1
|
Hillion S, Miranda A, Le Dantec C, Boudigou M, Le Pottier L, Cornec D, Torres RM, Pelanda R. Maf expression in B cells restricts reactive plasmablast and germinal center B cell expansion. Nat Commun 2024; 15:7982. [PMID: 39266537 PMCID: PMC11393457 DOI: 10.1038/s41467-024-52224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
Precise regulation of B cell differentiation is essential for an effective adaptive immune response. Here, we show that B cell development in mice with B cell-specific Maf deletion is unaffected, but marginal zone B cells, germinal centre B cells, and plasmablasts are significantly more frequent in the spleen of naive Maf-deficient mice compared to wild type controls. In the context of a T cell-dependent immunization, Maf deletion causes increased proliferation of germinal centre B cells and extrafollicular plasmablasts. This is accompanied by higher production of antigen-specific IgG1 antibodies with minimal modification of early memory B cells, but a reduction in plasma cell numbers. Single-cell RNA sequencing shows upregulation of genes associated with DNA replication and cell cycle progression, confirming the role of Maf in cell proliferation. Subsequent pathway analysis reveals that Maf influences cellular metabolism, transporter activity, and mitochondrial proteins, which have been implicated in controlling the germinal centre reaction. In summary, our findings demonstrate that Maf acts intrinsically in B cells as a negative regulator of late B cell differentiation, plasmablast proliferation and germinal centre B cell formation.
Collapse
Affiliation(s)
- Sophie Hillion
- LBAI, UMR1227, Univ Brest, Inserm, and CHU de Brest, Brest, France.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Anjelica Miranda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | | | | | - Divi Cornec
- LBAI, UMR1227, Univ Brest, Inserm, and CHU de Brest, Brest, France
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
2
|
Hughes EP, Syage AR, Mehrabad EM, Lane TE, Spike BT, Tantin D. OCA-B promotes autoimmune demyelination through control of stem-like CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569210. [PMID: 38076925 PMCID: PMC10705450 DOI: 10.1101/2023.11.29.569210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Stem-like T cell populations can selectively contribute to autoimmunity, but the activities that promote and sustain these populations are incompletely understood. Here, we show that T cell-intrinsic loss of the transcription cofactor OCA-B protects mice from experimental autoimmune encephalomyelitis (EAE) while preserving responses to CNS infection. In adoptive transfer EAE models driven by multiple antigen encounters, OCA-B deletion nearly eliminates CNS infiltration, proinflammatory cytokine production and clinical disease. OCA-B-expressing CD4 + T cells within the CNS of mice with EAE comprise a minority of the population but display a memory phenotype and preferentially confer disease. In a relapsing-remitting EAE model, OCA-B T cell deficiency specifically protects mice from relapse. During remission, OCA-B promotes the expression of Tcf7 , Slamf6 , and Sell in proliferating T cell populations. At relapse, OCA-B loss results in both the accumulation of an immunomodulatory CD4 + T cell population expressing Ccr9 and Bach2 , and the loss of pro-inflammatory gene expression from Th17 cells. These results identify OCA-B as a driver of pathogenic stem-like T cells.
Collapse
|
3
|
Yanagi M, Ikegami I, Kamekura R, Sato T, Sato T, Kamiya S, Murayama K, Jitsukawa S, Ito F, Yorozu A, Kihara M, Abe T, Takaki H, Kawata K, Shigehara K, Miyajima S, Nishikiori H, Sato A, Tohse N, Takano KI, Chiba H, Ichimiya S. Bob1 maintains T follicular helper cells for long-term humoral immunity. Commun Biol 2024; 7:185. [PMID: 38360857 PMCID: PMC10869348 DOI: 10.1038/s42003-024-05827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Humoral immunity is vital for host protection, yet aberrant antibody responses can trigger harmful inflammation and immune-related disorders. T follicular helper (Tfh) cells, central to humoral immunity, have garnered significant attention for unraveling immune mechanisms. This study shows the role of B-cell Oct-binding protein 1 (Bob1), a transcriptional coactivator, in Tfh cell regulation. Our investigation, utilizing conditional Bob1-deficient mice, suggests that Bob1 plays a critical role in modulating inducible T-cell costimulator expression and cellular respiration in Tfh cells. This regulation maintains the long-term functionality of Tfh cells, enabling their reactivation from central memory T cells to produce antibodies during recall responses. In a bronchial asthma model induced by house dust mite (HDM) inhalation, Bob1 is observed to enhance HDM-specific antibodies, including IgE, highlighting its pivotal function in Tfh cell regulation. Further exploration of Bob1-dependent mechanisms in Tfh cells holds promise for governing protective immunity and addressing immune-related disorders.
Collapse
Affiliation(s)
- Masahiro Yanagi
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Ippei Ikegami
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Taiki Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Shiori Kamiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Kosuke Murayama
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Sumito Jitsukawa
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Fumie Ito
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Akira Yorozu
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Miho Kihara
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Hiromi Takaki
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Koji Kawata
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Katsunori Shigehara
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Satsuki Miyajima
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hirotaka Nishikiori
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Akinori Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Rehabilitation, Faculty of Healthcare and Science, Hokkaido Bunkyo University, Eniwa, 061-1449, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Ken-Ichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.
| |
Collapse
|
4
|
Betzler AC, Brunner C. The Role of the Transcriptional Coactivator BOB.1/OBF.1 in Adaptive Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:53-77. [PMID: 39017839 DOI: 10.1007/978-3-031-62731-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BOB.1/OBF.1 is a transcriptional coactivator involved in octamer-dependent transcription. Thereby, BOB.1/OBF.1 is involved in the transcriptional regulation of genes important for lymphocyte physiology. BOB.1/OBF.1-deficient mice reveal multiple B- and T-cell developmental defects. The most prominent defect of these mice is the complete absence of germinal centers (GCs) resulting in severely impaired T-cell-dependent immune responses. In humans, BOB.1/OBF.1 is associated with several autoimmune and inflammatory diseases but also linked to liquid and solid tumors. Although its role for B-cell development is relatively well understood, its exact role for the GC reaction and T-cell biology has long been unclear. Here, the contribution of BOB.1/OBF.1 for B-cell maturation is summarized, and recent findings regarding its function in GC B- as well as in various T-cell populations are discussed. Finally, a detailed perspective on how BOB.1/OBF.1 contributes to different pathologies is provided.
Collapse
Affiliation(s)
- Annika C Betzler
- Department of Oto-Rhino-Larnygology, Ulm University Medical Center, Ulm, Germany
- Core Facility Immune Monitoring, Ulm University, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Larnygology, Ulm University Medical Center, Ulm, Germany.
- Core Facility Immune Monitoring, Ulm University, Ulm, Germany.
| |
Collapse
|
5
|
Qiu L, Zhang Y, Zeng X. The function of γδ T cells in humoral immune responses. Inflamm Res 2023; 72:747-755. [PMID: 36799949 DOI: 10.1007/s00011-023-01704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
PURPOSE The purpose of this review is to discuss the role of γδ T cells played in humoral immune responses. BACKGROUND The γδ T cell receptor (γδ TCR) recognizes antigens, including haptens and proteins, in an MHC-independent manner. The recognition of these antigens by γδ TCRs crosses antigen recognition by the B cell receptors (BCRs), suggesting that γδ T cells may be involved in the process of antigen recognition and activation of B cells. However, the role of γδ T cells in humoral immune responses is still less clear. METHODS The kinds of literature about the γδ T cell-B cell interaction were searched on PubMed with search terms, such as γδ T cells, antibody, B cell responses, antigen recognition, and infection. RESULTS Accumulating evidence indicates that γδ T cells, independent of αβ T cells, participate in multiple steps of humoral immunity, including B cell maturation, activation and differentiation, antibody production and class switching. Mechanically, γδ T cells affect B cell function by directly interacting with B cells, secreting cytokines, or modulating αβ T cells. CONCLUSION In this review, we summarize current knowledge on how γδ T cells take part in the humoral immune response, which may assist future vaccine design.
Collapse
Affiliation(s)
- Lingfeng Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Betzler AC, Ezić J, Abou Kors T, Hoffmann TK, Wirth T, Brunner C. T Cell Specific BOB.1/OBF.1 Expression Promotes Germinal Center Response and T Helper Cell Differentiation. Front Immunol 2022; 13:889564. [PMID: 35603192 PMCID: PMC9114770 DOI: 10.3389/fimmu.2022.889564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/07/2022] [Indexed: 11/14/2022] Open
Abstract
The transcriptional co-activator BOB.1/OBF.1 is expressed in both B and T cells. The main characteristic of conventional BOB.1/OBF.1 deficient mice is the complete absence of germinal centers (GCs). This defect was mainly attributed to the defective B cell compartment. However, it is unknown whether and how BOB.1/OBF.1 expression in T cells contributes to the GC reaction. To finally clarify this question, we studied the in vivo function of BOB.1/OBF.1 in CD4+ T and follicular T helper (TFH) cell subpopulations by conditional mutagenesis, in the presence of immunocompetent B lymphocytes. BOB.1/OBF.1 deletion in CD4+ T as well as TFH cells resulted in impaired GC formation demonstrating that the impaired GC reaction described for conventional BOB.1/OBF.1-deficient mice cannot exclusively be traced back to the B cell compartment. Furthermore, we show a requirement of BOB.1/OBF.1 for T helper (TH) cell subsets, particularly for TFH cell differentiation.
Collapse
Affiliation(s)
- Annika C Betzler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Jasmin Ezić
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Tsima Abou Kors
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Thomas K Hoffmann
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Thomas Wirth
- Department of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
7
|
Lombard‐Vadnais F, Lacombe J, Chabot‐Roy G, Ferron M, Lesage S. OCA‐B does not act as a transcriptional coactivator in T cells. Immunol Cell Biol 2022; 100:338-351. [DOI: 10.1111/imcb.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Félix Lombard‐Vadnais
- Immunologie‐oncologie Centre de recherche de l’Hôpital Maisonneuve‐Rosemont Montréal QC H1T 2M4 Canada
- Department of Microbiology & Immunology McGill University Montreal QC H3A 0G4 Canada
| | - Julie Lacombe
- Molecular Physiology Research Unit Institut de recherches cliniques de Montréal Montréal QC H2W 1R7 Canada
| | - Geneviève Chabot‐Roy
- Immunologie‐oncologie Centre de recherche de l’Hôpital Maisonneuve‐Rosemont Montréal QC H1T 2M4 Canada
| | - Mathieu Ferron
- Molecular Physiology Research Unit Institut de recherches cliniques de Montréal Montréal QC H2W 1R7 Canada
- Département de médecine Université de Montréal Montréal QC H3T 1J4 Canada
- Division of Experimental Medicine McGill University Montreal QC H3A 0G4 Canada
| | - Sylvie Lesage
- Immunologie‐oncologie Centre de recherche de l’Hôpital Maisonneuve‐Rosemont Montréal QC H1T 2M4 Canada
- Département de microbiologie, infectiologie et immunologie Université de Montréal Montréal QC H3T 1J4 Canada
| |
Collapse
|
8
|
Betzler AC, Fiedler K, Hoffmann TK, Fehling HJ, Wirth T, Brunner C. BOB.1/OBF.1 is required during B-cell ontogeny for B-cell differentiation and germinal center function. Eur J Immunol 2021; 52:404-417. [PMID: 34918350 DOI: 10.1002/eji.202149333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022]
Abstract
BOB.1/OBF.1 is a lymphocyte-specific transcriptional co-activator of octamer-dependent transcription. It regulates the expression of genes important for lymphocyte physiology together with the Oct-1 and Oct-2 transcription factors. So far, BOB.1/OBF.1 has been studied in conventional knockout mice, whereby a function of BOB.1/OBF.1 in B but also in T cells was described. The main characteristic of BOB.1/OBF.1-deficient mice is the complete absence of germinal centers. However, it is entirely unsolved at which stage of B-cell development BOB.1/OBF.1 expression is essential for germinal center formation. Still, it is not known whether defects observed late in B-cell development of BOB.1/OBF.1-deficient mice are merely a consequence of defective early B-cell development. To answer the question, whether BOB.1/OBF.1 expression is required before or during the process of germinal center formation, we established a mouse system, which allows the conditional deletion of BOB.1/OBF.1 at different stages of B-cell development. Our data reveal a requirement for BOB.1/OBF.1 during both early antigen-independent and late antigen-dependent B-cell development, and further a requirement for efficient germinal center reaction during complete B-cell ontogeny. By specifically deleting BOB.1/OBF.1 in germinal center B cells, we provide evidence that the failure to form germinal centers is a germinal center B-cell intrinsic defect and not exclusively a consequence of defective early B-cell maturation.
Collapse
Affiliation(s)
- Annika C Betzler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Katja Fiedler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany.,Department of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Thomas K Hoffmann
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | | | - Thomas Wirth
- Department of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
9
|
OBF1 and Oct factors control the germinal center transcriptional program. Blood 2021; 137:2920-2934. [PMID: 33512466 DOI: 10.1182/blood.2020010175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
OBF1 is a specific coactivator of the POU family transcription factors OCT1 and OCT2. OBF1 and OCT2 are B cell-specific and indispensable for germinal center (GC) formation, but their mechanism of action is unclear. Here, we show by chromatin immunoprecipitation-sequencing that OBF1 extensively colocalizes with OCT1 and OCT2. We found that these factors also often colocalize with transcription factors of the ETS family. Furthermore, we showed that OBF1, OCT2, and OCT1 bind widely to the promoters or enhancers of genes involved in GC formation in mouse and human GC B cells. Short hairpin RNA knockdown experiments demonstrated that OCT1, OCT2, and OBF1 regulate each other and are essential for proliferation of GC-derived lymphoma cell lines. OBF1 downregulation disrupts the GC transcriptional program: genes involved in GC maintenance, such as BCL6, are downregulated, whereas genes related to exit from the GC program, such as IRF4, are upregulated. Ectopic expression of BCL6 does not restore the proliferation of GC-derived lymphoma cells depleted of OBF1 unless IRF4 is also depleted, indicating that OBF1 controls an essential regulatory node in GC differentiation.
Collapse
|
10
|
Yeremenko N, Danger R, Baeten D, Tomilin A, Brouard S. Transcriptional regulator BOB.1: Molecular mechanisms and emerging role in chronic inflammation and autoimmunity. Autoimmun Rev 2021; 20:102833. [PMID: 33864944 DOI: 10.1016/j.autrev.2021.102833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
Lymphocytes constitute an essential and potent effector compartment of the immune system. Therefore, their development and functions must be strictly regulated to avoid inappropriate immune responses, such as autoimmune reactions. Several lines of evidence from genetics (e.g. association with multiple sclerosis and primary biliary cirrhosis), human expression studies (e.g. increased expression in target tissues and draining lymph nodes of patients with autoimmune diseases), animal models (e.g. loss of functional protein protects animals from the development of collagen-induced arthritis, experimental autoimmune encephalomyelitis, type 1 diabetes, bleomycin-induced fibrosis) strongly support a causal link between the aberrant expression of the lymphocyte-restricted transcriptional regulator BOB.1 and the development of autoimmune diseases. In this review, we summarize the current knowledge of unusual structural and functional plasticity of BOB.1, stringent regulation of its expression, and the pivotal role that BOB.1 plays in shaping B- and T-cell responses. We discuss recent developments highlighting the significant contribution of BOB.1 to the pathogenesis of autoimmune diseases and how to leverage our knowledge to target this regulator to treat autoimmune tissue inflammation.
Collapse
Affiliation(s)
- Nataliya Yeremenko
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France; Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
| | - Richard Danger
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Dominique Baeten
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Alexey Tomilin
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russian Federation
| | - Sophie Brouard
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
11
|
Kim H, Perovanovic J, Shakya A, Shen Z, German CN, Ibarra A, Jafek JL, Lin NP, Evavold BD, Chou DHC, Jensen PE, He X, Tantin D. Targeting transcriptional coregulator OCA-B/Pou2af1 blocks activated autoreactive T cells in the pancreas and type 1 diabetes. J Exp Med 2021; 218:e20200533. [PMID: 33295943 PMCID: PMC7731945 DOI: 10.1084/jem.20200533] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/27/2020] [Accepted: 10/09/2020] [Indexed: 11/04/2022] Open
Abstract
The transcriptional coregulator OCA-B promotes expression of T cell target genes in cases of repeated antigen exposure, a necessary feature of autoimmunity. We hypothesized that T cell-specific OCA-B deletion and pharmacologic OCA-B inhibition would protect mice from autoimmune diabetes. We developed an Ocab conditional allele and backcrossed it onto a diabetes-prone NOD/ShiLtJ strain background. T cell-specific OCA-B loss protected mice from spontaneous disease. Protection was associated with large reductions in islet CD8+ T cell receptor specificities associated with diabetes pathogenesis. CD4+ clones associated with diabetes were present but associated with anergic phenotypes. The protective effect of OCA-B loss was recapitulated using autoantigen-specific NY8.3 mice but diminished in monoclonal models specific to artificial or neoantigens. Rationally designed membrane-penetrating OCA-B peptide inhibitors normalized glucose levels and reduced T cell infiltration and proinflammatory cytokine expression in newly diabetic NOD mice. Together, the results indicate that OCA-B is a potent autoimmune regulator and a promising target for pharmacologic inhibition.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Autoantigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Crosses, Genetic
- Cytokines/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Disease Models, Animal
- Female
- Gene Deletion
- Germ Cells/metabolism
- Humans
- Inflammation Mediators/metabolism
- Lymph Nodes/metabolism
- Lymphocyte Activation
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Ovalbumin
- Pancreas/metabolism
- Pancreas/pathology
- Peptides/pharmacology
- Receptors, Antigen, T-Cell/metabolism
- Spleen/pathology
- T-Lymphocytes/immunology
- Trans-Activators/deficiency
- Trans-Activators/metabolism
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
- Heejoo Kim
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Jelena Perovanovic
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Zuolian Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Cody N German
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Andrea Ibarra
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Jillian L Jafek
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Nai-Pin Lin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Brian D Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Danny H-C Chou
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Peter E Jensen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Xiao He
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
12
|
Chu CS, Hellmuth JC, Singh R, Ying HY, Skrabanek L, Teater MR, Doane AS, Elemento O, Melnick AM, Roeder RG. Unique Immune Cell Coactivators Specify Locus Control Region Function and Cell Stage. Mol Cell 2020; 80:845-861.e10. [PMID: 33232656 DOI: 10.1016/j.molcel.2020.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022]
Abstract
Locus control region (LCR) functions define cellular identity and have critical roles in diseases such as cancer, although the hierarchy of structural components and associated factors that drive functionality are incompletely understood. Here we show that OCA-B, a B cell-specific coactivator essential for germinal center (GC) formation, forms a ternary complex with the lymphoid-enriched OCT2 and GC-specific MEF2B transcription factors and that this complex occupies and activates an LCR that regulates the BCL6 proto-oncogene and is uniquely required by normal and malignant GC B cells. Mechanistically, through OCA-B-MED1 interactions, this complex is required for Mediator association with the BCL6 promoter. Densely tiled CRISPRi screening indicates that only LCR segments heavily bound by this ternary complex are essential for its function. Our results demonstrate how an intimately linked complex of lineage- and stage-specific factors converges on specific and highly essential enhancer elements to drive the function of a cell-type-defining LCR.
Collapse
Affiliation(s)
- Chi-Shuen Chu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Johannes C Hellmuth
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rajat Singh
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hsia-Yuan Ying
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lucy Skrabanek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matthew R Teater
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashley S Doane
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
13
|
McDonough JE, Ahangari F, Li Q, Jain S, Verleden SE, Herazo-Maya J, Vukmirovic M, DeIuliis G, Tzouvelekis A, Tanabe N, Chu F, Yan X, Verschakelen J, Homer RJ, Manatakis DV, Zhang J, Ding J, Maes K, De Sadeleer L, Vos R, Neyrinck A, Benos PV, Bar-Joseph Z, Tantin D, Hogg JC, Vanaudenaerde BM, Wuyts WA, Kaminski N. Transcriptional regulatory model of fibrosis progression in the human lung. JCI Insight 2019; 4:131597. [PMID: 31600171 PMCID: PMC6948862 DOI: 10.1172/jci.insight.131597] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/04/2019] [Indexed: 11/17/2022] Open
Abstract
To develop a systems biology model of fibrosis progression within the human lung we performed RNA sequencing and microRNA analysis on 95 samples obtained from 10 idiopathic pulmonary fibrosis (IPF) and 6 control lungs. Extent of fibrosis in each sample was assessed by microCT-measured alveolar surface density (ASD) and confirmed by histology. Regulatory gene expression networks were identified using linear mixed-effect models and dynamic regulatory events miner (DREM). Differential gene expression analysis identified a core set of genes increased or decreased before fibrosis was histologically evident that continued to change with advanced fibrosis. DREM generated a systems biology model (www.sb.cs.cmu.edu/IPFReg) that identified progressively divergent gene expression tracks with microRNAs and transcription factors that specifically regulate mild or advanced fibrosis. We confirmed model predictions by demonstrating that expression of POU2AF1, previously unassociated with lung fibrosis but proposed by the model as regulator, is increased in B lymphocytes in IPF lungs and that POU2AF1-knockout mice were protected from bleomycin-induced lung fibrosis. Our results reveal distinct regulation of gene expression changes in IPF tissue that remained structurally normal compared with moderate or advanced fibrosis and suggest distinct regulatory mechanisms for each stage.
Collapse
Affiliation(s)
- John E. McDonough
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Farida Ahangari
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Qin Li
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Siddhartha Jain
- Carnegie Mellon University of Computer Science, Pittsburgh, Pennsylvania, USA
| | - Stijn E. Verleden
- Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven Belgium
| | - Jose Herazo-Maya
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Milica Vukmirovic
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Giuseppe DeIuliis
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Argyrios Tzouvelekis
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Naoya Tanabe
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Fanny Chu
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Xiting Yan
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Johny Verschakelen
- Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven Belgium
| | - Robert J. Homer
- Department of Pathology, Yale University School of Medicine, New Haven,Connecticut, USA
- Pathology and Laboratory Medicine Service, VA CT HealthCare System, West Haven, Connecticut, USA
| | - Dimitris V. Manatakis
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Junke Zhang
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jun Ding
- Carnegie Mellon University of Computer Science, Pittsburgh, Pennsylvania, USA
| | - Karen Maes
- Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven Belgium
| | - Laurens De Sadeleer
- Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven Belgium
| | - Robin Vos
- Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven Belgium
| | - Arne Neyrinck
- Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven Belgium
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ziv Bar-Joseph
- Carnegie Mellon University of Computer Science, Pittsburgh, Pennsylvania, USA
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - James C. Hogg
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | | | - Wim A. Wuyts
- Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven Belgium
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Levels MJ, Fehres CM, van Baarsen LG, van Uden NO, Germar K, O'Toole TG, Blijdorp IC, Semmelink JF, Doorenspleet ME, Bakker AQ, Krasavin M, Tomilin A, Brouard S, Spits H, Baeten DL, Yeremenko NG. BOB.1 controls memory B-cell fate in the germinal center reaction. J Autoimmun 2019; 101:131-144. [DOI: 10.1016/j.jaut.2019.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022]
|
15
|
Carter S, Miard S, Caron A, Sallé-Lefort S, St-Pierre P, Anhê FF, Lavoie-Charland E, Blais-Lecours P, Drolet MC, Lefebvre JS, Lacombe J, Deshaies Y, Couet J, Laplante M, Ferron M, Bossé Y, Marette A, Richard D, Marsolais D, Picard F. Loss of OcaB Prevents Age-Induced Fat Accretion and Insulin Resistance by Altering B-Lymphocyte Transition and Promoting Energy Expenditure. Diabetes 2018; 67:1285-1296. [PMID: 29496744 DOI: 10.2337/db17-0558] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022]
Abstract
The current demographic shift toward an aging population has led to a robust increase in the prevalence of age-associated metabolic disorders. Recent studies have demonstrated that the etiology of obesity-related insulin resistance that develops with aging differs from that induced by high-calorie diets. Whereas the role of adaptive immunity in changes in energy metabolism driven by nutritional challenges has recently gained attention, its impact on aging remains mostly unknown. Here we found that the number of follicular B2 lymphocytes and expression of the B-cell-specific transcriptional coactivator OcaB increase with age in spleen and in intra-abdominal epididymal white adipose tissue (eWAT), concomitantly with higher circulating levels of IgG and impaired glucose homeostasis. Reduction of B-cell maturation and Ig production-especially that of IgG2c-by ablation of OcaB prevented age-induced glucose intolerance and insulin resistance and promoted energy expenditure by stimulating fatty acid utilization in eWAT and brown adipose tissue. Transfer of wild-type bone marrow in OcaB-/- mice replenished the eWAT B2-cell population and IgG levels, which diminished glucose tolerance, insulin sensitivity, and energy expenditure while increasing body weight gain in aged mice. Thus these findings demonstrate that upon aging, modifications in B-cell-driven adaptive immunity contribute to glucose intolerance and fat accretion.
Collapse
Affiliation(s)
- Sophie Carter
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - Stéphanie Miard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Alexandre Caron
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Sandrine Sallé-Lefort
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - Philippe St-Pierre
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Institute for Nutrition and Functional Foods, Québec, QC, Canada
| | - Fernando Forato Anhê
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Institute for Nutrition and Functional Foods, Québec, QC, Canada
| | - Emilie Lavoie-Charland
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Pascale Blais-Lecours
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Marie-Claude Drolet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Julie S Lefebvre
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Julie Lacombe
- Integrative and Molecular Physiology Research Unit, Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | - Yves Deshaies
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Jacques Couet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Mathieu Laplante
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Mathieu Ferron
- Integrative and Molecular Physiology Research Unit, Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Department of Medicine and Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Yohan Bossé
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - André Marette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Institute for Nutrition and Functional Foods, Québec, QC, Canada
| | - Denis Richard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - David Marsolais
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Frédéric Picard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| |
Collapse
|
16
|
Levels MJ, Van Tok MN, Cantaert T, Cañete JD, Kroese FGM, Germar K, Spits H, Baeten DLP, Yeremenko NG. The Transcriptional Coactivator Bob1 Is Associated With Pathologic B Cell Responses in Autoimmune Tissue Inflammation. Arthritis Rheumatol 2017; 69:750-762. [DOI: 10.1002/art.39993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Maria J. Levels
- Academic Medical Center, University of AmsterdamAmsterdam The Netherlands
| | - Melissa N. Van Tok
- Academic Medical Center, University of AmsterdamAmsterdam The Netherlands
| | - Tineke Cantaert
- Academic Medical Center, University of AmsterdamAmsterdam The Netherlands
| | - Juan D. Cañete
- Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona Spain
| | | | - Kristine Germar
- Academic Medical Center, University of AmsterdamAmsterdam The Netherlands
| | - Hergen Spits
- Academic Medical Center, University of Amsterdam and AIMM TherapeuticsAmsterdam The Netherlands
| | | | | |
Collapse
|
17
|
Wöhner M, Tagoh H, Bilic I, Jaritz M, Poliakova DK, Fischer M, Busslinger M. Molecular functions of the transcription factors E2A and E2-2 in controlling germinal center B cell and plasma cell development. J Exp Med 2016; 213:1201-21. [PMID: 27261530 PMCID: PMC4925024 DOI: 10.1084/jem.20152002] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/04/2016] [Indexed: 12/18/2022] Open
Abstract
Busslinger et al. showed that the transcription factors E2A and E2-2 control the expression of genes required for the development of GC B cells and plasma cells. E2A is an essential regulator of early B cell development. Here, we have demonstrated that E2A together with E2-2 controlled germinal center (GC) B cell and plasma cell development. As shown by the identification of regulated E2A,E2-2 target genes in activated B cells, these E-proteins directly activated genes with important functions in GC B cells and plasma cells by inducing and maintaining DNase I hypersensitive sites. Through binding to multiple enhancers in the Igh 3′ regulatory region and Aicda locus, E-proteins regulated class switch recombination by inducing both Igh germline transcription and AID expression. By regulating 3′ Igk and Igh enhancers and a distal element at the Prdm1 (Blimp1) locus, E-proteins contributed to Igk, Igh, and Prdm1 activation in plasmablasts. Together, these data identified E2A and E2-2 as central regulators of B cell immunity.
Collapse
Affiliation(s)
- Miriam Wöhner
- Research Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria
| | - Hiromi Tagoh
- Research Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria
| | - Ivan Bilic
- Research Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria
| | | | - Maria Fischer
- Research Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria
| |
Collapse
|
18
|
Yamashita K, Kawata K, Matsumiya H, Kamekura R, Jitsukawa S, Nagaya T, Ogasawara N, Takano KI, Kubo T, Kimura S, Shigehara K, Himi T, Ichimiya S. Bob1 limits cellular frequency of T-follicular helper cells. Eur J Immunol 2016; 46:1361-70. [PMID: 27080143 PMCID: PMC5084739 DOI: 10.1002/eji.201545499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/03/2016] [Accepted: 04/08/2016] [Indexed: 12/16/2022]
Abstract
T follicular helper (Tfh) cells are involved in specific humoral immunity at initial and recall phases. The fact that the transcription repressors B‐cell lymphoma‐6 and Blimp‐1 determine lineages of Tfh cells and other types of effector CD4+ T cells, respectively, suggests that there are unique mechanisms to establish Tfh‐cell identity. In this study, we found that Tfh cells preferentially express the transcriptional coactivator Bob1. Bob1 of Tfh cells was dispensable for the expression of B‐cell lymphoma‐6 and the functional property of the cells for B cell help. However, upon initial immunization of foreign antigens, the percentages of Tfh cells in Bob1−/− mice were much higher than those in wild‐type (WT) mice. In addition, expansion of Tfh cells within Bob1−/−CD4+ T cells transferred into WT mice revealed that the high frequency of Tfh cells was caused by a T‐cell‐intrinsic mechanism. These findings were further supported by the results of in vitro studies demonstrating that Bob1−/− Tfh cells had greater proliferative activity in response to stimuli by CD3/CD28 monoclonal antibody and were also refractory to CD3‐induced cell death in comparison to WT Tfh cells. These results suggest that Tfh cells harbor a Bob1‐related mechanism to restrict numerical frequency against stimulation of TCRs.
Collapse
Affiliation(s)
- Keiji Yamashita
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Kawata
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Matsumiya
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sumito Jitsukawa
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomonori Nagaya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriko Ogasawara
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ken-Ichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sachiko Kimura
- Division of Pathology and Laboratory Medicine, Hokkaido Medical Center for Child Health and Rehabilitation, Sapporo, Japan
| | - Katsunori Shigehara
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
19
|
Stauss D, Brunner C, Berberich-Siebelt F, Höpken UE, Lipp M, Müller G. The transcriptional coactivator Bob1 promotes the development of follicular T helper cells via Bcl6. EMBO J 2016; 35:881-98. [PMID: 26957522 PMCID: PMC4972135 DOI: 10.15252/embj.201591459] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 01/08/2016] [Indexed: 12/20/2022] Open
Abstract
Follicular T helper (Tfh) cells are key regulators of the germinal center reaction and long‐term humoral immunity. Tfh cell differentiation requires the sustained expression of the transcriptional repressor Bcl6; however, its regulation in CD4+ T cells is incompletely understood. Here, we report that the transcriptional coactivator Bob1, encoded by the Pou2af1 gene, promotes Bcl6 expression and Tfh cell development. We found that Bob1 together with the octamer transcription factors Oct1/Oct2 can directly bind to and transactivate the Bcl6 and Btla promoters. Mixed bone marrow chimeras revealed that Bob1 is required for the expression of normal levels of Bcl6 and BTLA, thereby controlling the pool size and composition of the Tfh compartment in a T cell‐intrinsic manner. Our data indicate that T cell‐expressed Bob1 is directly involved in Tfh cell differentiation and required for mounting normal T cell‐dependent B‐cell responses.
Collapse
Affiliation(s)
- Dennis Stauss
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Cornelia Brunner
- Department of Physiological Chemistry, Department of Oto-Rhino-Laryngology Head and Neck Surgery, University of Ulm, Ulm, Germany
| | | | - Uta E Höpken
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Martin Lipp
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Gerd Müller
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
20
|
Zhou H, Brekman A, Zuo WL, Ou X, Shaykhiev R, Agosto-Perez FJ, Wang R, Walters MS, Salit J, Strulovici-Barel Y, Staudt MR, Kaner RJ, Mezey JG, Crystal RG, Wang G. POU2AF1 Functions in the Human Airway Epithelium To Regulate Expression of Host Defense Genes. THE JOURNAL OF IMMUNOLOGY 2016; 196:3159-67. [PMID: 26927796 DOI: 10.4049/jimmunol.1502400] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/01/2016] [Indexed: 02/05/2023]
Abstract
In the process of seeking novel lung host defense regulators by analyzing genome-wide RNA sequence data from normal human airway epithelium, we detected expression of POU domain class 2-associating factor 1 (POU2AF1), a known transcription cofactor previously thought to be expressed only in lymphocytes. Lymphocyte contamination of human airway epithelial samples obtained by bronchoscopy and brushing was excluded by immunohistochemistry staining, the observation of upregulation of POU2AF1 in purified airway basal stem/progenitor cells undergoing differentiation, and analysis of differentiating single basal cell clones. Lentivirus-mediated upregulation of POU2AF1 in airway basal cells induced upregulation of host defense genes, including MX1, IFIT3, IFITM, and known POU2AF1 downstream genes HLA-DRA, ID2, ID3, IL6, and BCL6. Interestingly, expression of these genes paralleled changes of POU2AF1 expression during airway epithelium differentiation in vitro, suggesting POU2AF1 helps to maintain a host defense tone even in pathogen-free condition. Cigarette smoke, a known risk factor for airway infection, suppressed POU2AF1 expression both in vivo in humans and in vitro in human airway epithelial cultures, accompanied by deregulation of POU2AF1 downstream genes. Finally, enhancing POU2AF1 expression in human airway epithelium attenuated the suppression of host defense genes by smoking. Together, these findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium.
Collapse
Affiliation(s)
- Haixia Zhou
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Sichuan 610041, China; Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Angelika Brekman
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Wu-Lin Zuo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Xuemei Ou
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Renat Shaykhiev
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | | | - Rui Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Matthew S Walters
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | | | - Michelle R Staudt
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10065; and
| | - Jason G Mezey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065; Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, NY 14853
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10065; and
| | - Guoqing Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
21
|
Kilzheimer M, Quandt J, Langhans J, Weihrich P, Wirth T, Brunner C. NF-κB-dependent signals control BOB.1/OBF.1 and Oct2 transcriptional activity in B cells. Eur J Immunol 2015; 45:3441-53. [DOI: 10.1002/eji.201545475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 07/30/2015] [Accepted: 09/12/2015] [Indexed: 12/18/2022]
Affiliation(s)
| | - Jasmin Quandt
- Institute of Physiological Chemistry; Ulm University; Ulm Germany
| | - Julia Langhans
- Department of Otorhinolaryngology; Ulm University; Ulm Germany
| | - Petra Weihrich
- Institute of Physiological Chemistry; Ulm University; Ulm Germany
- Department of Otorhinolaryngology; Ulm University; Ulm Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry; Ulm University; Ulm Germany
| | - Cornelia Brunner
- Institute of Physiological Chemistry; Ulm University; Ulm Germany
- Department of Otorhinolaryngology; Ulm University; Ulm Germany
| |
Collapse
|
22
|
Shakya A, Goren A, Shalek A, German CN, Snook J, Kuchroo VK, Yosef N, Chan RC, Regev A, Williams MA, Tantin D. Oct1 and OCA-B are selectively required for CD4 memory T cell function. J Exp Med 2015; 212:2115-31. [PMID: 26481684 PMCID: PMC4647264 DOI: 10.1084/jem.20150363] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/25/2015] [Indexed: 12/31/2022] Open
Abstract
Shakya et al. identify the transcription factor Oct1 and its cofactor OCA-B as central mediators for generating memory T cell responses in mice. Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4+ memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4+ T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4+ T cell memory.
Collapse
Affiliation(s)
- Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Alon Goren
- Broad Technology Labs, The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Alex Shalek
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 Department of Physics, Harvard University, Cambridge, MA 02138 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Cody N German
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Jeremy Snook
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Vijay K Kuchroo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Nir Yosef
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Raymond C Chan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Aviv Regev
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Matthew A Williams
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
23
|
Corcoran L, Emslie D, Kratina T, Shi W, Hirsch S, Taubenheim N, Chevrier S. Oct2 and Obf1 as Facilitators of B:T Cell Collaboration during a Humoral Immune Response. Front Immunol 2014; 5:108. [PMID: 24688485 PMCID: PMC3960507 DOI: 10.3389/fimmu.2014.00108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/03/2014] [Indexed: 11/16/2022] Open
Abstract
The Oct2 protein, encoded by the Pou2f2 gene, was originally predicted to act as a DNA binding transcriptional activator of immunoglobulin (Ig) in B lineage cells. This prediction flowed from the earlier observation that an 8-bp sequence, the “octamer motif,” was a highly conserved component of most Ig gene promoters and enhancers, and evidence from over-expression and reporter assays confirmed Oct2-mediated, octamer-dependent gene expression. Complexity was added to the story when Oct1, an independently encoded protein, ubiquitously expressed from the Pou2f1 gene, was characterized and found to bind to the octamer motif with almost identical specificity, and later, when the co-activator Obf1 (OCA-B, Bob.1), encoded by the Pou2af1 gene, was cloned. Obf1 joins Oct2 (and Oct1) on the DNA of a subset of octamer motifs to enhance their transactivation strength. While these proteins variously carried the mantle of determinants of Ig gene expression in B cells for many years, such a role has not been borne out for them by characterization of mice lacking functional copies of the genes, either as single or as compound mutants. Instead, we and others have shown that Oct2 and Obf1 are required for B cells to mature fully in vivo, for B cells to respond to the T cell cytokines IL5 and IL4, and for B cells to produce IL6 normally during a T cell dependent immune response. We show here that Oct2 affects Syk gene expression, thus influencing B cell receptor signaling, and that Oct2 loss blocks Slamf1 expression in vivo as a result of incomplete B cell maturation. Upon IL4 signaling, Stat6 up-regulates Obf1, indirectly via Xbp1, to enable plasma cell differentiation. Thus, Oct2 and Obf1 enable B cells to respond normally to antigen receptor signals, to express surface receptors that mediate physical interaction with T cells, or to produce and respond to cytokines that are critical drivers of B cell and T cell differentiation during a humoral immune response.
Collapse
Affiliation(s)
- Lynn Corcoran
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Dianne Emslie
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Tobias Kratina
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Wei Shi
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Susanne Hirsch
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Nadine Taubenheim
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Stephane Chevrier
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
24
|
Kieffer-Kwon KR, Tang Z, Mathe E, Qian J, Sung MH, Li G, Resch W, Baek S, Pruett N, Grøntved L, Vian L, Nelson S, Zare H, Hakim O, Reyon D, Yamane A, Nakahashi H, Kovalchuk AL, Zou J, Joung JK, Sartorelli V, Wei CL, Ruan X, Hager GL, Ruan Y, Casellas R. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell 2014; 155:1507-20. [PMID: 24360274 DOI: 10.1016/j.cell.2013.11.039] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/01/2013] [Accepted: 11/25/2013] [Indexed: 12/31/2022]
Abstract
A key finding of the ENCODE project is that the enhancer landscape of mammalian cells undergoes marked alterations during ontogeny. However, the nature and extent of these changes are unclear. As part of the NIH Mouse Regulome Project, we here combined DNaseI hypersensitivity, ChIP-seq, and ChIA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes. We confirm that enhancer usage varies widely across tissues. Unexpectedly, we find that this feature extends to broadly transcribed genes, including Myc and Pim1 cell-cycle regulators, which associate with an entirely different set of enhancers in ES and B cells. By means of high-resolution CpG methylomes, genome editing, and digital footprinting, we show that these enhancers recruit lineage-determining factors. Furthermore, we demonstrate that the turning on and off of enhancers during development correlates with promoter activity. We propose that organisms rely on a dynamic enhancer landscape to control basic cellular functions in a tissue-specific manner.
Collapse
Affiliation(s)
| | - Zhonghui Tang
- The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, CT 06030, USA
| | - Ewy Mathe
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Qian
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myong-Hee Sung
- Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guoliang Li
- The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, CT 06030, USA
| | - Wolfgang Resch
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathanael Pruett
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lars Grøntved
- Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Vian
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steevenson Nelson
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hossein Zare
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ofir Hakim
- Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Deepak Reyon
- Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - Arito Yamane
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hirotaka Nakahashi
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander L Kovalchuk
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jizhong Zou
- Laboratory of Stem Cell Biology, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Keith Joung
- Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chia-Lin Wei
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Xiaoan Ruan
- The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, CT 06030, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, CT 06030, USA
| | - Rafael Casellas
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA; Center of Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Germinal center‐independent, IgM‐mediated autoimmunity in
sanroque
mice lacking Obf1. Immunol Cell Biol 2013; 92:12-9. [DOI: 10.1038/icb.2013.71] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/24/2013] [Accepted: 09/28/2013] [Indexed: 12/26/2022]
|
26
|
Wang JH, New JS, Xie S, Yang P, Wu Q, Li J, Luo B, Ding Y, Druey KM, Hsu HC, Mountz JD. Extension of the germinal center stage of B cell development promotes autoantibodies in BXD2 mice. ARTHRITIS AND RHEUMATISM 2013; 65:2703-12. [PMID: 23818250 PMCID: PMC3979745 DOI: 10.1002/art.38059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 06/10/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Regulator of G protein signaling (RGS) proteins inhibit chemokine signaling by desensitizing G protein-coupled receptor signals. This study was undertaken to determine the mechanisms by which RGS13 promotes the generation of pathogenic autoantibodies in germinal centers (GCs), using BXD2-Rgs13-/- mice. METHODS Confocal and light microscopy imaging techniques were used to determine the location of cells that express RGS13 and activation-induced cytidine deaminase (AID) in the mouse spleen, and the number of plasmablasts. The levels of GC and plasma cell program transcripts in GC B cells were determined by real-time quantitative polymerase chain reaction (qPCR). Differential interleukin-17 (IL-17)-mediated expression of RGS13 in GC versus non-GC B cells was analyzed using A20 and 70Z/3 B cells. RESULTS In the spleens of BXD2 mice, RGS13 was mainly expressed by GC B cells and was stimulated by IL-17 but not IL-21. IL-17 up-regulated RGS13 in A20 GC cells but not 70Z/3 non-GC B cells. BXD2- Rgs13-/- mice exhibited smaller GCs and lower AID levels, suggesting lower somatic hypermutation and affinity maturation. However, GC B cells from BXD2- Rgs13-/- mice showed increased levels of IgMbright plasmablasts, up-regulation of the genes encoding plasma program, including interferon regulatory factor 4, B lymphocyte-induced maturation protein 1, and X-box binding protein 1 and the p-CREB target genes Fosb and Obf1, and down-regulation of the GC program genes Aid, Pax5, and Bach2 compared to BXD2 mice. BXD2-Rgs13-/- mice had lower titers of IgG autoantibodies and IgG deposits in the glomeruli, suggesting reduced autoantibody pathogenicity. CONCLUSION RGS13 deficiency is associated with a reduction in GC program genes and the exit of fewer pathogenic IgM plasmablasts in BXD2 mice. Our findings indicate that prolonged GC program, mediated by up-regulation of RGS13, enhances AID expression and enables the generation of pathogenic autoantibodies in autoreactive GCs.
Collapse
|
27
|
A C-terminal acidic domain regulates degradation of the transcriptional coactivator Bob1. Mol Cell Biol 2013; 33:4628-40. [PMID: 24061476 DOI: 10.1128/mcb.01590-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bob1 (Obf-1 or OCA-B) is a 34-kDa transcriptional coactivator encoded by the Pou2af1 gene that is essential for normal B-cell development and immune responses in mice. During lymphocyte activation, Bob1 protein levels dramatically increase independently of mRNA levels, suggesting that the stability of Bob1 is regulated. We used a fluorescent protein-based reporter system to analyze protein stability in response to genetic and physiological perturbations and show that, while Bob1 degradation is proteasome mediated, it does not require ubiquitination of Bob1. Furthermore, degradation of Bob1 in B cells appears to be largely independent of the E3 ubiquitin ligase Siah. We propose a novel mechanism of Bob1 turnover in B cells, whereby an acidic region in the C terminus of Bob1 regulates the activity of degron signals elsewhere in the protein. Changes that make the C terminus more acidic, including tyrosine phosphorylation-mimetic mutations, stabilize the instable murine Bob1 protein, indicating that B cells may regulate Bob1 stability and activity via signaling pathways. Finally, we show that expressing a stable Bob1 mutant in B cells suppresses cell proliferation and induces changes in surface marker expression commonly seen during B-cell differentiation.
Collapse
|
28
|
Mueller K, Quandt J, Marienfeld RB, Weihrich P, Fiedler K, Claussnitzer M, Laumen H, Vaeth M, Berberich-Siebelt F, Serfling E, Wirth T, Brunner C. Octamer-dependent transcription in T cells is mediated by NFAT and NF-κB. Nucleic Acids Res 2013; 41:2138-54. [PMID: 23293002 PMCID: PMC3575799 DOI: 10.1093/nar/gks1349] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The transcriptional co-activator BOB.1/OBF.1 was originally identified in B cells and is constitutively expressed throughout B cell development. BOB.1/OBF.1 associates with the transcription factors Oct1 and Oct2, thereby enhancing octamer-dependent transcription. In contrast, in T cells, BOB.1/OBF.1 expression is inducible by treatment of cells with PMA/Ionomycin or by antigen receptor engagement, indicating a marked difference in the regulation of BOB.1/OBF.1 expression in B versus T cells. The molecular mechanisms underlying the differential expression of BOB.1/OBF.1 in T and B cells remain largely unknown. Therefore, the present study focuses on mechanisms controlling the transcriptional regulation of BOB.1/OBF.1 and Oct2 in T cells. We show that both calcineurin- and NF-κB-inhibitors efficiently attenuate the expression of BOB.1/OBF.1 and Oct2 in T cells. In silico analyses of the BOB.1/OBF.1 promoter revealed the presence of previously unappreciated combined NFAT/NF-κB sites. An array of genetic and biochemical analyses illustrates the involvement of the Ca2+/calmodulin-dependent phosphatase calcineurin as well as NFAT and NF-κB transcription factors in the transcriptional regulation of octamer-dependent transcription in T cells. Conclusively, impaired expression of BOB.1/OBF.1 and Oct2 and therefore a hampered octamer-dependent transcription may participate in T cell-mediated immunodeficiency caused by the deletion of NFAT or NF-κB transcription factors.
Collapse
Affiliation(s)
- Kerstin Mueller
- Institute of Physiological Chemistry, University Ulm, D-89081 Ulm, Germany, Institute of Pathology, University Ulm, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Karnowski A, Chevrier S, Belz GT, Mount A, Emslie D, D'Costa K, Tarlinton DM, Kallies A, Corcoran LM. B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. ACTA ACUST UNITED AC 2012; 209:2049-64. [PMID: 23045607 PMCID: PMC3478936 DOI: 10.1084/jem.20111504] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcriptional activator Oct2 and cofactor OBF-1 regulate B cell IL-6 to induce T cell production of IL-21, to support Tfh cell development in antiviral immunity. A strong humoral response to infection requires the collaboration of several hematopoietic cell types that communicate via antigen presentation, surface coreceptors and their ligands, and secreted factors. The proinflammatory cytokine IL-6 has been shown to promote the differentiation of activated CD4+ T cells into T follicular helper cells (TFH cells) during an immune response. TFH cells collaborate with B cells in the formation of germinal centers (GCs) during T cell–dependent antibody responses, in part through secretion of critical cytokines such as IL-21. In this study, we demonstrate that loss of either IL-6 or IL-21 has marginal effects on the generation of TFH cells and on the formation of GCs during the response to acute viral infection. However, mice lacking both IL-6 and IL-21 were unable to generate a robust TFH cell–dependent immune response. We found that IL-6 production in follicular B cells in the draining lymph node was an important early event during the antiviral response and that B cell–derived IL-6 was necessary and sufficient to induce IL-21 from CD4+ T cells in vitro and to support TFH cell development in vivo. Finally, the transcriptional activator Oct2 and its cofactor OBF-1 were identified as regulators of Il6 expression in B cells.
Collapse
Affiliation(s)
- Alex Karnowski
- Molecular Immunology Division and 2 Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Oracki SA, Walker JA, Hibbs ML, Corcoran LM, Tarlinton DM. Plasma cell development and survival. Immunol Rev 2010; 237:140-59. [DOI: 10.1111/j.1600-065x.2010.00940.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Abstract
Allergic diseases such as asthma are elicited by maladaptive activation of immune cells such as mast cells and lymphocytes by otherwise innocuous allergens. The numerous mediators secreted by such cells promote both acute inflammation and, in many instances, chronic tissue remodeling. Most of these compounds exert their effects on end-organ targets such as epithelial and endothelial cells and airway smooth muscle by activating G-protein-coupled receptors (GPCRs), which are by far the most abundant type of cell surface receptor. Since GPCRs are also the most common target of allergy therapeutics, a better understanding of their intracellular signaling mechanisms is vital to improve the efficacy of such drugs or to develop new targets. In this review, we focus on some of the new regulatory elements that control the duration and amplitude of GPCR signal transduction pathways in immune effector cells and end-organ structural cells affected by allergic inflammation.
Collapse
|
32
|
Bordon A, Bosco N, Du Roure C, Bartholdy B, Kohler H, Matthias G, Rolink AG, Matthias P. Enforced expression of the transcriptional coactivator OBF1 impairs B cell differentiation at the earliest stage of development. PLoS One 2008; 3:e4007. [PMID: 19104664 PMCID: PMC2603323 DOI: 10.1371/journal.pone.0004007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/19/2008] [Indexed: 02/06/2023] Open
Abstract
OBF1, also known as Bob.1 or OCA-B, is a B lymphocyte-specific transcription factor which coactivates Oct1 and Oct2 on B cell specific promoters. So far, the function of OBF1 has been mainly identified in late stage B cell populations. The central defect of OBF1 deficient mice is a severely reduced immune response to T cell-dependent antigens and a lack of germinal center formation in the spleen. Relatively little is known about a potential function of OBF1 in developing B cells. Here we have generated transgenic mice overexpressing OBF1 in B cells under the control of the immunoglobulin heavy chain promoter and enhancer. Surprisingly, these mice have greatly reduced numbers of follicular B cells in the periphery and have a compromised immune response. Furthermore, B cell differentiation is impaired at an early stage in the bone marrow: a first block is observed during B cell commitment and a second differentiation block is seen at the large preB2 cell stage. The cells that succeed to escape the block and to differentiate into mature B cells have post-translationally downregulated the expression of transgene, indicating that expression of OBF1 beyond the normal level early in B cell development is deleterious. Transcriptome analysis identified genes deregulated in these mice and Id2 and Id3, two known negative regulators of B cell differentiation, were found to be upregulated in the EPLM and preB cells of the transgenic mice. Furthermore, the Id2 and Id3 promoters contain octamer-like sites, to which OBF1 can bind. These results provide evidence that tight regulation of OBF1 expression in early B cells is essential to allow efficient B lymphocyte differentiation.
Collapse
Affiliation(s)
- Alain Bordon
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Xie Z, Geiger TR, Johnson EN, Nyborg JK, Druey KM. RGS13 acts as a nuclear repressor of CREB. Mol Cell 2008; 31:660-70. [PMID: 18775326 DOI: 10.1016/j.molcel.2008.06.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 05/01/2008] [Accepted: 06/18/2008] [Indexed: 01/22/2023]
Abstract
Cyclic AMP-induced phosphorylation of the transcription factor CREB elicits expression of genes mediating diverse biological functions. In lymphoid organs, the neurotransmitter norepinephrine stimulates beta(2)-adrenergic receptors on B lymphocytes to promote CREB-dependent expression of genes like the B cell Oct 2 coactivator (OCA-B). Although CREB phosphorylation recruits cofactors such as CBP/p300 to stimulate transcription, bona fide endogenous inhibitors of CREB-coactivator or CREB-DNA interactions have not emerged. Here, we identified RGS13, a member of the Regulator of G protein Signaling (RGS) protein family, as a nuclear factor that suppresses CREB-mediated gene expression. cAMP or Ca(2+) signaling promoted RGS13 accumulation in the nucleus, where it formed a complex with phosphorylated CREB and CBP/p300. RGS13 reduced the apparent affinity of pCREB for both the CRE and CBP. B lymphocytes from Rgs13(-/-) mice had more beta(2)-agonist-induced OCA-B expression. Thus, RGS13 inhibits CREB-dependent transcription of target genes through disruption of complexes formed at the promoter.
Collapse
Affiliation(s)
- Zhihui Xie
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
34
|
Zuo J, Ge H, Zhu G, Matthias P, Sun J. OBF-1 is essential for the generation of antibody-secreting cells and the development of autoimmunity in MRL-lpr mice. J Autoimmun 2007; 29:87-96. [PMID: 17574818 DOI: 10.1016/j.jaut.2007.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/06/2007] [Accepted: 05/07/2007] [Indexed: 02/06/2023]
Abstract
As reported previously, the lack of the transcriptional co-activator OBF-1 prevented development of autoimmunity in Aiolos knockout mice. To further investigate the role and mechanism of OBF-1 in autoimmunity, we crossed OBF-1 null mice with MRL-lpr mice and generated OBF-1-deficent MRL-lpr mice. OBF-1 deletion abrogated all autoantibodies in the MRL-lpr mice, including anti-dsDNA Ab and anti-Sm Ab. The failure to produce autoantibodies was not related to development of immature or mature B cells, but correlated with severely reduced antibody-secreting cells (ASCs). The loss of OBF-1 protected against hypergammaglobulinemia, immune complex deposition, glomerulonephritis, and early mortality in MRL-lpr mice. In addition, accumulation of CD4(-)CD8(-)B220(+)CD3(+) T cells that characteristically develop in Fas mutation mice were markedly reduced in MRL-lpr mice without OBF-1. These results identify OBF-1 as a critical gene in the development of autoantibodies and reveal an essential role for OBF-1 in the generation of antibody/autoantibody-secreting cells in vivo.
Collapse
Affiliation(s)
- Jinxin Zuo
- Health Science Institute, Shanghai Institutes for Biological Sciences & Shanghai JiaoTong University School of Medicine, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
Xu Z, Pone EJ, Al-Qahtani A, Park SR, Zan H, Casali P. Regulation of aicda expression and AID activity: relevance to somatic hypermutation and class switch DNA recombination. Crit Rev Immunol 2007; 27:367-97. [PMID: 18197815 PMCID: PMC2994649 DOI: 10.1615/critrevimmunol.v27.i4.60] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Expression and activity of activation-induced cytidine deaminase (AID) encoded by the aicda gene are essential for immunoglobulin (Ig) gene somatic hypermutation (SHM) and class switch DNA recombination (CSR). SHM and CSR unfold, in general, in germinal centers and/are central to the maturation of effective antibody responses. AID expression is induced by activated B-cell CD40 signaling, which is critical for the germinal center reaction, and is further enhanced by other stimuli, including interleukin-4 (IL-4) secreted from CD4+ T cells or Toll-like receptor (TLR)-activating bacterial and/or viral molecules. Integration of different intracellular signal transduction pathways, as activated by these stimuli, leads to a dynamic aicda-regulating program, which involves both positively acting trans-factors, such as Pax5, HoxC4, E47, and Irf8, and negative modulators, such as Blimp1 and Id2, to restrict aicda expression primarily to germinal center B cells. The phosphatidylinositol 3-kinase (PI 3-K), which functions downstream of activated B-cell receptor (BCR) signaling, likely plays an important role in triggering the downregulation of aicda expression in postgerminal center B cells and throughout plasmacytoid differentiation. In B cells undergoing SHM and CSR, AID activity, and, possibly, AID targeting to the Ig locus are regulated at a posttranslational level, including AID dimerization/oligomerization, nuclear/cytoplasmic AID translocation, and phosphorylation of the AID Ser38 residue by protein kinase A (PKA). Here, we discuss the role of B-cell activation signals, transcription regulation programs, and posttranslational modifications in controlling aicda expression and AID activity, thereby delineating an integrated model of modulation of SHM and CSR in the germinal center reaction.
Collapse
Affiliation(s)
- Zhenming Xu
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Two mechanisms account for generation of the human antibody repertoire; V(D)J recombination during the early stages of B-cell development in the bone marrow and somatic mutation of immunoglobulin genes in mature B cells responding to antigen in the periphery. V(D)J recombination produces diversity by random joining of gene segments and somatic mutation by introducing random point mutations. Both are required to attain the degree of antigen receptor diversification that is necessary for immune protection: defects in either mechanism are associated with increased susceptibility to infection. However, the downside of producing enormous random diversity in the antibody repertoire is the generation of autoantibodies. To prevent autoimmunity B cells expressing autoantibodies are regulated by strict mechanisms that either modify the specificity of autoantibodies or the fate of cells expressing such antibodies. Abnormalities in B-cell self-tolerance are associated with a large number of autoimmune diseases, but the precise nature of the defects is less well defined. Here we summarize recent data on the self-reactive B-cell repertoire in healthy humans and in patients with autoimmunity.
Collapse
Affiliation(s)
- Hedda Wardemann
- Max Planck Institute for Infection Biology, Campus Charite Mitte, Schumannstrasse 21/22, D-10117 Berlin, Germany
| | | |
Collapse
|
37
|
Gibson SE, Dong HY, Advani AS, Hsi ED. Expression of the B cell-associated transcription factors PAX5, OCT-2, and BOB.1 in acute myeloid leukemia: associations with B-cell antigen expression and myelomonocytic maturation. Am J Clin Pathol 2006; 126:916-24. [PMID: 17074681 DOI: 10.1309/ujul60upup3yje93] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The aberrant expression of the B-cell transcription factor PAX5 has been described in a subset of acute myeloid leukemia (AML) with t(8;21)(q22;q22) in association with B-cell antigen expression. However, the expression of other B cell-associated transcription factors, particularly OCT-2 and its B cell-specific coactivator BOB.1, has not been described in AML. In this study, expression of PAX5, OCT-2 and BOB.1 was evaluated by immunohistochemical staining of bone marrow samples from 83 cases of AML. The expression patterns were correlated with t(8;21)(q22;q22), B cell-associated antigen expression, and AML subtype. We confirmed the expression of PAX5 in AML with t(8;21)(q22;q22), but also demonstrated its expression in cases that express B-cell antigens but lack this translocation. Although OCT-2 and BOB.1 were not associated with PAX5 expression, we report expression of OCT-2 in AML with myelomonocytic/monocytic maturation and BOB.1 in normal hematopoietic elements.
Collapse
Affiliation(s)
- Sarah E Gibson
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
38
|
Bartholdy B, Du Roure C, Bordon A, Emslie D, Corcoran LM, Matthias P. The Ets factor Spi-B is a direct critical target of the coactivator OBF-1. Proc Natl Acad Sci U S A 2006; 103:11665-70. [PMID: 16861304 PMCID: PMC1513538 DOI: 10.1073/pnas.0509430103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBF-1 (Bob.1, OCA-B) is a lymphoid-specific transcriptional coactivator that associates with the transcription factors Oct-1 or Oct-2 on the conserved octamer element present in the promoters of several ubiquitous and lymphoid-specific genes. OBF-1-deficient mice have B cell-intrinsic defects, lack germinal centers, and have severely impaired immune responses to T cell-dependent antigens. Crucial genes that are regulated by OBF-1 and that might explain the observed phenotype of OBF-1 deficiency have remained elusive to date. Here we have generated transgenic mice expressing OBF-1 specifically in T cells and examined these together with mice lacking OBF-1 to discover transcriptional targets of this coactivator. Using microarray analysis, we have identified the Ets transcription factor Spi-B as a direct target gene critically regulated by OBF-1 that can help explain the phenotype of OBF-1-deficient mice. Spi-B has been implicated in signaling pathways downstream of the B cell receptor and is essential for germinal center formation and maintenance. The present findings establish a hierarchy between these two factors and provide a molecular link between OBF-1 and B cell receptor signaling.
Collapse
Affiliation(s)
- Boris Bartholdy
- *Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; and
| | - Camille Du Roure
- *Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; and
| | - Alain Bordon
- *Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; and
| | - Dianne Emslie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Lynn M. Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Patrick Matthias
- *Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Yu X, Siegel R, Roeder RG. Interaction of the B Cell-specific Transcriptional Coactivator OCA-B and Galectin-1 and a Possible Role in Regulating BCR-mediated B Cell Proliferation. J Biol Chem 2006; 281:15505-16. [PMID: 16565088 DOI: 10.1074/jbc.m509041200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OCA-B is a B cell-specific transcriptional coactivator for OCT factors during the activation of immunoglobulin genes. In addition, OCA-B is crucial for B cell activation and germinal center formation. However, the molecular mechanisms for OCA-B function in these processes are not clear. Our previous studies documented two OCA-B isoforms and suggested a novel mechanism for the function of the myristoylated, membrane-bound form of OCA-B/p35 as a signaling molecule. Here, we report the identification of galectin-1, and related galectins, as a novel OCA-B-interacting protein. The interaction of OCA-B and galectin-1 can be detected both in vivo and in vitro. The galectin-1 binding domain in OCA-B has been localized to the N terminus of OCA-B. In B cells lacking OCA-B expression, increased galectin-1 expression, secretion, and cell surface association are observed. Consistent with these observations, and a reported inhibitory interaction of galectin-1 with CD45, the phosphatase activity of CD45 is reduced modestly, but significantly, in OCA-B-deficient B cells. Finally, galectin-1 is shown to negatively regulate B cell proliferation and tyrosine phosphorylation upon BCR stimulation. Together, these results raise the possibility that OCA-B may regulate BCR signaling through an association with galectin-1.
Collapse
Affiliation(s)
- Xin Yu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
40
|
Ishida D, Su L, Tamura A, Katayama Y, Kawai Y, Wang SF, Taniwaki M, Hamazaki Y, Hattori M, Minato N. Rap1 signal controls B cell receptor repertoire and generation of self-reactive B1a cells. Immunity 2006; 24:417-27. [PMID: 16618600 DOI: 10.1016/j.immuni.2006.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 01/15/2006] [Accepted: 02/01/2006] [Indexed: 02/06/2023]
Abstract
We previously reported that the mice deficient for SPA-1, a Rap1 GTPase-activating protein, developed hematopoietic stem cell disorders. Here, we demonstrate that SPA-1(-/-) mice show an age-dependent increase in B220(high) B1a cells producing anti-dsDNA antibody and lupus-like nephritis. SPA-1(-/-) peritoneal B1 cells revealed the altered Vkappa gene repertoire, including skewed Vkappa4 usage and the significant Igkappa/Iglambda isotype inclusion indicative of extensive receptor editing. Rap1GTP induced OcaB gene activation via p38MAPK-dependent Creb phosphorylation, and consistently, SPA-1(-/-) immature BM B cells showing high Rap1GTP exhibited the augmented expression of OcaB and Vkappa4 genes. SPA-1(-/-) BM cells could transfer the autoimmunity in association with the generation of peritoneal B220(high) B1a cells in Rag-2(-/-) recipients. Finally, a portion of SPA-1(-/-) mice developed B1 cell leukemia with hemolytic autoantibody. Present results suggest that the regulated Rap1 signal in the immature B cells plays a role in modifying the B cell receptor repertoire and in maintaining the self-tolerance.
Collapse
Affiliation(s)
- Daisuke Ishida
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
BOB.1/OBF.1 is a lymphocyte-restricted transcriptional coactivator. It binds together with the Oct1 and Oct2 transcription factors to DNA and enhances their transactivation potential. Mice deficient for the transcriptional coactivator BOB.1/OBF.1 show several defects in differentiation, function and signaling of B cells. In search of BOB.1/OBF.1 regulated genes we identified Btk—a cytoplasmic tyrosine kinase—as a direct target of BOB.1/OBF.1. Analyses of the human as well as murine Btk promoters revealed a non-consensus octamer site close to the start site of transcription. Here we show that Oct proteins together with BOB.1/OBF.1 are able to form ternary complexes on these sites in vitro and in vivo. This in turn leads to the induction of Btk promoter activity in synergism with the transcription factor PU.1. Btk, like BOB.1/OBF.1, plays a critical role in B cell development and B cell receptor signalling. Therefore the down-regulation of Btk expression in BOB.1/OBF.1-deficient B cells could be related to the functional and developmental defects observed in BOB.1/OBF.1-deficient mice.
Collapse
Affiliation(s)
| | - Thomas Wirth
- To whom correspondence should be addressed. Tel: 0049 731 502 3262; Fax: 0049 731 502 2892;
| |
Collapse
|
42
|
Traverse-Glehen A, Pittaluga S, Gaulard P, Sorbara L, Alonso MA, Raffeld M, Jaffe ES. Mediastinal gray zone lymphoma: the missing link between classic Hodgkin's lymphoma and mediastinal large B-cell lymphoma. Am J Surg Pathol 2006; 29:1411-21. [PMID: 16224207 DOI: 10.1097/01.pas.0000180856.74572.73] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent years, overlap in biologic and morphologic features has been identified between classic Hodgkin lymphoma (cHL) and B-cell non-Hodgkin lymphoma. Nevertheless, the therapeutic approaches for these diseases remain different. We undertook a study of "mediastinal gray zone lymphomas" (MGZL), with features transitional between cHL nodular sclerosis (NS) and primary mediastinal large B-cell lymphoma (MLBCL) to better understand the morphologic and immunophenotypic spectrum of such cases. Twenty-one MGZL cases were identified over a 20-year period. We also studied 6 cases of composite or synchronous lymphoma with two distinct components at the same time (cHL-NS and MLBCL) and 9 sequential cases with MLBCL and cHL-NS at different times. All patients had a large mediastinal mass. Immunohistochemical studies focused on markers known to discriminate between cHL and MLBCL, including B-cell transcription factors. VJ-PCR was performed in 8 cases to look at clonality of the immunoglobulin heavy chain gene (IgH). Of the gray zone cases, 11 had morphology reminiscent of cHL-NS, but with unusual features, including a large number of mononuclear variants, diminished inflammatory background, absence of classic Hodgkin phenotype, and strong CD20 expression (11 of 11). Ten cases had morphology of MLBCL, but with admixed Hodgkin/Reed-Sternberg and lacunar cells, absent (3 of 10) or weak (7 of 10) CD20 expression, and positivity for CD15 in 7 cases. B-cell transcription factor expression in the gray zone cases more closely resembled MLBCL than cHL with expression of Pax5, Oct2, and BOB.1 in all but 1 case studied (14 of 15). MAL staining was found in 7 of 10 MGZL, and in at least one component of 6 of 7 evaluable composite or sequential MLBCL/cHL cases. Two cases of sequential lymphoma showed rearrangements of the IgH gene of identical size: one in which MLBCL was the first diagnosis and one in which MLBCL was diagnosed at relapse, indicating clonal identity for the two components of cHL and MLBCL. There is accumulating evidence that MLBCL and cHL are related entities. Further support for a relationship between MLBCL and cHL-NS is provided by composite and metachronous lymphomas in the same patient, as well as the existence of MGZL with transitional morphology and phenotype.
Collapse
|
43
|
Abstract
The developmental program that commits a hematopoietic stem cell to the B lymphocyte lineage employs transcriptional regulators to enable the assembly of an antigen receptor complex with a useful specificity and with signalling competence. Once a naive IgM+ B cell is generated, it must correctly integrate signals from the antigen receptor with those from cytokine receptors and co-receptors delivering T cell help. The B cell responds through the regulated expression of genes that implement specific cell expansion and differentiation, secretion of high levels of high-affinity antibody, and generation of long-term memory. The transcriptional regulators highlighted in this chapter are those for which genetic evidence of function in IgM+ B cells in vivo has been provided, often in the form of mutant mice generated by conventional or conditional gene targeting. A critical developmental step is the maturation of bone marrow emigrant "transitional" B cells into the mature, long-lived cells of the periphery, and a number of the transcription factors discussed here impact on this process, yielding B cells with poor mitogenic responses in vitro. For mature B cells, it is clear that not only the nature, but the duration and amplitude of an activating signal are major determinants of the transcription factor activities enlisted, and so the ultimate outcome. The current challenge is the identification of the target genes that are activated to implement the correct response, so that we may more precisely and safely manipulate B cell behavior to predictably and positively influence humoral immune responses.
Collapse
Affiliation(s)
- L M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| |
Collapse
|
44
|
Auer RL, Starczynski J, McElwaine S, Bertoni F, Newland AC, Fegan CD, Cotter FE. Identification of a potential role for POU2AF1 and BTG4 in the deletion of 11q23 in chronic lymphocytic leukemia. Genes Chromosomes Cancer 2005; 43:1-10. [PMID: 15672409 DOI: 10.1002/gcc.20159] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Deletions of 11q in chronic lymphocytic leukemia (CLL) are usually associated with progressive disease and poor prognosis. A novel translocation within the previously identified 11q minimal region has been defined in a patient with CLL. The breakpoint is between genes POU2AF1 and BTG4. POU2AF1 is a B-cell-specific transcriptional coactivator, and BTG4 is a member of the BTG family of negative regulators of the cell cycle, making both of them good candidate genes for the pathogenesis of 11q- CLL. POU2AF1 was observed to be differentially expressed in the cells of patients with CLL compared to its expression in normal B cells in the absence of mutations. This may reflect ongoing stimulation and active accessory signaling in CLL cells. BTG4 could contribute to CLL pathogenesis following inactivation by haploinsufficiency.
Collapse
Affiliation(s)
- Rebecca L Auer
- Department of Experimental Haematology, ICMS, Barts & The London, Queen Mary School of Medicine, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
45
|
Bartholdy B, Matthias P. Transcriptional control of B cell development and function. Gene 2004; 327:1-23. [PMID: 14960357 DOI: 10.1016/j.gene.2003.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 10/14/2003] [Accepted: 11/07/2003] [Indexed: 12/17/2022]
Abstract
The generation, development, maturation and selection of mammalian B lymphocytes is a complex process that is initiated in the embryo and proceeds throughout life to provide the organism an essential part of the immune system it requires to cope with pathogens. Transcriptional regulation of this highly complex series of events is a major control mechanism, although control is also exerted on all other layers, including splicing, translation and protein stability. This review summarizes our current understanding of transcriptional control of the well-studied murine B cell development, which bears strong similarity to its human counterpart. Animal and cell models with loss of function (gene "knock outs") or gain of function (often transgenes) have significantly contributed to our knowledge about the role of specific transcription factors during B lymphopoiesis. In particular, a large number of different transcriptional regulators have been linked to distinct stages of the life of B lymphocytes such as: differentiation in the bone marrow, migration to the peripheral organs and antigen-induced activation.
Collapse
Affiliation(s)
- Boris Bartholdy
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, PO Box 2543, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | |
Collapse
|
46
|
Laumen H, Brunner C, Greiner A, Wirth T. Myosin light chain 1 atrial isoform (MLC1A) is expressed in pre-B cells under control of the BOB.1/OBF.1 coactivator. Nucleic Acids Res 2004; 32:1577-83. [PMID: 15004244 PMCID: PMC390310 DOI: 10.1093/nar/gkh327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The BOB.1/OBF.1 protein is a B-cell-specific coactivator of the Oct1 and Oct2 transcription factors. It is involved in mediating the transcriptional activity of the Oct proteins. However, animals deficient for BOB.1/OBF.1 showed virtually normal expression of genes that contain octamer motifs in their regulatory regions. To identify new genes that are regulated by BOB.1/OBF.1, we took advantage of a previously described cell system. RNAs differentially expressed in a BOB.1/OBF.1-deficient pre-B cell line and a derivative of this cell line expressing a hormone dependent BOB.1/OBF.1-estrogen receptor (BobER) fusion protein were isolated. Using the cDNA representational difference analysis method we could identify myosin light chain 1 atrial (MLC1A) isoform as a gene regulated by BOB.1/OBF.1. MLC1A was so far unknown to be expressed in tissues other than muscle. Here we demonstrate that MLC1A is indeed expressed in mouse pre-B cells. Analysis of the expressed mRNA revealed an alternative 5' promoter element and an alternative splice product, which had not yet been described for the murine gene. Cotransfection experiments with reporter constructs driven by the MLC1A promoter suggest that the regulation by BOB.1/OBF.1 is indirect. Consistent with this conclusion is the observation that transcriptional induction of the endogenous MLC1A gene by BOB.1/OBF.1 requires de novo protein synthesis.
Collapse
Affiliation(s)
- Helmut Laumen
- Department of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | |
Collapse
|
47
|
Sepulveda MA, Emelyanov AV, Birshtein BK. NF-κB and Oct-2 Synergize to Activate the Human 3′ Igh hs4 Enhancer in B Cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:1054-64. [PMID: 14707079 DOI: 10.4049/jimmunol.172.2.1054] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In B cells, the Igh gene locus contains several DNase I-hypersensitive (hs) sites with enhancer activity. These include the 3' Igh enhancers, which are located downstream of the Calpha gene(s) in both mouse and human. In vivo experiments have implicated murine 3' enhancers, hs3B and/or hs4, in class switching and somatic hypermutation. We previously reported that murine hs4 was regulated by NF-kappaB, octamer binding proteins, and Pax5 (B cell-specific activator protein). In this study we report that human hs4 is regulated differently. EMSAs and Western analysis of normal B cells before and after stimulation with anti-IgM plus anti-CD40 showed the same complex binding pattern formed by NF-kappaB, Oct-1, and Oct-2 (but not by Pax5). A similar EMSA pattern was detected in mature human B cell lines (BL-2, Ramos, and HS-Sultan) and in diffuse large B cell lymphoma cell lines, although yin yang 1 protein (YY1) binding was also observed. We have confirmed the in vivo association of these transcription factors with hs4 in B cells by chromatin immunoprecipitation assays. The diffuse large B cell lymphoma cell lines had a distinctive slow-migrating complex containing YY1 associated with Rel-B. We have confirmed by endogenous coimmunoprecipitation an association of YY1 with Rel-B, but not with other NF-kappaB family members. Transient transfection assays showed robust hs4 enhancer activity in the mature B cell lines, which was dependent on synergistic interactions between NF-kappaB and octamer binding proteins. In addition, human hs4 enhancer activity required Oct-2 and correlated with expression of Oct coactivator from B cells (OCA-B).
Collapse
Affiliation(s)
- Manuel A Sepulveda
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
48
|
Brocke-Heidrich K, Kretzschmar AK, Pfeifer G, Henze C, Löffler D, Koczan D, Thiesen HJ, Burger R, Gramatzki M, Horn F. Interleukin-6-dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family-independent survival pathway closely associated with Stat3 activation. Blood 2004; 103:242-51. [PMID: 12969979 DOI: 10.1182/blood-2003-04-1048] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin 6 (IL-6) is a growth and survival factor for multiple myeloma cells. As we report here, the IL-6-dependent human myeloma cell line INA-6 responds with a remarkably rapid and complete apoptosis to cytokine withdrawal. Among the antiapoptotic members of the B-cell lymphoma-2 (Bcl-2) family of apoptosis regulators, only myeloid cell factor-1 (Mcl-1) was slightly induced by IL-6. Overexpression studies demonstrated, however, that IL-6 does not exert its survival effect primarily through this pathway. The IL-6 signal transduction pathways required for survival and the target genes controlled by them were analyzed by using mutated receptor chimeras. The activation of signal transducer and activator of transcription 3 (Stat3) turned out to be obligatory for the survival of INA-6 cells. The same held true for survival and growth of XG-1 myeloma cells. Gene expression profiling of INA-6 cells by using oligonucleotide microarrays revealed many novel IL-6 target genes, among them several genes coding for transcriptional regulators involved in B-lymphocyte differentiation as well as for growth factors and receptors potentially implicated in autocrine or paracrine growth control. Regulation of most IL-6 target genes required the activation of Stat3, underscoring its central role for IL-6 signal transduction. Taken together, our data provide evidence for the existence of an as yet unknown Stat3-dependent survival pathway in myeloma cells.
Collapse
Affiliation(s)
- Katja Brocke-Heidrich
- Institute of Clinical Immunology and Transfusion Medicine, University Hospital Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Salas M, Eckhardt LA. Critical Role for the Oct-2/OCA-B Partnership in Ig-Secreting Cells. THE JOURNAL OF IMMUNOLOGY 2003; 171:6589-98. [PMID: 14662861 DOI: 10.4049/jimmunol.171.12.6589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B and T lymphocytes arise from a common precursor in the bone marrow, but ultimately acquire very different functions. The difference in function is largely attributable to the expression of tissue-specific transcription factors that activate discrete sets of genes. In previous studies we and others have shown that the specialized genes expressed by Ig-secreting cells cease transcription when these cells are fused to a T lymphoma. The extinguished genes include those encoding Ig, J chain, and the transcription factors Oct-2, PU.1, and the coactivator OCA-B. Remarkably, if we sustain Oct-2 expression during cell fusion, all the other tissue-specific genes of the Ig-secreting cell simultaneously escape silencing. This suggests that Oct-2 plays a central role in maintaining the gene expression program of these cells. In the present studies we have investigated the roles of the transcription factor PU.1 and the coactivator OCA-B within the hierarchy of regulatory factors that sustain Ig-secreting cell function. Our results show that OCA-B and Oct-2 are regulatory partners in this process and that PU.1 plays a subordinate role at this cell stage.
Collapse
Affiliation(s)
- Mabel Salas
- Department of Biological Sciences, Hunter College and Graduate Center of City University of New York, New York, NY 10021, USA
| | | |
Collapse
|
50
|
Brunner C, Laumen H, Nielsen PJ, Kraut N, Wirth T. Expression of the aldehyde dehydrogenase 2-like gene is controlled by BOB.1/OBF.1 in B lymphocytes. J Biol Chem 2003; 278:45231-9. [PMID: 12947107 DOI: 10.1074/jbc.m302539200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BOB.1/OBF.1 is a lymphocyte-restricted transcriptional coactivator. It binds to the Oct1 and Oct2 transcription factors and increases their transactivation potential. Targeted gene disruption experiments revealed that BOB.1/OBF.1 is critical at different stages of B cell development. A large number of genes expressed in B cells contain octamer motifs in their regulatory regions. However, only few genes have been described so far whose expression is dependent on BOB.1/OBF.1. To understand the molecular basis of BOB.1/OBF.1 function in B cell development, we searched for BOB.1/OBF.1 target genes by expression profiling. We have identified genes both induced and repressed by BOB.1/OBF.1. Using different genetic systems, we demonstrate regulation of a selection of these genes. Identified targets included genes encoding Ahd2-like, AKR1C13, Rbp1, Sdh, Idh2, protocadherin gamma, alpha-catenin, Ptprs, Id3, and Creg. Classification of BOB.1/OBF.1 target genes by function suggests that they affect various aspects of B cell physiology such as cellular metabolism, cell adhesion, and differentiation. To better understand the mechanism of BOB.1/OBF.1 action, we cloned the promoter of the gene encoding Ahd2-like, the gene showing the strongest regulation by BOB.1/OBF.1. This promoter indeed contains a perfect octamer motif. Furthermore, the motif was recognized by the Oct transcription factors as well as BOB.1/OBF.1 in vitro and in vivo, as shown by electromobility shift and chromatin immunoprecipitation assays. Transient transfections confirm that this promoter is activated by BOB.1/OBF.1. Our observations suggest that by regulating genes in different functional pathways, BOB.1/OBF.1 has a widespread effect on B cell development and function.
Collapse
Affiliation(s)
- Cornelia Brunner
- University of Ulm, Department of Physiological Chemistry, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | | | |
Collapse
|