1
|
Seeholzer T, Tarau D, Hollendonner L, Auer A, Rachel R, Grohmann D, Giessibl FJ, Weymouth AJ. A Next-Generation qPlus-Sensor-Based AFM Setup: Resolving Archaeal S-Layer Protein Structures in Air and Liquid. J Phys Chem B 2023; 127:6949-6957. [PMID: 37527455 DOI: 10.1021/acs.jpcb.3c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Surface-layer (S-layer) proteins form the outermost envelope in many bacteria and most archaea and arrange in two-dimensional quasicrystalline structures via self-assembly. We investigated S-layer proteins extracted from the archaeon Pyrobaculum aerophilium with a qPlus sensor-based atomic force microscope (AFM) in both liquid and ambient conditions and compared it to transmission electron microscopy (TEM) images under vacuum conditions. For AFM scanning, a next-generation liquid cell and a new protocol for creating long and sharp sapphire tips was introduced. Initial AFM images showed only layers of residual detergent molecules (sodium dodecyl sulfate, SDS), which are used to isolate the S-layer proteins from the cells. SDS was not visible in the TEM images, requiring more thorough sample preparation for AFM measurements. These improvements allowed us to resolve the crystallike structure of the S-layer samples with frequency-modulation AFM in both air and liquid.
Collapse
Affiliation(s)
- Theresa Seeholzer
- Faculty of Physics, University of Regensburg, Regensburg 93053, Germany
| | - Daniela Tarau
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg 93053, Germany
| | - Lea Hollendonner
- Faculty of Physics, University of Regensburg, Regensburg 93053, Germany
| | - Andrea Auer
- Faculty of Physics, University of Regensburg, Regensburg 93053, Germany
| | - Reinhard Rachel
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg 93053, Germany
| | - Dina Grohmann
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg 93053, Germany
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg 93053, Germany
| | - Franz J Giessibl
- Faculty of Physics, University of Regensburg, Regensburg 93053, Germany
| | - Alfred J Weymouth
- Faculty of Physics, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
2
|
Jiang Y, Thienpont B, Sapuru V, Hite RK, Dittman JS, Sturgis JN, Scheuring S. Membrane-mediated protein interactions drive membrane protein organization. Nat Commun 2022; 13:7373. [PMID: 36450733 PMCID: PMC9712761 DOI: 10.1038/s41467-022-35202-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
The plasma membrane's main constituents, i.e., phospholipids and membrane proteins, are known to be organized in lipid-protein functional domains and supercomplexes. No active membrane-intrinsic process is known to establish membrane organization. Thus, the interplay of thermal fluctuations and the biophysical determinants of membrane-mediated protein interactions must be considered to understand membrane protein organization. Here, we used high-speed atomic force microscopy and kinetic and membrane elastic theory to investigate the behavior of a model membrane protein in oligomerization and assembly in controlled lipid environments. We find that membrane hydrophobic mismatch modulates oligomerization and assembly energetics, and 2D organization. Our experimental and theoretical frameworks reveal how membrane organization can emerge from Brownian diffusion and a minimal set of physical properties of the membrane constituents.
Collapse
Affiliation(s)
- Yining Jiang
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Biomedical Sciences, 1300 York Avenue, New York, NY 10065 USA ,grid.5386.8000000041936877XWeill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065 USA
| | - Batiste Thienpont
- grid.5399.60000 0001 2176 4817Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Unité Mixte de Recherche (UMR) 7255, Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université, Marseille, France
| | - Vinay Sapuru
- grid.51462.340000 0001 2171 9952Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA ,Physiology, Biophysics, and Systems Biology (PBSB) Program, Weill Cornell Graduate School of Biomedical Sciences, 1300 York Avenue, New York, NY 10065 USA
| | - Richard K. Hite
- grid.51462.340000 0001 2171 9952Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Jeremy S. Dittman
- grid.5386.8000000041936877XWeill Cornell Medicine, Department of Biochemistry, 1300 York Avenue, New York, NY 10065 USA
| | - James N. Sturgis
- grid.5399.60000 0001 2176 4817Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Unité Mixte de Recherche (UMR) 7255, Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université, Marseille, France
| | - Simon Scheuring
- grid.5386.8000000041936877XWeill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065 USA ,grid.5386.8000000041936877XWeill Cornell Medicine, Department of Physiology and Biophysics, 1300 York Avenue, New York, NY 10065 USA ,grid.5386.8000000041936877XKavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
3
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
4
|
Affiliation(s)
- Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, UK. .,Department of Physics and Astronomy, University College London, London, UK.
| |
Collapse
|
5
|
|
6
|
Ahmed S, Kouser S, Asgher M, Gandhi SG. Plant aquaporins: A frontward to make crop plants drought resistant. PHYSIOLOGIA PLANTARUM 2021; 172:1089-1105. [PMID: 33826759 DOI: 10.1111/ppl.13416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/10/2021] [Accepted: 04/03/2021] [Indexed: 05/25/2023]
Abstract
Drought stress alters gene expression and causes cellular damage in crop plants. Drought inhibits photosynthesis by reducing the content and the activity of the photosynthetic carbon reduction cycle, ultimately decreasing the crop yield. The role of aquaporins (AQP) in improving the growth and adaptation of crop plants under drought stress is of importance. AQP form channels and control water transport in and out of the cells and are associated with drought tolerance mechanisms. The current review addresses: (1) the evolution of AQPs in plants, (2) the classification of plant AQPs, (3) the role of AQPs in drought alleviation in crop plants, and (4) the phytohormone crosstalk with AQPs in crops exposed to drought stress.
Collapse
Affiliation(s)
- Sajad Ahmed
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Shaista Kouser
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sumit G Gandhi
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Chen MS, Pang BQ, Liu SW, Li FN, Yan XR, Sun CH, Tuo L. Phycicoccus flavus sp. nov., a novel endophytic actinobacterium isolated from branch of Kandelia candel. Int J Syst Evol Microbiol 2021; 71. [PMID: 33909548 DOI: 10.1099/ijsem.0.004794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A Gram-stain-positive, aerobic, non-motile, non-endospore-forming and rod-shaped actinobacterium, designated strain CMS6Z-2T, was isolated from a surface-sterilized branch of Kandelia candel collected from the Maowei Sea, Guangxi Zhuang Autonomous Region, PR China. Strain CMS6Z-2T grew at 10-37 °C (optimum, 37 °C), pH 6.0-9.0 (optimum, pH 7.0-8.0) and in the presence of 0-10.0 % (w/v) NaCl (optimum, 0-1.0 %). Strain CMS6Z-2T possessed meso-diaminopimelic acid as the diamino acid of the peptidoglycan and MK-8 (H4) as the predominant menaquinone. The major fatty acids were iso-C15 : 0, C16 : 0 and C18 : 1 ω9c. The polar lipids comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and two unknown phospholipids. The G+C content of the genomic DNA was 74.1 mol%. Comparative analysis of 16S rRNA genes showed that strain CMS6Z-2T should be assigned to the genus Phycicoccus and its closest relative was Phycicoccus endophyticus IP6SC6T with 98.3 % similarity. Phylogenetic analyses based on 16S rRNA gene sequence and phylogenomic analysis based on core proteomes alignment revealed that strain CMS6Z-2T belonged to the genus Phycicoccus and formed a robust cluster with Phycicoccus endophyticus IP6SC6T within the genus Phycicoccus. The average nucleotide identity value and estimated digital DNA-DNA hybridization value between strain CMS6Z-2T and the type strain of Phycicoccus endophyticus were 81.5 and 23.9 %, respectively. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain CMS6Z-2T represents a novel species of the genus Phycicoccus, for which the name Phycicoccus flavus sp. nov. is proposed. The type strain is CMS6Z-2T (=KCTC 49240T=CGMCC4.7549T).
Collapse
Affiliation(s)
- Ming-Sheng Chen
- Life Sciences Institute, Zunyi Medical University, Zunyi 563006, PR China
| | - Bao-Quan Pang
- The Second People's Hospital of Heze in Shandong Province, Heze 274005, PR China
| | - Shao-Wei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Fei-Na Li
- Key Laboratory of Major Diseases in Children, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, PR China
| | - Xiao-Rui Yan
- Life Sciences Institute, Zunyi Medical University, Zunyi 563006, PR China
| | - Cheng-Hang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Li Tuo
- Life Sciences Institute, Zunyi Medical University, Zunyi 563006, PR China
| |
Collapse
|
8
|
Liu SW, Ye JJ, Lu QP, Cheema MT, Abbas M, Huang DL, Sajid I, Sun CH. Motilibacter deserti sp. nov. and Motilibacter aurantiacus sp. nov., two novel actinobacteria isolated from soil of Cholistan Desert and emended description of the genus Motilibacter. Syst Appl Microbiol 2020; 43:126150. [PMID: 33099259 DOI: 10.1016/j.syapm.2020.126150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 02/03/2023]
Abstract
Two novel actinobacterial strains, designated as E257T and K478T, were isolated from hyper-arid soil samples collected in Cholistan Desert, Pakistan. Comparative analysis of 16S rRNA genes showed that strains E257T and K478T were assigned to the genus Motilibacter, being their closest relative M. rhizosphaerae RS-16T with 97.3% and 96.7% similarities, respectively. The sequence similarity between strain E257T and K478T was 98.9%. Phylogenetic analysis based on 16S rRNA gene sequences and phylogenomic analysis based on multiple genes of conserved core proteins exhibited that these two strains belonged to the genus Motilibacter and formed a robust cluster separated from the two type species of the genus Motilibacter. Average Nucleotide Identity (ANI), Average Amino acid Identity (AAI), digital DNA-DNA hybridization (dDDH) values and Percentage of Conserved Proteins (POCP) calculated from the complete genome sequences indicated strains E257T and K478T were assigned into genus Motilibacter but clearly separated from each other and from the other species of the genus Motilibacter with values below the thresholds for species delineation. The two isolates were found to have chemotaxonomic, cultural and morphological properties consistent with their classification in the genus Motilibacter and also confirmed the differentiation from their closest species. The obtained results demonstrated that strains E257T and K478T represent two novel species of the genus Motilibacter, for which the names Motilibacter desertisp. nov. (type strain E257T = JCM 33651T = CGMCC 1.17159T) and Motilibacter aurantiacus sp. nov. (type strain K478T =JCM 33652T =CGMCC 1.17229T) are proposed.
Collapse
Affiliation(s)
- Shao-Wei Liu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing-Jing Ye
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Qin-Pei Lu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mohsin Tassawar Cheema
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan
| | - Da-Lin Huang
- College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Imran Sajid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan.
| | - Cheng-Hang Sun
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
9
|
Shen J, Ye R, Romanies A, Roy A, Chen F, Ren C, Liu Z, Zeng H. Aquafoldmer-Based Aquaporin-like Synthetic Water Channel. J Am Chem Soc 2020; 142:10050-10058. [PMID: 32375470 DOI: 10.1021/jacs.0c02013] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic water channels were developed with an aim to replace aquaporins for possible uses in water purification, while concurrently retaining aquaporins' ability to conduct highly selective superfast water transport. Among the currently available synthetic water channel systems, none possesses water transport properties that parallel those of aquaporins. In this report, we present the first synthetic water channel system with intriguing aquaproin-like features. Employing a "sticky end"-mediated molecular strategy for constructing abiotic water channels, we demonstrate that a 20% enlargement in angstrom-scale pore volume could effect a remarkable enhancement in macroscopic water transport profile by 15 folds. This gives rise to a powerful synthetic water channel able to transport water at a speed of ∼3 × 109 H2O s-1 channel-1 with a high rejection of NaCl and KCl. This high water permeability, which is about 50% of aquaporin Z's capacity, makes channel 1 the fastest among the existing synthetic water channels with high selectivity.
Collapse
Affiliation(s)
- Jie Shen
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669
| | - Ruijuan Ye
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| | - Alyssa Romanies
- Department of Chemistry & Biochemistry and the West Center for Computational Chemistry and Drug Design, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Arundhati Roy
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669
| | - Feng Chen
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669
| | - Changliang Ren
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry and the West Center for Computational Chemistry and Drug Design, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Huaqiang Zeng
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669
| |
Collapse
|
10
|
Kohler A, Venturelli L, Longo G, Dietler G, Kasas S. Nanomotion detection based on atomic force microscopy cantilevers. Cell Surf 2019; 5:100021. [PMID: 32743137 PMCID: PMC7388971 DOI: 10.1016/j.tcsw.2019.100021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/14/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022] Open
Abstract
Atomic force microscopes (AFM) or low-noise in-house dedicated devices can highlight nanomotion oscillations. The method consists of attaching the organism of interest onto a silicon-based sensor and following its nano-scale motion as a function of time. The nanometric scale oscillations exerted by biological specimens last as long the organism is viable and reflect the status of the microorganism metabolism upon exposure to different chemical or physical stimuli. During the last couple of years, the nanomotion pattern of several types of bacteria, yeasts and mammalian cells has been determined. This article reviews this technique in details, presents results obtained with dozens of different microorganisms and discusses the potential applications of nanomotion in fundamental research, medical microbiology and space exploration.
Collapse
Affiliation(s)
- A.C. Kohler
- Laboratoire de Physique de la Matière Vivante, EPFL, CH-1015 Lausanne, Switzerland
| | - L. Venturelli
- Laboratoire de Physique de la Matière Vivante, EPFL, CH-1015 Lausanne, Switzerland
| | - G. Longo
- Istituto di Struttura della Materia ISM-CNR, Rome, Italy
| | - G. Dietler
- Laboratoire de Physique de la Matière Vivante, EPFL, CH-1015 Lausanne, Switzerland
| | - S. Kasas
- Laboratoire de Physique de la Matière Vivante, EPFL, CH-1015 Lausanne, Switzerland
- Unité Facultaire d’Anatomie et de Morphologie, CUMRL, Université de Lausanne, CH-1005 Lausanne, Switzerland
| |
Collapse
|
11
|
Zhou K, Chen H, Zhang S, Wang Y, Zhao G. Disulfide-mediated reversible two-dimensional self-assembly of protein nanocages. Chem Commun (Camb) 2019; 55:7510-7513. [DOI: 10.1039/c9cc03085a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Disulfide-mediated 2D protein self-assembly was achieved by single point mutation of hot spots at the C4 interface of ferritin.
Collapse
Affiliation(s)
- K. Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- Beijing Key Laboratory of Functional Food from Plant Resources
- China Agricultural University
- Beijing 100083
| | - H. Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- Beijing Key Laboratory of Functional Food from Plant Resources
- China Agricultural University
- Beijing 100083
| | - S. Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- Beijing Key Laboratory of Functional Food from Plant Resources
- China Agricultural University
- Beijing 100083
| | - Y. Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- Beijing Key Laboratory of Functional Food from Plant Resources
- China Agricultural University
- Beijing 100083
| | - G. Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- Beijing Key Laboratory of Functional Food from Plant Resources
- China Agricultural University
- Beijing 100083
| |
Collapse
|
12
|
Miyagi A, Scheuring S. A novel phase-shift-based amplitude detector for a high-speed atomic force microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:083704. [PMID: 30184715 DOI: 10.1063/1.5038095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
In any atomic force microscope operated in amplitude modulation mode, aka "tapping mode" or "oscillating mode," the most crucial operation is the detection of the cantilever oscillation amplitude. Indeed, it is the change in the cantilever oscillation amplitude that drives the feedback loop, and thus, the accuracy and speed of amplitude detection are of utmost importance for improved atomic force microscopy operation. This becomes even more crucial for the operation of a high-speed atomic force microscope (HS-AFM), where feedback operation on a single or a low number of cantilever oscillation cycles between 500 kHz and 1000 kHz oscillation frequency is desired. So far, the amplitude detection was performed by Fourier analysis of each oscillation, resulting in a single output amplitude value at the end of each oscillation cycle, i.e., 360° phase delay. Here, we present a novel analog amplitude detection circuit with theoretic continuous amplitude detection at 90° phase delay. In factual operation, when exposed to an abrupt amplitude change, our novel amplitude detector circuit reacted with a phase delay of ∼138° compared with the phase delay of ∼682° achieved by the Fourier analysis method. Integrated to a HS-AFM, the novel amplitude detector should allow faster image acquisition with lower invasiveness due to the faster and more accurate detection of cantilever oscillation amplitude change.
Collapse
Affiliation(s)
- Atsushi Miyagi
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, USA
| |
Collapse
|
13
|
Abdelrasoul A, Doan H, Lohi A, Cheng CH. Aquaporin-Based Biomimetic and Bioinspired Membranes for New Frontiers in Sustainable Water Treatment Technology: Approaches and Challenges. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18040016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Trefz M, Keller R, Vogt M, Schneider D. The GlpF residue Trp219 is part of an amino-acid cluster crucial for aquaglyceroporin oligomerization and function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:887-894. [PMID: 29069569 DOI: 10.1016/j.bbamem.2017.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/10/2017] [Accepted: 10/15/2017] [Indexed: 12/13/2022]
Abstract
The vestibule loop regions of aquaglyceroporins are involved in accumulation of glycerol inside the channel pore. Even though most loop regions do not show high sequence similarity among aquaglyceroporins, loop E is highly conserved in aquaglyceroporins, but not in members of the homologous aquaporins. Specifically, a tryptophan residue is extremely conserved within this loop. We have investigated the role of this residue (Trp219) that deeply protrudes into the protein and potentially interacts with adjacent loops, using the E. coli aqualgyeroporin GlpF as a model. Replacement of Trp219 affects the activity of GlpF and impairs the stability of the tetrameric protein. Furthermore, we have identified an amino acid cluster involving Trp219 that stabilizes the GlpF tetramer. Based on our results we propose that Trp219 is key for formation of a defined vestibule structure, which is crucial for glycerol accumulation as well as for the stability of the active GlpF tetramer.
Collapse
Affiliation(s)
- Margareta Trefz
- Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Rebecca Keller
- Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Miriam Vogt
- Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dirk Schneider
- Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany.
| |
Collapse
|
15
|
Gan HX, Zhou H, Lin Q, Tong YW. Quantification of Aquaporin-Z reconstituted into vesicles for biomimetic membrane fabrication. Sci Rep 2017; 7:11565. [PMID: 28912594 PMCID: PMC5599656 DOI: 10.1038/s41598-017-11723-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/29/2017] [Indexed: 12/04/2022] Open
Abstract
Aquaporin incorporated biomimetic membranes are anticipated to offer unprecedented desalination capabilities. However, the lack of accurate methods to quantify the reconstituted aquaporin presents a huge hurdle in investigating aquaporin performance and optimizing membrane fabrication. Herein, we present three quantification methods to determine the Aquaporin-Z reconstituted into E. coli lipid vesicles: 1) nanogold labeling with transmission electron microscopy (TEM) visualization, 2) nickel labeling with inductively coupled plasma-mass spectrometry (ICP-MS) and 3) gel electrophoresis. The TEM method serves as a quick way to determine if aquaporin has been reconstituted, but is not quantitative. The numerical results from quantitative methods, ICP-MS and gel electrophoresis, correlate closely, showing that 60 ± 20% vs 66 ± 4% of Aquaporin-Z added is successfully reconstituted into vesicles respectively. These methods allow more accurate determination of Aquaporin-Z reconstituted and loss during reconstitution, with relatively commonly available equipment and without complex sample handling, or lengthy data analysis. These would allow them to be widely applicable to scientific studies of protein function in the biomimetic environment and engineering studies on biomimetic membrane fabrication.
Collapse
Affiliation(s)
- Hui Xian Gan
- National University of Singapore, NUS Environmental Research Institute (NERI), Singapore, 117411, Singapore.,National University of Singapore, Chemical and Biomolecular Engineering, Singapore, 117576, Singapore
| | - Hu Zhou
- National University of Singapore, NUS Environmental Research Institute (NERI), Singapore, 117411, Singapore.,National University of Singapore, Department of Biological Sciences, Singapore, 117543, Singapore
| | - Qingsong Lin
- National University of Singapore, NUS Environmental Research Institute (NERI), Singapore, 117411, Singapore. .,National University of Singapore, Department of Biological Sciences, Singapore, 117543, Singapore.
| | - Yen Wah Tong
- National University of Singapore, NUS Environmental Research Institute (NERI), Singapore, 117411, Singapore. .,National University of Singapore, Chemical and Biomolecular Engineering, Singapore, 117576, Singapore.
| |
Collapse
|
16
|
Wei P, Wang Q, Hang B, Shi F, Cai J, Huang L, Xu Z. High-level cell-free expression and functional characterization of a novel aquaporin from Photobactetrium profundum SS9. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Sumino A, Uchihashi T, Oiki S. Oriented Reconstitution of the Full-Length KcsA Potassium Channel in a Lipid Bilayer for AFM Imaging. J Phys Chem Lett 2017; 8:785-793. [PMID: 28139934 DOI: 10.1021/acs.jpclett.6b03058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Here, we have developed a method of oriented reconstitution of the KcsA potassium channel amenable to high-resolution AFM imaging. The solubilized full-length KcsA channels with histidine-tagged (His-tag) C-terminal ends were attached to a Ni2+-coated mica surface, and then detergent-destabilized liposomes were added to fill the interchannel space. AFM revealed that the membrane-embedded KcsA channels were oriented with their extracellular faces upward, seen as a tetrameric square shape. This orientation was corroborated by the visible binding of a peptide scorpion toxin, agitoxin-2. To observe the cytoplasmic side of the channel, a His-tag was inserted into the extracellular loop, and the oppositely oriented channels provided wholly different images. In either orientation, the channels were individually dispersed at acidic pH, whereas they were self-assembled at neutral pH, indicating that the oriented channels are allowed to diffuse in the membrane. This method is readily applicable to membrane proteins in general for AFM imaging.
Collapse
Affiliation(s)
- Ayumi Sumino
- PRESTO, Japan Science and Technology Agency (JST) , 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui , 23-3 Matsuokashimoaizuki, Yoshida-gun, Fukui 910-1193, Japan
| | - Takayuki Uchihashi
- Department of Physics, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
- Bio-AFM Frontier Research Center , Kanazawa 920-1192, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui , 23-3 Matsuokashimoaizuki, Yoshida-gun, Fukui 910-1193, Japan
| |
Collapse
|
18
|
Costa L, Andriatis A, Brennich M, Teulon JM, Chen SWW, Pellequer JL, Round A. Combined small angle X-ray solution scattering with atomic force microscopy for characterizing radiation damage on biological macromolecules. BMC STRUCTURAL BIOLOGY 2016; 16:18. [PMID: 27788689 PMCID: PMC5081678 DOI: 10.1186/s12900-016-0068-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Synchrotron radiation facilities are pillars of modern structural biology. Small-Angle X-ray scattering performed at synchrotron sources is often used to characterize the shape of biological macromolecules. A major challenge with high-energy X-ray beam on such macromolecules is the perturbation of sample due to radiation damage. RESULTS By employing atomic force microscopy, another common technique to determine the shape of biological macromolecules when deposited on flat substrates, we present a protocol to evaluate and characterize consequences of radiation damage. It requires the acquisition of images of irradiated samples at the single molecule level in a timely manner while using minimal amounts of protein. The protocol has been tested on two different molecular systems: a large globular tetremeric enzyme (β-Amylase) and a rod-shape plant virus (tobacco mosaic virus). Radiation damage on the globular enzyme leads to an apparent increase in molecular sizes whereas the effect on the long virus is a breakage into smaller pieces resulting in a decrease of the average long-axis radius. CONCLUSIONS These results show that radiation damage can appear in different forms and strongly support the need to check the effect of radiation damage at synchrotron sources using the presented protocol.
Collapse
Affiliation(s)
- Luca Costa
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble, 38000 France
- Present Address: CBS, Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, 29, Rue de Navacelles, Montpellier, 34090 France
| | - Alexander Andriatis
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble, 38000 France
- MIT, 77 Massachusetts Ave., Cambridge, 02139 MA USA
| | - Martha Brennich
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble, 38000 France
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, 71 Avenue des Martyrs, Grenoble, 38044 France
- CNRS, IBS, 71 Avenue des Martyrs, Grenoble, 38044 France
- CEA, IBS, 71 Avenue des Martyrs, Grenoble, France
| | - Shu-wen W. Chen
- Univ. Grenoble Alpes, 71 Avenue des Martyrs, Grenoble, 38044 France
- CNRS, IBS, 71 Avenue des Martyrs, Grenoble, 38044 France
- CEA, IBS, 71 Avenue des Martyrs, Grenoble, France
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, 71 Avenue des Martyrs, Grenoble, 38044 France
- CNRS, IBS, 71 Avenue des Martyrs, Grenoble, 38044 France
- CEA, IBS, 71 Avenue des Martyrs, Grenoble, France
| | - Adam Round
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, 38000 France
- Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, Grenoble, 38000 France
- Faculty of Natural Sciences, Keele University, Keele, Staffordshire UK
- Present Address: European XFEL GmbH, Holzkoppel 4, Schenefeld, 22869 Germany
| |
Collapse
|
19
|
Kreplak L. Introduction to Atomic Force Microscopy (AFM) in Biology. ACTA ACUST UNITED AC 2016; 85:17.7.1-17.7.21. [PMID: 27479503 DOI: 10.1002/cpps.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Laurent Kreplak
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Canada
| |
Collapse
|
20
|
Hang B, Pan J, Ni D, Zheng Q, Zhang X, Cai J, Huang L, Wei P, Xu Z. High-level production of aquaporin Z in Escherichia coli using maltose-binding protein/polyhistidine dual-affinity tag fusion system. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
KASAI N. Nano-biointerfaces for Detection and Control of Biological Information. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nahoko KASAI
- NTT Basic Research Laboratories, NTT Corporation
| |
Collapse
|
22
|
Assemblies of pore-forming toxins visualized by atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:500-11. [PMID: 26577274 DOI: 10.1016/j.bbamem.2015.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/23/2015] [Accepted: 11/09/2015] [Indexed: 02/05/2023]
Abstract
A number of pore-forming toxins (PFTs) can assemble on lipid membranes through their specific interactions with lipids. The oligomeric assemblies of some PFTs have been successfully revealed either by electron microscopy (EM) and/or atomic force microscopy (AFM). Unlike EM, AFM imaging can be performed under physiological conditions, enabling the real-time visualization of PFT assembly and the transition from the prepore state, in which the toxin does not span the membrane, to the pore state. In addition to characterizing PFT oligomers, AFM has also been used to examine toxin-induced alterations in membrane organization. In this review, we summarize the contributions of AFM to the understanding of both PFT assembly and PFT-induced membrane reorganization. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
|
23
|
Horner A, Zocher F, Preiner J, Ollinger N, Siligan C, Akimov SA, Pohl P. The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues. SCIENCE ADVANCES 2015; 1:e1400083. [PMID: 26167541 PMCID: PMC4496530 DOI: 10.1126/sciadv.1400083] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/12/2015] [Indexed: 05/19/2023]
Abstract
Channel geometry governs the unitary osmotic water channel permeability, pf, according to classical hydrodynamics. Yet, pf varies by several orders of magnitude for membrane channels with a constriction zone that is one water molecule in width and four to eight molecules in length. We show that both the pf of those channels and the diffusion coefficient of the single-file waters within them are determined by the number NH of residues in the channel wall that may form a hydrogen bond with the single-file waters. The logarithmic dependence of water diffusivity on NH is in line with the multiplicity of binding options at higher NH densities. We obtained high-precision pf values by (i) having measured the abundance of the reconstituted aquaporins in the vesicular membrane via fluorescence correlation spectroscopy and via high-speed atomic force microscopy, and (ii) having acquired the vesicular water efflux from scattered light intensities via our new adaptation of the Rayleigh-Gans-Debye equation.
Collapse
Affiliation(s)
- Andreas Horner
- Johannes Kepler University Linz, Institute of Biophysics, Gruberstr. 40, 4020 Linz, Austria
| | - Florian Zocher
- Johannes Kepler University Linz, Institute of Biophysics, Gruberstr. 40, 4020 Linz, Austria
| | - Johannes Preiner
- Center for Advanced Bioanalysis GmbH (CBL), Gruberstr. 40, 4020 Linz, Austria
| | - Nicole Ollinger
- Johannes Kepler University Linz, Institute of Biophysics, Gruberstr. 40, 4020 Linz, Austria
| | - Christine Siligan
- Johannes Kepler University Linz, Institute of Biophysics, Gruberstr. 40, 4020 Linz, Austria
| | - Sergey A. Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31/5, 119071 Moscow, Russia
- National University of Science and Technology “MISiS,” Leninsky pr., 4, 119049 Moscow, Russia
| | - Peter Pohl
- Johannes Kepler University Linz, Institute of Biophysics, Gruberstr. 40, 4020 Linz, Austria
- Corresponding author. E-mail:
| |
Collapse
|
24
|
Preiner J, Horner A, Karner A, Ollinger N, Siligan C, Pohl P, Hinterdorfer P. High-speed AFM images of thermal motion provide stiffness map of interfacial membrane protein moieties. NANO LETTERS 2015; 15:759-63. [PMID: 25516527 PMCID: PMC4296598 DOI: 10.1021/nl504478f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/11/2014] [Indexed: 05/20/2023]
Abstract
The flexibilities of extracellular loops determine ligand binding and activation of membrane receptors. Arising from fluctuations in inter- and intraproteinaceous interactions, flexibility manifests in thermal motion. Here we demonstrate that quantitative flexibility values can be extracted from directly imaging the thermal motion of membrane protein moieties using high-speed atomic force microscopy (HS-AFM). Stiffness maps of the main periplasmic loops of single reconstituted water channels (AqpZ, GlpF) revealed the spatial and temporal organization of loop-stabilizing intraproteinaceous H-bonds and salt bridges.
Collapse
Affiliation(s)
- Johannes Preiner
- Center
for Advanced Bioanalysis GmbH, Gruberstrasse 40, 4020 Linz, Austria
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
- E-mail:
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Andreas Karner
- Center
for Advanced Bioanalysis GmbH, Gruberstrasse 40, 4020 Linz, Austria
| | - Nicole Ollinger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Peter Hinterdorfer
- Center
for Advanced Bioanalysis GmbH, Gruberstrasse 40, 4020 Linz, Austria
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| |
Collapse
|
25
|
Mashaghi A, Mashaghi S, Reviakine I, Heeren RMA, Sandoghdar V, Bonn M. Label-free characterization of biomembranes: from structure to dynamics. Chem Soc Rev 2014; 43:887-900. [PMID: 24253187 DOI: 10.1039/c3cs60243e] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We review recent progress in the study of the structure and dynamics of phospholipid membranes and associated proteins, using novel label-free analytical tools. We describe these techniques and illustrate them with examples highlighting current capabilities and limitations. Recent advances in applying such techniques to biological and model membranes for biophysical studies and biosensing applications are presented, and future prospects are discussed.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Sharma S, Grintsevich E, Woo J, Gurel PS, Higgs HN, Reisler E, Gimzewski JK. Nanostructured self-assembly of inverted formin 2 (INF2) and F-actin-INF2 complexes revealed by atomic force microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7533-7539. [PMID: 24915113 PMCID: PMC4082382 DOI: 10.1021/la501748x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/08/2014] [Indexed: 06/03/2023]
Abstract
Self-organization of cytoskeletal proteins such as actin and tubulin into filaments and microtubules is frequently assisted by the proteins binding to them. Formins are regulatory proteins that nucleate the formation of new filaments and are essential for a wide range of cellular functions. The vertebrate inverted formin 2 (INF2) has both actin filament nucleating and severing/depolymerizing activities connected to its ability to encircle actin filaments. Using atomic force microscopy, we report that a formin homology 2 (FH2) domain-containing construct of INF2 (INF2-FH1-FH2-C or INF2-FFC) self-assembles into nanoscale ringlike oligomeric structures in the absence of actin filaments, demonstrating an inherent ability to reorganize from a dimeric to an oligomeric state. A construct lacking the C-terminal region (INF2-FH1-FH2 or INF2-FF) also oligomerizes, confirming the dominant role of FH2-mediated interactions. Moreover, INF2-FFC domains were observed to organize into ringlike structures around single actin filaments. This is the first demonstration that formin FH2 domains can self-assemble into oligomers in the absence of filaments and has important implications for observing unaveraged decoration and/or remodeling of filaments by actin binding proteins.
Collapse
Affiliation(s)
- Shivani Sharma
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Elena
E. Grintsevich
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - JungReem Woo
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Pinar S. Gurel
- Department
of Biochemistry, Geisel School of Medicine
at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Henry N. Higgs
- Department
of Biochemistry, Geisel School of Medicine
at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Emil Reisler
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
- Molecular
Biology Institute, University of California, Los Angeles, California 90095, United States
| | - James K. Gimzewski
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, University
of California, Los Angeles, California 90095, United States
- International
Center for Materials Nanoarchitectonics Satellite (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Centre for
Nanoscience and Quantum Information, University
of Bristol, Bristol BS8 1TH, U.K.
| |
Collapse
|
27
|
Eghiaian F, Rico F, Colom A, Casuso I, Scheuring S. High-speed atomic force microscopy: Imaging and force spectroscopy. FEBS Lett 2014; 588:3631-8. [DOI: 10.1016/j.febslet.2014.06.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
28
|
Ultrastable atomic force microscopy: improved force and positional stability. FEBS Lett 2014; 588:3621-30. [PMID: 24801176 DOI: 10.1016/j.febslet.2014.04.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 11/20/2022]
Abstract
Atomic force microscopy (AFM) is an exciting technique for biophysical studies of single molecules, but its usefulness is limited by instrumental drift. We dramatically reduced positional drift by adding two lasers to track and thereby actively stabilize the tip and the surface. These lasers also enabled label-free optical images that were spatially aligned to the tip position. Finally, sub-pN force stability over 100 s was achieved by removing the gold coating from soft cantilevers. These enhancements to AFM instrumentation can immediately benefit research in biophysics and nanoscience.
Collapse
|
29
|
Ando T, Uchihashi T, Scheuring S. Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 2014; 114:3120-88. [PMID: 24476364 PMCID: PMC4076042 DOI: 10.1021/cr4003837] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Toshio Ando
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Takayuki Uchihashi
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Simon Scheuring
- U1006
INSERM/Aix-Marseille Université, Parc Scientifique et Technologique
de Luminy Bâtiment Inserm TPR2 bloc 5, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
30
|
Sumino A, Yamamoto D, Iwamoto M, Dewa T, Oiki S. Gating-Associated Clustering-Dispersion Dynamics of the KcsA Potassium Channel in a Lipid Membrane. J Phys Chem Lett 2014; 5:578-84. [PMID: 26276612 DOI: 10.1021/jz402491t] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The KcsA potassium channel is a prototypical channel of bacterial origin, and the mechanism underlying the pH-dependent gating has been studied extensively. With the high-resolution atomic force microscopy (AFM), we have resolved functional open and closed gates of the KcsA channel under the membrane-embedded condition. Here we surprisingly found that the pH-dependent gating of the KcsA channels was associated with clustering-dispersion dynamics. At neutral pH, the resting, closed channels were coalesced, forming nanoclusters. At acidic pH, the open-gated channels were dispersed as singly isolated channels. Time-lapse AFM revealed reversible clustering-dispersion transitions upon pH changes. At acidic equilibrium, a small fraction of the channels was nanoclustered, in which the gate was apparently closed. Thus, it is suggested that opening of the gate and the dispersion are tightly linked. The interplay between the intramolecular conformational change and the supramolecular clustering-dispersion dynamics provides insights into understanding of unprecedented functional cooperativity of channels.
Collapse
Affiliation(s)
- Ayumi Sumino
- †PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
- ‡Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida-gun, Fukui 910-1193, Japan
| | - Daisuke Yamamoto
- §Department of Applied Physics, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Masayuki Iwamoto
- ‡Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida-gun, Fukui 910-1193, Japan
| | - Takehisa Dewa
- ∥Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Shigetoshi Oiki
- ‡Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida-gun, Fukui 910-1193, Japan
| |
Collapse
|
31
|
Choi HJ, Montemagno CD. Recent Progress in Advanced Nanobiological Materials for Energy and Environmental Applications. MATERIALS 2013; 6:5821-5856. [PMID: 28788424 PMCID: PMC5452742 DOI: 10.3390/ma6125821] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 11/25/2022]
Abstract
In this review, we briefly introduce our efforts to reconstruct cellular life processes by mimicking natural systems and the applications of these systems to energy and environmental problems. Functional units of in vitro cellular life processes are based on the fabrication of artificial organelles using protein-incorporated polymersomes and the creation of bioreactors. This concept of an artificial organelle originates from the first synthesis of poly(siloxane)-poly(alkyloxazoline) block copolymers three decades ago and the first demonstration of protein activity in the polymer membrane a decade ago. The increased value of biomimetic polymers results from many research efforts to find new applications such as functionally active membranes and a biochemical-producing polymersome. At the same time, foam research has advanced to the point that biomolecules can be efficiently produced in the aqueous channels of foam. Ongoing research includes replication of complex biological processes, such as an artificial Calvin cycle for application in biofuel and specialty chemical production, and carbon dioxide sequestration. We believe that the development of optimally designed biomimetic polymers and stable/biocompatible bioreactors would contribute to the realization of the benefits of biomimetic systems. Thus, this paper seeks to review previous research efforts, examine current knowledge/key technical parameters, and identify technical challenges ahead.
Collapse
Affiliation(s)
- Hyo-Jick Choi
- National Institute for Nanotechnology and Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2M9, Canada.
| | - Carlo D Montemagno
- National Institute for Nanotechnology and Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2M9, Canada.
| |
Collapse
|
32
|
Chaves RC, Pellequer JL. DockAFM: benchmarking protein structures by docking under AFM topographs. ACTA ACUST UNITED AC 2013; 29:3230-1. [PMID: 24078683 DOI: 10.1093/bioinformatics/btt561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UNLABELLED Proteins can adopt a variety of conformations. We present a simple server for scoring the agreement between 3D atomic structures and experimental envelopes obtained by atomic force microscopy. Three different structures of immunoglobulins (IgG) or blood coagulation factor V activated were tested and their agreement with several topographical surfaces was computed. This approach can be used to test structural variability within a family of proteins. AVAILABILITY AND IMPLEMENTATION DockAFM is available at http://biodev.cea.fr/dockafm.
Collapse
Affiliation(s)
- Rui C Chaves
- CEA, iBEB, Service de Biochimie et Toxicologie Nucléaire, F-30207 Bagnols sur Cèze, France
| | | |
Collapse
|
33
|
Sharma S, Zhu H, Grintsevich EE, Reisler E, Gimzewski JK. Correlative nanoscale imaging of actin filaments and their complexes. NANOSCALE 2013; 5:5692-702. [PMID: 23727693 PMCID: PMC4030708 DOI: 10.1039/c3nr01039b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Actin remodeling is an area of interest in biology in which correlative microscopy can bring a new way to analyze protein complexes at the nanoscale. Advances in EM, X-ray diffraction, fluorescence, and single molecule techniques have provided a wealth of information about the modulation of the F-actin structure and its regulation by actin binding proteins (ABPs). Yet, there are technological limitations of these approaches to achieving quantitative molecular level information on the structural and biophysical changes resulting from ABPs interaction with F-actin. Fundamental questions about the actin structure and dynamics and how these determine the function of ABPs remain unanswered. Specifically, how local and long-range structural and conformational changes result in ABPs induced remodeling of F-actin needs to be addressed at the single filament level. Advanced, sensitive and accurate experimental tools for detailed understanding of ABP-actin interactions are much needed. This article discusses the current understanding of nanoscale structural and mechanical modulation of F-actin by ABPs at the single filament level using several correlative microscopic techniques, focusing mainly on results obtained by Atomic Force Microscopy (AFM) analysis of ABP-actin complexes.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
- California NanoSystems Institute, University of California, Los Angeles, California, USA
| | - Huanqi Zhu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
| | - Elena E. Grintsevich
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA. Fax: +1 310 206 4038; +1 310 206 4038; Tel: +1 310 794 7514; +1 310 983 1027
- California NanoSystems Institute, University of California, Los Angeles, California, USA
- International Center for Materials Nanoarchitectonics Satellite (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| |
Collapse
|
34
|
Sanganna Gari RR, Frey NC, Mao C, Randall LL, King GM. Dynamic structure of the translocon SecYEG in membrane: direct single molecule observations. J Biol Chem 2013; 288:16848-16854. [PMID: 23609442 PMCID: PMC3675617 DOI: 10.1074/jbc.m113.471870] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/19/2013] [Indexed: 11/06/2022] Open
Abstract
Purified SecYEG was reconstituted into liposomes and studied in near-native conditions using atomic force microscopy. These SecYEG proteoliposomes were active in translocation assays. Changes in the structure of SecYEG as a function of time were directly visualized. The dynamics observed were significant in magnitude (∼1-10 Å) and were attributed to the two large loops of SecY linking transmembrane helices 6-7 and 8-9. In addition, we identified a distribution between monomers and dimers of SecYEG as well as a smaller population of higher order oligomers. This work provides a new vista of the flexible and dynamic structure of SecYEG, an intricate and vital membrane protein.
Collapse
Affiliation(s)
| | - Nathan C Frey
- Departments of Physics and Astronomy, Columbia, Missouri 65211
| | - Chunfeng Mao
- Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Linda L Randall
- Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Gavin M King
- Departments of Physics and Astronomy, Columbia, Missouri 65211; Biochemistry, University of Missouri, Columbia, Missouri 65211.
| |
Collapse
|
35
|
Zhao Y, Vararattanavech A, Li X, Hélixnielsen C, Vissing T, Torres J, Wang R, Fane AG, Tang CY. Effects of proteoliposome composition and draw solution types on separation performance of aquaporin-based proteoliposomes: implications for seawater desalination using aquaporin-based biomimetic membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:1496-1503. [PMID: 23311686 DOI: 10.1021/es304306t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Aquaporins are a large family of water transport proteins in cell membranes. Their high water permeability and solute rejection make them potential building blocks for high-performance biomimetic membranes for desalination. In the current study, proteoliposomes were prepared using AquaporinZ from Escherichia coli cells, and their separation properties were characterized by stopped-flow measurements. The current study systematically investigated the effect of proteoliposome composition (lipid type, protein-to-lipid ratio (PLR), and the addition of cholesterol) on water permeability and NaCl retention. Among the various lipids investigated, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)-based proteoliposomes were found to have excellent osmotic water permeability and NaCl reflection coefficient values. Increasing the PLR of DOPC proteoliposomes up to 1:200 increased their osmotic water permeability. However, further increase in the PLR reduced the osmotic water permeability probably due to the occurrence of defects in the proteoliposomes, whereas the addition of cholesterol improved their osmotic water permeation likely due to defects sealing. The current study also investigated the effect of major dissolved ions in seawater (e.g., Mg(2+) and SO(4)(2-)) on the stability of proteoliposomes, and design criteria for aquaporin-based biomimetic membranes are proposed in the context of desalination.
Collapse
Affiliation(s)
- Yang Zhao
- Singapore Membrane Technology Centre, Nanyang Technological University, Singapore 639798
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Surface Characterization Using Atomic Force Microscopy (AFM) in Liquid Environments. SURFACE SCIENCE TECHNIQUES 2013. [DOI: 10.1007/978-3-642-34243-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
Sun G, Chung TS, Jeyaseelan K, Armugam A. A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane. RSC Adv 2013. [DOI: 10.1039/c2ra21767h] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.08.039] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Erickson BW, Coquoz S, Adams JD, Burns DJ, Fantner GE. Large-scale analysis of high-speed atomic force microscopy data sets using adaptive image processing. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2012; 3:747-58. [PMID: 23213638 PMCID: PMC3512124 DOI: 10.3762/bjnano.3.84] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/08/2012] [Indexed: 05/27/2023]
Abstract
Modern high-speed atomic force microscopes generate significant quantities of data in a short amount of time. Each image in the sequence has to be processed quickly and accurately in order to obtain a true representation of the sample and its changes over time. This paper presents an automated, adaptive algorithm for the required processing of AFM images. The algorithm adaptively corrects for both common one-dimensional distortions as well as the most common two-dimensional distortions. This method uses an iterative thresholded processing algorithm for rapid and accurate separation of background and surface topography. This separation prevents artificial bias from topographic features and ensures the best possible coherence between the different images in a sequence. This method is equally applicable to all channels of AFM data, and can process images in seconds.
Collapse
Affiliation(s)
- Blake W Erickson
- Laboratory for Bio- and Nano-Instrumentation, École Polytechnique Fédérale de Lausanne, Batiment BM 3109 Station 17, 1015 Lausanne, Switzerland
| | - Séverine Coquoz
- Laboratory for Bio- and Nano-Instrumentation, École Polytechnique Fédérale de Lausanne, Batiment BM 3109 Station 17, 1015 Lausanne, Switzerland
| | - Jonathan D Adams
- Laboratory for Bio- and Nano-Instrumentation, École Polytechnique Fédérale de Lausanne, Batiment BM 3109 Station 17, 1015 Lausanne, Switzerland
| | - Daniel J Burns
- Mechatronics Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Georg E Fantner
- Laboratory for Bio- and Nano-Instrumentation, École Polytechnique Fédérale de Lausanne, Batiment BM 3109 Station 17, 1015 Lausanne, Switzerland
| |
Collapse
|
40
|
Abstract
Unraveling the structure of microbial cells is a major challenge in current microbiology and offers exciting prospects in biomedicine. Atomic force microscopy (AFM) appears as a powerful method to image the surface ultrastructure of live cells under physiological conditions and allows real-time imaging to follow dynamic processes such as cell growth, and division and effects of drugs and chemicals. The following chapter introduces different methods of sample preparation to gain insights into the microbial cell organization. Successful strategies to immobilize microorganisms, including physical entrapment and chemical attachment, are described. This step is a key step and a prerequisite of any analysis and persists as an important limitation to the application of AFM to microbiology due to the wide diversity of microorganisms. Finally, some applications are depicted which underlie the ability of AFM to explore living microbes with unprecedented resolution.
Collapse
|
41
|
Trinh MH, Odorico M, Pique ME, Teulon JM, Roberts VA, Ten Eyck LF, Getzoff ED, Parot P, Chen SWW, Pellequer JL. Computational reconstruction of multidomain proteins using atomic force microscopy data. Structure 2012; 20:113-20. [PMID: 22244760 DOI: 10.1016/j.str.2011.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/05/2011] [Accepted: 10/10/2011] [Indexed: 01/10/2023]
Abstract
Classical structural biology techniques face a great challenge to determine the structure at the atomic level of large and flexible macromolecules. We present a novel methodology that combines high-resolution AFM topographic images with atomic coordinates of proteins to assemble very large macromolecules or particles. Our method uses a two-step protocol: atomic coordinates of individual domains are docked beneath the molecular surface of the large macromolecule, and then each domain is assembled using a combinatorial search. The protocol was validated on three test cases: a simulated system of antibody structures; and two experimentally based test cases: Tobacco mosaic virus, a rod-shaped virus; and Aquaporin Z, a bacterial membrane protein. We have shown that AFM-intermediate resolution topography and partial surface data are useful constraints for building macromolecular assemblies. The protocol is applicable to multicomponent structures connected in the polypeptide chain or as disjoint molecules. The approach effectively increases the resolution of AFM beyond topographical information down to atomic-detail structures.
Collapse
Affiliation(s)
- Minh-Hieu Trinh
- CEA, iBEB, Department of Biochemistry and Nuclear Toxicology, F-30207 Bagnols sur Cèze, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li X, Wang R, Tang C, Vararattanavech A, Zhao Y, Torres J, Fane T. Preparation of supported lipid membranes for aquaporin Z incorporation. Colloids Surf B Biointerfaces 2012; 94:333-40. [PMID: 22386862 DOI: 10.1016/j.colsurfb.2012.02.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 01/18/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
There has been a recent surge of interest to mimic the performance of natural cellular membranes by incorporating water channel proteins-aquaporins (AQPs) into various ultrathin films for water filtration applications. To make biomimetic membranes one of the most crucial steps is preparing a defect-free platform for AQPs incorporation on a suitable substrate. In this study two methods were used to prepare supported lipid membranes on NF membrane surfaces under a benign pH condition of 7.8. One method was direct vesicle fusion on a hydrophilic membrane NF-270; the other was vesicle fusion facilitated by hydraulic pressure on a modified hydrophilic NF-270 membrane whose surface has been spin-coated with positively charged lipids. Experiments revealed that the supported lipid membrane without AQPs prepared by the spin coating plus vesicle fusion had a much lower defect density than that prepared by vesicle fusion alone. It appears that the surface roughness and charge are the main factors determining the quality of the supported lipid membrane. Aquaporin Z (AqpZ) proteins were successfully incorporated into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes and its permeability was measured by the stopped-flow experimental procedure. However, after the proteoliposomes have been fused onto the modified substrate, the AqpZ function in the resultant membrane was not observed and AFM images showed distinct aggregations of unfused proteoliposomes or AqpZ proteins on the substrate surface. It is speculated that the inhibition of AqpZ function may be caused by the low lipid mobility on the NF membrane surface. Further investigations to evaluate and optimize the structure-performance relationship are required.
Collapse
Affiliation(s)
- Xuesong Li
- Singapore Membrane Technology Centre, Nanyang Technological University, Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
43
|
A novel method of AquaporinZ incorporation via binary-lipid Langmuir monolayers. Colloids Surf B Biointerfaces 2012; 89:283-8. [DOI: 10.1016/j.colsurfb.2011.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 09/03/2011] [Accepted: 09/04/2011] [Indexed: 11/24/2022]
|
44
|
Müller SA, Engel A. Looking back at a quarter-century of research at the Maurice E. Müller Institute for Structural Biology. J Struct Biol 2011; 177:3-13. [PMID: 22115996 DOI: 10.1016/j.jsb.2011.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
The Maurice E. Müller Institute, embedded in the infrastructure of the Biozentrum, University of Basel, was founded in 1985 and financed by the Maurice E. Müller Foundation of Switzerland. For 26 years its two founders, Ueli Aebi and Andreas Engel, pursued the vision of integrated structural biology. This paper reviews selected publications issuing from the Maurice E. Müller Institute for Structural Biology and marks the end of this era.
Collapse
Affiliation(s)
- Shirley A Müller
- Center for Cellular Imaging and Nano Analytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | |
Collapse
|
45
|
Favre M, Polesel-Maris J, Overstolz T, Niedermann P, Dasen S, Gruener G, Ischer R, Vettiger P, Liley M, Heinzelmann H, Meister A. Parallel AFM imaging and force spectroscopy using two-dimensional probe arrays for applications in cell biology. J Mol Recognit 2011; 24:446-52. [PMID: 21504022 DOI: 10.1002/jmr.1119] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Atomic force microscopy (AFM) investigations of living cells provide new information in both biology and medicine. However, slow cell dynamics and the need for statistically significant sample sizes mean that data collection can be an extremely lengthy process. We address this problem by parallelizing AFM experiments using a two-dimensional cantilever array, instead of a single cantilever. We have developed an instrument able to operate a two-dimensional cantilever array, to perform topographical and mechanical investigations in both air and liquid. Deflection readout for all cantilevers of the probe array is performed in parallel and online by interferometry. Probe arrays were microfabricated in silicon nitride. Proof-of-concept has been demonstrated by analyzing the topography of hard surfaces and fixed cells in parallel, and by performing parallel force spectroscopy on living cells. These results open new research opportunities in cell biology by measuring the adhesion and elastic properties of a large number of cells. Both properties are essential parameters for research in metastatic cancer development.
Collapse
Affiliation(s)
- Mélanie Favre
- CSEM - Centre Suisse d'Electronique et de Microtechnique, Neuchâtel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rico F, Su C, Scheuring S. Mechanical mapping of single membrane proteins at submolecular resolution. NANO LETTERS 2011; 11:3983-6. [PMID: 21800925 DOI: 10.1021/nl202351t] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The capacity of proteins to carry out different functions is related to their ability to undergo conformation changes, which depends on the flexibility of protein structures. In this work, we applied a novel imaging mode based on indentation force spectroscopy to map quantitatively the flexibility of individual membrane proteins in their native, folded state at unprecedented submolecular resolution. Our results enabled us to correlate protein flexibility with crystal structure and showed that α-helices are stiff structures that may contribute importantly to the mechanical stability of membrane proteins, while interhelical loops appeared more flexible, allowing conformational changes related to function.
Collapse
Affiliation(s)
- Felix Rico
- Institut Curie, U1006 INSERM, 26 rue d'Ulm, 75005 Paris, France
| | | | | |
Collapse
|
47
|
Trinh MH, Odorico M, Bellanger L, Jacquemond M, Parot P, Pellequer JL. Tobacco mosaic virus as an AFM tip calibrator. J Mol Recognit 2011; 24:503-10. [DOI: 10.1002/jmr.1118] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Force-induced formation and propagation of adhesion nanodomains in living fungal cells. Proc Natl Acad Sci U S A 2010; 107:20744-9. [PMID: 21059927 DOI: 10.1073/pnas.1013893107] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Understanding how cell adhesion proteins form adhesion domains is a key challenge in cell biology. Here, we use single-molecule atomic force microscopy (AFM) to demonstrate the force-induced formation and propagation of adhesion nanodomains in living fungal cells, focusing on the covalently anchored cell-wall protein Als5p from Candida albicans. We show that pulling on single adhesins with AFM tips terminated with specific antibodies triggers the formation of adhesion domains of 100-500 nm and that the force-induced nanodomains propagate over the entire cell surface. Control experiments (with cells lacking Als5p, single-site mutation in the protein, bare tips, and tips modified with irrelevant antibodies) demonstrate that Als5p nanodomains result from protein redistribution triggered by force-induced conformational changes in the initially probed proteins, rather than from nonspecific cell-wall perturbations. Als5p remodeling is independent of cellular metabolic activity because heat-killed cells show the same behavior as live cells. Using AFM and fluorescence microscopy, we also find that nanodomains are formed within ∼30 min and migrate at a speed of ∼20 nm·min(-1), indicating that domain formation and propagation are slow, time-dependent processes. These results demonstrate that mechanical stimuli can trigger adhesion nanodomains in fungal cells and suggest that the force-induced clustering of adhesins may be a mechanism for activating cell adhesion.
Collapse
|
49
|
Ivnitski DM, Khripin C, Luckarift HR, Johnson GR, Atanassov P. Surface characterization and direct bioelectrocatalysis of multicopper oxidases. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.07.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Kaufman Y, Berman A, Freger V. Supported lipid bilayer membranes for water purification by reverse osmosis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:7388-95. [PMID: 20099798 DOI: 10.1021/la904411b] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Some biological plasma membranes pass water with a permeability and selectivity largely exceeding those of commercial membranes for water desalination using specialized trans-membrane proteins aquaporins. However, highly selective transport of water through aquaporins is usually driven by an osmotic rather mechanical pressure, which is not as attractive from the engineering point of view. The feasibility of adopting biomimetic membranes for water purification driven by a mechanical pressure, i.e., filtration is explored in this paper. Toward this goal, it is proposed to use a commercial nanofiltration (NF) membrane as a support for biomimetic lipid bilayer membranes to render them robust enough to withstand the required pressures. It is shown in this paper for the first time that by properly tuning molecular interactions supported phospholipid bilayers (SPB) can be prepared on a commercial NF membrane. The presence of SPB on the surface was verified and quantified by several spectroscopic and microscopic techniques, which showed morphology close to the desired one with very few defects. As an ultimate test it is shown that hydraulic permeability of the SPB supported on the NF membrane (NTR-7450) approaches the values deduced from the typical osmotic permeabilities of intact continuous bilayers. This permeability was unaffected by the trans-membrane flow of water and by repeatedly releasing and reapplying a 10 bar pressure. Along with a parallel demonstration that aquaporins could be incorporated in a similar bilayer on mica, this demonstrates the feasibility of the proposed approach. The prepared SPB structure may be used as a platform for preparing biomimetic filtration membranes with superior performance based on aquaporins. The concept of SPBs on permeable substrates of the present type may also be useful in the future for studying transport of various molecules through trans-membrane proteins.
Collapse
Affiliation(s)
- Yair Kaufman
- The Jacob Blaustein Institutes for desert Research, Environmental engineering unit, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | | | | |
Collapse
|