1
|
Chaudhuri S, Acharya S, Chaudhuri S. Therapeutic intervention of glioma with the novel antineoplastic agent T11TS: the story so far. Immunotherapy 2022; 14:1263-1277. [PMID: 36004447 DOI: 10.2217/imt-2021-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The disease relevance of novel therapeutic agent T11TS, established first by the authors' group, was shown to ameliorate experimental glioma through multimodal mechanistic activities. T11TS reverses immunosuppression in glioma, causing profound effects on immune potentiation via peripheral, intracranial and hematopoietic cells. T-cell signaling in glioma is reversed by T11TS, modulating cytokine levels and favoring apoptotic killing of glioma cells. T11TS arrests the glioma cell cycle at the G1 phase via activation of p21. VEGF downregulation hypophosphorylates the Akt pathway. T11TS hinders endothelial cell progression and metastasis by arresting matrix degradation, inhibiting the Ras-Raf and Akt-PTEN pathways and initiating inflammatory changes, causing apoptosis. T11TS is effective against in vitro human glioma. Toxicity studies demonstrate that T11TS is nontoxic. The authors' study promise translational research with T11TS.
Collapse
Affiliation(s)
- Suhnrita Chaudhuri
- 4D Pharma Research Ltd, Life Sciences Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, UK, Formerly: Department of Laboratory Medicine, Cellular and Molecular Immunology Lab, School of Tropical Medicine, Kolkata, West Bengal 700073, India
| | - Sagar Acharya
- Department of Zoology, Vidyasagar University, Paschim Medinipur, West Bengal, 721102, India, Formerly: Department of Laboratory Medicine, Cellular and Molecular Immunology Lab, School of Tropical Medicine, Kolkata, West Bengal 700073, India
| | - Swapna Chaudhuri
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata, West Bengal, 700026, India
| |
Collapse
|
2
|
Zhang Y, Liu Q, Yang S, Liao Q. CD58 Immunobiology at a Glance. Front Immunol 2021; 12:705260. [PMID: 34168659 PMCID: PMC8218816 DOI: 10.3389/fimmu.2021.705260] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
The glycoprotein CD58, also known as lymphocyte-function antigen 3 (LFA-3), is a costimulatory receptor distributed on a broad range of human tissue cells. Its natural ligand CD2 is primarily expressed on the surface of T/NK cells. The CD2-CD58 interaction is an important component of the immunological synapse (IS) that induces activation and proliferation of T/NK cells and triggers a series of intracellular signaling in T/NK cells and target cells, respectively, in addition to promoting cell adhesion and recognition. Furthermore, a soluble form of CD58 (sCD58) is also present in cellular supernatant in vitro and in local tissues in vivo. The sCD58 is involved in T/NK cell-mediated immune responses as an immunosuppressive factor by affecting CD2-CD58 interaction. Altered accumulation of sCD58 may lead to immunosuppression of T/NK cells in the tumor microenvironment, allowing sCD58 as a novel immunotherapeutic target. Recently, the crucial roles of costimulatory molecule CD58 in immunomodulation seem to be reattracting the interests of investigators. In particular, the CD2-CD58 interaction is involved in the regulation of antiviral responses, inflammatory responses in autoimmune diseases, immune rejection of transplantation, and immune evasion of tumor cells. In this review, we provide a comprehensive summary of CD58 immunobiology.
Collapse
Affiliation(s)
- Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Structure-based identification of inhibitors disrupting the CD2-CD58 interactions. J Comput Aided Mol Des 2021; 35:337-353. [PMID: 33532888 DOI: 10.1007/s10822-020-00369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
The immune system has very intricate mechanisms of fighting against the invading infections which are accomplished by a sequential event of molecular interactions in the body. One of the crucial phenomena in this process is the recognition of T-cells by the antigen-presenting cells (APCs), which is initiated by the rapid interaction between both cell surface receptors, i.e., CD2 located on T-cells and CD58 located on APCs. Under various pathological conditions, which involve undesired immune response, inhibiting the CD2-CD58 interactions becomes a therapeutically relevant opportunity. Herein we present an extensive work to identify novel inhibiting agents of the CD2-CD58 interactions. Classical molecular dynamics (MD) simulations of the CD2-CD58 complex highlighted a series of crucial CD58 residues responsible for the interactions with CD2. Based on such results, a pharmacophore map, complementary to the CD2-binding site of CD58, was created and employed for virtual screening of ~ 300,000 available compounds. On the ~ 6000 compounds filtered from pharmacophore mapping, ADME screening leads to ~ 350 molecules. Molecular docking was then performed on these molecules, and fifteen compounds emerged with significant binding energy (< - 50 kcal/mol) for CD58. Finally, short MD simulations were performed in triplicate on each complex (i) to provide a microscopic view of the ligand binding and (ii) to rule out possibly weak binders of CD58 from the identified hits. At last, we suggest eight compounds for in vitro testing that were identified as promising hits to bind CD58 with a high binding affinity.
Collapse
|
4
|
Tsuji T, Yoshinaga S, Takeda M, Sato T, Sonoda A, Ishida N, Yunoki K, Toda E, Terashima Y, Matsushima K, Terasawa H. Rational Design of Monodispersed Mutants of Proteins by Identifying Aggregation Contact Sites Using Solubilizing Agents. Biochemistry 2020; 59:3639-3649. [PMID: 32929969 DOI: 10.1021/acs.biochem.0c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Suppression of protein aggregation is a subject of growing importance in the treatment of protein aggregation diseases, an urgent worldwide human health problem, and the production of therapeutic proteins, such as antibody drugs. We previously reported a method to identify compounds that suppress aggregation, based on screening using multiple terminal deletion mutants. We now present a method to determine the aggregation contact sites of proteins, using such solubilizing compounds, to design monodispersed mutants. We applied this strategy to the chemokine receptor-binding domain (CRBD) of FROUNT, which binds to the membrane-proximal C-terminal intracellular region of CCR2. Initially, the backbone NMR signals were assigned to a certain extent by available methods, and the putative locations of five α-helices were identified. Based on NMR chemical shift perturbations upon varying the protein concentrations, the first and third helices were found to contain the aggregation contact sites. The two helices are amphiphilic, and based on an NMR titration with 1,6-hexanediol, a CRBD solubilizing compound, the contact sites were identified as the hydrophobic patches located on the hydrophilic sides of the two helices. Subsequently, we designed multiple mutants targeting amino acid residues on the contact sites. Based on their NMR spectra, a doubly mutated CRBD (L538E/P612S) was selected from the designed mutants, and its monodispersed nature was confirmed by other biophysical methods. We then assessed the CCR2-binding activities of the mutants. Our method is useful for the protein structural analyses, the treatment of protein aggregation diseases, and the improvement of therapeutic proteins.
Collapse
Affiliation(s)
- Tatsuichiro Tsuji
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Sosuke Yoshinaga
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mitsuhiro Takeda
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takafumi Sato
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Akihiro Sonoda
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Norihito Ishida
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kaori Yunoki
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| | - Etsuko Toda
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan.,Department of Analytic Human Pathology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Yuya Terashima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Hiroaki Terasawa
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
5
|
Shao T, Shi W, Zheng JY, Xu XX, Lin AF, Xiang LX, Shao JZ. Costimulatory Function of Cd58/Cd2 Interaction in Adaptive Humoral Immunity in a Zebrafish Model. Front Immunol 2018; 9:1204. [PMID: 29904386 PMCID: PMC5990624 DOI: 10.3389/fimmu.2018.01204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/14/2018] [Indexed: 01/07/2023] Open
Abstract
CD58 and CD2 have long been known as a pair of reciprocal adhesion molecules involved in the immune modulations of CD8+ T and NK-mediated cellular immunity in humans and several other mammals. However, the functional roles of CD58 and CD2 in CD4+ T-mediated adaptive humoral immunity remain poorly defined. Moreover, the current functional observations of CD58 and CD2 were mainly acquired from in vitro assays, and in vivo investigation is greatly limited due to the absence of a Cd58 homology in murine models. In this study, we identified cd58 and cd2 homologs from the model species zebrafish (Danio rerio). These two molecules share conserved structural features to their mammalian counterparts. Functionally, cd58 and cd2 were significantly upregulated on antigen-presenting cells and Cd4+ T cells upon antigen stimulation. Blockade or knockdown of Cd58 and Cd2 dramatically impaired the activation of antigen-specific Cd4+ T and mIgM+ B cells, followed by the inhibition of antibody production and host defense against bacterial infections. These results indicate that CD58/CD2 interaction was required for the full activation of CD4+ T-mediated adaptive humoral immunity. The interaction of Cd58 with Cd2 was confirmed by co-immunoprecipitation and functional competitive assays by introducing a soluble Cd2 protein. This study highlights a new costimulatory mechanism underlying the regulatory network of adaptive immunity and makes zebrafish an attractive model organism for the investigation of CD58/CD2-mediated immunology and disorders. It also provides a cross-species understanding of the evolutionary history of costimulatory signals from fish to mammals as a whole.
Collapse
Affiliation(s)
- Tong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wei Shi
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jia-Yu Zheng
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiao-Xiao Xu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Dulal HP, Nagae M, Ikeda A, Morita-Matsumoto K, Adachi Y, Ohno N, Yamaguchi Y. Enhancement of solubility and yield of a β-glucan receptor Dectin-1 C-type lectin-like domain in Escherichia coli with a solubility-enhancement tag. Protein Expr Purif 2016; 123:97-104. [DOI: 10.1016/j.pep.2016.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 11/30/2022]
|
7
|
Yagi S, Akanuma S, Yamagishi M, Uchida T, Yamagishi A. De novo design of protein-protein interactions through modification of inter-molecular helix-helix interface residues. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:479-87. [PMID: 26867971 DOI: 10.1016/j.bbapap.2016.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 01/18/2023]
Abstract
For de novo design of protein-protein interactions (PPIs), information on the shape and chemical complementarity of their interfaces is generally required. Recent advances in computational PPI design have allowed for de novo design of protein complexes, and several successful examples have been reported. In addition, a simple and easy-to-use approach has also been reported that arranges leucines on a solvent-accessible region of an α-helix and places charged residues around the leucine patch to induce interactions between the two helical peptides. For this study, we adopted this approach to de novo design a new PPI between the helical bundle proteins sulerythrin and LARFH. A non-polar patch was created on an α-helix of LARFH around which arginine residues were introduced to retain its solubility. The strongest interaction found was for the LARFH variant cysLARFH-IV-3L3R and the sulerythrin mutant 6L6D (KD=0.16 μM). This artificial protein complex is maintained by hydrophobic and ionic interactions formed by the inter-molecular helical bundle structure. Therefore, by the simple and easy-to-use approach to create de novo interfaces on the α-helices, we successfully generated an artificial PPI. We also created a second LARFH variant with the non-polar patch surrounded by positively charged residues at each end. Upon mixing this LARFH variant with 6L6D, mesh-like fibrous nanostructures were observed by atomic force microscopy. Our method may, therefore, also be applicable to the de novo design of protein nanostructures.
Collapse
Affiliation(s)
- Sota Yagi
- Department of Applied Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Manami Yamagishi
- Department of Applied Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tatsuya Uchida
- Department of Molecular Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiko Yamagishi
- Department of Applied Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
8
|
Chatterjee S, Acharya S, Kumar P, Chatterjee A, Chaudhuri S, Ghosh A, Chaudhuri S. Comparative evaluation of T11 target structure and its deglycosylated derivative nullifies the importance of glycan moieties in immunotherapeutic efficacy. Acta Biochim Biophys Sin (Shanghai) 2012; 44:259-68. [PMID: 22257732 DOI: 10.1093/abbs/gmr120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sheep red blood cell (SRBC), a non-specific biological response modifier that has long been used as a classical antigen, has been shown to exert an immunomodulatory and anti-tumor activities in experimental animals. The active component of SRBC, which is responsible for such effects, was found to be a cell surface acidic glycoprotein molecule, known as T11 target structure (T11TS). In the present study, T11TS was isolated and purified to homogeneity using a five-step protocol involving isolation of sheep erythrocyte membrane from packed cell volume, 20% ammonium sulfate cut of the crude membrane proteins mixture, immunoaffinity purification using mouse anti-sheep CD58 mAb (L180/1) tagged matrix, preparative gel electrophoresis, and gel electroelution process. Finally, the purity and identity of the proteins were confirmed by the matrix-assisted laser desorption/ionization (MALDI) mass spectrometric analysis. The in silico glycosylation site analysis showed that the extracellular domain contained three N-glycosylation sites (N-12, N-62, and N-111) and one O-glycosylation site (T-107). However, the experimental analysis negated the presence of O-linked glycan moieties on T11TS. To investigate the role of glycan moieties in the current immunotherapeutic regime, T11TS and its deglycosylated form (dT11TS) were administered intraperitoneally (i.p.) in N-ethyl-N-nitrosourea-induced immune-compromised mice at 0.4 mg/kg body weight. It was observed that both the forms of T11TS could activate the compromised immune status of mice by augmenting immune receptor expression (CD2, CD25, CD8, and CD11b), T-helper 1 shift of cytokine network, enhanced cytotoxicity, and phagocytosis activity. Therefore, the results nullify the active involvement of the N-linked glycan moieties in immunotherapeutic efficacy of T11TS.
Collapse
Affiliation(s)
- Sirshendu Chatterjee
- Department of Laboratory Medicine, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | | | | | | | | | | | | |
Collapse
|
9
|
Kumar P, Acharya S, Chatterjee S, Kumari A, Chaudhuri S, Singh MK, Ghosh SN, Chaudhuri S. Immunomodulatory role of TIITS in respect to cytotoxic lymphocytes in four grades of human glioma. Cell Immunol 2012; 276:176-86. [DOI: 10.1016/j.cellimm.2012.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/11/2012] [Indexed: 11/16/2022]
|
10
|
Ishino T, Economou NJ, McFadden K, Zaks-Zilberman M, Jost M, Baxter S, Contarino MR, Harrington AE, Loll PJ, Pasut G, Lievens S, Tavernier J, Chaiken I. A Protein Engineering Approach Differentiates the Functional Importance of Carbohydrate Moieties of Interleukin-5 Receptor α. Biochemistry 2011; 50:7546-56. [DOI: 10.1021/bi2009135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tetsuya Ishino
- Department of Biochemistry and
Molecular Biology, Drexel University College of Medicine, 11102 New College Building, 245 North 15th Street, Philadelphia,
Pennsylvania 19102, United States
| | - Nicoleta J. Economou
- Department of Biochemistry and
Molecular Biology, Drexel University College of Medicine, 11102 New College Building, 245 North 15th Street, Philadelphia,
Pennsylvania 19102, United States
| | - Karyn McFadden
- Department of Biochemistry and
Molecular Biology, Drexel University College of Medicine, 11102 New College Building, 245 North 15th Street, Philadelphia,
Pennsylvania 19102, United States
| | - Meirav Zaks-Zilberman
- Department of Biochemistry and
Molecular Biology, Drexel University College of Medicine, 11102 New College Building, 245 North 15th Street, Philadelphia,
Pennsylvania 19102, United States
| | - Monika Jost
- Department of Radiation Oncology, Drexel University College of Medicine, 11102 New College
Building, 245 North 15th Street, Philadelphia, Pennsylvania 19102,
United States
| | - Sabine Baxter
- Department of Biochemistry and
Molecular Biology, Drexel University College of Medicine, 11102 New College Building, 245 North 15th Street, Philadelphia,
Pennsylvania 19102, United States
| | - Mark R. Contarino
- Department of Biochemistry and
Molecular Biology, Drexel University College of Medicine, 11102 New College Building, 245 North 15th Street, Philadelphia,
Pennsylvania 19102, United States
| | - Adrian E. Harrington
- Department of Biochemistry and
Molecular Biology, Drexel University College of Medicine, 11102 New College Building, 245 North 15th Street, Philadelphia,
Pennsylvania 19102, United States
| | - Patrick J. Loll
- Department of Biochemistry and
Molecular Biology, Drexel University College of Medicine, 11102 New College Building, 245 North 15th Street, Philadelphia,
Pennsylvania 19102, United States
| | - Gianfranco Pasut
- Department
of Pharmaceutical Sciences, University of Padua, Via F. Marzolo 5, Padua 35131,
Italy
| | - Sam Lievens
- Department of Medical
Protein
Research, Flanders Interuniversity Institute for Biotechnology, VIB09-Faculty
of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- Department of Medical
Protein
Research, Flanders Interuniversity Institute for Biotechnology, VIB09-Faculty
of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Irwin Chaiken
- Department of Biochemistry and
Molecular Biology, Drexel University College of Medicine, 11102 New College Building, 245 North 15th Street, Philadelphia,
Pennsylvania 19102, United States
| |
Collapse
|
11
|
Søndergaard CR, Olsson MHM, Rostkowski M, Jensen JH. Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. J Chem Theory Comput 2011; 7:2284-95. [DOI: 10.1021/ct200133y] [Citation(s) in RCA: 1072] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chresten R. Søndergaard
- Department of Chemistry and Center for Computational Molecular Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Mats H. M. Olsson
- Department of Chemistry and Center for Computational Molecular Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Michał Rostkowski
- Department of Chemistry and Center for Computational Molecular Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Jan H. Jensen
- Department of Chemistry and Center for Computational Molecular Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Tian Y, Deutsch C, Krishnamoorthy B. Scoring function to predict solubility mutagenesis. Algorithms Mol Biol 2010; 5:33. [PMID: 20929563 PMCID: PMC2958853 DOI: 10.1186/1748-7188-5-33] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/07/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mutagenesis is commonly used to engineer proteins with desirable properties not present in the wild type (WT) protein, such as increased or decreased stability, reactivity, or solubility. Experimentalists often have to choose a small subset of mutations from a large number of candidates to obtain the desired change, and computational techniques are invaluable to make the choices. While several such methods have been proposed to predict stability and reactivity mutagenesis, solubility has not received much attention. RESULTS We use concepts from computational geometry to define a three body scoring function that predicts the change in protein solubility due to mutations. The scoring function captures both sequence and structure information. By exploring the literature, we have assembled a substantial database of 137 single- and multiple-point solubility mutations. Our database is the largest such collection with structural information known so far. We optimize the scoring function using linear programming (LP) methods to derive its weights based on training. Starting with default values of 1, we find weights in the range [0,2] so that predictions of increase or decrease in solubility are optimized. We compare the LP method to the standard machine learning techniques of support vector machines (SVM) and the Lasso. Using statistics for leave-one-out (LOO), 10-fold, and 3-fold cross validations (CV) for training and prediction, we demonstrate that the LP method performs the best overall. For the LOOCV, the LP method has an overall accuracy of 81%. AVAILABILITY Executables of programs, tables of weights, and datasets of mutants are available from the following web page: http://www.wsu.edu/~kbala/OptSolMut.html.
Collapse
Affiliation(s)
- Ye Tian
- Department of Mathematics, Washington State University, Pullman, WA 99164, USA
| | | | - Bala Krishnamoorthy
- Department of Mathematics, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
13
|
Zhou P, Wagner G. Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies. JOURNAL OF BIOMOLECULAR NMR 2010; 46:23-31. [PMID: 19731047 PMCID: PMC2879018 DOI: 10.1007/s10858-009-9371-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/18/2009] [Indexed: 05/20/2023]
Abstract
Although the rapid progress of NMR technology has significantly expanded the range of NMR-trackable systems, preparation of NMR-suitable samples that are highly soluble and stable remains a bottleneck for studies of many biological systems. The application of solubility-enhancement tags (SETs) has been highly effective in overcoming solubility and sample stability issues and has enabled structural studies of important biological systems previously deemed unapproachable by solution NMR techniques. In this review, we provide a brief survey of the development and successful applications of the SET strategy in biomolecular NMR.We also comment on the criteria for choosing optimal SETs, such as for differently charged target proteins, and recent new developments on NMR-invisible SETs.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
14
|
Trevino SR, Scholtz J, Pace C. Measuring and Increasing Protein Solubility. J Pharm Sci 2008; 97:4155-66. [DOI: 10.1002/jps.21327] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Kearney A, Avramovic A, Castro MAA, Carmo AM, Davis SJ, van der Merwe PA. The contribution of conformational adjustments and long-range electrostatic forces to the CD2/CD58 interaction. J Biol Chem 2007; 282:13160-6. [PMID: 17344209 PMCID: PMC2771598 DOI: 10.1074/jbc.m700829200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD2 is a T cell surface molecule that enhances T and natural killer cell function by binding its ligands CD58 (humans) and CD48 (rodents) on antigen-presenting or target cells. Here we show that the CD2/CD58 interaction is enthalpically driven and accompanied by unfavorable entropic changes. Taken together with structural studies, this indicates that binding is accompanied by energetically significant conformational adjustments. Despite having a highly charged binding interface, neither the affinity nor the rate constants of the CD2/CD58 interaction were affected by changes in ionic strength, indicating that long-range electrostatic forces make no net contribution to binding.
Collapse
Affiliation(s)
- Alice Kearney
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Reibarkh M, Malia TJ, Hopkins BT, Wagner G. Identification of individual protein-ligand NOEs in the limit of intermediate exchange. JOURNAL OF BIOMOLECULAR NMR 2006; 36:1-11. [PMID: 16964534 DOI: 10.1007/s10858-006-9028-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 05/03/2006] [Indexed: 05/11/2023]
Abstract
Interactions of proteins with small molecules or other macromolecules play key roles in many biological processes and in drug action, and NMR is an excellent tool for their structural characterization. Frequently, however, line broadening due to intermediate exchange completely eliminates the signals needed for measuring specific intermolecular NOEs. This limits the use of NMR for detailed structural studies in such kinetic situations. Here we show that an optimally chosen excess of ligand over protein can reduce the extent of line broadening for both the ligand and the protein. This makes observation of ligand resonances possible but reduces the size of the measurable NOEs due to the residual line broadening and the non-stoichiometric concentrations. Because the solubility of small molecule drug leads are often limited to high micromolar concentrations, protein concentrations are restricted to even lower values in the low micromolar range. At these non-stoichiometric concentrations and in the presence of significant residual line broadening, conventional NOESY experiments very often are not sensitive enough to observe intermolecular NOEs since the signals inverted by the NOESY preparation pulse sequence relax prior to significant NOE build up. Thus, we employ methods related to driven NOE spectroscopy to investigate protein-ligand interactions in the intermediate exchange regime. In this approach, individual protein resonances are selectively irradiated for up to five seconds to build up measurable NOEs at the ligand resonances. To enable saturation of individual protein resonances we prepare deuterated protein samples selectively protonated at a few sites so that the 1D (1)H spectrum of the protein is resolved well enough to permit irradiation of individual protein signals, which do not overlap with the ligand spectrum. This approach is suitable for measuring a sufficiently large number of protein-ligand NOEs that allow calculation of initial complex structures, suitable for structure-based optimization of primary drug leads obtained from high-throughput screening. The method was applied to measure individual intermolecular NOEs between the anti-apoptotic protein Bcl-xL at 25 microM and a "first generation" small-molecule ligand, for which the spectrum is entirely broadened at stoichiometric concentrations. This approach is general and can also be used to characterize protein-protein or protein-nucleic-acid complexes.
Collapse
Affiliation(s)
- Mikhail Reibarkh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
18
|
Kitao A, Wagner G. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44 Spec No:S130-42. [PMID: 16823895 DOI: 10.1002/mrc.1839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A method has been developed for characterizing dynamic structures of proteins in solution by using nuclear magnetic resonance (NMR) restraints and 15N relaxation data. This method is based on the concept of the jumping-among-minima (JAM) model. In this model we assume that protein dynamics can be described on the basis of conformational substates, and involves intra- and inter-substate motion. A set of substates is created by picking energy-minimized conformations from the conformational space consistent with the geometric NMR restraints. Intra-substate motions, which occur on the timescale of approximately 10 ps, are simulated with molecular dynamics (MD) calculations with force-field energy terms. Statistical weights of the conformational substates are determined to reproduce the NMR relaxation parameters. The refinement procedure consists of four stages: (i) determination of the ensemble of structures that satisfy NMR restraints, (ii) determination of intra-substate fluctuation, (iii) determination of statistical weights of conformational substates to reproduce model-free relaxation parameters, and (iv) analysis of the resulting dynamic structure to determine amplitudes and directions of internal protein motions. This method was employed to investigate structure and dynamics of the adhesion domain of human CD2 (hCD2) in solution. Two major collective modes, whose contributions to atomic mean-square fluctuations are 77.1% in total, are identified by the refinement. The first mode is interpreted as a rigid-body motion of a protein segment consisting of a part of the B--C loop, a part of the F strand, and the F--G loop. Another type of smaller-amplitude mode is indicated for the C'--C'' loop. The motions affect primarily the curvature of the slightly concave counterreceptor-binding site and represent transitions between a concave (closed) and flat (open) binding face. By comparing the ensemble of structures in solution to the complex structure with counterreceptor CD58, we found that these two types of motions resemble the change upon counterreceptor binding.
Collapse
Affiliation(s)
- Akio Kitao
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | | |
Collapse
|
19
|
Evans EJ, Castro MAA, O'Brien R, Kearney A, Walsh H, Sparks LM, Tucknott MG, Davies EA, Carmo AM, van der Merwe PA, Stuart DI, Jones EY, Ladbury JE, Ikemizu S, Davis SJ. Crystal structure and binding properties of the CD2 and CD244 (2B4)-binding protein, CD48. J Biol Chem 2006; 281:29309-20. [PMID: 16803907 DOI: 10.1074/jbc.m601314200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural analysis of surface proteins belonging to the CD2 subset of the immunoglobulin superfamily has yielded important insights into transient cellular interactions. In mice and rats, CD2 and CD244 (2B4), which are expressed predominantly on T cells and natural killer cells, respectively, bind the same, broadly expressed ligand, CD48. Structures of CD2 and CD244 have been solved previously, and we now present the structure of the receptor-binding domain of rat CD48. The receptor-binding surface of CD48 is unusually flat, as in the case of rat CD2, and shares a high degree of electrostatic complementarity with the equivalent surface of CD2. The relatively simple arrangement of charged residues and this flat topology explain why CD48 cross-reacts with CD2 and CD244 and, in rats, with the CD244-related protein, 2B4R. Comparisons of modeled complexes of CD2 and CD48 with the complex of human CD2 and CD58 are suggestive of there being substantial plasticity in the topology of ligand binding by CD2. Thermodynamic analysis of the native CD48-CD2 interaction indicates that binding is driven by equivalent, weak enthalpic and entropic effects, in contrast to the human CD2-CD58 interaction, for which there is a large entropic barrier. Overall, the structural and biophysical comparisons of the CD2 homologues suggest that the evolutionary diversification of interacting cell surface proteins is rapid and constrained only by the requirement that binding remains weak and specific.
Collapse
Affiliation(s)
- Edward J Evans
- Nuffield Department of Clinical Medicine, The University of Oxford and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu J, Ying J, Chow VTK, Hruby VJ, Satyanarayanajois SD. Structure-activity studies of peptides from the "hot-spot" region of human CD2 protein: development of peptides for immunomodulation. J Med Chem 2005; 48:6236-49. [PMID: 16190751 PMCID: PMC1351114 DOI: 10.1021/jm0503547] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CD2 is a cell surface protein belonging to the immunoglobulin superfamily (IgSF) that plays a key role in mediating adhesion between human T-lymphocytes and target cells. The interaction between cell-adhesion molecules CD2 and CD58 is critical for immune response. Modulation or inhibition of these interactions has been shown to be therapeutically useful. Synthetic 12-mer linear and cyclic peptides and cyclic hexapeptides from the beta-turn and beta-strand region (hot spot) of human CD2 protein were designed to modulate CD2-CD58 interaction. The 12-amino acid synthetic cyclic peptides effectively blocked the interaction between CD2 and CD58 proteins as demonstrated by E-rosetting and heterotypic adhesion assays. NMR and molecular modeling studies indicated that these cyclic peptides exhibit beta-turn structure in solution and closely mimic the beta-turn structure of the surface epitopes of CD2 protein. The designed cyclic peptides with beta-turn structure have the ability to modulate CD2-CD58 interaction.
Collapse
Affiliation(s)
| | | | | | | | - Seetharama D. Satyanarayanajois
- * To whom correspondence should be addressed: Department of Pharmacy, 18 Science Drive 4, National University of Singapore, Singapore 117543. Telephone: (65)-6-874-2653. Fax: (65)-6-779-1554. E-mail:
| |
Collapse
|
21
|
Begum Z, Ghosh A, Sarkar S, Mukherjee J, Mazumdar M, Sarkar P, Chaudhuri S. Documentation of immune profile of microglia through cell surface marker study in glioma model primed by a novel cell surface glycopeptide T11TS/SLFA-3. Glycoconj J 2005; 20:515-23. [PMID: 15454689 DOI: 10.1023/b:glyc.0000043287.98081.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
STATEMENT OF THE PROBLEM The sheep erythrocyte membrane glycoprotein T11TS/SLFA-3 can form a ligand-receptor complex with CD2 present on immunocyte and exert stimuli for activation and proliferation. Regression of brain tumor with the application of T11TS indicates the probable role of microglia, the chief immunomodulatory cell within the brain compartment. In the present study microglial activation and immunophenotypic modulation were assessed in T11TS treated brain tumor-bearing animal models. Rat glioma models induced by chemical carcinogen ENU were treated with three consecutive doses of T11TS. Microglial cells from brain were isolated and assessed through E-rosette formation, SEM and FACS for CD2, MHC class II, CD25, and CD4. The preliminary indication of presence of CD2 on microglia through E-rosette formation was confirmed by SEM and FACS. MHC class II and CD2 single and double positive subpopulations exist, and their expression is also modulated in different doses of T11TS. A general trend of highest receptor saturation and microglial activation, measured through the activation marker CD25 and CD4 expression, was observed in 2nd dose of T11TS administration, which was then dampened via a complex immune feedback mechanism in the 3rd dose.
Collapse
Affiliation(s)
- Z Begum
- Cellular & Molecular Immunology Lab., Department of Physiology, Institute of Post Graduate Medical Education and Research (IPGME&R), 244B, A.J.C. Bose Road, Kolkata-700 020, India
| | | | | | | | | | | | | |
Collapse
|
22
|
Jining L, Makagiansar I, Yusuf-Makagiansar H, Chow VTK, Siahaan TJ, Jois SDS. Design, structure and biological activity of β-turn peptides of CD2 protein for inhibition of T-cell adhesion. ACTA ACUST UNITED AC 2004; 271:2873-86. [PMID: 15233784 DOI: 10.1111/j.1432-1033.2004.04198.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between cell-adhesion molecules CD2 and CD58 is critical for an immune response. Modulation or inhibition of these interactions has been shown to be therapeutically useful. Synthetic 12-mer linear and cyclic peptides, and cyclic hexapeptides based on rat CD2 protein, were designed to modulate CD2-CD58 interaction. The synthetic peptides effectively blocked the interaction between CD2-CD58 proteins as demonstrated by antibody binding, E-rosetting and heterotypic adhesion assays. NMR and molecular modeling studies indicated that the synthetic cyclic peptides exhibit beta-turn structure in solution and closely mimic the beta-turn structure of the surface epitopes of the CD2 protein. Docking studies of CD2 peptides and CD58 protein revealed the possible binding sites of the cyclic peptides on CD58 protein. The designed cyclic peptides with beta-turn structure have the ability to modulate the CD2-CD58 interaction.
Collapse
Affiliation(s)
- Liu Jining
- Department of Pharmacy, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
23
|
Ito T, Wagner G. Using codon optimization, chaperone co-expression, and rational mutagenesis for production and NMR assignments of human eIF2 alpha. JOURNAL OF BIOMOLECULAR NMR 2004; 28:357-367. [PMID: 14872127 DOI: 10.1023/b:jnmr.0000015405.62261.cb] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Producing a well behaved sample at high concentration is one of the main hurdles when starting a new project on an interesting protein. Especially when one attempts to overexpress a eukaryotic protein in bacteria, some difficulties are encountered, such as low expression level, low solubility, or even lack of folded structure. Overexpression in prokaryotic systems is highly desirable for cost-effective production of different isotope-labeled samples needed for NMR studies. Here we describe generally applicable methods for obtaining highly concentrated protein samples efficiently. This approach was developed as we tried to produce a NMR-suitable sample of the 35 kDa human translation initiation factor eIF2 alpha, a protein that expresses poorly in E. coli and has very low solubility. First, an E. coli codon-optimized gene was synthesized on a thermal cycler, which increased the expression level by a factor of two. Second, we used co-expression of bacterial chaperone proteins, which largely increased the fraction of correctly folded protein found in the soluble phase. Third, we used rational mutagenesis guided by both the sequence alignment among homologues and the homology of one domain to a known fold for improving solubility and stability of the target protein by tenfold. Combining all these methods made it possible to produce from a one-liter preparation a 0.5 mM sample of human eIF2 alpha that showed well-resolved NMR spectra and enabled nearly complete assignment of the protein. These methods may be generally useful for studies of other eukaryotic proteins that are otherwise difficult to express and exhibit poor solubility.
Collapse
Affiliation(s)
- Takuhiro Ito
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
24
|
Abstract
Over the past decade, key protein interactions contributing to T cell antigen recognition have been characterized in molecular detail. These have included interactions involving the T cell antigen receptor (TCR) itself, its coreceptors CD4 and CD8, the accessory molecule CD2, and the costimulatory receptors CD28 and CTLA-4. A clear view is emerging of how these molecules interact with their ligands at the cell-cell interface. Structural and binding studies have confirmed that the proteins span small but comparable distances and that, overall, they interact very weakly. However, there have been important surprises as well: that TCR interactions with peptide-MHC are topologically constrained and characterized by considerable conformational flexibility at the binding interface; that coreceptors engage peptide-MHC with extraordinarily fast kinetics and at angles apparently precluding direct interactions with the TCR bound to the same peptide-MHC; that the structural mechanisms allowing recognition by costimulatory and accessory molecules to be weak and yet specific are very heterogeneous; and that because of differences in both binding affinity and stoichiometry, there is enormous variation in the stability of the various costimulatory receptor/ligand complexes. These studies provide the necessary framework for exploring how these molecular interactions initiate T cell activation.
Collapse
|
25
|
Dormitzer PR, Sun ZYJ, Blixt O, Paulson JC, Wagner G, Harrison SC. Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core. J Virol 2002; 76:10512-7. [PMID: 12239329 PMCID: PMC136543 DOI: 10.1128/jvi.76.20.10512-10517.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2002] [Accepted: 07/02/2002] [Indexed: 11/20/2022] Open
Abstract
Nuclear magnetic resonance spectroscopy demonstrates that the rhesus rotavirus hemagglutinin specifically binds alpha-anomeric N-acetylneuraminic acid with a K(d) of 1.2 mM. The hemagglutinin requires no additional carbohydrate moieties for binding, does not distinguish 3' from 6' sialyllactose, and has approximately tenfold lower affinity for N-glycolylneuraminic than for N-acetylneuraminic acid. The broad specificity and low affinity of sialic acid binding by the rotavirus hemagglutinin are consistent with this interaction mediating initial cell attachment prior to the interactions that determine host range and cell type specificity.
Collapse
Affiliation(s)
- Philip R Dormitzer
- Laboratory of Molecular Medicine, Enders 673, Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Kim M, Sun ZY, Byron O, Campbell G, Wagner G, Wang J, Reinherz EL. Molecular dissection of the CD2-CD58 counter-receptor interface identifies CD2 Tyr86 and CD58 Lys34 residues as the functional "hot spot". J Mol Biol 2001; 312:711-20. [PMID: 11575926 DOI: 10.1006/jmbi.2001.4980] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heterophilic CD2-CD58 adhesion interface contains interdigitating residues that impart high specificity and rapid binding kinetics. To define the hot spot of this counter-receptor interaction, we characterized CD2 adhesion domain variants harboring a single mutation of the central Tyr86 or of each amino acid residue forming a salt link/hydrogen bond. Alanine mutations at D31, D32 and K34 on the C strand and K43 and R48 on the C' strand reduce affinity for CD58 by 47-127-fold as measured by isothermal titration calorimetry. The Y86A mutant reduces affinity by approximately 1000-fold, whereas Y86F is virtually without effect, underscoring the importance of the phenyl ring rather than the hydroxyl moiety. The CD2-CD58 crystal structure offers a detailed view of this key functional epitope: CD2 D31 and D32 orient the side-chain of CD58 K34 such that CD2 Y86 makes hydrophobic contact with the extended aliphatic component of CD58 K34 between CD2 Y86 and CD58 F46. The elucidation of this hot spot provides a new target for rational design of immunosuppressive compounds and suggests a general approach for other receptors.
Collapse
Affiliation(s)
- M Kim
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
During the past year, advances in our understanding of receptor-ligand interactions between opposing cell surfaces have occurred at a structural level. These include adhesion involving CD2-CD58, antigen-specific T-cell receptor interactions with peptides bound to major histocompatibility complex molecules (both pMHCI and pMHCII), the CD8alphaalpha co-receptor-pMHCI interaction and the binding of two distinct classes of natural killer receptors to self-MHC ligands.
Collapse
Affiliation(s)
- J Wang
- Dana-Farber Cancer Institute and Department of Pediatrics and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
28
|
Abstract
During the past year, the database of ligand-receptor complexes has essentially doubled. These new results have immeasurably extended and expanded our view of cell surface receptor structure and function. The flood of data has revealed new models for receptor cross-linking, demonstrating the potential stringency of the extracellular requirements for the initiation of intracellular signalling and highlighting unexpected interactions suggestive of higher order clustering.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Binding Sites
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/physiology
- Cytokines/chemistry
- Cytokines/metabolism
- Growth Substances/chemistry
- Growth Substances/metabolism
- Humans
- Iron/metabolism
- Ligands
- Models, Molecular
- Protein Binding
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/classification
- Receptors, Cell Surface/physiology
- Receptors, Cytokine/chemistry
- Receptors, Cytokine/metabolism
- Receptors, Growth Factor/chemistry
- Receptors, Growth Factor/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/physiology
- Receptors, Virus/chemistry
- Receptors, Virus/metabolism
- Signal Transduction
- Templates, Genetic
Collapse
Affiliation(s)
- M C Deller
- CRC Receptor Structure Group, Wellcome Trust Centre for Human Genetics, Headington, OX3 7BN, UK.
| | | |
Collapse
|
29
|
Kitao A, Wagner G. A space-time structure determination of human CD2 reveals the CD58-binding mode. Proc Natl Acad Sci U S A 2000; 97:2064-8. [PMID: 10688878 PMCID: PMC15754 DOI: 10.1073/pnas.030540397] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1999] [Accepted: 12/13/1999] [Indexed: 01/31/2023] Open
Abstract
We describe a procedure for a space-time description of protein structures. The method is capable of determining populations of conformational substates, and amplitudes and directions of internal protein motions. This is achieved by fitting static and dynamic NMR data. The approach is based on the jumping-among-minima concept. First, a wide conformational space compatible with structural NMR data is sampled to find a large set of substates. Subsequently, intrasubstate motions are sampled by using molecular dynamics calculations with force field energy terms. Next, the populations of substates are fitted to NMR relaxation data. By diagonalizing a second moment matrix, directions and amplitudes of motions are identified. The method was applied to the adhesion domain of human CD2. We found that very few substates can account for most of the experimental data. Furthermore, only two types of collective motions have high amplitudes. They represent transitions between a concave (closed) and flat (open) binding face and resemble the change upon counter-receptor (CD58) binding.
Collapse
Affiliation(s)
- A Kitao
- Department of Chemistry, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
30
|
Lugovskoy AA, Zhou P, Chou JJ, McCarty JS, Li P, Wagner G. Solution structure of the CIDE-N domain of CIDE-B and a model for CIDE-N/CIDE-N interactions in the DNA fragmentation pathway of apoptosis. Cell 1999; 99:747-55. [PMID: 10619428 DOI: 10.1016/s0092-8674(00)81672-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apoptotic DNA fragmentation and chromatin condensation are mediated by the caspase-activated DFF40/ CAD nuclease, which is chaperoned and inhibited by DFF45/ICAD. CIDE proteins share a homologous regulatory CIDE-N domain with DFF40/CAD and DFF45/ ICAD. Here we report the solution structure of CIDE-N of human CIDE-B. We show that the CIDE-N of CIDE-B interacts with CIDE-N domains of both DFF40 and DFF45. The binding epitopes are similar and map to a highly charged bipolar surface region of CIDE-B. Furthermore, we demonstrate that the CIDE-N of CIDE-B regulates enzymatic activity of the DFF40/ DFF45 complex in vitro. Based on these results and mutagenesis data, we propose a model for the CIDE-N/ CIDE-N complex and discuss the role of this novel bipolar interaction in mediating downstream events of apoptosis.
Collapse
Affiliation(s)
- A A Lugovskoy
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
31
|
Zhou P, Chou J, Olea RS, Yuan J, Wagner G. Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD: a structural basis for specific adaptor/caspase interaction. Proc Natl Acad Sci U S A 1999; 96:11265-70. [PMID: 10500165 PMCID: PMC18022 DOI: 10.1073/pnas.96.20.11265] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Direct recruitment and activation of caspase-9 by Apaf-1 through the homophilic CARD/CARD (Caspase Recruitment Domain) interaction is critical for the activation of caspases downstream of mitochondrial damage in apoptosis. Here we report the solution structure of the Apaf-1 CARD domain and its surface of interaction with caspase-9 CARD. Apaf-1 CARD consists of six tightly packed amphipathic alpha-helices and is topologically similar to the RAIDD CARD, with the exception of a kink observed in the middle of the N-terminal helix. By using chemical shift perturbation data, the homophilic interaction was mapped to the acidic surface of Apaf-1 CARD centered around helices 2 and 3. Interestingly, a significant portion of the chemically perturbed residues are hydrophobic, indicating that in addition to the electrostatic interactions predicted previously, hydrophobic interaction is also an important driving force underlying the CARD/CARD interaction. On the basis of the identified functional residues of Apaf-1 CARD and the surface charge complementarity, we propose a model of CARD/CARD interaction between Apaf-1 and caspase-9.
Collapse
Affiliation(s)
- P Zhou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
32
|
Paper Alert. Structure 1999. [DOI: 10.1016/s0969-2126(99)80128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|