1
|
Bowen NE, Oo A, Kim B. Mechanistic Interplay between HIV-1 Reverse Transcriptase Enzyme Kinetics and Host SAMHD1 Protein: Viral Myeloid-Cell Tropism and Genomic Mutagenesis. Viruses 2022; 14:v14081622. [PMID: 35893688 PMCID: PMC9331428 DOI: 10.3390/v14081622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein.
Collapse
Affiliation(s)
- Nicole E. Bowen
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
| | - Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
- Correspondence:
| |
Collapse
|
2
|
Gilmer O, Mailler E, Paillart JC, Mouhand A, Tisné C, Mak J, Smyth RP, Marquet R, Vivet-Boudou V. Structural maturation of the HIV-1 RNA 5' untranslated region by Pr55 Gag and its maturation products. RNA Biol 2022; 19:191-205. [PMID: 35067194 PMCID: PMC8786341 DOI: 10.1080/15476286.2021.2021677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Maturation of the HIV-1 viral particles shortly after budding is required for infectivity. During this process, the Pr55Gag precursor undergoes a cascade of proteolytic cleavages, and whilst the structural rearrangements of the viral proteins are well understood, the concomitant maturation of the genomic RNA (gRNA) structure is unexplored, despite evidence that it is required for infectivity. To get insight into this process, we systematically analysed the interactions between Pr55Gag or its maturation products (NCp15, NCp9 and NCp7) and the 5ʹ gRNA region and their structural consequences, in vitro. We show that Pr55Gag and its maturation products mostly bind at different RNA sites and with different contributions of their two zinc knuckle domains. Importantly, these proteins have different transient and permanent effects on the RNA structure, the late NCp9 and NCp7 inducing dramatic structural rearrangements. Altogether, our results reveal the distinct contributions of the different Pr55Gag maturation products on the gRNA structural maturation.
Collapse
Affiliation(s)
- Orian Gilmer
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Elodie Mailler
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Assia Mouhand
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-chimique, Paris, France
| | - Carine Tisné
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-chimique, Paris, France
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Redmond P Smyth
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, IBMC, Strasbourg, France
| |
Collapse
|
3
|
Gilmer O, Quignon E, Jousset AC, Paillart JC, Marquet R, Vivet-Boudou V. Chemical and Enzymatic Probing of Viral RNAs: From Infancy to Maturity and Beyond. Viruses 2021; 13:1894. [PMID: 34696322 PMCID: PMC8537439 DOI: 10.3390/v13101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
RNA molecules are key players in a variety of biological events, and this is particularly true for viral RNAs. To better understand the replication of those pathogens and try to block them, special attention has been paid to the structure of their RNAs. Methods to probe RNA structures have been developed since the 1960s; even if they have evolved over the years, they are still in use today and provide useful information on the folding of RNA molecules, including viral RNAs. The aim of this review is to offer a historical perspective on the structural probing methods used to decipher RNA structures before the development of the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) methodology and to show how they have influenced the current probing techniques. Actually, these technological breakthroughs, which involved advanced detection methods, were made possible thanks to the development of next-generation sequencing (NGS) but also to the previous works accumulated in the field of structural RNA biology. Finally, we will also discuss how high-throughput SHAPE (hSHAPE) paved the way for the development of sophisticated RNA structural techniques.
Collapse
Affiliation(s)
| | | | | | | | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| |
Collapse
|
4
|
Gremminger T, Song Z, Ji J, Foster A, Weng K, Heng X. Extended Interactions between HIV-1 Viral RNA and tRNA Lys3 Are Important to Maintain Viral RNA Integrity. Int J Mol Sci 2020; 22:ijms22010058. [PMID: 33374603 PMCID: PMC7793103 DOI: 10.3390/ijms22010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 01/19/2023] Open
Abstract
The reverse transcription of the human immunodeficiency virus 1 (HIV-1) initiates upon annealing of the 3′-18-nt of tRNALys3 onto the primer binding site (PBS) in viral RNA (vRNA). Additional intermolecular interactions between tRNALys3 and vRNA have been reported, but their functions remain unclear. Here, we show that abolishing one potential interaction, the A-rich loop: tRNALys3 anticodon interaction in the HIV-1 MAL strain, led to a decrease in viral infectivity and reduced the synthesis of reverse transcription products in newly infected cells. In vitro biophysical and functional experiments revealed that disruption of the extended interaction resulted in an increased affinity for reverse transcriptase (RT) and enhanced primer extension efficiency. In the absence of deoxyribose nucleoside triphosphates (dNTPs), vRNA was degraded by the RNaseH activity of RT, and the degradation rate was slower in the complex with the extended interaction. Consistently, the loss of vRNA integrity was detected in virions containing A-rich loop mutations. Similar results were observed in the HIV-1 NL4.3 strain, and we show that the nucleocapsid (NC) protein is necessary to promote the extended vRNA: tRNALys3 interactions in vitro. In summary, our data revealed that the additional intermolecular interaction between tRNALys3 and vRNA is likely a conserved mechanism among various HIV-1 strains and protects the vRNA from RNaseH degradation in mature virions.
Collapse
|
5
|
Mapping the RNA structural landscape of viral genomes. Methods 2019; 183:57-67. [PMID: 31711930 DOI: 10.1016/j.ymeth.2019.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/13/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
Functional RNA structures are prevalent in viral genomes, and have been shown to play roles in almost every aspect of their biology. However, the majority of viral RNA remains structurally uncharacterized. This is likely to remain true as the cost of sequencing decreases much faster than the cost of structural characterizations. Because of this, there is a need for rapid, inexpensive methods to highlight regions of viral RNA which are ideal candidates for structure-function analyses. The ScanFold method was developed as a single sequence alternative to traditional RNA structural motif discovery pipelines, which rely heavily on well curated sequence alignments to identify conserved RNA structures. ScanFold focuses on identifying (based on their more stable than expected folding energies) the most likely functional structures encoded within a single large RNA sequence, while allowing predicted motifs to be tested for evidence of structural conservation later. Decoupling these processes can be a benefit to researchers studying viruses lacking the ideal phylogenetic depth to yield evidence of structural conservation. Here, we demonstrate how the most significant ScanFold predicted structures correspond to higher base pairing probabilities, SHAPE reactivities, and predict known functional structures within the ZIKV and HIV-1 genomes with accuracy. Best practices and examples are also shown to aid users in utilizing ScanFold for their own systems of interest. ScanFold is available as a Webserver (https://mosslabtools.bb.iastate.edu/scanfold) or can be downloaded (https://github.com/moss-lab/ScanFold) and run locally.
Collapse
|
6
|
Larsen KP, Choi J, Prabhakar A, Puglisi EV, Puglisi JD. Relating Structure and Dynamics in RNA Biology. Cold Spring Harb Perspect Biol 2019; 11:11/7/a032474. [PMID: 31262948 DOI: 10.1101/cshperspect.a032474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advances in structural biology methods have enabled a surge in the number of RNA and RNA-protein assembly structures available at atomic or near-atomic resolution. These complexes are often trapped in discrete conformational states that exist along a mechanistic pathway. Single-molecule fluorescence methods provide temporal resolution to elucidate the dynamic mechanisms of processes involving complex RNA and RNA-protein assemblies, but interpretation of such data often requires previous structural knowledge. Here we highlight how single-molecule tools can directly complement structural approaches for two processes--translation and reverse transcription-to provide a dynamic view of molecular function.
Collapse
Affiliation(s)
- Kevin P Larsen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Biophysics Program, Stanford University, Stanford, California 94305
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Department of Applied Physics, Stanford University, Stanford, California 94305
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Biophysics Program, Stanford University, Stanford, California 94305
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
7
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
8
|
Abstract
RT is a key enzyme in the life cycle of HIV, and is targeted by multiple antiviral drugs. Although for most of its function RT binds a dsDNA or RNA–DNA template–primer substrate, initiation of reverse transcription involves binding of dsRNA. The current study presents a structure of an RT/dsRNA complex that has the basic components of a reverse transcription initiation complex (RTIC). The unique structural features help understand the significantly slower rate of nucleotide incorporation by an RTIC compared with a catalytically efficient reverse transcription elongation complex. This complex may help in designing new experiments for understanding the intricate and slow process of reverse transcription initiation. The initiation phase of HIV reverse transcription has features that are distinct from its elongation phase. The first structure of a reverse transcription initiation complex (RTIC) that trapped the complex after incorporation of one ddCMP nucleotide was published recently [Larsen KP, et al. (2018) Nature 557:118–122]. Here we report a crystal structure of a catalytically active HIV-1 RT/dsRNA complex that mimics the state of the RTIC before the first nucleotide incorporation. The structure reveals that the dsRNA-bound conformation of RT is closer to that of RT bound to a nonnucleoside RT inhibitor (NNRTI) and dsDNA; a hyperextended thumb conformation helps to accommodate the relatively wide dsRNA duplex. The RNA primer 3′ end is positioned 5 Å away from the polymerase site; however, unlike in an NNRTI-bound state in which structural elements of RT restrict the movement of the primer, the primer terminus of dsRNA is not blocked from reaching the active site of RT. The observed structural changes and energetic cost of bringing the primer 3′ end to the priming site are hypothesized to explain the slower nucleotide incorporation rate of the RTIC. An unusual crystal lattice interaction of dsRNA with its symmetry mate is reminiscent of the RNA architecture within the extended vRNA–tRNALys3 in the RTIC. This RT/dsRNA complex captures the key structural characteristics and components of the RTIC, including the RT conformational changes and interactions with the dsRNA primer-binding site region, and these features have implications for better understanding of RT initiation.
Collapse
|
9
|
Mailler E, Paillart JC, Marquet R, Smyth RP, Vivet-Boudou V. The evolution of RNA structural probing methods: From gels to next-generation sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1518. [PMID: 30485688 DOI: 10.1002/wrna.1518] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023]
Abstract
RNA molecules are important players in all domains of life and the study of the relationship between their multiple flexible states and the associated biological roles has increased in recent years. For several decades, chemical and enzymatic structural probing experiments have been used to determine RNA structure. During this time, there has been a steady improvement in probing reagents and experimental methods, and today the structural biologist community has a large range of tools at its disposal to probe the secondary structure of RNAs in vitro and in cells. Early experiments used radioactive labeling and polyacrylamide gel electrophoresis as read-out methods. This was superseded by capillary electrophoresis, and more recently by next-generation sequencing. Today, powerful structural probing methods can characterize RNA structure on a genome-wide scale. In this review, we will provide an overview of RNA structural probing methodologies from a historical and technical perspective. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Methods > RNA Analyses in vitro and In Silico RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Elodie Mailler
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Roland Marquet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Redmond P Smyth
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Valerie Vivet-Boudou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
10
|
Larsen KP, Mathiharan YK, Kappel K, Coey AT, Chen DH, Barrero D, Madigan L, Puglisi JD, Skiniotis G, Puglisi EV. Architecture of an HIV-1 reverse transcriptase initiation complex. Nature 2018; 557:118-122. [PMID: 29695867 PMCID: PMC5934294 DOI: 10.1038/s41586-018-0055-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/19/2018] [Indexed: 11/29/2022]
Abstract
Reverse transcription of the HIV-1 RNA genome into double-stranded DNA is a central step in infection1 and a common target of antiretrovirals2. The reaction is catalyzed by viral reverse transcriptase (RT)3,4 that is packaged in an infectious virion along with 2 copies of dimeric viral genomic RNA5 and host tRNALys3, which acts as a primer for initiation of reverse transcription6,7. Upon viral entry, initiation is slow and non-processive compared to elongation8,9. Despite extensive efforts, the structural basis for RT function during initiation has remained a mystery. Here we apply cryo-electron microscopy (cryo-EM) to determine a three-dimensional structure of the HIV-1 RT initiation complex. RT is in an inactive polymerase conformation with open fingers and thumb and with the nucleic acid primer-template complex shifted away from the active site. The primer binding site (PBS) helix formed between tRNALys3 and HIV-1 RNA lies in the cleft of RT and is extended by additional pairing interactions. The 5′ end of the tRNA refolds and stacks on the PBS to create a long helical structure, while the remaining viral RNA forms two helical stems positioned above the RT active site, with a linker that connects these helices to the RNase H region of the PBS. Our results illustrate how RNA structure in the initiation complex alters RT conformation to decrease activity, highlighting a potential target for drug action.
Collapse
Affiliation(s)
- Kevin P Larsen
- Program in Biophysics, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yamuna Kalyani Mathiharan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kalli Kappel
- Program in Biophysics, Stanford University, Stanford, CA, USA
| | - Aaron T Coey
- Program in Biophysics, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dong-Hua Chen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Barrero
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren Madigan
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Georgios Skiniotis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
11
|
Ingemarsdotter CK, Zeng J, Long Z, Lever AML, Kenyon JC. An RNA-binding compound that stabilizes the HIV-1 gRNA packaging signal structure and specifically blocks HIV-1 RNA encapsidation. Retrovirology 2018. [PMID: 29540207 PMCID: PMC5853050 DOI: 10.1186/s12977-018-0407-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background NSC260594, a quinolinium derivative from the NCI diversity set II compound library, was previously identified in a target-based assay as an inhibitor of the interaction between the HIV-1 (ψ) stem-loop 3 (SL3) RNA and Gag. This compound was shown to exhibit potent antiviral activity. Here, the effects of this compound on individual stages of the viral lifecycle were examined by qRT-PCR, ELISA and Western blot, to see if its actions were specific to the viral packaging stage. The structural effects of NSC260594 binding to the HIV-1 gRNA were also examined by SHAPE and dimerization assays. Results Treatment of cells with NSC260594 did not reduce the number of integration events of incoming virus, and treatment of virus producing cells did not affect the level of intracellular Gag protein or viral particle release as determined by immunoblot. However, NSC260594 reduced the incorporation of gRNA into virions by up to 82%, without affecting levels of gRNA inside the cell. This reduction in packaging correlated closely with the reduction in infectivity of the released viral particles. To establish the structural effects of NSC260594 on the HIV-1 gRNA, we performed SHAPE analyses to pinpoint RNA structural changes. NSC260594 had a stabilizing effect on the wild type RNA that was not confined to SL3, but that was propagated across the structure. A packaging mutant lacking SL3 did not show this effect. Conclusions NSC260594 acts as a specific inhibitor of HIV-1 RNA packaging. No other viral functions are affected. Its action involves preventing the interaction of Gag with SL3 by stabilizing this small RNA stem-loop which then leads to stabilization of the global packaging signal region (psi or ψ). This confirms data, previously only shown in analyses of isolated SL3 oligonucleotides, that SL3 is structurally labile in the presence of Gag and that this is critical for the complete psi region to be able to adopt different conformations. Since replication is otherwise unaffected by NSC260594 the flexibility of SL3 appears to be a unique requirement for genome encapsidation and identifies this process as a highly specific drug target. This study is proof of principle that development of a new class of antiretroviral drugs that specifically target viral packaging by binding to the viral genomic RNA is achievable. Electronic supplementary material The online version of this article (10.1186/s12977-018-0407-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carin K Ingemarsdotter
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Jingwei Zeng
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Ziqi Long
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK.,Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Level 5, Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore. .,Homerton College, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Reverse Transcription in the Saccharomyces cerevisiae Long-Terminal Repeat Retrotransposon Ty3. Viruses 2017; 9:v9030044. [PMID: 28294975 PMCID: PMC5371799 DOI: 10.3390/v9030044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Converting the single-stranded retroviral RNA into integration-competent double-stranded DNA is achieved through a multi-step process mediated by the virus-coded reverse transcriptase (RT). With the exception that it is restricted to an intracellular life cycle, replication of the Saccharomyces cerevisiae long terminal repeat (LTR)-retrotransposon Ty3 genome is guided by equivalent events that, while generally similar, show many unique and subtle differences relative to the retroviral counterparts. Until only recently, our knowledge of RT structure and function was guided by a vast body of literature on the human immunodeficiency virus (HIV) enzyme. Although the recently-solved structure of Ty3 RT in the presence of an RNA/DNA hybrid adds little in terms of novelty to the mechanistic basis underlying DNA polymerase and ribonuclease H activity, it highlights quite remarkable topological differences between retroviral and LTR-retrotransposon RTs. The theme of overall similarity but distinct differences extends to the priming mechanisms used by Ty3 RT to initiate (−) and (+) strand DNA synthesis. The unique structural organization of the retrotransposon enzyme and interaction with its nucleic acid substrates, with emphasis on polypurine tract (PPT)-primed initiation of (+) strand synthesis, is the subject of this review.
Collapse
|
13
|
Coey A, Larsen K, Puglisi JD, Viani Puglisi E. Heterogeneous structures formed by conserved RNA sequences within the HIV reverse transcription initiation site. RNA (NEW YORK, N.Y.) 2016; 22:1689-1698. [PMID: 27613581 PMCID: PMC5066621 DOI: 10.1261/rna.056804.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
Reverse transcription is a key process in the early steps of HIV infection. This process initiates within a specific complex formed by the 5' UTR of the HIV genomic RNA (vRNA) and a host primer tRNALys3 Using nuclear magnetic resonance (NMR) spectroscopy and single-molecule fluorescence spectroscopy, we detect two distinct conformers adopted by the tRNA/vRNA initiation complex. We directly show that an interaction between the conserved 8-nucleotide viral RNA primer activation signal (PAS) and the primer tRNA occurs in one of these conformers. This intermolecular PAS interaction likely induces strain on a vRNA intramolecular helix, which must be broken for reverse transcription to initiate. We propose a mechanism by which this vRNA/tRNA conformer relieves the kinetic block formed by the vRNA intramolecular helix to initiate reverse transcription.
Collapse
Affiliation(s)
- Aaron Coey
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
- Biophysics Program, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Kevin Larsen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
- Biophysics Program, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA
| |
Collapse
|
14
|
|
15
|
Li D, Wei T, Jin H, Rose A, Wang R, Lin MH, Spann K, Harrich D. Binding of the eukaryotic translation elongation factor 1A with the 5'UTR of HIV-1 genomic RNA is important for reverse transcription. Virol J 2015; 12:118. [PMID: 26242867 PMCID: PMC4525723 DOI: 10.1186/s12985-015-0337-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/01/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The cellular protein eukaryotic translation elongation factor 1A (eEF1A) binds to aminoacylated transfer RNAs and delivers them to the ribosome during translation. eEF1A also binds to RNA secondary structures present in genomes of several RNA viruses and plays important roles in their replication. As a RNA binding protein, whether eEF1A can bind with HIV-1 genomic RNA has not been investigated and was the aim of the study. METHODS RNA-protein interaction was determined by reversible crosslink co-immunoprecipitation (RC-Co-IP) and biolayer Interferometry assay (BLI). eEF1A binding region within RNA was mapped by deletion and mutation analysis. Virus with genomic RNA mutations were examined for eEF1A-RT interaction by proximity ligation assay, for reverse transcription by qPCR and for replication by CAp24 ELISA in cells. RESULTS The interaction of eEF1A with 5'UTR of HIV-1 genomic RNA was detected in cells and in vitro. Truncation and substitution mutations in the 5'UTR RNA demonstrated that a stem-loop formed by nucleotides 142 to 170, which encompass a reported tRNA anticodon-like-element, binds to eEF1A. Mutations that altered the stem-loop structure by changing two highly conserved sequence clusters in the stem-loop region result in reduction of the interaction with eEF1A in vitro. HIV-1 virus harbouring the same 5'UTR mutations significantly reduced the interaction of eEF1A with HIV-1 reverse transcription complex (RTC), reverse transcription and replication. CONCLUSION eEF1A interacts with 5'UTR of HIV-1 genomic RNA and the interaction is important for late DNA synthesis in reverse transcription.
Collapse
Affiliation(s)
- Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Ting Wei
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Amanda Rose
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Rui Wang
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.,Present address: Centre of Infectious Diseases, Beijing Youan Hospital, Capital Medical University, No. 8 Xitoutiao Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Min-Hsuan Lin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Kirsten Spann
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.
| |
Collapse
|
16
|
Jones CP, Cantara WA, Olson ED, Musier-Forsyth K. Small-angle X-ray scattering-derived structure of the HIV-1 5' UTR reveals 3D tRNA mimicry. Proc Natl Acad Sci U S A 2014; 111:3395-400. [PMID: 24550473 PMCID: PMC3948283 DOI: 10.1073/pnas.1319658111] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The most conserved region of the HIV type 1 (HIV-1) genome, the ∼335-nt 5' UTR, is characterized by functional stem loop domains responsible for regulating the viral life cycle. Despite the indispensable nature of this region of the genome in HIV-1 replication, 3D structures of multihairpin domains of the 5' UTR remain unknown. Using small-angle X-ray scattering and molecular dynamics simulations, we generated structural models of the transactivation (TAR)/polyadenylation (polyA), primer-binding site (PBS), and Psi-packaging domains. TAR and polyA form extended, coaxially stacked hairpins, consistent with their high stability and contribution to the pausing of reverse transcription. The Psi domain is extended, with each stem loop exposed for interactions with binding partners. The PBS domain adopts a bent conformation resembling the shape of a tRNA in apo and primer-annealed states. These results provide a structural basis for understanding several key molecular mechanisms underlying HIV-1 replication.
Collapse
Affiliation(s)
| | | | - Erik D. Olson
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
17
|
Kolomiets IN, Zarudnaya MI, Potyahaylo AL, Hovorun DM. Structural insight into HIV-1 reverse transcription initiation in MAL-like templates (CRF01_AE, subtype G and CRF02_AG). J Biomol Struct Dyn 2014; 33:418-33. [DOI: 10.1080/07391102.2014.884938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
|
19
|
Sleiman D, Barraud P, Brachet F, Tisne C. The Interaction between tRNA(Lys) 3 and the primer activation signal deciphered by NMR spectroscopy. PLoS One 2013; 8:e64700. [PMID: 23762248 PMCID: PMC3675109 DOI: 10.1371/journal.pone.0064700] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/17/2013] [Indexed: 11/23/2022] Open
Abstract
The initiation of reverse transcription of the human immunodeficiency virus type 1 (HIV-1) requires the opening of the three-dimensional structure of the primer tRNALys3 for its annealing to the viral RNA at the primer binding site (PBS). Despite the fact that the result of this rearrangement is thermodynamically more stable, there is a high-energy barrier that requires the chaperoning activity of the viral nucleocapsid protein. In addition to the nucleotide complementarity to the PBS, several regions of tRNALys3 have been described as interacting with the viral genomic RNA. Among these sequences, a sequence of the viral genome called PAS for “primer activation signal” was proposed to interact with the T-arm of tRNALys3, this interaction stimulating the initiation of reverse transcription. In this report, we investigate the formation of this additional interaction with NMR spectroscopy, using a simple system composed of the primer tRNALys3, the 18 nucleotides of the PBS, the PAS (8 nucleotides) encompassed or not in a hairpin structure, and the nucleocapsid protein. Our NMR study provides molecular evidence of the existence of this interaction and highlights the role of the nucleocapsid protein in promoting this additional RNA-RNA annealing. This study presents the first direct observation at a single base-pair resolution of the PAS/anti-PAS association, which has been proposed to be involved in the chronological regulation of the reverse transcription.
Collapse
Affiliation(s)
- Dona Sleiman
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, Paris Sorbonne Cité, Paris, France
| | | | | | | |
Collapse
|
20
|
Uppuladinne MVN, Sonavane UB, Joshi RR. MD simulations of HIV-1 RT primer-template complex: effect of modified nucleosides and antisense PNA oligomer. J Biomol Struct Dyn 2012; 31:539-60. [PMID: 22888964 DOI: 10.1080/07391102.2012.706076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) requires the human tRNA(3)(Lys) as a reverse transcriptase (RT) primer. The annealing of 3' terminal 18 nucleotides of tRNA(3)(Lys) with the primer binding site (PBS) of viral RNA (vRNA) is crucial for reverse transcription. Additional contacts between the A rich (A-loop) region of vRNA and the anticodon domain of tRNA(3)(Lys) are necessary, which show the specific requirement of tRNA(3)(Lys). The importance of modified nucleosides, present in tRNA(3)(Lys), in giving stability to the primer-template complex has been determined in earlier experiments. It has been observed that the PNA oligomer targeted to PBS of vRNA destabilized the crucial interactions between primer and template due to which the reverse transcription is inhibited. Molecular dynamics simulations have been carried out to study the effect of modified nucleosides on the vRNA-tRNA(3)(Lys) complex stability and the destabilization effect of PNA oligomer on the vRNA-tRNA(3)(Lys)-PNA complex. The root-mean-square deviation, hydrogen bonding, tertiary interactions, and free energy calculations of the simulation data support the experimental results. The analyses have revealed the structural changes in PBS region of vRNA which might be another strong reason for the inability of RT binding to 7F helix for its normal functioning of reverse transcription.
Collapse
|
21
|
Godet J, Boudier C, Humbert N, Ivanyi-Nagy R, Darlix JL, Mély Y. Comparative nucleic acid chaperone properties of the nucleocapsid protein NCp7 and Tat protein of HIV-1. Virus Res 2012; 169:349-60. [PMID: 22743066 PMCID: PMC7114403 DOI: 10.1016/j.virusres.2012.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
RNA chaperones are proteins able to rearrange nucleic acid structures towards their most stable conformations. In retroviruses, the reverse transcription of the viral RNA requires multiple and complex nucleic acid rearrangements that need to be chaperoned. HIV-1 has evolved different viral-encoded proteins with chaperone activity, notably Tat and the well described nucleocapsid protein NCp7. We propose here an overview of the recent reports that examine and compare the nucleic acid chaperone properties of Tat and NCp7 during reverse transcription to illustrate the variety of mechanisms of action of the nucleic acid chaperone proteins.
Collapse
Affiliation(s)
- Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
22
|
Sleiman D, Goldschmidt V, Barraud P, Marquet R, Paillart JC, Tisné C. Initiation of HIV-1 reverse transcription and functional role of nucleocapsid-mediated tRNA/viral genome interactions. Virus Res 2012; 169:324-39. [PMID: 22721779 DOI: 10.1016/j.virusres.2012.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 12/28/2022]
Abstract
HIV-1 reverse transcription is initiated from a tRNA(Lys)(3) molecule annealed to the viral RNA at the primer binding site (PBS). The annealing of tRNA(Lys)(3) requires the opening of its three-dimensional structure and RNA rearrangements to form an efficient initiation complex recognized by the reverse transcriptase. This annealing is mediated by the nucleocapsid protein (NC). In this paper, we first review the actual knowledge about HIV-1 viral RNA and tRNA(Lys)(3) structures. Then, we summarize the studies explaining how NC chaperones the formation of the tRNA(Lys)(3)/PBS binary complex. Additional NMR data that investigated the NC interaction with tRNA(Lys)(3) D-loop are presented. Lastly, we focused on the additional interactions occurring between tRNA(Lys)(3) and the viral RNA and showed that they are dependent on HIV-1 isolates, i.e. the sequence and the structure of the viral RNA.
Collapse
Affiliation(s)
- Dona Sleiman
- Laboratoire de Cristallographie et RMN biologiques, Université Paris-Descartes, CNRS UMR 8015, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
23
|
Lemau de Talancé V, Bauer F, Hermand D, Vincent SP. A simple synthesis of APM ([p-(N-acrylamino)-phenyl]mercuric chloride), a useful tool for the analysis of thiolated biomolecules. Bioorg Med Chem Lett 2011; 21:7265-7. [PMID: 22074960 DOI: 10.1016/j.bmcl.2011.10.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 12/28/2022]
Abstract
This study describes two novel synthetic procedures to prepare APM, a useful tool for the analysis and the purification of thiolated biomolecules. The methods developed are technically simple and robust and allowed the first full characterization of pure APM. Moreover, the efficacy of APM, as a biochemical tool, was demonstrated by analysis of tRNA thiolation by APM-PAGE.
Collapse
Affiliation(s)
- V Lemau de Talancé
- Laboratoire de Chimie Bio-Organique, Unité de Chimie Organique (UCO), University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | | | | | | |
Collapse
|
24
|
Lu K, Heng X, Summers MF. Structural determinants and mechanism of HIV-1 genome packaging. J Mol Biol 2011; 410:609-33. [PMID: 21762803 DOI: 10.1016/j.jmb.2011.04.029] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 11/30/2022]
Abstract
Like all retroviruses, the human immunodeficiency virus selectively packages two copies of its unspliced RNA genome, both of which are utilized for strand-transfer-mediated recombination during reverse transcription-a process that enables rapid evolution under environmental and chemotherapeutic pressures. The viral RNA appears to be selected for packaging as a dimer, and there is evidence that dimerization and packaging are mechanistically coupled. Both processes are mediated by interactions between the nucleocapsid domains of a small number of assembling viral Gag polyproteins and RNA elements within the 5'-untranslated region of the genome. A number of secondary structures have been predicted for regions of the genome that are responsible for packaging, and high-resolution structures have been determined for a few small RNA fragments and protein-RNA complexes. However, major questions regarding the RNA structures (and potentially the structural changes) that are responsible for dimeric genome selection remain unanswered. Here, we review efforts that have been made to identify the molecular determinants and mechanism of human immunodeficiency virus type 1 genome packaging.
Collapse
Affiliation(s)
- Kun Lu
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
25
|
Puglisi EV, Puglisi JD. Secondary structure of the HIV reverse transcription initiation complex by NMR. J Mol Biol 2011; 410:863-74. [PMID: 21763492 DOI: 10.1016/j.jmb.2011.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/06/2011] [Accepted: 04/11/2011] [Indexed: 01/11/2023]
Abstract
Initiation of reverse transcription of genomic RNA is a key early step in replication of the human immunodeficiency virus (HIV) upon infection of a host cell. Viral reverse transcriptase initiates from a specific RNA-RNA complex formed between a host transfer RNA (tRNA(Lys)(3)) and a region at the 5' end of genomic RNA; the 3' end of the tRNA acts as a primer for reverse transcription of genomic RNA. We report here the secondary structure of the HIV genomic RNA-human tRNA(Lys)(3) initiation complex using heteronuclear nuclear magnetic resonance methods. We show that both RNAs undergo large-scale conformational changes upon complex formation. Formation of the 18-bp primer helix with the 3' end of tRNA(Lys)(3) drives large conformational rearrangements of the tRNA at the 5' end while maintaining the anticodon loop for potential loop-loop interactions. HIV RNA forms an intramolecular helix adjacent to the intermolecular primer helix. This helix, which must be broken by reverse transcription, likely acts as a kinetic block to reverse transcription.
Collapse
Affiliation(s)
- Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.
| | | |
Collapse
|
26
|
Lalonde MS, Lobritz MA, Ratcliff A, Chamanian M, Athanassiou Z, Tyagi M, Wong J, Robinson JA, Karn J, Varani G, Arts EJ. Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR) RNA. PLoS Pathog 2011; 7:e1002038. [PMID: 21625572 PMCID: PMC3098202 DOI: 10.1371/journal.ppat.1002038] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/04/2011] [Indexed: 11/18/2022] Open
Abstract
The RNA response element TAR plays a critical role in HIV replication by
providing a binding site for the recruitment of the viral transactivator protein
Tat. Using a structure-guided approach, we have developed a series of
conformationally-constrained cyclic peptides that act as structural mimics of
the Tat RNA binding region and block Tat-TAR interactions at nanomolar
concentrations in vitro. Here we show that these compounds
block Tat-dependent transcription in cell-free systems and in cell-based
reporter assays. The compounds are also cell permeable, have low toxicity, and
inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and
CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and
CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic
L50 exhibited an IC50 ∼250 nM. Surprisingly, inhibition of
LTR-driven HIV-1 transcription could not account for the full antiviral
activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic
inhibition curve with the first phase occurring after HIV-1 entry into the host
cell and during the initiation of HIV-1 reverse transcription. The second phase
coincides with inhibition of HIV-1 transcription. Reconstituted reverse
transcription assays confirm that HIV-1 (−) strand strong stop DNA
synthesis is blocked by L50-TAR RNA interactions in-vitro.
These findings are consistent with genetic evidence that TAR plays critical
roles both during reverse transcription and during HIV gene expression. Our
results suggest that antiviral drugs targeting TAR RNA might be highly effective
due to a dual inhibitory mechanism. The HIV-1 transactivator protein (Tat), together with the elongation factor
P-TEFb binds to an HIV-1 RNA secondary structure in the 5′-UTRs of nascent
viral mRNAs (TAR) and promotes transcription elongation. This process has been
an attractive target for drug development but previous inhibitors that bind
either Tat or TAR have been plagued by poor inhibition of virus replication,
limited cell penetration, and off-target effects. In this article, we describe a
series of rationally designed cyclic peptides that block Tat-TAR interactions.
L50, the most potent of these compounds, inhibits a wide range of HIV-1 strains
from around the world. Remarkably, L50 inhibits two distinct steps in the HIV-1
lifecycle. As expected, L50 inhibits Tat-dependent HIV-1 transcription, but the
majority of its anti-HIV activity is due to a block in reverse transcription,
i.e. synthesis of the proviral DNA from the RNA genome. L50 inhibition of
reverse transcription reveals an important role for TAR RNA during reverse
transcription as well as providing one of first examples of a drug with a dual
mechanism of action.
Collapse
Affiliation(s)
- Matthew S. Lalonde
- Department of Biochemistry, Case Western
Reserve University, Cleveland, Ohio, United States of America
| | - Michael A. Lobritz
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Annette Ratcliff
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Mastooreh Chamanian
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Zafiria Athanassiou
- Department of Chemistry and Department of
Biochemistry, University of Washington, Seattle, Washington, United States of
America
| | - Mudit Tyagi
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Julian Wong
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - John A. Robinson
- Department of Chemistry, University of Zurich,
Zurich, Switzerland
| | - Jonathan Karn
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Gabriele Varani
- Department of Chemistry and Department of
Biochemistry, University of Washington, Seattle, Washington, United States of
America
| | - Eric J. Arts
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
- Division of Infectious Diseases, Department of
Medicine, Case Western Reserve University, Cleveland, Ohio, United States of
America
- * E-mail:
| |
Collapse
|
27
|
Piekna-Przybylska D, Bambara RA. Requirements for efficient minus strand strong-stop DNA transfer in human immunodeficiency virus 1. RNA Biol 2011; 8:230-6. [PMID: 21444998 DOI: 10.4161/rna.8.2.14802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
After HIV-1 enters a human cell, its RNA genome is converted into double stranded DNA during the multistep process of reverse transcription. First (minus) strand DNA synthesis is initiated near the 5' end of the viral RNA, where only a short fragment of the genome is copied. In order to continue DNA synthesis the virus employs a complicated mechanism, which enables transferring of the growing minus strand DNA to a remote position at the genomic 3' end. This is called minus strand DNA transfer. The transfer enables regeneration of long terminal repeat sequences, which are crucial for viral genomic DNA integration into the host chromosome. Numerous factors have been identified that stimulate minus strand DNA transfer. In this review we focus on describing protein-RNA and RNA-RNA interactions, as well as RNA structural features, known to facilitate this step in reverse transcription.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Biochemistry and Biophysics, and the Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | |
Collapse
|
28
|
Coordinate roles of Gag and RNA helicase A in promoting the annealing of formula to HIV-1 RNA. J Virol 2010; 85:1847-60. [PMID: 21106734 DOI: 10.1128/jvi.02010-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RNA helicase A (RHA) has been shown to promote HIV-1 replication at both the translation and reverse transcription stages. A prerequisite step for reverse transcription involves the annealing of tRNA(3)(Lys), the primer for reverse transcription, to HIV-1 RNA. tRNA(3)(Lys) annealing is a multistep process that is initially facilitated by Gag prior to viral protein processing. Herein, we report that RHA promotes this annealing through increasing both the quantity of tRNA(3)(Lys) annealed by Gag and the ability of tRNA(3)(Lys) to prime the initiation of reverse transcription. This improved annealing is the result of an altered viral RNA conformation produced by the coordinate action of Gag and RHA. Since RHA has been reported to promote the translation of unspliced viral RNA to Gag protein, our observations suggest that the conformational change in viral RNA induced by RHA and newly produced Gag may help facilitate the switch in viral RNA from a translational mode to one facilitating tRNA(3)(Lys) annealing.
Collapse
|
29
|
Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription. Nat Struct Mol Biol 2010; 17:1453-60. [PMID: 21102446 PMCID: PMC3058889 DOI: 10.1038/nsmb.1937] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/23/2010] [Indexed: 11/25/2022]
Abstract
Human immunodeficiency virus (HIV) initiates reverse transcription of its viral RNA (vRNA) genome from a cellular tRNALys,3 primer. This process is characterized by a slow initiation phase with specific pauses, followed by a fast elongation phase. We report a single-molecule study that monitors the dynamics of individual initiation complexes, comprised of vRNA, tRNA and HIV reverse transcriptase (RT). RT transitions between two opposite binding orientations on tRNA:vRNA complexes, and the prominent pausing events are caused by RT binding in an flipped orientation opposite to the polymerization-competent configuration. A stem-loop structure within the vRNA is responsible for maintaining the enzyme predominantly in this flipped orientation. Disruption of the stem-loop structure triggers the initiation-to-elongation transition. These results highlight the important role played by the structural dynamics of the initiation complex in directing transitions between early reverse transcription phases.
Collapse
|
30
|
Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K. Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 2010; 7:754-74. [PMID: 21160280 DOI: 10.4161/rna.7.6.14115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which remodels nucleic acid structures so that the most thermodynamically stable conformations are formed. This activity is essential for virus replication and has a critical role in mediating highly specific and efficient reverse transcription. NC's function in this process depends upon three properties: (1) ability to aggregate nucleic acids; (2) moderate duplex destabilization activity; and (3) rapid on-off binding kinetics. Here, we present a detailed molecular analysis of the individual events that occur during viral DNA synthesis and show how NC's properties are important for almost every step in the pathway. Finally, we also review biological aspects of reverse transcription during infection and the interplay between NC, reverse transcriptase, and human APOBEC3G, an HIV-1 restriction factor that inhibits reverse transcription and virus replication in the absence of the HIV-1 Vif protein.
Collapse
Affiliation(s)
- Judith G Levin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
31
|
Isel C, Ehresmann C, Marquet R. Initiation of HIV Reverse Transcription. Viruses 2010; 2:213-243. [PMID: 21994608 PMCID: PMC3185550 DOI: 10.3390/v2010213] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/08/2010] [Accepted: 01/13/2010] [Indexed: 12/01/2022] Open
Abstract
Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.
Collapse
Affiliation(s)
- Catherine Isel
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +33-388-417-040; Fax: +33-388-602-218 (C.I.); E-Mail: ; Tel.: +33-388-417-054; Fax: +33-388-602-218 (R.M.)
| | | | - Roland Marquet
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +33-388-417-040; Fax: +33-388-602-218 (C.I.); E-Mail: ; Tel.: +33-388-417-054; Fax: +33-388-602-218 (R.M.)
| |
Collapse
|
32
|
Warren K, Warrilow D, Meredith L, Harrich D. Reverse Transcriptase and Cellular Factors: Regulators of HIV-1 Reverse Transcription. Viruses 2009; 1:873-94. [PMID: 21994574 PMCID: PMC3185528 DOI: 10.3390/v1030873] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 01/16/2023] Open
Abstract
There is ample evidence that synthesis of HIV-1 proviral DNA from the viral RNA genome during reverse transcription requires host factors. However, only a few cellular proteins have been described in detail that affect reverse transcription and interact with reverse transcriptase (RT). HIV-1 integrase is an RT binding protein and a number of IN-binding proteins including INI1, components of the Sin3a complex, and Gemin2 affect reverse transcription. In addition, recent studies implicate the cellular proteins HuR, AKAP149, and DNA topoisomerase I in reverse transcription through an interaction with RT. In this review we will consider interactions of reverse transcription complex with viral and cellular factors and how they affect the reverse transcription process.
Collapse
Affiliation(s)
- Kylie Warren
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- School of Natural Sciences, University of Western Sydney, Hawkesbury, NSW, Australia
| | - David Warrilow
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
| | - Luke Meredith
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- Griffith Medical Research College, a joint program of Griffith University and the Queensland Institute of Medical Research, QIMR, Herston, QLD, 4006, Australia
| | - David Harrich
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- Griffith Medical Research College, a joint program of Griffith University and the Queensland Institute of Medical Research, QIMR, Herston, QLD, 4006, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-3845-36791; Fax: +61-7-3362-0107
| |
Collapse
|
33
|
High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol 2008; 6:e96. [PMID: 18447581 PMCID: PMC2689691 DOI: 10.1371/journal.pbio.0060096] [Citation(s) in RCA: 322] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 03/05/2008] [Indexed: 02/04/2023] Open
Abstract
Replication and pathogenesis of the human immunodeficiency virus (HIV) is tightly linked to the structure of its RNA genome, but genome structure in infectious virions is poorly understood. We invent high-throughput SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) technology, which uses many of the same tools as DNA sequencing, to quantify RNA backbone flexibility at single-nucleotide resolution and from which robust structural information can be immediately derived. We analyze the structure of HIV-1 genomic RNA in four biologically instructive states, including the authentic viral genome inside native particles. Remarkably, given the large number of plausible local structures, the first 10% of the HIV-1 genome exists in a single, predominant conformation in all four states. We also discover that noncoding regions functioning in a regulatory role have significantly lower (p-value < 0.0001) SHAPE reactivities, and hence more structure, than do viral coding regions that function as the template for protein synthesis. By directly monitoring protein binding inside virions, we identify the RNA recognition motif for the viral nucleocapsid protein. Seven structurally homologous binding sites occur in a well-defined domain in the genome, consistent with a role in directing specific packaging of genomic RNA into nascent virions. In addition, we identify two distinct motifs that are targets for the duplex destabilizing activity of this same protein. The nucleocapsid protein destabilizes local HIV-1 RNA structure in ways likely to facilitate initial movement both of the retroviral reverse transcriptase from its tRNA primer and of the ribosome in coding regions. Each of the three nucleocapsid interaction motifs falls in a specific genome domain, indicating that local protein interactions can be organized by the long-range architecture of an RNA. High-throughput SHAPE reveals a comprehensive view of HIV-1 RNA genome structure, and further application of this technology will make possible newly informative analysis of any RNA in a cellular transcriptome. The function of the RNA genome of the human immunodeficiency virus (HIV) is determined both by its sequence and by its ability to fold back on itself to form specific higher-order structures. In order to describe physical structures in a region of the HIV RNA genome known to play multiple, critical roles in viral replication and pathogenesis, we invent a high-throughput, quantitative, and comprehensive structure-mapping approach that locates flexible (unpaired) nucleotides within a folded RNA, assaying hundreds of nucleotides at a time. We find that the first 10% of the HIV-1 genome has a single predominant structure and that regulatory motifs have significantly greater structure than do protein-coding segments. The HIV genome interacts with numerous proteins, including multiple copies of the nucleocapsid protein. We directly map RNA–protein interactions inside virions and discover that the nucleocapsid prottein interacts with viral RNA in at least three distinct ways, depending on the context within the overall genome structure. Further application of the high-throughput RNA-structure analysis tools described here will make it possible to address diverse structure–function relationships in intact cellular and viral RNAs. Development of novel, quantitative, high-throughput RNA structure analysis tools allows the outline of structure-function relationships for the first 10% of an HIV genome, discovery of structural differences between regulatory and coding regions, and analysis of protein-RNA interactions inside authentic virions.
Collapse
|
34
|
Abbink TEM, Berkhout B. HIV-1 reverse transcription: close encounters between the viral genome and a cellular tRNA. ADVANCES IN PHARMACOLOGY 2007; 55:99-135. [PMID: 17586313 DOI: 10.1016/s1054-3589(07)55003-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Affiliation(s)
- Truus E M Abbink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, The Netherlands
| | | |
Collapse
|
35
|
Dobard CW, Briones MS, Chow SA. Molecular mechanisms by which human immunodeficiency virus type 1 integrase stimulates the early steps of reverse transcription. J Virol 2007; 81:10037-46. [PMID: 17626089 PMCID: PMC2045400 DOI: 10.1128/jvi.00519-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Reverse transcriptase (RT) and integrase (IN) are two essential enzymes that play a critical role in synthesis and integration of the retroviral cDNA, respectively. For human immunodeficiency virus type 1 (HIV-1), RT and IN physically interact and certain mutations and deletions of IN result in viruses defective in early steps of reverse transcription. However, the mechanism by which IN affects reverse transcription is not understood. We used a cell-free reverse transcription assay with different primers and compositions of deoxynucleoside triphosphates to differentially monitor the effect of IN on the initiation and elongation modes of reverse transcription. During the initiation mode, addition of IN stimulated RT-catalyzed reverse transcription by fourfold. The stimulation was specific to IN and could not be detected when the full-length IN was replaced with truncated IN derivatives. The IN-stimulated initiation was also restricted to the template-primer complex formed using tRNA(3)(Lys) or short RNA oligonucleotides as the primer and not those formed using DNA oligonucleotides as the primer. Addition of IN also produced a threefold stimulation during the elongation mode, which was not primer dependent. The stimulation of both initiation and elongation by IN was retained in the presence of an RT trap. Furthermore, IN had no effect on steps at or before template-primer annealing, including packaging of viral genomic RNA and tRNA(3)(Lys). Taken together, our results showed that IN acts at early steps of reverse transcription by increasing the processivity of RT and suppressing the formation of the pause products.
Collapse
Affiliation(s)
- Charles W Dobard
- Department of Molecular and Medical Pharmacology, School of Medicine, University of California-Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
36
|
Ooms M, Cupac D, Abbink TEM, Huthoff H, Berkhout B. The availability of the primer activation signal (PAS) affects the efficiency of HIV-1 reverse transcription initiation. Nucleic Acids Res 2007; 35:1649-59. [PMID: 17308346 PMCID: PMC1865047 DOI: 10.1093/nar/gkm046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Initiation of reverse transcription of a retroviral RNA genome is strictly regulated. The tRNA primer binds to the primer binding site (PBS), and subsequent priming is triggered by the primer activation signal (PAS) that also pairs with the tRNA. We observed that in vitro reverse transcription initiation of the HIV-1 leader RNA varies in efficiency among 3′-end truncated transcripts, despite the presence of both PBS and PAS motifs. As the HIV-1 leader RNA can adopt two different foldings, we investigated if the conformational state of the transcripts did influence the efficiency of reverse transcription initiation. However, mutant transcripts that exclusively fold one or the other structure were similarly active, thereby excluding the possibility of regulation of reverse transcription initiation by the structure riboswitch. We next set out to determine the availability of the PAS element. This sequence motif enhances the efficiency of reverse transcription initiation, but its activity is regulated because the PAS motif is initially base paired within the wild-type template. We measured that the initiation efficiency on different templates correlates directly with accessibility of the PAS motif. Furthermore, changes in PAS are critical to facilitate a primer-switch to a new tRNA species, demonstrating the importance of this enhancer element.
Collapse
Affiliation(s)
| | | | | | | | - Ben Berkhout
- *To whom correspondence should be addressed. +31 205 664 822+31 206 916 531
| |
Collapse
|
37
|
Numata T, Ikeuchi Y, Fukai S, Suzuki T, Nureki O. Snapshots of tRNA sulphuration via an adenylated intermediate. Nature 2006; 442:419-24. [PMID: 16871210 DOI: 10.1038/nature04896] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 05/12/2006] [Indexed: 11/09/2022]
Abstract
Uridine at the first anticodon position (U34) of glutamate, lysine and glutamine transfer RNAs is universally modified by thiouridylase into 2-thiouridine (s2U34), which is crucial for precise translation by restricting codon-anticodon wobble during protein synthesis on the ribosome. However, it remains unclear how the enzyme incorporates reactive sulphur into the correct position of the uridine base. Here we present the crystal structures of the MnmA thiouridylase-tRNA complex in three discrete forms, which provide snapshots of the sequential chemical reactions during RNA sulphuration. On enzyme activation, an alpha-helix overhanging the active site is restructured into an idiosyncratic beta-hairpin-containing loop, which packs the flipped-out U34 deeply into the catalytic pocket and triggers the activation of the catalytic cysteine residues. The adenylated RNA intermediate is trapped. Thus, the active closed-conformation of the complex ensures accurate sulphur incorporation into the activated uridine carbon by forming a catalytic chamber to prevent solvent from accessing the catalytic site. The structures of the complex with glutamate tRNA further reveal how MnmA specifically recognizes its three different tRNA substrates. These findings provide the structural basis for a general mechanism whereby an enzyme incorporates a reactive atom at a precise position in a biological molecule.
Collapse
Affiliation(s)
- Tomoyuki Numata
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | | | | | | | | |
Collapse
|
38
|
Song M, Balakrishnan M, Chen Y, Roques BP, Bambara RA. Stimulation of HIV-1 minus strand strong stop DNA transfer by genomic sequences 3' of the primer binding site. J Biol Chem 2006; 281:24227-35. [PMID: 16782713 DOI: 10.1074/jbc.m603097200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of human immunodeficiency virus 1 (HIV-1) minus strand transfer was examined using a genomic RNA sequence-based donor-acceptor template system. The donor RNA, D199, was a 199-nucleotide sequence from the 5'-end of the genome to the primer binding site (PBS) and shared 97 nucleotides of homology with the acceptor RNA. To investigate the influence of RNA structure on transfer, a second donor RNA, D520, was generated by extending the 3'-end of D199 to include an additional 321 nucleotides of the genome. The position of priming, length of homology with the acceptor, and length of cDNA synthesized were identical with the two donors. Interestingly, at 200% NC coating, donor D520 yielded a transfer efficiency of about 75% compared with about 35% with D199. A large proportion of the D520 promoted transfers occurred after the donor RNA was copied to the end. Analysis of donor RNA cleavage, the acceptor invasion site and R homology requirements indicated that transfers with D520 involved a similar but more efficient acceptor invasion mechanism compared with D199. RNA structure probing by RNase T1 and the RT pause profile during synthesis indicated conformational differences between D199 and D520 in the starting structure, and in dynamic structures formed during synthesis within the R region. Overall observations suggest that regions 3' of the primer binding site influence the conformation of the R region of D520 to facilitate steps that promote strand transfer.
Collapse
Affiliation(s)
- Min Song
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
39
|
Levin JG, Guo J, Rouzina I, Musier-Forsyth K. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. ACTA ACUST UNITED AC 2006; 80:217-86. [PMID: 16164976 DOI: 10.1016/s0079-6603(05)80006-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Judith G Levin
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
40
|
Kasprzak W, Bindewald E, Shapiro BA. Structural polymorphism of the HIV-1 leader region explored by computational methods. Nucleic Acids Res 2005; 33:7151-63. [PMID: 16371347 PMCID: PMC1322270 DOI: 10.1093/nar/gki1015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Experimental studies revealed that the elements of the human immunodeficiency virus type 1 (HIV-1) 5′-untranslated leader region (5′-UTR) can fold in vitro into two alternative conformations, branched (BMH) and ‘linearized’ (LDI) and switch between them to achieve different functionality. In this study we computationally explored in detail, with our massively parallel genetic algorithm (MPGAfold), the propensity of 13 HIV-1 5′-UTRs to fold into the BMH and the LDI conformation types. Besides the BMH conformations these results predict the existence of two functionally equivalent types of LDI conformations. One is similar to what has been shown in vitro to exist in HIV-1 LAI, the other is a novel conformation exemplified by HIV-1 MAL long-distance interactions. These novel MPGAfold results are further corroborated by a consensus probability matrix algorithm applied to a set of 155 HIV-1 sequences. We also have determined in detail the impact of various strain mutations, domain sizes and folds of elongating sequences simulating folding during transcription on HIV-1 RNA secondary structure folding dynamics.
Collapse
Affiliation(s)
| | | | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer InstituteBuilding 469, Room 150, NCI-Frederick, Frederick, MD 21702, USA
- To whom correspondence should be addressed. Tel: +1 301 846 5536; Fax: +1 301 846 5598;
| |
Collapse
|
41
|
Wei M, Cen S, Niu M, Guo F, Kleiman L. Defective replication in human immunodeficiency virus type 1 when non-primers are used for reverse transcription. J Virol 2005; 79:9081-7. [PMID: 15994802 PMCID: PMC1168737 DOI: 10.1128/jvi.79.14.9081-9087.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
tRNA(3Lys), the primer for reverse transcriptase in human immunodeficiency virus type 1 (HIV-1), anneals to the primer binding site (PBS) in HIV-1 RNA. It has been shown that altering the PBS and U5 regions upstream of the PBS in HIV-1 so as to be complementary to sequences in tRNA(Met) or tRNA(His) will allow these tRNA species to be stably used as primers for reverse transcription. We have examined the replication of these mutant viruses in Sup-T1 cells. When Sup-T1 cells are infected by cocultivation with HIV-1-transfected 293T cells, viruses using tRNA(His) or tRNA(Met) are produced at rates that are approximately 1/10 or 1/100, respectively, of rates for wild-type virions that use tRNA(3Lys). When Sup-T1 cells are directly infected with equal amounts of these different viruses isolated from the culture supernatant of transfected 293T cells, virions using tRNA(Met) are produced at 1/100 the rate of wild-type viruses, and production of virions using tRNA(His) is not detected. Both wild-type and mutant virions selectively package tRNA(Lys) only, and examination of the ability of total viral RNA to prime reverse transcription in vitro indicates a >80% reduction in the annealing of tRNA(His) or tRNA(Met) to the mutant viral RNAs. PCR analysis of which of the three primer tRNAs is used indicates that only tRNA(3Lys) is detected as primer in wild-type virions and only tRNA(His) is detected as primer in virions containing a PBS complementary to tRNA(His), while the mutant viruses containing a PBS complementary to tRNA(Met) use both tRNA(Met) and tRNA(1,2Lys) as primer tRNAs.
Collapse
Affiliation(s)
- Min Wei
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Cote Ste-Catherine Road, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | |
Collapse
|
42
|
Blocker FJH, Mohr G, Conlan LH, Qi L, Belfort M, Lambowitz AM. Domain structure and three-dimensional model of a group II intron-encoded reverse transcriptase. RNA (NEW YORK, N.Y.) 2005; 11:14-28. [PMID: 15574519 PMCID: PMC1370687 DOI: 10.1261/rna.7181105] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Group II intron-encoded proteins (IEPs) have both reverse transcriptase (RT) activity, which functions in intron mobility, and maturase activity, which promotes RNA splicing by stabilizing the catalytically active RNA structure. The LtrA protein encoded by the Lactococcus lactis Ll.LtrB group II intron contains an N-terminal RT domain, with conserved sequence motifs RT1 to 7 found in the fingers and palm of retroviral RTs; domain X, associated with maturase activity; and C-terminal DNA-binding and DNA endonuclease domains. Here, partial proteolysis of LtrA with trypsin and Arg-C shows major cleavage sites in RT1, and between the RT and X domains. Group II intron and related non-LTR retroelement RTs contain an N-terminal extension and several insertions relative to retroviral RTs, some with conserved features implying functional importance. Sequence alignments, secondary-structure predictions, and hydrophobicity profiles suggest that domain X is related structurally to the thumb of retroviral RTs. Three-dimensional models of LtrA constructed by "threading" the aligned sequence on X-ray crystal structures of HIV-1 RT (1) account for the proteolytic cleavage sites; (2) suggest a template-primer binding track analogous to that of HIV-1 RT; and (3) show that conserved regions in splicing-competent LtrA variants include regions of the RT and X (thumb) domains in and around the template-primer binding track, distal regions of the fingers, and patches on the protein's back surface. These regions potentially comprise an extended RNA-binding surface that interacts with different regions of the intron for RNA splicing and reverse transcription.
Collapse
Affiliation(s)
- Forrest J H Blocker
- Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
43
|
Paillart JC, Dettenhofer M, Yu XF, Ehresmann C, Ehresmann B, Marquet R. First snapshots of the HIV-1 RNA structure in infected cells and in virions. J Biol Chem 2004; 279:48397-403. [PMID: 15355993 DOI: 10.1074/jbc.m408294200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With the increasing interest of RNAs in regulating a range of cell biological processes, very little is known about the structure of RNAs in tissue culture cells. We focused on the 5'-untranslated region of the human immunodeficiency virus type 1 RNA genome, a highly conserved RNA region, which contains structural domains that regulate key steps in the viral replication cycle. Up until now, structural information only came from in vitro studies. Here, we developed chemical modification assays to test nucleotide accessibility directly in infected cells and viral particles, thus circumventing possible biases and artifacts linked to in vitro assays. The secondary structure of the 5'-untranslated region in infected cells points to the existence of the various stem-loop motifs associated to distinct functions, proposed from in vitro probing, mutagenesis, and phylogeny. However, compared with in vitro data, subtle differences were observed in the dimerization initiation site hairpin, and none of the proposed long range interactions were observed between the functional domains. Moreover, no global RNA rearrangement was observed; structural differences between infected cells and viral particles were limited to the primer binding site, which became protected against chemical modification upon tRNA(3) (Lys) annealing in virions and to the main packaging signal. In addition, our data suggested that the genomic RNA could already dimerize in the cytoplasm of infected cells. Taken together, our results provided the first analysis of the dynamic of RNA structure of the human immunodeficiency virus type 1 RNA genome during virus assembly ex vivo.
Collapse
Affiliation(s)
- Jean-Christophe Paillart
- Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France.
| | | | | | | | | | | |
Collapse
|
44
|
Miller JT, Khvorova A, Scaringe SA, Le Grice SFJ. Synthetic tRNALys,3 as the replication primer for the HIV-1HXB2 and HIV-1Mal genomes. Nucleic Acids Res 2004; 32:4687-95. [PMID: 15342789 PMCID: PMC516074 DOI: 10.1093/nar/gkh813] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to determine the contribution of modified bases on the efficiency with which tRNA(Lys,3) is used in vitro as the HIV-1 replication primer, the properties of synthetic derivatives prepared by three independent methods were compared to the natural, i.e. fully modified, tRNA. When prepared directly by in vitro run-off transcription, we show here that the predominant tRNA species is 77 nt, representing a non-templated addition of a single nucleotide. As a consequence, this aberrant tRNA inefficiently primes (-) strand strong stop DNA synthesis from the primer binding site (PBS) on the HIV-1 viral RNA genome to which it must hybridize. In contrast, correctly sized tRNA(Lys,3) can be prepared by (i) total chemical synthesis and ligation of 'half' tRNAs, (ii) transcription of a cassette whose DNA template contained strategically placed 2'-O-Methyl-containing ribonucleotides and (iii) processing from a larger precursor by means of targeted cleavage with Escherichia coli RNase H. When each of these 76 nt tRNAs was supplemented into a (-) strand strong stop DNA synthesis reaction utilizing the HXB2 strain of HIV-1, the amount of product obtained was comparable to that from the fully modified counterpart. Parallel assays monitoring early events in (-) strand strong stop DNA synthesis using either the HXB2 or Mal strain of HIV-1 RNA as the template indicated little difference in the pattern or total product amount when primed with either natural or synthetic tRNA(Lys,3). In addition, nuclease mapping of PBS-bound tRNA suggests inter-molecular base pairing between bases of the tRNA anticodon domain and the U-rich U5-IR loop of the viral 5' leader region is less stable on the HIV-1(HXB2) genome than the HIV-1(Mal) isolate.
Collapse
Affiliation(s)
- Jennifer T Miller
- Reverse Transcriptase Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
45
|
Cui X, Matsuura M, Wang Q, Ma H, Lambowitz AM. A Group II Intron-encoded Maturase Functions Preferentially In Cis and Requires Both the Reverse Transcriptase and X Domains to Promote RNA Splicing. J Mol Biol 2004; 340:211-31. [PMID: 15201048 DOI: 10.1016/j.jmb.2004.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 05/03/2004] [Accepted: 05/04/2004] [Indexed: 10/26/2022]
Abstract
Mobile group II introns encode proteins with both reverse transcriptase activity, which functions in intron mobility, and maturase activity, which promotes RNA splicing by stabilizing the catalytically active structure of the intron RNA. Previous studies with the Lactococcus lactis Ll.LtrB intron suggested a model in which the intron-encoded protein binds first to a high-affinity binding site in intron subdomain DIVa, an idiosyncratic structure at the beginning of its own coding region, and then makes additional contacts with conserved catalytic core regions to stabilize the active RNA structure. Here, we developed an Escherichia coli genetic assay that links the splicing of the Ll.LtrB intron to the expression of green fluorescent protein and used it to study the in vivo splicing of wild-type and mutant introns and to delineate regions of the maturase required for splicing. Our results show that the maturase functions most efficiently when expressed in cis from the same transcript as the intron RNA. In agreement with previous in vitro assays, we find that the high-affinity binding site in DIVa is required for efficient splicing of the Ll.LtrB intron in vivo, but in the absence of DIVa, 6-10% residual splicing occurs by the direct binding of the maturase to the catalytic core. Critical regions of the maturase were identified by statistically analyzing ratios of missense to silent mutations in functional LtrA variants isolated from a library generated by mutagenic PCR ("unigenic evolution"). This analysis shows that both the reverse transcriptase domain and domain X, which likely corresponds to the reverse transcriptase thumb, are required for RNA splicing, while the C-terminal DNA-binding and DNA endonuclease domains are not required. Within the reverse transcriptase domain, the most critical regions for maturase activity include parts of the fingers and palm that function in template and primer binding in HIV-1 reverse transcriptase, but the integrity of the reverse transcriptase active site is not required. Biochemical analysis of LtrA mutants indicates that the N terminus of the reverse transcriptase domain is required for high-affinity binding of the intron RNA, possibly via direct interaction with DIVa, while parts of domain X interact with conserved regions of the catalytic core. Our results support the hypothesis that the intron-encoded protein adapted to function in splicing by using, at least in part, interactions used initially to recognize the intron RNA as a template for reverse transcription.
Collapse
Affiliation(s)
- Xiaoxia Cui
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular, Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
46
|
Goldschmidt V, Paillart JC, Rigourd M, Ehresmann B, Aubertin AM, Ehresmann C, Marquet R. Structural variability of the initiation complex of HIV-1 reverse transcription. J Biol Chem 2004; 279:35923-31. [PMID: 15194685 DOI: 10.1074/jbc.m404473200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 reverse transcription is initiated from a tRNA(3)(Lys) molecule annealed to the viral RNA at the primer binding site (PBS), but the structure of the initiation complex of reverse transcription remains controversial. Here, we performed in situ structural probing, as well as in vitro structural and functional studies, of the initiation complexes formed by highly divergent isolates (MAL and NL4.3/HXB2). Our results show that the structure of the initiation complex is not conserved. In MAL, and according to sequence analysis in 14% of HIV-1 isolates, formation of the initiation complex is accompanied by complex rearrangements of the viral RNA, and extensive interactions with tRNA(3)(Lys) are required for efficient initiation of reverse transcription. In NL4.3, HXB2, and most isolates, tRNA(3)(Lys) annealing minimally affects the viral RNA structure and no interaction outside the PBS is required for optimal initiation of reverse transcription. We suggest that in MAL, extensive interactions with tRNA(3)(Lys) are required to drive the structural rearrangements generating the structural elements ultimately recognized by reverse transcriptase. In NL4.3 and HXB2, these elements are already present in the viral RNA prior to tRNA(3)(Lys) annealing, thus explaining that extensive interactions with the primer are not required. Interestingly, such interactions are required in HXB2 mutants designed to use a non-cognate tRNA as primer (tRNA(His)). In the latter case, the extended interactions are required to counteract a negative contribution associate with the alternate primer.
Collapse
Affiliation(s)
- Valérie Goldschmidt
- Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, IBMC, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Jakobsen MR, Damgaard CK, Andersen ES, Podhajska A, Kjems J. A genomic selection strategy to identify accessible and dimerization blocking targets in the 5'-UTR of HIV-1 RNA. Nucleic Acids Res 2004; 32:e67. [PMID: 15107482 PMCID: PMC407842 DOI: 10.1093/nar/gnh064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Defining target sites for antisense oligonucleotides in highly structured RNA is a non-trivial exercise that has received much attention. Here we describe a novel and simple method to generate a library composed of all 20mer oligoribonucleotides that are sense- and antisense to any given sequence or genome and apply the method to the highly structured HIV-1 leader RNA. Oligoribonucleotides that interact strongly with folded HIV-1 RNA and potentially inhibit its dimerization were identified through iterative rounds of affinity selection by native gel electrophoresis. We identified five distinct regions in the HIV-1 RNA that were particularly prone to antisense annealing and a structural comparison between these sites suggested that the 3'-end of the antisense RNA preferentially interacts with single-stranded loops in the target RNA, whereas the 5'-end binds within double-stranded regions. The selected RNA species and corresponding DNA oligonucleotides were assayed for HIV-1 RNA binding, ability to block reverse transcription and/or potential to interfere with dimerization. All the selected oligonucleotides bound rapidly and strongly to the HIV-1 leader RNA in vitro and one oligonucleotide was capable of disrupting RNA dimers efficiently. The library selection methodology we describe here is rapid, inexpensive and generally applicable to any other RNA or RNP complex. The length of the oligonucleotide in the library is similar to antisense molecules generally applied in vivo and therefore likely to define targets relevant for HIV-1 therapy.
Collapse
Affiliation(s)
- Martin R Jakobsen
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Building 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
48
|
Damgaard CK, Andersen ES, Knudsen B, Gorodkin J, Kjems J. RNA interactions in the 5' region of the HIV-1 genome. J Mol Biol 2004; 336:369-79. [PMID: 14757051 DOI: 10.1016/j.jmb.2003.12.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The untranslated leader of the dimeric HIV-1 RNA genome is folded into a complex structure that plays multiple and essential roles in the viral replication cycle. Here, we have investigated secondary and tertiary structural elements within the 5' 744 nucleotides of the HIV-1 genome using a combination of bioinformatics, enzymatic probing, native gel electrophoresis, and UV-crosslinking experiments. We used a recently developed RNA folding algorithm (Pfold) to predict the common secondary structure of an alignment of 20 divergent HIV-1 sequences. Combining this analysis with biochemical data, we present a secondary structure model for the entire 744 nucleotide fragment, which incorporates previously recognized and novel structural elements. In particular, our data provided strong evidence for a long-distance interaction between the region encompassing the AUG Gag initiation codon and an upstream region and we demonstrate that this feature is highly conserved in distantly related human and animal retroviruses. To obtain information about tertiary interactions we applied an intramolecular UV-crosslinking strategy and identified a novel tertiary interaction within the PBS hairpin structure.
Collapse
Affiliation(s)
- Christian Kroun Damgaard
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Building 130, DK-8000 C, Arhus, Denmark
| | | | | | | | | |
Collapse
|
49
|
Tisné C, Roques BP, Dardel F. The annealing mechanism of HIV-1 reverse transcription primer onto the viral genome. J Biol Chem 2003; 279:3588-95. [PMID: 14602716 DOI: 10.1074/jbc.m310368200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reverse transcription of human immunodeficiency virus-1 viral RNA uses human tRNA(3)(Lys) as a primer. The first step of viral replication is, thus, the annealing of the primer tRNA onto the primer binding site located in the 5' leader region of the viral RNA. This involves large rearrangements of both RNA structures and requires the chaperone activity of the viral nucleocapsid protein. We have developed a novel approach to analyze dynamically such RNA refolding events using heteronuclear NMR spectroscopy of mixtures of (15)N-labeled and unlabeled large RNA fragments (up to 50 kDa). We have thus been able to characterize the detailed mechanisms of both heat- and nucleocapsid-mediated annealing and to identify previously unknown key steps. The role played by the nucleocapsid is 2-fold; it facilitates strand exchange at the level of the tRNA acceptor stem, presumably via its basic N- and C-terminal extensions, and it unlocks the highly stable tertiary interactions at the level of the T Psi C loop, most likely by specific interactions involving its two zinc knuckles.
Collapse
Affiliation(s)
- Carine Tisné
- Laboratoire de Cristallographie et Résonance Magnétique Nucléaire Biologiques, UMR 8015 CNRS, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | |
Collapse
|
50
|
Rigourd M, Goldschmidt V, Brulé F, Morrow CD, Ehresmann B, Ehresmann C, Marquet R. Structure-function relationships of the initiation complex of HIV-1 reverse transcription: the case of mutant viruses using tRNA(His) as primer. Nucleic Acids Res 2003; 31:5764-75. [PMID: 14500840 PMCID: PMC206454 DOI: 10.1093/nar/gkg754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reverse transcription of HIV-1 RNA is initiated from the 3' end of a tRNA3Lys molecule annealed to the primer binding site (PBS). An additional interaction between the anticodon loop of tRNA3Lys and a viral A-rich loop is required for efficient initiation of reverse transcription of the HIV-1 MAL isolate. In the HIV-1 HXB2 isolate, simultaneous mutations of the PBS and the A-rich loop (mutant His-AC), but not of the PBS alone (mutant His) allows the virus to stably utilize tRNA(His) as primer. However, mutant His-AC selects additional mutations during cell culture, generating successively His-AC-GAC and His-AC-AT-GAC. Here, we wanted to establish direct relationships between the evolution of these mutants in cell culture, their efficiency in initiating reverse transcription and the structure of the primer/template complexes in vitro. The initiation of reverse transcription of His and His-AC RNAs was dramatically reduced. However, His-AC-GAC RNA, which incorporated three adaptative point mutations, was reverse transcribed more efficiently than the wild type RNA. Incorporation of two additional mutations decreased the efficiency of the initiation of reverse transcription, which remained at the wild type level. Structural probing showed that even though both His-AC and His-AC-GAC RNAs can potentially interact with the anticodon loop of tRNA(His), only the latter template formed a stable interaction. Thus, our results showed that the selection of adaptative mutations by HIV-1 mutants utilizing tRNA(His) as primer was initially dictated by the efficiency of the initiation of reverse transcription, which relied on the existence of a stable interaction between the mutated A-rich loop and the anticodon loop of tRNA(His).
Collapse
Affiliation(s)
- Mickaël Rigourd
- Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, IBMC, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|