(-/-) mice persisted even after introduction of the resorption-defective YF mutation in YF/YF;Cbl-b(-/-) mice. Hence, Cbl and Cbl-b play mutually exclusive roles in osteoclasts. Whereas Cbl-PI3K interaction regulates differentiation and survival, bone resorption is predominantly regulated by Cbl-b in osteoclasts.
Collapse
Affiliation(s)
- Naga Suresh Adapala
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, 06032
| | | | | | | | | |
Collapse
|
28
|
Kovács M, Németh T, Jakus Z, Sitaru C, Simon E, Futosi K, Botz B, Helyes Z, Lowell CA, Mócsai A. The Src family kinases Hck, Fgr, and Lyn are critical for the generation of the in vivo inflammatory environment without a direct role in leukocyte recruitment. ACTA ACUST UNITED AC 2014; 211:1993-2011. [PMID: 25225462 PMCID: PMC4172222 DOI: 10.1084/jem.20132496] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Kovács et al. examine the role of the Src family kinases Hck, Fgr, and Lyn in immune cell–mediated inflammation. Using arthritis and skin inflammation models, the authors show that mice lacking hematopoietic Hck, Fgr, and Lyn are protected from these inflammatory diseases, showing loss of myeloid cell recruitment and lack of inflammatory mediator production. Unexpectedly, the three kinases are dispensable for the intrinsic migratory ability of myeloid cells. These finding may have clinical implications in rheumatic and skin diseases. Although Src family kinases participate in leukocyte function in vitro, such as integrin signal transduction, their role in inflammation in vivo is poorly understood. We show that Src family kinases play a critical role in myeloid cell–mediated in vivo inflammatory reactions. Mice lacking the Src family kinases Hck, Fgr, and Lyn in the hematopoietic compartment were completely protected from autoantibody-induced arthritis and skin blistering disease, as well as from the reverse passive Arthus reaction, with functional overlap between the three kinases. Though the overall phenotype resembled the leukocyte recruitment defect observed in β2 integrin–deficient (CD18−/−) mice, Hck−/−Fgr−/−Lyn−/− neutrophils and monocytes/macrophages had no cell-autonomous in vivo or in vitro migration defect. Instead, Src family kinases were required for the generation of the inflammatory environment in vivo and for the release of proinflammatory mediators from neutrophils and macrophages in vitro, likely due to their role in Fcγ receptor signal transduction. Our results suggest that infiltrating myeloid cells release proinflammatory chemokine, cytokine, and lipid mediators that attract further neutrophils and monocytes from the circulation in a CD18-dependent manner. Src family kinases are required for the generation of the inflammatory environment but not for the intrinsic migratory ability of myeloid cells.
Collapse
Affiliation(s)
- Miklós Kovács
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Cassian Sitaru
- Department of Dermatology, University Hospital Freiburg and BIOSS Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| | - Edina Simon
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, and János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, and János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, and János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, and János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
29
|
Sorafenib resistance and JNK signaling in carcinoma during extracellular matrix stiffening. Biomaterials 2014; 35:5749-59. [DOI: 10.1016/j.biomaterials.2014.03.058] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/21/2014] [Indexed: 12/20/2022]
|
30
|
Williams KC, Coppolino MG. SNARE-dependent interaction of Src, EGFR and β1 integrin regulates invadopodia formation and tumor cell invasion. J Cell Sci 2014; 127:1712-25. [PMID: 24496451 DOI: 10.1242/jcs.134734] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Acquisition of an invasive phenotype is prerequisite for tumor metastasis. Degradation of the extracellular matrix (ECM), and subsequent invasion by tumor cells, is mediated, in part, through subcellular structures called invadopodia. Src-dependent cytoskeletal rearrangements are required to form invadopodia, and here we identify an association between Src, epidermal growth factor receptor (EGFR), and β1 integrin that facilitates invadopodia formation. The association of Src, EGFR and β1 integrin is dependent upon membrane traffic that is mediated by syntaxin13 (officially known as STX12) and SNAP23; a similar dependence on these two SNARE proteins was observed for invadopodium-based matrix degradation and cell invasion. Inhibition of SNARE function impaired the delivery of Src and EGFR to developing invadopodia, as well as the β1-integrin-dependent activation of Src and phosphorylation of EGFR on Tyr residue 845. We also identified an association between SNAP23 and β1 integrin, and inhibition of β1 integrin increased this association, whereas the interaction between syntaxin13 and SNAP23 was reduced. The results suggest that SNARE-dependent trafficking is regulated, in part, by β1 integrin and is required for the delivery of Src and EGFR to sites of invadopodia formation in order to support tumor cell invasion.
Collapse
Affiliation(s)
- Karla C Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
31
|
Miyazaki T, Tanaka S, Sanjay A, Baron R. The role of c-Src kinase in the regulation of osteoclast function. Mod Rheumatol 2014. [DOI: 10.3109/s10165-006-0460-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
32
|
Dürr R, Keppler O, Christ F, Crespan E, Garbelli A, Maga G, Dietrich U. Targeting Cellular Cofactors in HIV Therapy. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Basu S, Rajakaruna S, De Arcangelis A, Zhang L, Georges-Labouesse E, Menko AS. α6 integrin transactivates insulin-like growth factor receptor-1 (IGF-1R) to regulate caspase-3-mediated lens epithelial cell differentiation initiation. J Biol Chem 2013; 289:3842-55. [PMID: 24381169 DOI: 10.1074/jbc.m113.515254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The canonical mitochondrial death pathway was first discovered for its role in signaling apoptosis. It has since been found to have a requisite function in differentiation initiation in many cell types including the lens through low level activation of the caspase-3 protease. The ability of this pathway to function as a molecular switch in lens differentiation depends on the concurrent induction of survival molecules in the Bcl-2 and IAP families, induced downstream of an IGF-1R/NFκB coordinate survival signal, to regulate caspase-3 activity. Here we investigated whether α6 integrin signals upstream to this IGF-1R-mediated survival-linked differentiation signal. Our findings show that IGF-1R is recruited to and activated specifically in α6 integrin receptor signaling complexes in the lens equatorial region, where lens epithelial cells initiate their differentiation program. In studies with both α6 integrin knock-out mice lenses and primary lens cell cultures following α6 integrin siRNA knockdown, we show that IGF-1R activation is dependent on α6 integrin and that this transactivation requires Src kinase activity. In addition, without α6 integrin, activation and expression of NFκB was diminished, and expression of Bcl-2 and IAP family members were down-regulated, resulting in high levels of caspase-3 activation. As a result, a number of hallmarks of lens differentiation failed to be induced; including nuclear translocation of Prox1 in the differentiation initiation zone and apoptosis was promoted. We conclude that α6 integrin is an essential upstream regulator of the IGF-1R survival pathway that regulates the activity level of caspase-3 for it to signal differentiation initiation of lens epithelial cells.
Collapse
Affiliation(s)
- Subhasree Basu
- From the Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | | | | | | | | | | |
Collapse
|
34
|
Shelef MA, Tauzin S, Huttenlocher A. Neutrophil migration: moving from zebrafish models to human autoimmunity. Immunol Rev 2013; 256:269-81. [PMID: 24117827 PMCID: PMC4117680 DOI: 10.1111/imr.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There has been a resurgence of interest in the neutrophil's role in autoimmune disease. Classically considered an early responder that dies at the site of inflammation, new findings using live imaging of embryonic zebrafish and other modalities suggest that neutrophils can reverse migrate away from sites of inflammation. These 'inflammation-sensitized' neutrophils, as well as the neutrophil extracellular traps and other products made by neutrophils in general, may have many implications for autoimmunity. Here, we review what is known about the role of neutrophils in three different autoimmune diseases: rheumatoid arthritis, systemic lupus erythematosus, and small vessel vasculitis. We then highlight recent findings related to several cytoskeletal regulators that guide neutrophil recruitment including Lyn, Rac2, and SHIP. Finally, we discuss how our improved understanding of the molecules that control neutrophil chemotaxis may impact our knowledge of autoimmunity.
Collapse
Affiliation(s)
- Miriam A. Shelef
- Division of Rheumatology, Department of Medicine, University of Wisconsin – Madison, Madison, WI
| | - Sebastien Tauzin
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin – Madison, Madison, WI
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin – Madison, Madison, WI
| |
Collapse
|
35
|
Chang YN, Guo H, Li J, Song Y, Zhang M, Jin J, Xing G, Zhao Y. Adjusting the balance between effective loading and vector migration of macrophage vehicles to deliver nanoparticles. PLoS One 2013; 8:e76024. [PMID: 24116086 PMCID: PMC3792996 DOI: 10.1371/journal.pone.0076024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/22/2013] [Indexed: 11/18/2022] Open
Abstract
The nature of macrophage allows the possibility that this cell type could be used as drug delivery system to track therapeutic drug nanoparticles (NPs) in cancer. However, there is no existing research on the regulation between effective loading of NPs and targeted delivery of macrophages. Here, we investigated the important parameters of intracellular NP quantity and the vector migration rate. Macrophage loading capacity was obtained by comparing the uptake quantity of varisized NPs, and the delivery ability of loaded cells was determined by measuring vector migration rates. We observed a positive correlation between the size of NPs and directed macrophage migration. Our findings suggest that the molecular mechanism of migration vector rate regulation involved increased expression levels of colony-stimulating factor-1 (CSF-1) receptor and integrin induced by 100-nm and 500-nm particles. The ability of macrophages uptake to varisized NPs showed the opposite trend, with the increased vector rate of cell migration influenced by NPs. We are able to demonstrate the important balance between effective macrophage loading and targeted delivery. By adjusting the balance parameters, it will be possible to utilize NPs in macrophage-mediated disease diagnosis and therapy.
Collapse
Affiliation(s)
- Ya-Nan Chang
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Haili Guo
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Juan Li
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Yan Song
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Mingyi Zhang
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Junjiang Jin
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
| | - Gengmei Xing
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
- * E-mail: (GX); (YZ)
| | - Yuliang Zhao
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
- Chinese Academy of Science Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, China
- * E-mail: (GX); (YZ)
| |
Collapse
|
36
|
Ben-Zimra M, Bachelet I, Seaf M, Gleich GJ, Levi-Schaffer F. Eosinophil major basic protein activates human cord blood mast cells primed with fibroblast membranes by integrin-β1. Allergy 2013; 68:1259-68. [PMID: 24112102 DOI: 10.1111/all.12232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND Mast cell (MC) - eosinophil (Eos) activating cross-talk might be critical for the severity and chronicity of allergy. Among soluble mediators, eosinophil major basic protein (MBP), a hallmark of allergy, is particularly important because it was shown to activate specific MC subtypes. We previously demonstrated that MBP activates IgE-desensitized rat MC and human lung and cord blood-derived MC (CBMC) after priming with fibroblast membranal stem cell factor. However, a distinct mechanism for this activation was missing. Therefore, we aimed to investigate it. METHODS Major basic protein-1 activation of CBMC primed with fibroblast-derived membranes (FBM) was measured by β-hexosaminidase and tryptase release. Chemical cross-linking followed by micrometric flow cytometry probed direct interactions. Antibodies neutralized integrin-β1 and recognized its active form. Pertussis toxin (Ptx) was used to decrease integrin-β1 active form expression. Hematopoietic cell kinase (Hck) was identified by immunoprecipitation (IP) and silenced by siRNA. RESULTS Major basic protein-1-induced CBMC activation is mediated partly by MBP1-integrin-β1 interaction on the MC surface. FBM prime CBMC via a G protein, as confirmed by Ptx, to shift integrin-β1 to its active form. Following MBP1 binding, integrin-β1 binds Hck that further transduces the activation signal. MC priming with FBM leads to up-regulation in Hck protein level. MC integrin-β1 neutralization inhibits MBP1-induced activation and uptake. Hck silencing results with reduced MBP1-induced activation. CONCLUSIONS Fibroblast-derived membranes, integrin-β1, and Hck are involved in MBP1-induced activation of CBMC and therefore represent a distinct mechanism for this activation. This finding might implicate integrin-β1 and Hck as targets for decreasing MC - Eos activating cross-talk in allergy.
Collapse
Affiliation(s)
- M. Ben-Zimra
- Department of Pharmacology & Experimental Therapeutics; Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem; Israel
| | - I. Bachelet
- Department of Pharmacology & Experimental Therapeutics; Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem; Israel
| | - M. Seaf
- Department of Pharmacology & Experimental Therapeutics; Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem; Israel
| | - G. J. Gleich
- Department of Dermatology; School of Medicine; The University of Utah; Salt Lake City; UT; USA
| | - F. Levi-Schaffer
- Department of Pharmacology & Experimental Therapeutics; Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem; Israel
| |
Collapse
|
37
|
Lee H, Tsygankov AY. Cbl-family proteins as regulators of cytoskeleton-dependent phenomena. J Cell Physiol 2013; 228:2285-93. [DOI: 10.1002/jcp.24412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| | - Alexander Y. Tsygankov
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| |
Collapse
|
38
|
Díaz-Muñoz MD, Osma-García IC, Iñiguez MA, Fresno M. Cyclooxygenase-2 deficiency in macrophages leads to defective p110γ PI3K signaling and impairs cell adhesion and migration. THE JOURNAL OF IMMUNOLOGY 2013; 191:395-406. [PMID: 23733875 DOI: 10.4049/jimmunol.1202002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyclooxygenase (Cox)-2 dependent PGs modulate several functions in many pathophysiological processes, including migration of immune cells. In this study, we addressed the role of Cox-2 in macrophage migration by using in vivo and in vitro models. Upon thioglycolate challenge, CD11b(+) F4/80(+) macrophages showed a diminished ability to migrate to the peritoneal cavity in cox-2(-/-) mice. In vivo migration of cox-2(-/-) macrophages from the peritoneal cavity to lymph nodes, as well as cell adhesion to the mesothelium, was reduced in response to LPS. In vitro migration of cox-2(-/-) macrophages toward MCP-1, RANTES, MIP-1α, or MIP-1β, as well as cell adhesion to ICAM-1 or fibronectin, was impaired. Defects in cell migration were not due to changes in chemokine receptor expression. Remarkably, cox-2(-/-) macrophages showed a deficiency in focal adhesion formation, with reduced phosphorylation of paxillin (Tyr(188)). Interestingly, expression of the p110γ catalytic subunit of PI3K was severely reduced in the absence of Cox-2, leading to defective Akt phosphorylation, as well as cdc42 and Rac-1 activation. Our results indicate that the paxillin/p110γ-PI3K/Cdc42/Rac1 axis is defective in cox-2(-/-) macrophages, which results in impaired cell adhesion and migration.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Javadi M, Richmond TD, Huang K, Barber DL. CBL linker region and RING finger mutations lead to enhanced granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling via elevated levels of JAK2 and LYN. J Biol Chem 2013; 288:19459-70. [PMID: 23696637 DOI: 10.1074/jbc.m113.475087] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is characterized by hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). SHP2, NF-1, KRAS, and NRAS are mutated in JMML patients, leading to aberrant regulation of RAS signaling. A subset of JMML patients harbor CBL mutations associated with 11q acquired uniparental disomy. Many of these mutations are in the linker region and the RING finger of CBL, leading to a loss of E3 ligase activity. We investigated the mechanism by which CBL-Y371H, a linker region mutant, and CBL-C384R, a RING finger mutant, lead to enhanced GM-CSF signaling. Expression of CBL mutants in the TF-1 cell line resulted in enhanced survival in the absence of GM-CSF. Cells expressing CBL mutations displayed increased phosphorylation of GM-CSF receptor βc subunit in response to stimulation, although expression of total GM-CSFR βc was lower. This suggested enhanced kinase activity downstream of GM-CSFR. JAK2 and LYN kinase expression is elevated in CBL-Y371H and CBL-C384R mutant cells, resulting in enhanced phosphorylation of CBL and S6 in response to GM-CSF stimulation. Incubation with the JAK2 inhibitor, TG101348, abolished the increased phosphorylation of GM-CSFR βc in cells expressing CBL mutants, whereas treatment with the SRC kinase inhibitor dasatinib resulted in equalization of GM-CSFR βc phosphorylation signal between wild type CBL and CBL mutant samples. Dasatinib treatment inhibited the elevated phosphorylation of CBL-Y371H and CBL-C384R mutants. Our study indicates that CBL linker and RING finger mutants lead to enhanced GM-CSF signaling due to elevated kinase expression, which can be blocked using small molecule inhibitors targeting specific downstream pathways.
Collapse
Affiliation(s)
- Mojib Javadi
- Ontario Cancer Institute, Campbell Family Cancer Research Institute, Toronto, Ontario M5G 2M9, Canada
| | | | | | | |
Collapse
|
40
|
Sévère N, Dieudonné FX, Marie PJ. E3 ubiquitin ligase-mediated regulation of bone formation and tumorigenesis. Cell Death Dis 2013; 4:e463. [PMID: 23328670 PMCID: PMC3564004 DOI: 10.1038/cddis.2012.217] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ubiquitination–proteasome and degradation system is an essential process that regulates protein homeostasis. This system is involved in the regulation of cell proliferation, differentiation and survival, and dysregulations in this system lead to pathologies including cancers. The ubiquitination system is an enzymatic cascade that mediates the marking of target proteins by an ubiquitin label and thereby directs their degradation through the proteasome pathway. The ubiquitination of proteins occurs through a three-step process involving ubiquitin activation by the E1 enzyme, allowing for the transfer to a ubiquitin-conjugated enzyme E2 and to the targeted protein via ubiquitin-protein ligases (E3), the most abundant group of enzymes involved in ubiquitination. Significant advances have been made in our understanding of the role of E3 ubiquitin ligases in the control of bone turnover and tumorigenesis. These ligases are implicated in the regulation of bone cells through the degradation of receptor tyrosine kinases, signaling molecules and transcription factors. Initial studies showed that the E3 ubiquitin ligase c-Cbl, a multi-domain scaffold protein, regulates bone resorption by interacting with several molecules in osteoclasts. Further studies showed that c-Cbl controls the ubiquitination of signaling molecules in osteoblasts and in turn regulates osteoblast proliferation, differentiation and survival. Recent data indicate that c-Cbl expression is decreased in primary bone tumors, resulting in excessive receptor tyrosine kinase signaling. Consistently, c-Cbl ectopic expression reduces bone tumorigenesis by promoting tyrosine kinase receptor degradation. Here, we review the mechanisms of action of E3 ubiquitin ligases in the regulation of normal and pathologic bone formation, and we discuss how targeting the interactions of c-Cbl with some substrates may be a potential therapeutic strategy to promote osteogenesis and to reduce tumorigenesis.
Collapse
Affiliation(s)
- N Sévère
- Laboratory of Osteoblast Biology and Pathology, INSERM U606, Paris, France
| | | | | |
Collapse
|
41
|
|
42
|
The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2012; 2012:512926. [PMID: 23209344 PMCID: PMC3504478 DOI: 10.1155/2012/512926] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/28/2012] [Indexed: 12/28/2022] Open
Abstract
Src kinase (Src) is a tyrosine protein kinase that regulates cellular metabolism, survival, and proliferation. Many studies have shown that Src plays multiple roles in macrophage-mediated innate immunity, such as phagocytosis, the production of inflammatory cytokines/mediators, and the induction of cellular migration, which strongly implies that Src plays a pivotal role in the functional activation of macrophages. Macrophages are involved in a variety of immune responses and in inflammatory diseases including rheumatoid arthritis, atherosclerosis, diabetes, obesity, cancer, and osteoporosis. Previous studies have suggested roles for Src in macrophage-mediated inflammatory responses; however, recently, new functions for Src have been reported, implying that Src functions in macrophage-mediated inflammatory responses that have not been described. In this paper, we discuss recent studies regarding a number of these newly defined functions of Src in macrophage-mediated inflammatory responses. Moreover, we discuss the feasibility of Src as a target for the development of new pharmaceutical drugs to treat macrophage-mediated inflammatory diseases. We provide insights into recent reports regarding new functions for Src that are related to macrophage-related inflammatory responses and the development of novel Src inhibitors with strong immunosuppressive and anti-inflammatory properties, which could be applied to various macrophage-mediated inflammatory diseases.
Collapse
|
43
|
|
44
|
The leucocyte β2 (CD18) integrins: the structure, functional regulation and signalling properties. Biosci Rep 2012; 32:241-69. [PMID: 22458844 DOI: 10.1042/bsr20110101] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Leucocytes are highly motile cells. Their ability to migrate into tissues and organs is dependent on cell adhesion molecules. The integrins are a family of heterodimeric transmembrane cell adhesion molecules that are also signalling receptors. They are involved in many biological processes, including the development of metazoans, immunity, haemostasis, wound healing and cell survival, proliferation and differentiation. The leucocyte-restricted β2 integrins comprise four members, namely αLβ2, αMβ2, αXβ2 and αDβ2, which are required for a functional immune system. In this paper, the structure, functional regulation and signalling properties of these integrins are reviewed.
Collapse
|
45
|
Müller WEG, Wang X, Grebenjuk VA, Korzhev M, Wiens M, Schlossmacher U, Schröder HC. Common genetic denominators for Ca++-based skeleton in Metazoa: role of osteoclast-stimulating factor and of carbonic anhydrase in a calcareous sponge. PLoS One 2012; 7:e34617. [PMID: 22506035 PMCID: PMC3323548 DOI: 10.1371/journal.pone.0034617] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/05/2012] [Indexed: 01/26/2023] Open
Abstract
Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate (ACC). Treatment of spicules from Sycon raphanus with sodium hypochlorite (NaOCl) results in the disintegration of the ACC in those skeletal elements. Until now a distinct protein/enzyme involved in ACC metabolism could not been identified in those animals. We applied the technique of phage display combinatorial libraries to identify oligopeptides that bind to NaOCl-treated spicules: those oligopeptides allowed us to detect proteins that bind to those spicules. Two molecules have been identified, the (putative) enzyme carbonic anhydrase and the (putative) osteoclast-stimulating factor (OSTF), that are involved in the catabolism of ACC. The complete cDNAs were isolated and the recombinant proteins were prepared to raise antibodies. In turn, immunofluorescence staining of tissue slices and qPCR analyses have been performed. The data show that sponges, cultivated under standard condition (10 mM CaCl(2)) show low levels of transcripts/proteins for carbonic anhydrase or OSTF, compared to those animals that had been cultivated under Ca(2+)-depletion condition (1 mM CaCl(2)). Our data identify with the carbonic anhydrase and the OSTF the first two molecules which remain conserved in cells, potentially involved in Ca-based skeletal dissolution, from sponges (sclerocytes) to human (osteoclast).
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Brennan T, Adapala NS, Barbe MF, Yingling V, Sanjay A. Abrogation of Cbl-PI3K interaction increases bone formation and osteoblast proliferation. Calcif Tissue Int 2011; 89:396-410. [PMID: 21952831 PMCID: PMC3191294 DOI: 10.1007/s00223-011-9531-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 08/30/2011] [Indexed: 01/07/2023]
Abstract
Cbl is an adaptor protein and E3 ligase that plays both positive and negative roles in several signaling pathways that affect various cellular functions. Tyrosine 737 is unique to Cbl and phosphorylated by Src family kinases. Phosphorylated CblY737 creates a binding site for the p85 regulatory subunit of phosphatidylinositol 3 kinase (PI3K) that also plays an important role in the regulation of bone homeostasis. To investigate the role of Cbl-PI3K interaction in bone homeostasis, we examined knock-in mice in which the PI3K binding site on Cbl was ablated due to the substitution of tyrosine 737 to phenylalanine (Cbl(YF/YF), YF mice). We previously reported that bone volume in these mice is increased due to decreased osteoclast function (Adapala et al., J Biol Chem 285:36745-36758, 19). Here, we report that YF mice also have increased bone formation and osteoblast numbers. In ex vivo cultures bone marrow-derived YF osteoblasts showed increased Col1A expression and their proliferation was also significantly augmented. Moreover, proliferation of MC3T3-E1 cells was increased after treatment with conditioned medium generated by culturing YF bone marrow stromal cells. Expression of stromal derived factor-1 (SDF-1) was increased in YF bone marrow stromal cells compared to wild type. Increased immunostaining of SDF-1 and CXCR4 was observed in YF bone marrow stromal cells compared to wild type. Treatment of YF condition medium with neutralizing anti-SDF-1 and anti-CXCR4 antibodies attenuated MC3T3-E1 cell proliferation. Cumulatively, these results show that abrogation of Cbl-PI3K interaction perturbs bone homeostasis, affecting both osteoclast function and osteoblast proliferation.
Collapse
Affiliation(s)
- Tracy Brennan
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA USA
| | - Naga Suresh Adapala
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA USA
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, 263 Farmington Avenue, Farmington, CT USA
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA USA
| | - Vanessa Yingling
- Department of Kinesiology, Temple University School of Medicine, Philadelphia, PA USA
| | - Archana Sanjay
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA USA
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, 263 Farmington Avenue, Farmington, CT USA
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA USA
| |
Collapse
|
47
|
The E3 ligase c-Cbl regulates dendritic cell activation. EMBO Rep 2011; 12:971-9. [PMID: 21799517 DOI: 10.1038/embor.2011.143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 12/15/2022] Open
Abstract
The activation of innate and adaptive immunity is always balanced by inhibitory signalling mechanisms to maintain tissue integrity. We have identified the E3 ligase c-Cbl--known for its roles in regulating lymphocyte signalling--as a modulator of dendritic cell activation. In c-Cbl-deficient dendritic cells, Toll-like receptor-induced expression of proinflammatory factors, such as interleukin-12, is increased, correlating with a greater potency of dendritic-cell-based vaccines against established tumours. This proinflammatory phenotype is accompanied by an increase in nuclear factor (NF)-κB activity. In addition, c-Cbl deficiency reduces both p50 and p105 levels, which have been shown to modulate the stimulatory function of NF-κB. Our data indicate that c-Cbl has a crucial, RING-domain-dependent role in regulating dendritic cell maturation, probably by facilitating the regulatory function of p105 and/or p50.
Collapse
|
48
|
Dovas A, Cox D. Signaling networks regulating leukocyte podosome dynamics and function. Cell Signal 2011; 23:1225-34. [PMID: 21342664 PMCID: PMC3095719 DOI: 10.1016/j.cellsig.2011.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/10/2011] [Indexed: 01/07/2023]
Abstract
Podosomes are ventral adhesion structures prominent in cells of the myeloid lineage. A common aspect of these cells is that they are highly motile and must to traverse multiple tissue barriers in order to perform their functions. Recently podosomes have gathered attention from researchers as important cellular structures that can influence cell adhesion, motility and matrix remodeling. Adhesive and soluble ligands act via transmembrane receptors and propagate signals to the leukocyte cytoskeleton via small G proteins of the Rho family, tyrosine kinases and scaffold proteins and are able to induce podosome formation and rearrangements. Manipulation of the signals that regulate podosome formation and dynamics can therefore be a strategy to interfere with leukocyte functions in a multitude of pathological settings, such as infections, atherosclerosis and arthritis. Here, we review the major signaling molecules that act in the formation and regulation of podosomes.
Collapse
Affiliation(s)
- Athanassios Dovas
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
49
|
Park H, Ishihara D, Cox D. Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys 2011; 510:101-11. [PMID: 21356194 PMCID: PMC3114168 DOI: 10.1016/j.abb.2011.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Macrophages display a large variety of surface receptors that are critical for their normal cellular functions in host defense, including finding sites of infection (chemotaxis) and removing foreign particles (phagocytosis). However, inappropriate regulation of these processes can lead to human diseases. Many of these receptors utilize tyrosine phosphorylation cascades to initiate and terminate signals leading to cell migration and clearance of infection. Actin remodeling dominates these processes and many regulators have been identified. This review focuses on how tyrosine kinases and phosphatases regulate actin dynamics leading to macrophage chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dan Ishihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
50
|
Lee H, Tsygankov AY. c-Cbl regulates glioma invasion through matrix metalloproteinase 2. J Cell Biochem 2011; 111:1169-78. [PMID: 20717917 DOI: 10.1002/jcb.22839] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
c-Cbl, a multifunctional adaptor and an E3 ubiquitin ligase, plays a role in such cytoskeleton-mediated events as cell adhesion and migration. Invasiveness of human glioma is dependent on cell adhesion, migration, and degradation of extracellular matrix (ECM). However, the function of c-Cbl in glioma invasion has never been investigated. We report here, for the first time, that c-Cbl plays a positive role in the invasion of ECM by SNB19 glioma cells. RNAi-mediated depletion of c-Cbl decreases SNB19 cell invasion and expression of matrix metalloproteinase 2 (MMP2). Consistent with these findings, SNB19 cells expressing wild-type, but not mutant c-Cbl show increased invasion and MMP2 expression. We demonstrate that the observed role of c-Cbl in invasion of SNB19 cells is not mediated by the previously shown effects of c-Cbl on cell adhesion and migration or on EGFR signaling. Together, our results suggest that c-Cbl promotes glioma invasion through up-regulation of MMP2.
Collapse
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|