1
|
Kaushal RS, Naik N, Prajapati M, Rane S, Raulji H, Afu NF, Upadhyay TK, Saeed M. Leishmania species: A narrative review on surface proteins with structural aspects involved in host-pathogen interaction. Chem Biol Drug Des 2023; 102:332-356. [PMID: 36872849 DOI: 10.1111/cbdd.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
In tropical and subtropical regions of the world, leishmaniasis is endemic and causes a range of clinical symptoms in people, from severe tegumentary forms (such as cutaneous, mucocutaneous, and diffuse leishmaniasis) to lethal visceral forms. The protozoan parasite of the genus Leishmania causes leishmaniasis, which is still a significant public health issue, according to the World Health Organization 2022. The public's worry about the neglected tropical disease is growing as new foci of the illness arise, which are exacerbated by alterations in behavior, changes in the environment, and an enlarged range of sand fly vectors. Leishmania research has advanced significantly during the past three decades in a few different avenues. Despite several studies on Leishmania, many issues, such as illness control, parasite resistance, parasite clearance, etc., remain unresolved. The key virulence variables that play a role in the pathogenicity-host-pathogen relationship of the parasite are comprehensively discussed in this paper. The important Leishmania virulence factors, such as Kinetoplastid Membrane Protein-11 (KMP-11), Leishmanolysin (GP63), Proteophosphoglycan (PPG), Lipophosphoglycan (LPG), Glycosylinositol Phospholipids (GIPL), and others, have an impact on the pathophysiology of the disease and enable the parasite to spread the infection. Leishmania infection may arise from virulence factors; they are treatable with medications or vaccinations more promptly and might greatly shorten the duration of treatment. Additionally, our research sought to present a modeled structure of a few putative virulence factors that might aid in the development of new chemotherapeutic approaches for the treatment of leishmaniasis. The predicted virulence protein's structure is utilized to design novel drugs, therapeutic targets, and immunizations for considerable advantage from a higher understanding of the host immune response.
Collapse
Affiliation(s)
- Radhey Shyam Kaushal
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, 391760, Gujarat, India
| | - Nidhi Naik
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Maitri Prajapati
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Shruti Rane
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Himali Raulji
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Ngo Festus Afu
- Department of Biochemistry, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, 391760, Gujarat, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Ha'il, P.O. Box 2440, Hail, 81411, Saudi Arabia
| |
Collapse
|
2
|
Kamran M, Bhattacharjee R, Das S, Mukherjee S, Ali N. The paradigm of intracellular parasite survival and drug resistance in leishmanial parasite through genome plasticity and epigenetics: Perception and future perspective. Front Cell Infect Microbiol 2023; 13:1001973. [PMID: 36814446 PMCID: PMC9939536 DOI: 10.3389/fcimb.2023.1001973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Leishmania is an intracellular, zoonotic, kinetoplastid eukaryote with more than 1.2 million cases all over the world. The leishmanial chromosomes are divided into polymorphic chromosomal ends, conserved central domains, and antigen-encoding genes found in telomere-proximal regions. The genome flexibility of chromosomal ends of the leishmanial parasite is known to cause drug resistance and intracellular survival through the evasion of host defense mechanisms. Therefore, in this review, we discuss the plasticity of Leishmania genome organization which is the primary cause of drug resistance and parasite survival. Moreover, we have not only elucidated the causes of such genome plasticity which includes aneuploidy, epigenetic factors, copy number variation (CNV), and post-translation modification (PTM) but also highlighted their impact on drug resistance and parasite survival.
Collapse
Affiliation(s)
| | | | - Sonali Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sohitri Mukherjee
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | | |
Collapse
|
3
|
Combined gene deletion of dihydrofolate reductase-thymidylate synthase and pteridine reductase in Leishmania infantum. PLoS Negl Trop Dis 2021; 15:e0009377. [PMID: 33905412 PMCID: PMC8104401 DOI: 10.1371/journal.pntd.0009377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/07/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of folate metabolism in Leishmania has greatly benefited from studies of resistance to the inhibitor methotrexate (MTX). Folates are reduced in Leishmania by the bifunctional dihydrofolate reductase thymidylate synthase (DHFR-TS) and by pteridine reductase (PTR1). To further our understanding of folate metabolism in Leishmania, a Cos-seq genome-wide gain of function screen was performed against MTX and against the two thymidylate synthase (TS) inhibitors 5-fluorouracil and pemetrexed. The screen revealed DHFR-TS and PTR1 but also the nucleoside transporter NT1 and one hypothetical gene derived from chromosome 31. For MTX, the concentration of folate in the culture medium affected the enrichment pattern for genes retrieved by Cos-seq. We generated a L. infantum DHFR-TS null mutant that was thymidine auxotroph, a phenotype that could be rescued by the addition of thymidine or by transfection of the flavin dependent bacterial TS gene ThyX. In these DHFR-TS null mutants it was impossible to obtain a chromosomal null mutant of PTR1 except if DHFR-TS or PTR1 were provided episomally. The transfection of ThyX however did not allow the elimination of PTR1 in a DHFR-TS null mutant. Leishmania can survive without copies of either DHFR-TS or PTR1 but not without both. Provided that our results observed with the insect stage parasites are also replicated with intracellular parasites, it would suggest that antifolate therapy in Leishmania would only work if both DHFR-TS and PTR1 would be targeted simultaneously. The protozoan parasite Leishmania is auxotroph for folate and unconjugated pterins and salvages both from the mammalian host. Two enzymes of the folate metabolism pathway, namely the bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) and the pteridine reductase 1 (PTR1), are being evaluated for drug discovery and repurposing of existing anti-metabolites. Despite their apparent potential, development of DHFR-TS and PTR1 targeted chemotherapy against Leishmania is still awaiting. Here we revisited folate metabolism at the genomic level and report on the identification of known resistance genes alongside some new ones. Through gene disruption studies we found that L. infantum DHFR-TS null mutants are thymidine auxotroph and that these can be rescued by the bacterial flavin dependent thymidylate synthase ThyX. We also found that PTR1 is essential in the absence of a functional DHFR-TS even in the presence of ThyX or thymidine supplementation, indicating the essential role of reduced pterins or folate beyond thymidine synthesis. This study indicates that simultaneous targeting of DHFR-TS and PTR1 will be required for the development of anti-folate chemotherapy against Leishmania.
Collapse
|
4
|
Du W, Li G, Ho N, Jenkins L, Hockaday D, Tan J, Cao H. CyanoPATH: a knowledgebase of genome-scale functional repertoire for toxic cyanobacterial blooms. Brief Bioinform 2020; 22:6035272. [PMID: 33320930 DOI: 10.1093/bib/bbaa375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 11/14/2022] Open
Abstract
CyanoPATH is a database that curates and analyzes the common genomic functional repertoire for cyanobacteria harmful algal blooms (CyanoHABs) in eutrophic waters. Based on the literature of empirical studies and genome/protein databases, it summarizes four types of information: common biological functions (pathways) driving CyanoHABs, customized pathway maps, classification of blooming type based on databases and the genomes of cyanobacteria. A total of 19 pathways are reconstructed, which are involved in the utilization of macronutrients (e.g. carbon, nitrogen, phosphorus and sulfur), micronutrients (e.g. zinc, magnesium, iron, etc.) and other resources (e.g. light and vitamins) and in stress resistance (e.g. lead and copper). These pathways, comprised of both transport and biochemical reactions, are reconstructed with proteins from NCBI and reactions from KEGG and visualized with self-created transport/reaction maps. The pathways are hierarchical and consist of subpathways, protein/enzyme complexes and constituent proteins. New cyanobacterial genomes can be annotated and visualized for these pathways and compared with existing species. This set of genomic functional repertoire is useful in analyzing aquatic metagenomes and metatranscriptomes in CyanoHAB research. Most importantly, it establishes a link between genome and ecology. All these reference proteins, pathways and maps and genomes are free to download at http://www.csbg-jlu.info/CyanoPATH.
Collapse
Affiliation(s)
| | | | - Nicholas Ho
- Biodesign Center for Fundamental and Applied Microbiomics at Arizona State University
| | - Landon Jenkins
- Biodesign Center for Fundamental and Applied Microbiomics at Arizona State University
| | - Drew Hockaday
- Biodesign Center for Fundamental and Applied Microbiomics at Arizona State University
| | | | | |
Collapse
|
5
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|
6
|
Franssen SU, Durrant C, Stark O, Moser B, Downing T, Imamura H, Dujardin JC, Sanders MJ, Mauricio I, Miles MA, Schnur LF, Jaffe CL, Nasereddin A, Schallig H, Yeo M, Bhattacharyya T, Alam MZ, Berriman M, Wirth T, Schönian G, Cotton JA. Global genome diversity of the Leishmania donovani complex. eLife 2020; 9:e51243. [PMID: 32209228 PMCID: PMC7105377 DOI: 10.7554/elife.51243] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/27/2020] [Indexed: 12/30/2022] Open
Abstract
Protozoan parasites of the Leishmania donovani complex - L. donovani and L. infantum - cause the fatal disease visceral leishmaniasis. We present the first comprehensive genome-wide global study, with 151 cultured field isolates representing most of the geographical distribution. L. donovani isolates separated into five groups that largely coincide with geographical origin but vary greatly in diversity. In contrast, the majority of L. infantum samples fell into one globally-distributed group with little diversity. This picture is complicated by several hybrid lineages. Identified genetic groups vary in heterozygosity and levels of linkage, suggesting different recombination histories. We characterise chromosome-specific patterns of aneuploidy and identified extensive structural variation, including known and suspected drug resistance loci. This study reveals greater genetic diversity than suggested by geographically-focused studies, provides a resource of genomic variation for future work and sets the scene for a new understanding of the evolution and genetics of the Leishmania donovani complex.
Collapse
Affiliation(s)
| | - Caroline Durrant
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | | | | | - Tim Downing
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Dublin City UniversityDublinIreland
| | | | - Jean-Claude Dujardin
- Institute of Tropical MedicineAntwerpBelgium
- Department of Biomedical Sciences, University of AntwerpAntwerpBelgium
| | - Mandy J Sanders
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Isabel Mauricio
- Universidade Nova de Lisboa Instituto de Higiene e MedicinaLisboaPortugal
| | - Michael A Miles
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Lionel F Schnur
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Charles L Jaffe
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Abdelmajeed Nasereddin
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Henk Schallig
- Amsterdam University Medical Centres – Academic Medical Centre at the University of Amsterdam, Department of Medical Microbiology – Experimental ParasitologyAmsterdamNetherlands
| | - Matthew Yeo
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | | | - Mohammad Z Alam
- Department of Parasitology, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Thierry Wirth
- Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des AntillesParisFrance
- École Pratique des Hautes Études (EPHE)Paris Sciences & Lettres (PSL)ParisFrance
| | | | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| |
Collapse
|
7
|
Gatreddi S, Pillalamarri V, Vasudevan D, Addlagatta A, Qureshi IA. Unraveling structural insights of ribokinase from Leishmania donovani. Int J Biol Macromol 2019; 136:253-265. [PMID: 31170491 DOI: 10.1016/j.ijbiomac.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/16/2022]
Abstract
Ribokinase (RK) is an ATP dependent sugar kinase that enables the entry of ribose in the metabolism. Leishmania accumulates ribose into the cytosol through hydrolysis of nucleosides and by transport from the extracellular environment. Activation by RK is critical to mobilize the ribose into the metabolism of Leishmania. To understand the catalytic role, the crystal structure of RK (LdRK) from L. donovani was determined in the apo and complex forms with several nucleotides (ATP, AMPPCP and ADP) in the presence of Na+ ion. The dual insertion of five amino acid stretches makes LdRK structurally unique from other reported structures of RKs. The structure of LdRK-ATP provided the basis for positioning of γ-phosphate of ATP by conserved -GAGD- motif. Liganded and unliganded structures of LdRK exists in similar conformation, which suggests binding of nucleotides does not make any significant conformational changes in nucleotide-bound structures. Substitution of a conserved asparagine with phenylalanine in ribose binding pocket differentiates the LdRK from other RKs. Glycerol molecule bound in the substrate binding pocket mimics the enzyme-substrate interactions but in turn, hampers the binding of ribose to LdRK. Comparative structural analysis revealed the flexibility of γ-phosphate, which adopts multiple conformations in the absence of divalent metal ion and ribose. Similar to other RKs, LdRK is also dependent on monovalent as well as divalent cations for its catalytic activity.
Collapse
Affiliation(s)
- Santhosh Gatreddi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Vijaykumar Pillalamarri
- CSIR-Indian Institute of Chemical Technology, Applied Biology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India
| | | | - Anthony Addlagatta
- CSIR-Indian Institute of Chemical Technology, Applied Biology, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Rafi Marg, New Delhi 110001, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
8
|
Cos-Seq: A High-Throughput Gain-of-Function Screen for Drug Resistance Studies in Leishmania. Methods Mol Biol 2019; 1971:141-167. [PMID: 30980302 DOI: 10.1007/978-1-4939-9210-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leishmania is still a major cause of mortality and morbidity worldwide. Few efficient drugs are available, and resistance threatens actual treatments. In order to improve knowledge about the mode of action of current drugs and those in development, as well as to understand the mechanisms pertaining to their resistance, we recently described a sensitive and high-throughput method termed Cos-Seq. Here we provide a detailed protocol for every step of the procedure, from library construction to drug selection, cosmid extraction, and next-generation sequencing of extracted cosmids. A section on the bioinformatics of Cos-Seq is also included. Cos-Seq facilitates the identification of gain-of-function resistance mechanisms and drug targets and is a useful tool in resistance and drug development studies.
Collapse
|
9
|
Piel L, Pescher P, Späth GF. Reverse Epidemiology: An Experimental Framework to Drive Leishmania Biomarker Discovery in situ by Functional Genetic Screening Using Relevant Animal Models. Front Cell Infect Microbiol 2018; 8:325. [PMID: 30283743 PMCID: PMC6157315 DOI: 10.3389/fcimb.2018.00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Leishmania biomarker discovery remains an important challenge that needs to be revisited in light of our increasing knowledge on parasite-specific biology, notably its genome instability. In the absence of classical transcriptional regulation in these early-branching eukaryotes, fluctuations in transcript abundance can be generated by gene and chromosome amplifications, which have been linked to parasite phenotypic variability with respect to virulence, tissue tropism, and drug resistance. Conducting in vitro evolutionary experiments to study mechanisms of Leishmania environmental adaptation, we recently validated the link between parasite genetic amplification and fitness gain, thus defining gene and chromosome copy number variations (CNVs) as important Leishmania biomarkers. These experiments also demonstrated that long-term Leishmania culture adaptation can strongly interfere with epidemiologically relevant, genetic signals, which challenges current protocols for biomarker discovery, all of which rely on in vitro expansion of clinical isolates. Here we propose an experimental framework independent of long-term culture termed “reverse” epidemiology, which applies established protocols for functional genetic screening of cosmid-transfected parasites in animal models for the identification of clinically relevant genetic loci that then inform targeted field studies for their validation as Leishmania biomarkers.
Collapse
Affiliation(s)
- Laura Piel
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pascale Pescher
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Paris, France
| | - Gerald F Späth
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Paris, France
| |
Collapse
|
10
|
Fernandez-Prada C, Sharma M, Plourde M, Bresson E, Roy G, Leprohon P, Ouellette M. High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:165-173. [PMID: 29602064 PMCID: PMC6039308 DOI: 10.1016/j.ijpddr.2018.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 11/29/2022]
Abstract
Increasing drug resistance towards first line antimony-derived compounds has forced the introduction of novel therapies in leishmaniasis endemic areas including amphotericin B and miltefosine. However, their use is threatened by the emergence and spread of drug-resistant strains. In order to discover stage-dependent resistance genes, we have adapted the Cos-Seq approach through the introduction of macrophage infections in the pipeline. A L. infantum intracellular amastigote population complemented with a L. infantum cosmid library was submitted to increasing concentrations of miltefosine, amphotericin B and pentavalent antimonials in experimental infections of THP-1 cells. For each step of selection, amastigotes were extracted and cosmids were isolated and submitted to next-generation sequencing, followed by subsequent gene-enrichment analyses. Cos-Seq screen in amastigotes revealed four highly enriched loci for antimony, five for miltefosine and one for amphotericin B. Of these, a total of seven cosmids were recovered and tested for resistance in both promastigotes and amastigotes. Candidate genes within the pinpointed genomic regions were validated using single gene overexpression in wild-type parasites and/or gene disruption by means of a CRISPR-Cas9-based approach. This led to the identification and validation of a stage-independent antimony-resistance gene (LinJ.06.1010) coding for a putative leucine rich repeat protein and a novel amastigote-specific miltefosine-resistance gene (LinJ.32.0050) coding for a member of the SEC13 family of WD-repeat proteins. This study further reinforces the power of Cos-Seq approach to discover novel drug-resistance genes, some of which are life-stages specific. The Cos-Seq led to the discovery of several new genomic regions selected with drugs. This work led to the validation of novel drug-resistance genes in Leishmania. Gene LinJ.06.1010 is involved in antimony resistance in both life stages of the parasite. Gene LinJ.32.0050 is involved in miltefosine resistance in amastigotes. The amastigote screen is labour intensive but complements screens in promastigotes.
Collapse
Affiliation(s)
- Christopher Fernandez-Prada
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Mansi Sharma
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marie Plourde
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Eva Bresson
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Gaétan Roy
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
11
|
Gatreddi S, Are S, Qureshi IA. Ribokinase from Leishmania donovani: purification, characterization and X-ray crystallographic analysis. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2018; 74:99-104. [PMID: 29400319 DOI: 10.1107/s2053230x18000109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/02/2018] [Indexed: 11/11/2022]
Abstract
Leishmania is an auxotrophic protozoan parasite which acquires D-ribose by transporting it from the host cell and also by the hydrolysis of nucleosides. The enzyme ribokinase (RK) catalyzes the first step of ribose metabolism by phosphorylating D-ribose using ATP to produce D-ribose-5-phosphate. To understand its structure and function, the gene encoding RK from L. donovani was cloned, expressed and purified using affinity and size-exclusion chromatography. Circular-dichroism spectroscopy of the purified protein showed comparatively more α-helix in the secondary-structure content, and thermal unfolding revealed the Tm to be 317.2 K. Kinetic parameters were obtained by functional characterization of L. donovani RK, and the Km values for ribose and ATP were found to be 296 ± 36 and 116 ± 9.0 µM, respectively. Crystals obtained by the hanging-drop vapour-diffusion method diffracted to 1.95 Å resolution and belonged to the hexagonal space group P61, with unit-cell parameters a = b = 100.25, c = 126.77 Å. Analysis of the crystal content indicated the presence of two protomers in the asymmetric unit, with a Matthews coefficient (VM) of 2.45 Å3 Da-1 and 49.8% solvent content. Further study revealed that human counterpart of this protein could be used as a template to determine the first three-dimensional structure of the RK from trypanosomatid parasites.
Collapse
Affiliation(s)
- Santhosh Gatreddi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Professor C. R. Rao Road, Hyderabad 500 046, India
| | - Sayanna Are
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Professor C. R. Rao Road, Hyderabad 500 046, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Professor C. R. Rao Road, Hyderabad 500 046, India
| |
Collapse
|
12
|
Gingras H, Dridi B, Leprohon P, Ouellette M. Coupling next-generation sequencing to dominant positive screens for finding antibiotic cellular targets and resistance mechanisms in Escherichia coli. Microb Genom 2018; 4. [PMID: 29319470 PMCID: PMC5857375 DOI: 10.1099/mgen.0.000148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In order to expedite the discovery of genes coding for either drug targets or antibiotic resistance, we have developed a functional genomic strategy termed Plas-Seq. This technique involves coupling a multicopy suppressor library to next-generation sequencing. We generated an Escherichia coli plasmid genomic library that was transformed into E. coli. These transformants were selected step by step using 0.25× to 2× minimum inhibitory concentrations for ceftriaxone, gentamicin, levofloxacin, tetracycline or trimethoprim. Plasmids were isolated at each selection step and subjected to Illumina sequencing. By searching for genomic loci whose sequencing coverage increased with antibiotic pressure we were able to detect 48 different genomic loci that were enriched by at least one antibiotic. Fifteen of these loci were studied functionally, and we showed that 13 can decrease the susceptibility of E. coli to antibiotics when overexpressed. These genes coded for drug targets, transcription factors, membrane proteins and resistance factors. The technique of Plas-Seq is expediting the discovery of genes associated with the mode of action or resistance to antibiotics and led to the isolation of a novel gene influencing drug susceptibility. It has the potential for being applied to novel molecules and to other microbial species.
Collapse
Affiliation(s)
- Hélène Gingras
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | - Bédis Dridi
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| |
Collapse
|
13
|
Whole genome sequencing of live attenuated Leishmania donovani parasites reveals novel biomarkers of attenuation and enables product characterization. Sci Rep 2017; 7:4718. [PMID: 28680050 PMCID: PMC5498541 DOI: 10.1038/s41598-017-05088-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/06/2017] [Indexed: 01/03/2023] Open
Abstract
No licensed human vaccines are currently available against leishmaniasis. Several anti-leishmanial vaccines are currently undergoing testing, including genetically modified live-attenuated parasite vaccines. Studies with live attenuated Leishmania vaccines such as centrin deleted Leishmania donovani parasites (LdCen−/−) showed protective immunity in animal models. Such studies typically examined the biomarkers of protective immunity however the biomarkers of attenuation in the parasite preparations have not received adequate attention. As several candidate vaccines enter clinical trials, a more complete product characterization to enable maintenance of product quality will help meet regulatory requirements. Towards this goal, we have determined the complete genome sequence of LdCen−/− and its parent strain Ld1S-2D (LdWT) and characterized the LdCen−/− vaccine strain using bioinformatics tools. Results showed that the LdCen−/− parasites, in addition to loss of the centrin gene, have additional deletions ranging from 350 bp to 6900 bp in non-contiguous loci on several chromosomes, most commonly in untranslated regions. We have experimentally verified a subset of these adventitious deletions that had no impact on the attenuation of the LdCen−/− parasites. Our results identified hitherto unknown features of attenuation of virulence that could be used as markers of product quality in production lots and highlight the importance of product characterization in parasitic vaccines.
Collapse
|
14
|
Dewar S, Sienkiewicz N, Ong HB, Wall RJ, Horn D, Fairlamb AH. The Role of Folate Transport in Antifolate Drug Action in Trypanosoma brucei. J Biol Chem 2016; 291:24768-24778. [PMID: 27703008 PMCID: PMC5114424 DOI: 10.1074/jbc.m116.750422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/14/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to identify and characterize mechanisms of resistance to antifolate drugs in African trypanosomes. Genome-wide RNAi library screens were undertaken in bloodstream form Trypanosoma brucei exposed to the antifolates methotrexate and raltitrexed. In conjunction with drug susceptibility and folate transport studies, RNAi knockdown was used to validate the functions of the putative folate transporters. The transport kinetics of folate and methotrexate were further characterized in whole cells. RNA interference target sequencing experiments identified a tandem array of genes encoding a folate transporter family, TbFT1-3, as major contributors to antifolate drug uptake. RNAi knockdown of TbFT1-3 substantially reduced folate transport into trypanosomes and reduced the parasite's susceptibly to the classical antifolates methotrexate and raltitrexed. In contrast, knockdown of TbFT1-3 increased susceptibly to the non-classical antifolates pyrimethamine and nolatrexed. Both folate and methotrexate transport were inhibited by classical antifolates but not by non-classical antifolates or biopterin. Thus, TbFT1-3 mediates the uptake of folate and classical antifolates in trypanosomes, and TbFT1-3 loss-of-function is a mechanism of antifolate drug resistance.
Collapse
Affiliation(s)
- Simon Dewar
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Natasha Sienkiewicz
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Han B Ong
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Richard J Wall
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - David Horn
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Alan H Fairlamb
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|
15
|
Laffitte MCN, Leprohon P, Papadopoulou B, Ouellette M. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Res 2016; 5:2350. [PMID: 27703673 PMCID: PMC5031125 DOI: 10.12688/f1000research.9218.1] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2016] [Indexed: 01/04/2023] Open
Abstract
Leishmania has a plastic genome, and drug pressure can select for gene copy number variation (CNV). CNVs can apply either to whole chromosomes, leading to aneuploidy, or to specific genomic regions. For the latter, the amplification of chromosomal regions occurs at the level of homologous direct or inverted repeated sequences leading to extrachromosomal circular or linear amplified DNAs. This ability of
Leishmania to respond to drug pressure by CNVs has led to the development of genomic screens such as Cos-Seq, which has the potential of expediting the discovery of drug targets for novel promising drug candidates.
Collapse
Affiliation(s)
- Marie-Claude N Laffitte
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Barbara Papadopoulou
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
16
|
Genomic Appraisal of the Multifactorial Basis for In Vitro Acquisition of Miltefosine Resistance in Leishmania donovani. Antimicrob Agents Chemother 2016; 60:4089-100. [PMID: 27114280 DOI: 10.1128/aac.00478-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/22/2016] [Indexed: 12/16/2022] Open
Abstract
Protozoan parasites of the Leishmania donovani complex are the causative agents of visceral leishmaniasis (VL), the most severe form of leishmaniasis, with high rates of mortality if left untreated. Leishmania parasites are transmitted to humans through the bite of infected female sandflies (Diptera: Phlebotominae), and approximately 500,000 new cases of VL are reported each year. In the absence of a safe human vaccine, chemotherapy, along with vector control, is the sole tool with which to fight the disease. Miltefosine (hexadecylphosphatidylcholine [HePC]), an antitumoral drug, is the only successful oral treatment for VL. In the current study, we describe the phenotypic traits of L. donovani clonal lines that have acquired resistance to HePC. We performed whole-genome and RNA sequencing of these resistant lines to provide an inclusive overview of the multifactorial acquisition of experimental HePC resistance, circumventing the challenge of identifying changes in membrane-bound proteins faced by proteomics. This analysis was complemented by assessment of the in vitro infectivity of HePC-resistant parasites. Our work underscores the importance of complementary "omics" to acquire the most comprehensive insight for multifaceted processes, such as HePC resistance.
Collapse
|
17
|
Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite Leishmania. Proc Natl Acad Sci U S A 2016; 113:E3012-21. [PMID: 27162331 DOI: 10.1073/pnas.1520693113] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Innovative strategies are needed to accelerate the identification of antimicrobial drug targets and resistance mechanisms. Here we develop a sensitive method, which we term Cosmid Sequencing (or "Cos-Seq"), based on functional cloning coupled to next-generation sequencing. Cos-Seq identified >60 loci in the Leishmania genome that were enriched via drug selection with methotrexate and five major antileishmanials (antimony, miltefosine, paromomycin, amphotericin B, and pentamidine). Functional validation highlighted both known and previously unidentified drug targets and resistance genes, including novel roles for phosphatases in resistance to methotrexate and antimony, for ergosterol and phospholipid metabolism genes in resistance to miltefosine, and for hypothetical proteins in resistance to paromomycin, amphothericin B, and pentamidine. Several genes/loci were also found to confer resistance to two or more antileishmanials. This screening method will expedite the discovery of drug targets and resistance mechanisms and is easily adaptable to other microorganisms.
Collapse
|
18
|
Roy G, Ouellette M. Inactivation of the cytosolic and mitochondrial serine hydroxymethyl transferase genes in Leishmania major. Mol Biochem Parasitol 2016; 204:106-110. [PMID: 26868981 DOI: 10.1016/j.molbiopara.2016.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 01/11/2016] [Accepted: 02/05/2016] [Indexed: 11/28/2022]
Abstract
Leishmania has two serine hydroxylmethyl transferase (SHMT) genes, one coding for a cytosolic and the other for a mitochondrial enzyme. Trypanosoma cruzi has only the gene coding for the cytosolic enzyme and Trypanosoma brucei has no SHMT. We tested whether these genes were dispensable for growth in Leishmania major. By gene inactivation we succeeded in generating three cells lines one without the cytosolic cSHMT, one without the mitochondrial mSHMT, and finally one L. major line without any SHMT. SHMT is thus dispensable for growth of Leishmania in rich medium. The ability of the various shmt null mutants to grow in defined medium was tested and the growth of the shmt null mutant was dependent on the presence of serine. Overall this work has shown that SHMT is dispensable for Leishmania growth but it may be necessary when growing in environments poor in serine.
Collapse
Affiliation(s)
- Gaétan Roy
- Centre de Recherche en Infectiologie de l'Université Laval et Centre de Recherche du CHU de Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie de l'Université Laval et Centre de Recherche du CHU de Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
19
|
Proteomic analysis of metacyclogenesis in Leishmania infantum wild-type and PTR1 null mutant. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Salcedo-Sora JE, Ward SA. The folate metabolic network of Falciparum malaria. Mol Biochem Parasitol 2013; 188:51-62. [PMID: 23454873 DOI: 10.1016/j.molbiopara.2013.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 01/07/2023]
Abstract
The targeting of key enzymes in the folate pathway continues to be an effective chemotherapeutic approach that has earned antifolate drugs a valuable position in the medical pharmacopoeia. The successful therapeutic use of antifolates as antimalarials has been a catalyst for ongoing research into the biochemistry of folate and pterin biosynthesis in malaria parasites. However, our understanding of the parasites folate metabolism remains partial and patchy, especially in relation to the shikimate pathway, the folate cycle, and folate salvage. A sizeable number of potential folate targets remain to be characterised. Recent reports on the parasite specific transport of folate precursors that would normally be present in the human host awaken previous hypotheses on the salvage of folate precursors or by-products. As the parasite progresses through its life-cycle it encounters very contrasting host cell environments that present radically different metabolic milieus and biochemical challenges. It would seem probable that as the parasite encounters differing environments it would need to modify its biochemistry. This would be reflected in the folate homeostasis in Plasmodium. Recent drug screening efforts and insights into folate membrane transport substantiate the argument that folate metabolism may still offer unexplored opportunities for therapeutic attack.
Collapse
Affiliation(s)
- J Enrique Salcedo-Sora
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | |
Collapse
|
21
|
Abstract
Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for 'repurposing' of compounds developed originally for treatment of human cancers or other infectious agents.
Collapse
|
22
|
Ong HB, Sienkiewicz N, Wyllie S, Fairlamb AH. Dissecting the metabolic roles of pteridine reductase 1 in Trypanosoma brucei and Leishmania major. J Biol Chem 2011; 286:10429-38. [PMID: 21239486 PMCID: PMC3060496 DOI: 10.1074/jbc.m110.209593] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmania parasites are pteridine auxotrophs that use an NADPH-dependent pteridine reductase 1 (PTR1) and NADH-dependent quinonoid dihydropteridine reductase (QDPR) to salvage and maintain intracellular pools of tetrahydrobiopterin (H4B). However, the African trypanosome lacks a credible candidate QDPR in its genome despite maintaining apparent QDPR activity. Here we provide evidence that the NADH-dependent activity previously reported by others is an assay artifact. Using an HPLC-based enzyme assay, we demonstrate that there is an NADPH-dependent QDPR activity associated with both TbPTR1 and LmPTR1. The kinetic properties of recombinant PTR1s are reported at physiological pH and ionic strength and compared with LmQDPR. Specificity constants (kcat/Km) for LmPTR1 are similar with dihydrobiopterin (H2B) and quinonoid dihydrobiopterin (qH2B) as substrates and about 20-fold lower than LmQDPR with qH2B. In contrast, TbPTR1 shows a 10-fold higher kcat/Km for H2B over qH2B. Analysis of Trypanosoma brucei isolated from infected rats revealed that H4B (430 nm, 98% of total biopterin) was the predominant intracellular pterin, consistent with a dual role in the salvage and regeneration of H4B. Gene knock-out experiments confirmed this: PTR1-nulls could only be obtained from lines overexpressing LmQDPR with H4B as a medium supplement. These cells grew normally with H4B, which spontaneously oxidizes to qH2B, but were unable to survive in the absence of pterin or with either biopterin or H2B in the medium. These findings establish that PTR1 has an essential and dual role in pterin metabolism in African trypanosomes and underline its potential as a drug target.
Collapse
Affiliation(s)
- Han B Ong
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | |
Collapse
|
23
|
Global analysis of protein palmitoylation in African trypanosomes. EUKARYOTIC CELL 2010; 10:455-63. [PMID: 21193548 DOI: 10.1128/ec.00248-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.
Collapse
|
24
|
Phenylalanine hydroxylase (PAH) from the lower eukaryote Leishmania major. Mol Biochem Parasitol 2010; 175:58-67. [PMID: 20887755 DOI: 10.1016/j.molbiopara.2010.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 09/10/2010] [Accepted: 09/19/2010] [Indexed: 11/20/2022]
Abstract
Aromatic amino acid hydroxylases (AAAH) typically use tetrahydrobiopterin (H(4)B) as the cofactor. The protozoan parasite Leishmania major requires biopterin for growth and expresses strong salvage and regeneration systems to maintain H(4)B levels. Here we explored the consequences of genetic manipulation of the sole L. major phenylalanine hydroxylase (PAH) to explore whether it could account for the Leishmania H(4)B requirement. L. major PAH resembles AAAHs of other organisms, bearing eukaryotic-type domain organization, and conservation of key catalytic residues including those implicated in pteridine binding. A pah(-) null mutant and an episomal complemented overexpressing derivative (pah-/+PAH) were readily obtained, and metabolic labeling studies established that PAH was required to hydroxylate Phe to Tyr. Neither WT nor overexpressing lines were able to hydroxylate radiolabeled tyrosine or tryptophan, nor to synthesize catecholamines. WT but not pah(-) parasites showed reactivity with an antibody to melanin when grown with l-3,4-dihydroxyphenylalanine (L-DOPA), although the reactive product is unlikely to be melanin sensu strictu. WT was auxotrophic for Phe, Trp and Tyr, suggesting that PAH activity was insufficient to meet normal Tyr requirements. However, pah(-) showed an increased sensitivity to Tyr deprivation, while the pah(-)/+PAH overexpressor showed increased survival and could be adapted to grow well without added Tyr. pah(-) showed no alterations in H(4)B-dependent differentiation, as established by in vitro metacyclogenesis, or survival in mouse or macrophage infections. Thus Leishmania PAH may mitigate but not alleviate Tyr auxotrophy, but plays no essential role in the steps of the parasite infectious cycle. These findings suggest PAH is unlikely to explain the Leishmania requirement for biopterin.
Collapse
|
25
|
Dridi L, Ahmed Ouameur A, Ouellette M. High affinity S-Adenosylmethionine plasma membrane transporter of Leishmania is a member of the folate biopterin transporter (FBT) family. J Biol Chem 2010; 285:19767-75. [PMID: 20406813 PMCID: PMC2888387 DOI: 10.1074/jbc.m110.114520] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/12/2010] [Indexed: 11/06/2022] Open
Abstract
S-Adenosylmethionine (AdoMet) is an important methyl group donor that plays a central role in many essential biochemical processes. The parasite Leishmania can both synthesize and transport AdoMet. Leishmania cells resistant to the antifolate methotrexate due to a rearrangement in folate biopterin transporter (FBT) genes were cross-resistant to sinefungin, an AdoMet analogue. FBT gene rearrangements were also observed in Leishmania major cells selected for sinefungin resistance. One of the rearranged FBT genes corresponded to the main AdoMet transporter (AdoMetT1) of Leishmania as determined by gene transfection and gene inactivation experiments. AdoMetT1 was determined to be a high affinity plasma membrane transporter expressed constitutively throughout the growth phases of the parasite. Leishmania cells selected for resistance or naturally insensitive to sinefungin had lower expression of AdoMetT1. A new function in one carbon metabolism, also a pathway of interest for chemotherapeutic interventions, is described for a novel class of membrane proteins found in diverse organisms.
Collapse
Affiliation(s)
- Larbi Dridi
- From the Centre de Recherche en Infectiologie du CHUL, Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Amin Ahmed Ouameur
- From the Centre de Recherche en Infectiologie du CHUL, Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Marc Ouellette
- From the Centre de Recherche en Infectiologie du CHUL, Université Laval, Québec City, Québec G1V 4G2, Canada
| |
Collapse
|
26
|
Sienkiewicz N, Ong HB, Fairlamb AH. Trypanosoma brucei pteridine reductase 1 is essential for survival in vitro and for virulence in mice. Mol Microbiol 2010; 77:658-71. [PMID: 20545846 PMCID: PMC2916222 DOI: 10.1111/j.1365-2958.2010.07236.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene knockout and knockdown methods were used to examine essentiality of pteridine reductase (PTR1) in pterin metabolism in the African trypanosome. Attempts to generate PTR1 null mutants in bloodstream form Trypanosoma brucei proved unsuccessful; despite integration of drug selectable markers at the target locus, the gene for PTR1 was either retained at the same locus or elsewhere in the genome. However, RNA interference (RNAi) resulted in complete knockdown of endogenous protein after 48 h, followed by cell death after 4 days. This lethal phenotype was reversed by expression of enzymatically active Leishmania major PTR1 in RNAi lines ((oe)RNAi) or by addition of tetrahydrobiopterin to cultures. Loss of PTR1 was associated with gross morphological changes due to a defect in cytokinesis, resulting in cells with multiple nuclei and kinetoplasts, as well as multiple detached flagella. Electron microscopy also revealed increased numbers of glycosomes, while immunofluorescence microscopy showed increased and more diffuse staining for glycosomal matrix enzymes, indicative of mis-localisation to the cytosol. Mis-localisation was confirmed by digitonin fractionation experiments. RNAi cell lines were markedly less virulent than wild-type parasites in mice and virulence was restored in the (oe)RNAi line. Thus, PTR1 may be a drug target for human African trypanosomiasis.
Collapse
Affiliation(s)
- Natasha Sienkiewicz
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|
27
|
Müller M, Padmanabhan PK, Papadopoulou B. Selective inactivation of SIDER2 retroposon-mediated mRNA decay contributes to stage- and species-specific gene expression in Leishmania. Mol Microbiol 2010; 77:471-91. [PMID: 20497500 DOI: 10.1111/j.1365-2958.2010.07226.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite their high genomic synteny, the Leishmania major and Leishmania infantum species exhibit extensive differences in mRNA expression patterns throughout the parasite's development. Yet, the underlying mechanisms for this species-specific differential gene expression are largely unknown. Here we report that Short Interspersed DEgenerated Retroposons of the SIDER2 subfamily, shown previously to promote rapid mRNA turnover, confer differential regulation of orthologous transcripts resulting in a stage- and species-specific gene expression. We demonstrate that SIDER2-mediated decay of two L. major transcripts encoding a hypothetical protein and an aminomethyltransferase to a similar extent in promastigote and amastigote developmental forms results in a constitutive low expression of the corresponding proteins. In contrast, their L. infantum orthologs are differentially expressed due to the selective inactivation of SIDER2 in intracellular amastigotes. Inactivation of the SIDER2 function blocks the SIDER2-mediated deadenylation-independent decay pathway, and stabilized transcripts are degraded by a slower, deadenylation-dependent mechanism. Sequence variations in SIDER2 retroposons between orthologous transcripts do not contribute to SIDER2 inactivation. Our data suggest that SIDER2 inactivation is 3'-untranslated region context-dependent and that involves possibly species- and stage-specific trans-acting factor(s). These findings further emphasize the important contribution of SIDER retroposons in the control of gene expression across the Leishmania genus.
Collapse
Affiliation(s)
- Michaela Müller
- Infectious Disease Research Center, CHUL Research Center and Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | |
Collapse
|
28
|
Dridi L, Haimeur A, Ouellette M. Structure-function analysis of the highly conserved charged residues of the membrane protein FT1, the main folic acid transporter of the protozoan parasite Leishmania. Biochem Pharmacol 2009; 79:30-8. [PMID: 19660435 DOI: 10.1016/j.bcp.2009.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
Abstract
The main plasma membrane folate transporter FT1 of Leishmania belongs to the novel FBT family which is part of the major facilitator superfamily. We have investigated the role of the 10 most conserved charged amino acids of FBTs by site directed mutagenesis. The functions of the mutated proteins were tested for their capacity to transport FA, to sensitize methotrexate resistant cells to methotrexate, for protein production, and for protein localisation. Of the 10 conserved charged amino acids that were mutated to neutral amino acids, all had effects on FT1 transport activities. Only four of the 10 initial mutants (K116L, K133L, R497L, and D529V) retained between 15% and 50% of FT1 activity. The R497 residue was shown to be involved in substrate binding. When the charged conserved residues at position 124, 134, 179, 514, 537 and 565 were changed to neutral amino acids, this led to inactive proteins but the generation of new mutants D124E, R134K, D514E and D537E regained between 20% and 50% of wild-type FT1 activity suggesting that the charge is important for protein function. The mutated protein D179E had, under our standard experimental conditions, no activity, while E565D was completely inactive. The differential activity of the mutated proteins was due either to changes in the apparent K(m) or V(max). Mutagenesis experiments have revealed that charged amino acids were essential for FT1 stability or activity and led to a plausible model for the transport of folic acid through FT1.
Collapse
Affiliation(s)
- Larbi Dridi
- Centre de Recherche en Infectiologie du CHUL, Université Laval, 2705 Boul, Laurier, Québec, Québec G1V4G2, Québec, Canada
| | | | | |
Collapse
|
29
|
A 245kb mini-chromosome impacts on Leishmania braziliensis infection and survival. Biochem Biophys Res Commun 2009; 382:74-8. [PMID: 19254695 DOI: 10.1016/j.bbrc.2009.02.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 11/20/2022]
Abstract
Leishmania (V.) braziliensis, the causative agent of mucocutaneous leishmaniasis in the New World, may present an LD1 type genomic amplification that appears as a small 245 kb linear chromosome, and is not clearly associated to the presence of a selection agent. A bt1 gene, codifying for a biopterin transporter protein, was identified in this small chromosome. Leishmania are auxotrophic for pterins and one of the proposed explanations for the appearance of this amplification is the improvement of biopterin capture by the parasite. We analyzed some biological aspects of two lineages of L. braziliensis strain M2903, with and without the small amplified chromosome. We showed differences in infectivity of these lineages, in macrophages and the insect vector Lutzomyia longipalpis, as well as in the uptake and metabolization of intermediates of the Leishmania biopterin salvage pathway. Our results suggest that the genomic amplification favors survival due to improved biopterin capture and at the same time hinders the infective capability, suggesting that within a population different parasites can perform different roles.
Collapse
|
30
|
Moreira W, Leblanc E, Ouellette M. The role of reduced pterins in resistance to reactive oxygen and nitrogen intermediates in the protozoan parasite Leishmania. Free Radic Biol Med 2009; 46:367-75. [PMID: 19022374 DOI: 10.1016/j.freeradbiomed.2008.10.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 11/18/2022]
Abstract
During its life cycle, the protozoan parasite Leishmania experiences oxidative stress when interacting with macrophages. Reduced pterins are known scavengers of reactive oxygen and nitrogen intermediates. Leishmania has a pteridine reductase, PTR1, whose main function is to provide reduced pterins. We investigated the role of PTR1 in resistance to oxidative and nitrosative stress in Leishmania tarentolae, Leishmania infantum, and Leishmania major PTR1(-/-) mutants. The PTR1(-/-) cells of the three species were more sensitive to H2O2- and NO-induced stress. Using a fluorescent probe allowing ROI quantification, we demonstrated an increase in intracellular oxidant molecules in the PTR1(-/-) mutants. The disruption of PTR1 increased metacyclogenesis in L. infantum and L. major. We purified metacyclic parasites from PTR1(-/-) mutants and control cells and tested their intracellular survival in the J774 mouse cell line and in human monocyte-derived macrophages. Our results showed that PTR1(-/-) null mutants survived less in both macrophage models compared to control cells and this decrease was more pronounced in macrophages activated for oxidant production. This study demonstrates that one physiological role of reduced pterins in Leishmania is to deal with oxidative and nitrosative species, and a decreased ability to provide reduced pterins leads to decreased intracellular survival.
Collapse
Affiliation(s)
- Wilfried Moreira
- Centre de Recherche en Infectiologie du CHUL, Université Laval, Québec, QC G1V 4G2, Canada
| | | | | |
Collapse
|
31
|
Haile S, Dupé A, Papadopoulou B. Deadenylation-independent stage-specific mRNA degradation in Leishmania. Nucleic Acids Res 2008; 36:1634-44. [PMID: 18250085 PMCID: PMC2275140 DOI: 10.1093/nar/gkn019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The life cycle of Leishmania alternates between developmental forms residing within the insect vector (e.g. promastigotes) and the mammalian host (amastigotes). In Leishmania nearly all control of gene expression is post-transcriptional and involves sequences in the 3′-untranslated regions (3′UTRs) of mRNAs. Very little is known as to how these cis-elements regulate RNA turnover and translation rates in trypanosomatids and nothing is known about mRNA degradation mechanisms in Leishmania in particular. Here, we use the amastin mRNA—an amastigote-specific transcript—as a model and show that a ∼100 nt U-rich element (URE) within its 3′UTR significantly accounts for developmental regulation. RNase-H-RNA blot analysis revealed that a major part of the rapid promastigote-specific degradation of the amastin mRNA is not initiated by deadenylation. This is in contrast to the amastin mRNA in amastigotes and to reporter RNAs lacking the URE, which, in common with most eukaryotic mRNAs studied to-date, are deadenylated before being degraded. Moreover, our analysis did not reveal a role for decapping in the stage-specific degradation of the amastin mRNA. Overall, these results suggest that degradation of the amastin mRNA of Leishmania is likely to be bi-phasic, the first phase being stage-specific and dependent on an unusual URE-mediated pathway of mRNA degradation.
Collapse
Affiliation(s)
- Simon Haile
- Research Centre in Infectious Diseases, CHUL Research Centre and Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | |
Collapse
|
32
|
Jain M, Madhubala R. Characterization and localization of ORFF gene from the LD1 locus of Leishmania donovani. Gene 2008; 416:1-10. [PMID: 18423903 DOI: 10.1016/j.gene.2008.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/21/2007] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
Abstract
The Leishmania genome project has identified new genes at a rapid rate. The 32.8-megabase haploid genome of Leishmania major (Friedlin strain) is published and the comparative analysis of genome sequences of two other species, Leishmania infantum and Leishmanai braziliensis has been done. The haploid genome of Leishmania major (Friedlin strain) has around 8272 protein-coding genes, of which only 36% can be ascribed a putative function. Out of these open reading frames around 910 Leishmania major genes have no orthologs in the other two Tritryp genomes. These "Leishmania -restricted" genes hold a potential as novel drug targets and potential vaccine candidates. Open reading frame, ORFF, is a single copy gene located on the chromosome 35 as a part of the multigene LD1 locus. Indirect immunofluorescence study and creation of ORFF-GFP fusion showed that ORFF is localized in the DNA containing compartments of Leishmania donovani, the nucleus and the kinetoplast. In order to characterize ORFF gene of L. donovani, we have created ORFF over-expressors and single allele deletion mutants by homologous replacement strategy. ORFF is likely to be an important gene for the parasite growth since results from over-expression studies and characterization of ORFF heterozygous knockout mutants reveal marked alterations in the cell cycle phenotype compared to the wild-type parasites. Flowcytometry based cell cycle analysis showed selective increase in the DNA synthetic phase of the ORFF over-expressors and a subversion of the same in heterozygous knockouts of ORFF suggesting its potential role in cell cycle progression.
Collapse
Affiliation(s)
- Manju Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|
33
|
Barrett MP, Gilbert IH. Targeting of toxic compounds to the trypanosome's interior. ADVANCES IN PARASITOLOGY 2006; 63:125-83. [PMID: 17134653 DOI: 10.1016/s0065-308x(06)63002-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Drugs can be targeted into African trypanosomes by exploiting carrier proteins at the surface of these parasites. This has been clearly demonstrated in the case of the melamine-based arsenical and the diamidine classes of drug that are already in use in the treatment of human African trypanosomiasis. These drugs can enter via an aminopurine transporter, termed P2, encoded by the TbAT1 gene. Other toxic compounds have also been designed to enter via this transporter. Some of these compounds enter almost exclusively through the P2 transporter, and hence loss of the P2 transporter leads to significant resistance to these particular compounds. It now appears, however, that some diamidines and melaminophenylarsenicals may also be taken up by other routes (of yet unknown function). These too may be exploited to target new drugs into trypanosomes. Additional purine nucleoside and nucleobase transporters have also been subverted to deliver toxic agents to trypanosomes. Glucose and amino acid transporters too have been investigated with a view to manipulating them to carry toxins into Trypanosoma brucei, and recent work has demonstrated that aquaglyceroporins may also have considerable potential for drug-targeting. Transporters, including those that carry lipids and vitamins such as folate and other pterins also deserve more attention in this regard. Some drugs, for example suramin, appear to enter via routes other than plasma-membrane-mediated transport. Receptor-mediated endocytosis has been proposed as a possible way in for suramin. Endocytosis also appears to be crucial in targeting natural trypanocides, such as trypanosome lytic factor (TLF) (apolipoprotein L1), into trypanosomes and this offers an alternative means of selectively targeting toxins to the trypanosome's interior. Other compounds may be induced to enter by increasing their capacity to diffuse over cell membranes; in this case depending exclusively on selective activity within the cell rather than selective uptake to impart selective toxicity. This review outlines studies that have aimed to exploit trypanosome nutrient uptake routes to selectively carry toxins into these parasites.
Collapse
Affiliation(s)
- Michael P Barrett
- Division of Infection & Immunity, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
34
|
Holzmuller P, Hide M, Sereno D, Lemesre JL. Leishmania infantum amastigotes resistant to nitric oxide cytotoxicity: Impact on in vitro parasite developmental cycle and metabolic enzyme activities. INFECTION GENETICS AND EVOLUTION 2006; 6:187-97. [PMID: 15905133 DOI: 10.1016/j.meegid.2005.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
Nitric oxide (NO) has been demonstrated to be the principal effector molecule mediating intracellular killing of Leishmania. The free radical characteristic of NO prevented direct induction of resistance in Leishmania wild-type parasites. Starting from the previous observation that antimony-resistant amastigotes of Leishmania infantum were not affected by NO-induced apoptotic death, we used a continuous NO pressure protocol and succeeded in inducing NO resistance in amastigote forms of L. infantum. Two clones resistant to 50 microM (LiNOR50) and 100 microM (LiNOR100) of the NO donor DETA/NONOate, derived from parental clone weakly resistant to trivalent antimony (LiSbIIIR4), were selected and analysed. Both clones were also resistant to other NO donors, particularly SNAP. In the absence of potassium antimonyl tartrate, all clones (LiSbIIIR4, LiNOR50 and LiNOR100) lost their antimony resistance almost totally. Interestingly, the parasitic developmental life cycle of NO-resistant mutants was dramatically disturbed. NO-resistant amastigotes differentiated more rapidly into promastigotes than the wild-type ones. Nevertheless, NO-resistant amastigotes produce a maximal number of parasites 1.5-2 times lower than the wild-type whereas, after differentiation, NO-resistant promastigotes produced more cells than the wild-type. We showed that this last phenomenon could be a consequence of the overexpression of parasitic enzymes involved in both glycolysis and respiration processes. NO-resistant amastigotes overexpressed three enzymes: cis-aconitase, glyceraldehyde-3-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. The two first enzymes are NO molecular targets which could be directly involved in NO resistance and the third one could interfere in modifying Leishmania metabolism.
Collapse
Affiliation(s)
- Philippe Holzmuller
- UR 008 Pathogénie des Trypanosomatidés, IRD (Institut de Recherche pour le Développement), B.P. 64501, 911 avenue Agropolis, 34394 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
35
|
Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol 2005; 57:1690-9. [PMID: 16135234 DOI: 10.1111/j.1365-2958.2005.04782.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimonial-containing drugs are the first line of treatment against the parasite Leishmania. Resistance to antimonials has been correlated to its reduced accumulation. We used a dominant negative functional cloning strategy where a Leishmania mexicana expression cosmid bank was transfected in cells resistant to trivalent antimony (SbIII). Cells were selected for increased sensitivity to SbIII. One cosmid was isolated that could bestow SbIII sensitivity to resistant cells. The gene part of this cosmid that is responsible for increased SbIII sensitivity corresponds to AQP1, an aquaglyceroporin. AQP1 was recently shown to be a route by which SbIII can accumulate in Leishmania cells. Transport studies have shown that the L. mexicana AQP1 can restore SbIII transport in resistant cells. Southern blot analysis indicated that the copy number of neither the AQP1 gene nor the other AQP homologues was changed in antimony-resistant mutants of several Leishmania species. The AQP1 gene sequence was also unchanged in mutants. However, the AQP1 RNA levels were downregulated in several Leishmania promastigote species resistant to antimonials. In general, but not always, the level of AQP1 transcript levels correlated well with the accumulation of SbIII and resistance levels in Leishmania cells. AQP1 thus appears to be a key determinant of antimonials accumulation and susceptibility in Leishmania.
Collapse
Affiliation(s)
- Nathalie Marquis
- Centre de recherche en Infectiologie du Centre de recherche du CHUL and Division de Microbiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
36
|
Bedhomme M, Hoffmann M, McCarthy EA, Gambonnet B, Moran RG, Rébeillé F, Ravanel S. Folate Metabolism in Plants. J Biol Chem 2005; 280:34823-31. [PMID: 16055441 DOI: 10.1074/jbc.m506045200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The distribution of folates in plant cells suggests a complex traffic of the vitamin between the organelles and the cytosol. The Arabidopsis thaliana protein AtFOLT1 encoded by the At5g66380 gene is the closest homolog of the mitochondrial folate transporters (MFTs) characterized in mammalian cells. AtFOLT1 belongs to the mitochondrial carrier family, but GFP-tagging experiments and Western blot analyses indicated that it is targeted to the envelope of chloroplasts. By using the glycine auxotroph Chinese hamster ovary glyB cell line, which lacks a functional MFT and is deficient in folates transport into mitochondria, we showed by complementation that AtFOLT1 functions as a folate transporter in a hamster background. Indeed, stable transfectants bearing the AtFOLT1 cDNA have enhanced levels of folates in mitochondria and can support growth in glycine-free medium. Also, the expression of AtFOLT1 in Escherichia coli allows bacterial cells to uptake exogenous folate. Disruption of the AtFOLT1 gene in Arabidopsis does not lead to phenotypic alterations in folate-sufficient or folate-deficient plants. Also, the atfolt1 null mutant contains wild-type levels of folates in chloroplasts and preserves the enzymatic capacity to catalyze folate-dependent reactions in this subcellular compartment. These findings suggest strongly that, despite many common features shared by chloroplasts and mitochondria from mammals regarding folate metabolism, the folate import mechanisms in these organelles are not equivalent: folate uptake by mammalian mitochondria is mediated by a unique transporter, whereas there are alternative routes for folate import into chloroplasts.
Collapse
Affiliation(s)
- Mariette Bedhomme
- Laboratoire de Physiologie Cellulaire Végétale, UMR5168 CNRS-CEA-INRA-Université Joseph Fourier Grenoble I, Département Réponse et Dynamique Cellulaires, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
37
|
McNicoll F, Müller M, Cloutier S, Boilard N, Rochette A, Dubé M, Papadopoulou B. Distinct 3'-untranslated region elements regulate stage-specific mRNA accumulation and translation in Leishmania. J Biol Chem 2005; 280:35238-46. [PMID: 16115874 DOI: 10.1074/jbc.m507511200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently characterized a large developmentally regulated gene family in Leishmania encoding the amastin surface proteins. While studying the regulation of these genes, we identified a region of 770 nucleotides (nt) within the 2055-nt 3'-untranslated region (3'-UTR) that regulates stage-specific gene expression at the level of translation. An intriguing feature of this 3'-UTR regulatory region is the presence of a approximately 450-nt element that is highly conserved among several Leishmania mRNAs. Here we show, using a luciferase reporter system and polysome profiling experiments, that the 450-nt element stimulates translation initiation of the amastin mRNA in response to heat shock, which is the main environmental change that the parasite encounters upon its entry into the mammalian host. Deletional analyses depicted a second region of approximately 100 nucleotides located at the 3'-end of several amastin transcripts, which also activates translation in response to elevated temperature. Both 3'-UTR regulatory elements act in an additive manner to stimulate amastin mRNA translation. In addition, we show that acidic pH encountered in the phagolysosomes of macrophages, the location of parasitic differentiation, triggers the accumulation of amastin transcripts by a distinct mechanism that is independent of the 450-nt and 100-nt elements. Overall, these important findings support the notion that stage-specific post-transcriptional regulation of the amastin mRNAs in Leishmania is complex and involves the coordination of distinct mechanisms controlling mRNA stability and translation that are independently triggered by key environmental signals inducing differentiation of the parasite within macrophages.
Collapse
Affiliation(s)
- François McNicoll
- Infectious Diseases Research Center, Centre Hospitalier de l'Université Laval Research Center of Laval University, Quebec G1V 4G2, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Araújo-Santos JM, Parodi-Talice A, Castanys S, Gamarro F. The overexpression of an intracellular ABCA-like transporter alters phospholipid trafficking in Leishmania. Biochem Biophys Res Commun 2005; 330:349-55. [PMID: 15781271 DOI: 10.1016/j.bbrc.2005.02.176] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Indexed: 11/27/2022]
Abstract
In parasites, ATP-binding cassette (ABC) transporters represent an important family of proteins related to drug resistance and other biological activities. Here we report the characterization of LtrABCA2, a new ABC transporter of the ABCA subfamily in the protozoan parasite Leishmania tropica, localized at the flagellar pocket region and in internal vesicles. The overexpression of this transporter reduced the accumulation of fluorescent glycerophospholipid analogs, increased the exocytic activity, and decreased infectivity of macrophage, but did not confer resistance to drugs. Together, these results suggest that this new ABC transporter plays a role in phospholipid trafficking, which may be modifying the vesicular trafficking and the infectivity of the parasite.
Collapse
Affiliation(s)
- José María Araújo-Santos
- Instituto de Parasitología y Biomedicina López-Neyra, C.S.I.C, Parque Tecnológico de Ciencias de la Salud, Avda del Conocimiento s/n 18100 Armilla, Granada, Spain
| | | | | | | |
Collapse
|
39
|
Marquis JF, Hardy I, Olivier M. Resistance mechanism development to the topoisomerase-I inhibitor Hoechst 33342 byLeishmania donovani. Parasitology 2005; 131:197-206. [PMID: 16145936 DOI: 10.1017/s0031182005007328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The bisbenzimidazole compound Hoechst 33342 (Ho342) has been identified as a specific Topoisomerase-I (Topo-I) inhibitor in mammalian cells. More recently, we have reported the ability of Ho342 to targetL. donovaniTopo-I, leading to parasite growth inhibitionin vitroby mechanisms involving DNA breakage and apoptosis-like phenomenon. As the Ho342 lead molecule (2,5′-Bi-1H-benzimidazole) can be used as a starting structure for derivative compounds more effective againstLeishmania, defining the Ho342 resistance mechanism(s) inLeishmaniarepresents an important strategic tool. In the present study, we selected resistant parasites to Ho342 (LdRHo.300). While we observed an increase of the Topo-I gene expression correlated by a higher Topo-I DNA relaxation activity, the Topo-I genes (LdTOP1AandLdTOP1B) sequencing did not reveal any mutation for the resistant parasites. Moreover, our results on Ho342 cellular accumulation suggested the presence of a potential energy-dependent Ho342 transporter in the wild-type parasite, and that an alteration of this transporter has occurred inLdRHo.300, leading to an altered drug accumulation. Collectively, Ho342 resistance characterization provided results supporting that the resistance developed byLdRHo.300involves complex mechanisms, most likely dominated by an altered drug accumulation, providing new insight in the Ho342 resistance mechanisms.
Collapse
Affiliation(s)
- J F Marquis
- Centre for the Study of Host Resistance and the Research Institute of McGill University Health Centre, Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
40
|
Martin RE, Henry RI, Abbey JL, Clements JD, Kirk K. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum. Genome Biol 2005; 6:R26. [PMID: 15774027 PMCID: PMC1088945 DOI: 10.1186/gb-2005-6-3-r26] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/31/2004] [Accepted: 01/28/2005] [Indexed: 11/24/2022] Open
Abstract
Bioinformatic and expression analyses attribute putative functions to transporters and channels encoded by the Plasmodium falciparum genome. The malaria parasite has substantially more membrane transport proteins than previously thought. Background The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen.
Collapse
Affiliation(s)
- Rowena E Martin
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | - Roselani I Henry
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | - Janice L Abbey
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | - John D Clements
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
- Division of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | - Kiaran Kirk
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
41
|
Richard D, Leprohon P, Drummelsmith J, Ouellette M. Growth Phase Regulation of the Main Folate Transporter of Leishmania infantum and Its Role in Methotrexate Resistance. J Biol Chem 2004; 279:54494-501. [PMID: 15466466 DOI: 10.1074/jbc.m409264200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protozoan parasite Leishmania relies on the uptake of folate and pterin from the environment to meet its nutritional requirements. We show here that a novel gene (folate transporter 1 (FT1)) deleted in a Leishmania infantum methotrexate-resistant mutant corresponds to the main folate transporter (K(m), 410 nM). FT1 was established as the main folate transporter by both gene transfection and by targeted gene deletion. Modulation of the expression of FT1 by these manipulations altered the susceptibility of Leishmania cells to methotrexate. Folate transport was stage-regulated with higher activity in the logarithmic phase and less in the stationary phase. FT1 fused to green fluorescent protein led to the observation that FT1 was located in the plasma membrane in the logarithmic phase but was retargeted to an intracellular organelle followed by a degradation of the protein in stationary phase. Leishmania has several folate transporters with different characteristics, and the growth stage-related activity of at least one transporter is regulated post-translationally.
Collapse
Affiliation(s)
- Dave Richard
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier and Division de Microbiologie, Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | | | | | | |
Collapse
|
42
|
Drummelsmith J, Girard I, Trudel N, Ouellette M. Differential protein expression analysis of Leishmania major reveals novel roles for methionine adenosyltransferase and S-adenosylmethionine in methotrexate resistance. J Biol Chem 2004; 279:33273-80. [PMID: 15190060 DOI: 10.1074/jbc.m405183200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leishmania is a trypanosomatid parasite causing serious disease and displaying resistance to various drugs. Here, we present comparative proteomic analyses of Leishmania major parasites that have been either shocked with or selected in vitro for high level resistance to the model antifolate drug methotrexate. Numerous differentially expressed proteins were identified by these experiments. Some were associated with the stress response, whereas others were found to be overexpressed due to genetic linkage to primary resistance mediators present on DNA amplicons. Several proteins not previously associated with resistance were also identified. The role of one of these, methionine adenosyltransferase, was confirmed by gene transfection and metabolite analysis. After a single exposure to low levels of methotrexate, L. major methionine adenosyltransferase transfectants could grow at high concentrations of the drug. Methotrexate resistance was also correlated to increased cellular S-adenosylmethionine levels. The folate and S-adenosylmethionine regeneration pathways are intimately connected, which may provide a basis for this novel resistance phenotype. This thorough comparative proteomic analysis highlights the variety of responses required for drug resistance to be achieved.
Collapse
Affiliation(s)
- Jolyne Drummelsmith
- Infectious Diseases Research Centre, Laval University, Quebec City, Quebec G1V 4G2, Canada
| | | | | | | |
Collapse
|
43
|
El Fadili A, Kündig C, Roy G, Ouellette M. Inactivation of the Leishmania tarentolae pterin transporter (BT1) and reductase (PTR1) genes leads to viable parasites with changes in folate metabolism and hypersensitivity to the antifolate methotrexate. J Biol Chem 2004; 279:18575-82. [PMID: 14981076 DOI: 10.1074/jbc.m400652200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protozoan parasite Leishmania is a folate and pterin auxotroph. The main biopterin transporter (BT1) and pterin reductase (PTR1) have already been characterized in Leishmania. In this study, we have succeeded in generating a BT1 and PTR1 null mutant in the same Leishmania tarentolae strain. These cells are viable with growth properties indistinguishable from wildtype cells. However, in response to the inactivation of BT1 and PTR1, at least one of the folate transporter genes was deleted, and the level of the folylpolyglutamate synthetase activity was increased, leading to increased polyglutamylation of both folate and methotrexate (MTX). Secondary events following gene inactivation should be considered when analyzing a phenotype in Leishmania. The BT1/PTR1 null mutant is hypersensitive to MTX, but in a step-by-step fashion, we could induce resistance to MTX in these cells. Several resistance mechanisms were found to co-exist including a reduced folate and MTX accumulation, demonstrating that cells with no measurable biopterin uptake but also greatly reduced folate uptake are viable, despite their auxotrophy for each of these substrates. The resistant cells have also amplified the gene coding for the MTX target dihydrofolate reductase. Finally, we found a marked reduction in MTX polyglutamylation in resistant cells. These studies further highlight the formidable ability of Leishmania cells to bypass the blockage of key metabolic pathways.
Collapse
Affiliation(s)
- Amal El Fadili
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier de l'Université Laval and Division de Microbiologie, Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | | | | | | |
Collapse
|
44
|
Guimond C, Trudel N, Brochu C, Marquis N, El Fadili A, Peytavi R, Briand G, Richard D, Messier N, Papadopoulou B, Corbeil J, Bergeron MG, Légaré D, Ouellette M. Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. Nucleic Acids Res 2004; 31:5886-96. [PMID: 14530437 PMCID: PMC219483 DOI: 10.1093/nar/gkg806] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the protozoan parasite Leishmania, drug resistance can be a complex phenomenon. Several metabolic pathways and membrane transporters are implicated in the resistance phenotype. To monitor the expression of these genes, we generated custom DNA microarrays with PCR fragments corresponding to 44 genes involved with drug resistance. Transcript profiling of arsenite and antimony resistant mutants with these arrays pinpointed a number of genes overexpressed in mutants, including the ABC transporter PGPA, the glutathione biosynthesis genes gamma-glutamylcysteine synthetase (GSH1) and the glutathione synthetase (GSH2). Competitive hybridisations with total RNA derived from sensitive and methotrexate resistant cells revealed the overexpression of genes coding for dihydrofolate reductase (DHFR-TS), pteridine reductase (PTR1) and S-adenosylmethionine synthase (MAT2) and a down regulation of one gene of the folate transporter (FT) family. By labelling the DNA of sensitive and resistant parasites we could also detect several gene amplification events using DNA microarrays including the amplification of the S-adenosyl homocysteine hydrolase gene (SAHH). Alteration in gene expression detected by microarrays was validated by northern blot analysis, while Southern blots indicated that most genes overexpressed were also amplified, although other mechanisms were also present. The microarrays were useful in the study of resistant parasites to pinpoint several genes linked to drug resistance.
Collapse
Affiliation(s)
- Chantal Guimond
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Division de Microbiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Harding CO, Neff M, Wild K, Jones K, Elzaouk L, Thöny B, Milstien S. The fate of intravenously administered tetrahydrobiopterin and its implications for heterologous gene therapy of phenylketonuria. Mol Genet Metab 2004; 81:52-7. [PMID: 14728991 PMCID: PMC2694038 DOI: 10.1016/j.ymgme.2003.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Tetrahydrobiopterin (BH(4)) is a required cofactor for the enzymatic activity of phenylalanine hydroxylase (PAH) and is synthesized de novo from GTP in several tissues. Heterologous expression of PAH in tissues other than liver is a potential novel therapy for human phenylketonuria that is completely dependent upon BH(4) supply in the PAH-expressing tissue. Previous experiments with liver PAH-deficient transgenic mice that expressed PAH in skeletal muscle demonstrated transient correction of hyperphenylalaninemia only with hourly parenteral BH(4) administration. In this report, the fate of intravenously administered BH(4) is examined. The conclusions are that (1) BH(4) administered intravenously is rapidly taken up by liver and kidney, and (2) uptake of BH(4) into muscle is relatively low. The levels of BH(4) achieved in skeletal muscle following IV injection are only 10% of the amount expected were BH(4) freely and equally distributed across all tissues. The half-life of BH(4) in muscle is approximately 30 min, necessitating repeated injections to maintain muscle BH(4) content sufficient to support phenylalanine hydroxylation. The efficacy of heterologous muscle-directed gene therapy for the treatment of PKU will likely be limited by the BH(4) supply in PAH-expressing muscle.
Collapse
Affiliation(s)
- Cary O Harding
- Departments of Pediatrics, Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Brochu C, Haimeur A, Ouellette M. The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite leishmania. Cell Stress Chaperones 2004; 9:294-303. [PMID: 15544167 PMCID: PMC1065288 DOI: 10.1379/csc-15r1.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 05/28/2004] [Accepted: 06/01/2004] [Indexed: 11/24/2022] Open
Abstract
Antimony-containing drugs are still the drugs of choice in the treatment of infections caused by the parasite Leishmania. Resistance to antimony is now common in some parts of the world, and several mechanisms of resistance have been described. By transfecting cosmid banks and selecting with potassium antimonyl tartrate (SbIII), we have isolated a cosmid associated with resistance. This cosmid contains 2 copies of the heat shock protein 70 (HSP70) and 1 copy of the heat shock cognate protein 70 (HSC70). Several data linked HSP70 to antimony response and resistance. First, several Leishmania species, both as promastigotes and amastigotes, increased the expression of their HSP70 proteins when grown in the presence of 1 or 2 times the Effect Concentration 50% of SbIII. In several mutants selected for resistance to either SbIII or to the related metal arsenite, the HSP70 proteins were found to be overexpressed. This increase was also observed in revertant cells grown for several passages in the absence of SbIII, suggesting that this increased production of HSP70 is stable. Transfection of HSP70 or HSC70 in Leishmania cells does not confer resistance directly, though these transfectants were better able to tolerate a shock with SbIII. Our results are consistent with HSP70 and HSC70 being a first line of defense against SbIII until more specific and efficient resistance mechanisms take over.
Collapse
Affiliation(s)
- Christian Brochu
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Division de Microbiologie, Faculté de Médecine, Université Laval, CHUQ, Pavilion CHUL, 2705, Boulevard Laurier, Sainte-Foy, Québec, Canada
| | | | | |
Collapse
|
47
|
Ouellette M, Olivier M, Sato S, Papadopoulou B. [Studies on the parasite Leishmania in the post-genomic era]. Med Sci (Paris) 2003; 19:900-9. [PMID: 14612998 DOI: 10.1051/medsci/20031910900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Leishmania is a protozoan parasite responsible for considerable morbidity worldwide. The pathologies caused by Leishmania infections are varying with the species. The ongoing determination of the Leishmania major genome sequence represents a milestone for Leishmania research. We discuss here the use of transcriptomics and proteomics to accelerate our understanding of key processes related to Leishmania biology. These two techniques should be useful to find genes and proteins that are expressed in a stage-specific manner and examples of the use of such techniques are provided. Both approaches will complement each others. Indeed, while a number of stage-specific genes have increased stable RNA levels, an even larger subset of the Leishmania amastigote genes are regulated at the level of translation. The availability of the Leishmania genome should also permit important advances in finding species-specific genes that could explain different pathologies. Functional genomic and proteomic approaches should also be useful for understanding the mechanisms of drug resistance in the parasite. The availability of both the Leishmania genome and of its human host or of the mouse animal model will facilitate large scale studies and increase our understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Marc Ouellette
- Centre de Recherche en Infectiologie, CHUQ, pavillon CHUL, 2705, boulevard Laurier, Sainte-Foy, Québec, G1V 4G2 Canada.
| | | | | | | |
Collapse
|
48
|
Pérez-Victoria FJ, Gamarro F, Ouellette M, Castanys S. Functional cloning of the miltefosine transporter. A novel P-type phospholipid translocase from Leishmania involved in drug resistance. J Biol Chem 2003; 278:49965-71. [PMID: 14514670 DOI: 10.1074/jbc.m308352200] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antitumor drug miltefosine (hexadecylphosphocholine, MIL) has recently been approved as the first oral agent for the treatment of visceral leishmaniasis. Little is known about the mechanisms of action and uptake of MIL in either parasites or tumor cell lines. We have cloned a putative MIL transporter (LdMT) by functional rescue, using a Leishmania donovani-resistant line defective in the inward-directed translocation of both MIL and glycerophospholipids. LdMT is a novel P-type ATPase belonging to the partially characterized aminophospholipid translocase subfamily. Resistant parasites transfected with LdMT regain their sensitivity to MIL and edelfosine and the ability to normally take up [14C]MIL and fluorescent-labeled glycerophospholipids. Moreover, LdMT localizes to the plasma membrane, and its overexpression in Leishmania tarentolae, a species non-sensitive to MIL, significantly increases the uptake of [14C]MIL, strongly suggesting that this protein behaves as a true translocase. Finally, both LdMT-resistant alleles encompass single but distinct point mutations, each of which impairs transport function, explaining the resistant phenotype. These results demonstrate biochemically and genetically the direct involvement of LdMT in MIL and phospholipids translocation in Leishmania and describe for the first time a P-type ATPase involved in MIL uptake and potency in eukaryotic cells.
Collapse
Affiliation(s)
- F Javier Pérez-Victoria
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, 18001 Granada, Spain
| | | | | | | |
Collapse
|
49
|
El-Fadili A, Richard D, Kündig C, Ouellette M. Effect of polyglutamylation of methotrexate on its accumulation and the development of resistance in the protozoan parasite Leishmania. Biochem Pharmacol 2003; 66:999-1008. [PMID: 12963486 DOI: 10.1016/s0006-2952(03)00417-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Folates are polyglutamylated in most organisms, and in cancer cells the polyglutamylation of folates and of the antifolate methotrexate (MTX) is an important determinant of MTX susceptibility. The folylpolyglutamate synthetase (FPGS) responsible for polyglutamylation of folates was recently characterized in the parasite Leishmania. We show here that MTX is polyglutamylated in Leishmania tarentolae and that triglutamates are the predominant form. The glutamate chain length of MTX increases significantly in Leishmania cells transfected with the FPGS gene and decreases in cells with one FPGS allele disrupted. Modulation in the expression of the FPGS gene also has a profound effect on MTX susceptibility and this effect was found to be dependent on the folate concentration of the medium. In the folate-rich medium SDM-79, overexpression of FPGS will confer MTX resistance while in M-199 medium, which has much less folates, FPGS transfectants are more sensitive to MTX. Cells with one allele of FPGS disrupted are more resistant to MTX in low folate medium. The modulation of FPGS expression affects both the short-term and long-term accumulation of folate and MTX, showing a marked decrease in accumulation in the FPGS haploid mutant. This differential accumulation was mediated by decreased influx of the drug into the cell. Finally, the analysis of MTX-resistant Leishmania mutants indicated that the presence of shorter glutamate chains on MTX is correlated with MTX resistance.
Collapse
Affiliation(s)
- Amal El-Fadili
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Division de Microbiologie, Faculté de Médecine, Université Laval, Ste-Foy, Québec, Canada G1V 4G2
| | | | | | | |
Collapse
|
50
|
Lye LF, Cunningham ML, Beverley SM. Characterization of quinonoid-dihydropteridine reductase (QDPR) from the lower eukaryote Leishmania major. J Biol Chem 2002; 277:38245-53. [PMID: 12151409 DOI: 10.1074/jbc.m206543200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biopterin is required for growth of the protozoan parasite Leishmania and is salvaged from the host through the activities of a novel biopterin transporter (BT1) and broad-spectrum pteridine reductase (PTR1). Here we characterize Leishmania major quinonoid-dihydropteridine reductase (LmQDPR), the key enzyme required for regeneration and maintenance of H(4)biopterin pools. LmQDPR shows good homology to metazoan quinonoid-dihydropteridine reductase and conservation of domains implicated in catalysis and regulation. Unlike other organisms, LmQDPR is encoded by a tandemly repeated array of 8-9 copies containing LmQDPR plus two other genes. QDPR mRNA and enzymatic activity were expressed at similar levels throughout the infectious cycle. The pH optima, kinetic properties, and substrate specificity of purified LmQDPR were found to be similar to that of other qDPRs, although it lacked significant activity for non-quinonoid pteridines. These and other data suggest that LmQDPR is unlikely to encode the dihydrobiopterin reductase activity (PTR2) described previously. Similarly LmQDPR is not inhibited by a series of antifolates showing anti-leishmanial activity beyond that attributable to dihydrofolate reductase or PTR1 inhibition. qDPR activity was found in crude lysates of Trypanosoma brucei and Trypanosoma cruzi, further emphasizing the importance of H(4)biopterin throughout this family of human parasites.
Collapse
Affiliation(s)
- Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|