1
|
Stadnicki EJ, Ludewig H, Kumar RP, Wang X, Qiao Y, Kern D, Bradshaw N. Dual-Action Kinase Inhibitors Influence p38α MAP Kinase Dephosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594272. [PMID: 39149408 PMCID: PMC11326130 DOI: 10.1101/2024.05.15.594272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Reversible protein phosphorylation directs essential cellular processes including cell division, cell growth, cell death, inflammation, and differentiation. Because protein phosphorylation drives diverse diseases, kinases and phosphatases have been targets for drug discovery, with some achieving remarkable clinical success. Most protein kinases are activated by phosphorylation of their activation loops, which shifts the conformational equilibrium of the kinase towards the active state. To turn off the kinase, protein phosphatases dephosphorylate these sites, but how the conformation of the dynamic activation loop contributes to dephosphorylation was not known. To answer this, we modulated the activation loop conformational equilibrium of human p38α ΜΑP kinase with existing kinase inhibitors that bind and stabilize specific inactive activation loop conformations. From this, we discovered three inhibitors that increase the rate of dephosphorylation of the activation loop phospho-threonine by the PPM serine/threonine phosphatase WIP1. Hence, these compounds are "dual-action" inhibitors that simultaneously block the active site and stimulate p38α dephosphorylation. Our X-ray crystal structures of phosphorylated p38α bound to the dual-action inhibitors reveal a shared flipped conformation of the activation loop with a fully accessible phospho-threonine. In contrast, our X-ray crystal structure of phosphorylated apo human p38α reveals a different activation loop conformation with an inaccessible phospho-threonine, thereby explaining the increased rate of dephosphorylation upon inhibitor binding. These findings reveal a conformational preference of phosphatases for their targets and suggest a new approach to achieving improved potency and specificity for therapeutic kinase inhibitors.
Collapse
Affiliation(s)
- Emily J Stadnicki
- Department of Biochemistry, Brandeis University
- Molecular and Cell Biology Program, Brandeis University
| | - Hannes Ludewig
- Department of Biochemistry, Brandeis University
- Howard Hughes Medical Institute
| | - Ramasamy P Kumar
- Department of Biochemistry, Brandeis University
- Present address: Northeastern University
| | - Xicong Wang
- Department of Biochemistry, Brandeis University
| | - Youwei Qiao
- Department of Biochemistry, Brandeis University
- Present address: UMass Medical School
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University
- Howard Hughes Medical Institute
| | | |
Collapse
|
2
|
Sinha NK, McKenney C, Yeow ZY, Li JJ, Nam KH, Yaron-Barir TM, Johnson JL, Huntsman EM, Cantley LC, Ordureau A, Regot S, Green R. The ribotoxic stress response drives UV-mediated cell death. Cell 2024; 187:3652-3670.e40. [PMID: 38843833 PMCID: PMC11246228 DOI: 10.1016/j.cell.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/03/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
While ultraviolet (UV) radiation damages DNA, eliciting the DNA damage response (DDR), it also damages RNA, triggering transcriptome-wide ribosomal collisions and eliciting a ribotoxic stress response (RSR). However, the relative contributions, timing, and regulation of these pathways in determining cell fate is unclear. Here we use time-resolved phosphoproteomic, chemical-genetic, single-cell imaging, and biochemical approaches to create a chronological atlas of signaling events activated in cells responding to UV damage. We discover that UV-induced apoptosis is mediated by the RSR kinase ZAK and not through the DDR. We identify two negative-feedback modules that regulate ZAK-mediated apoptosis: (1) GCN2 activation limits ribosomal collisions and attenuates ZAK-mediated RSR and (2) ZAK activity leads to phosphodegron autophosphorylation and its subsequent degradation. These events tune ZAK's activity to collision levels to establish regimes of homeostasis, tolerance, and death, revealing its key role as the cellular sentinel for nucleic acid damage.
Collapse
Affiliation(s)
- Niladri K Sinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Connor McKenney
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhong Y Yeow
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey J Li
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
3
|
Zhang L, Hsu JI, Braekeleer ED, Chen CW, Patel TD, Martell AG, Guzman AG, Wohlan K, Waldvogel SM, Uryu H, Tovy A, Callen E, Murdaugh RL, Richard R, Jansen S, Vissers L, de Vries BBA, Nussenzweig A, Huang S, Coarfa C, Anastas J, Takahashi K, Vassiliou G, Goodell MA. SOD1 is a synthetic-lethal target in PPM1D-mutant leukemia cells. eLife 2024; 12:RP91611. [PMID: 38896450 PMCID: PMC11186636 DOI: 10.7554/elife.91611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase Mg2+/Mn2+-dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacological target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate a role for SOD1 in the survival of PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.
Collapse
Affiliation(s)
- Linda Zhang
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
| | - Joanne I Hsu
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
| | - Etienne D Braekeleer
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUnited Kingdom
| | - Chun-Wei Chen
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Integrated Molecular and Biomedical Sciences Graduate Program, Baylor College of MedicineHoustonUnited States
| | - Tajhal D Patel
- Texas Children’s Hospital Department of Hematology/Oncology, Baylor College of MedicineHoustonUnited States
| | - Alejandra G Martell
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Anna G Guzman
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Sarah M Waldvogel
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Cancer and Cell Biology Graduate Program, Baylor College of MedicineHoustonUnited States
| | - Hidetaka Uryu
- Department of Leukemia, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of HealthBethesdaUnited States
| | - Rebecca L Murdaugh
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Rosemary Richard
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Sandra Jansen
- Donders Centre for Neuroscience, Radboud University Medical CenterNijmegenNetherlands
| | - Lisenka Vissers
- Donders Centre for Neuroscience, Radboud University Medical CenterNijmegenNetherlands
| | - Bert BA de Vries
- Donders Centre for Neuroscience, Radboud University Medical CenterNijmegenNetherlands
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of HealthBethesdaUnited States
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Department of Education, Innovation and Technology, Advanced Technology Cores, University of TexasHoustonUnited States
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Jamie Anastas
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer CenterHoustonUnited States
- Department of Genome Medicine, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - George Vassiliou
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUnited Kingdom
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Center for Cell and Gene TherapyHoustonUnited States
| |
Collapse
|
4
|
Ghonim MA, Ju J, Pyakurel K, Ibba SV, Abouzeid MM, Rady HF, Matsuyama S, Del Valle L, Boulares AH. Unconventional activation of PRKDC by TNF-α: deciphering its crucial role in Th1-mediated inflammation beyond DNA repair as part of the DNA-PK complex. J Inflamm (Lond) 2024; 21:14. [PMID: 38689261 PMCID: PMC11059672 DOI: 10.1186/s12950-024-00386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The DNA-dependent protein kinase (DNA-PK) complex comprises a catalytic (PRKDC) and two requisite DNA-binding (Ku70/Ku80) subunits. The role of the complex in repairing double-stranded DNA breaks (DSBs) is established, but its role in inflammation, as a complex or individual subunits, remains elusive. While only ~ 1% of PRKDC is necessary for DNA repair, we reported that partial inhibition blocks asthma in mice without causing SCID. METHODS We investigated the central role of PRKDC in inflammation and its potential association with DNA repair. We also elucidated the relationship between inflammatory cytokines (e.g., TNF-α) and PRKDC by analyzing its connections to inflammatory kinases. Human cell lines, primary human endothelial cells, and mouse fibroblasts were used to conduct the in vitro studies. For animal studies, LPS- and oxazolone-induced mouse models of acute lung injury (ALI) and delayed-type hypersensitivity (DHT) were used. Wild-type, PRKDC+/-, or Ku70+/- mice used in this study. RESULTS A ~ 50% reduction in PRKDC markedly blocked TNF-α-induced expression of inflammatory factors (e.g., ICAM-1/VCAM-1). PRKDC regulates Th1-mediated inflammation, such as DHT and ALI, and its role is highly sensitive to inhibition achieved by gene heterozygosity or pharmacologically. In endothelial or epithelial cells, TNF-α promoted rapid PRKDC phosphorylation in a fashion resembling that induced by, but independent of, DSBs. Ku70 heterozygosity exerted little to no effect on ALI in mice, and whatever effect it had was associated with a specific increase in MCP-1 in the lungs and systemically. While Ku70 knockout blocked VP-16-induced PRKDC phosphorylation, it did not prevent TNF-α - induced phosphorylation of the kinase, suggesting Ku70 dispensability. Immunoprecipitation studies revealed that PRKDC transiently interacts with p38MAPK. Inhibition of p38MAPK blocked TNF-α-induced PRKDC phosphorylation. Direct phosphorylation of PRKDC by p38MAPK was demonstrated using a cell-free system. CONCLUSIONS This study presents compelling evidence that PRKDC functions independently of the DNA-PK complex, emphasizing its central role in Th1-mediated inflammation. The distinct functionality of PRKDC as an individual enzyme, its remarkable sensitivity to inhibition, and its phosphorylation by p38MAPK offer promising therapeutic opportunities to mitigate inflammation while sparing DNA repair processes. These findings expand our understanding of PRKDC biology and open new avenues for targeted anti-inflammatory interventions.
Collapse
Affiliation(s)
- Mohamed A Ghonim
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Jihang Ju
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Kusma Pyakurel
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Salome V Ibba
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Mai M Abouzeid
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Hamada F Rady
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Shigemi Matsuyama
- Department of Ophthalmology and Visual Science; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Luis Del Valle
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - A Hamid Boulares
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Gasparoli L, Virely C, Tsakaneli A, Che N, Edwards D, Bartram J, Hubank M, Pal D, Heidenreich O, Martens JHA, De Boer J, Williams O. Susceptibility of pediatric acute lymphoblastic leukemia to STAT3 inhibition depends on p53 induction. Haematologica 2024; 109:1069-1081. [PMID: 37794795 PMCID: PMC10985450 DOI: 10.3324/haematol.2023.283613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Advances in the clinical management of pediatric B-cell acute lymphoblastic leukemia (B-ALL) have dramatically improved outcomes for this disease. However, relapsed and high-risk disease still contribute to significant numbers of treatment failures. Development of new, broad range therapies is urgently needed for these cases. We previously reported the susceptibility of ETV6-RUNX1+ pediatric B-ALL to inhibition of signal transducer and activator of transcription 3 (STAT3) activity. In the present study, we demonstrate that pharmacological or genetic inhibition of STAT3 results in p53 induction and that CRISPR-mediated TP53 knockout substantially reverses susceptibility to STAT3 inhibition. Furthermore, we demonstrate that sensitivity to STAT3 inhibition in patient-derived xenograft (PDX) B-ALL samples is not restricted to any particular disease subtype, but rather depends on TP53 status, the only resistant samples being TP53 mutant. Induction of p53 following STAT3 inhibition is not directly dependent on MDM2 but correlates with degradation of MDM4. As such, STAT3 inhibition exhibits synergistic in vitro and in vivo anti-leukemia activity when combined with MDM2 inhibition. Taken together with the relatively low frequency of TP53 mutations in this disease, these data support the future development of combined STAT3/ MDM2 inhibition in the therapy of refractory and relapsed pediatric B-ALL.
Collapse
Affiliation(s)
- Luca Gasparoli
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Clemence Virely
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Alexia Tsakaneli
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Noelia Che
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Darren Edwards
- Department of Paediatric Haematology, Great Ormond Street Hospital for Children, London
| | - Jack Bartram
- Department of Paediatric Haematology, Great Ormond Street Hospital for Children, London
| | - Michael Hubank
- Centre for Molecular Pathology, The Royal Marsden, Sutton
| | - Deepali Pal
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne
| | | | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen
| | - Jasper De Boer
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London
| | - Owen Williams
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London.
| |
Collapse
|
6
|
Zhou X, Ohgaki R, Jin C, Xu M, Okanishi H, Endou H, Kanai Y. Inhibition of amino acid transporter LAT1 in cancer cells suppresses G0/G1-S transition by downregulating cyclin D1 via p38 MAPK activation. J Pharmacol Sci 2024; 154:182-191. [PMID: 38395519 DOI: 10.1016/j.jphs.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
L-type amino acid transporter 1 (LAT1, SLC7A5) is upregulated in various cancers and associated with disease progression. Nanvuranlat (Nanv; JPH203, KYT-0353), a selective LAT1 inhibitor, suppresses the uptake of large neutral amino acids required for rapid growth and proliferation of cancer cells. Previous studies have suggested that the inhibition of LAT1 by Nanv induces the cell cycle arrest at G0/G1 phase, although the underlying mechanisms remain unclear. Using pancreatic cancer cells arrested at the restriction check point (R) by serum deprivation, we found that the Nanv drastically suppresses the G0/G1-S transition after release. This blockade of the cell cycle progression was accompanied by a sustained activation of p38 mitogen-activated protein kinase (MAPK) and subsequent phosphorylation-dependent proteasomal degradation of cyclin D1. Isoform-specific knockdown of p38 MAPK revealed the predominant contribution of p38α. Proteasome inhibitors restored the cyclin D1 amount and released the cell cycle arrest caused by Nanv. The increased phosphorylation of p38 MAPK and the decrease of cyclin D1 were recapitulated in xenograft tumor models treated with Nanv. This study contributes to delineating the pharmacological activities of LAT1 inhibitors as anti-cancer agents and provides significant insights into the molecular basis of the amino acid-dependent cell cycle checkpoint at G0/G1 phase.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Chunhuan Jin
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minhui Xu
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Okanishi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Endou
- J-Pharma Co., Ltd., Yokohama, Kanagawa, 230-0046, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Gupta S, Silveira DA, Piedade GP, Ostrowski MP, Mombach JCM, Hashimoto RF. A dynamic Boolean network reveals that the BMI1 and MALAT1 axis is associated with drug resistance by limiting miR-145-5p in non-small cell lung cancer. Noncoding RNA Res 2024; 9:185-193. [PMID: 38125755 PMCID: PMC10730431 DOI: 10.1016/j.ncrna.2023.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) are often treated with chemotherapy. Poor clinical response and the onset of chemoresistance limit the anti-tumor benefits of drugs such as cisplatin. According to recent research, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA related to cisplatin resistance in NSCLC. Furthermore, MALAT1 targets microRNA-145-5p (miR-145), which activates Krüppel-like factor 4 (KLF4) in associated cell lines. B lymphoma Mo-MLV insertion region 1 homolog (BMI1), on the other hand, inhibits miR-145 expression, which stimulates Specificity protein 1 (Sp1) to trigger the epithelial-mesenchymal transition (EMT) process in pemetrexed-resistant NSCLC cells. The interplay between these molecules in drug resistance is still unclear. Therefore, we propose a dynamic Boolean network that can encapsulate the complexity of these drug-resistant molecules. Using published clinical data for gain or loss-of-function perturbations, our network demonstrates reasonable agreement with experimental observations. We identify four new positive circuits: miR-145/Sp1/MALAT1, BMI1/miR-145/Myc, KLF4/p53/miR-145, and miR-145/Wip1/p38MAPK/p53. Notably, miR-145 emerges as a central player in these regulatory circuits, underscoring its pivotal role in NSCLC drug resistance. Our circuit perturbation analysis further emphasizes the critical involvement of these new circuits in drug resistance for NSCLC. In conclusion, targeting MALAT1 and BMI1 holds promise for overcoming drug resistance, while activating miR-145 represents a potential strategy to significantly reduce drug resistance in NSCLC.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, SP, Brazil
| | - Daner A. Silveira
- Children's Cancer Institute, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel P.S. Piedade
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, SP, Brazil
| | - Miguel P. Ostrowski
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, SP, Brazil
| | - José Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, 97105-900, RS, Brazil
| | - Ronaldo F. Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Zhang L, Hsu JI, Braekeleer ED, Chen CW, Patel TD, Martell AG, Guzman AG, Wohlan K, Waldvogel SM, Urya H, Tovy A, Callen E, Murdaugh R, Richard R, Jansen S, Vissers L, de Vries BB, Nussenzweig A, Huang S, Coarfa C, Anastas JN, Takahashi K, Vassiliou G, Goodell MA. SOD1 is a synthetic lethal target in PPM1D-mutant leukemia cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.31.555634. [PMID: 37693622 PMCID: PMC10491179 DOI: 10.1101/2023.08.31.555634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase, Mg2+/Mn2+ dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacologic target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate the protective role of SOD1 against oxidative stress in PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.
Collapse
Affiliation(s)
- Linda Zhang
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
| | - Joanne I. Hsu
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
| | - Etienne D. Braekeleer
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge
| | - Chun-Wei Chen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Integrated Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX
| | - Tajhal D. Patel
- Texas Children’s Hospital Department of Hematology/Oncology, Baylor College of Medicine, Houston, TX
| | - Alejandra G. Martell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Anna G. Guzman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Sarah M. Waldvogel
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX
| | - Hidetaka Urya
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, Bethesda, MD
| | - Rebecca Murdaugh
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Rosemary Richard
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Sandra Jansen
- Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka Vissers
- Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B.A. de Vries
- Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andre Nussenzweig
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Education, Innovation and Technology, Advanced Technology Cores
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Jamie N. Anastas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Education, Innovation and Technology, Advanced Technology Cores
| | - George Vassiliou
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge
| | - Margaret A. Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Houston, TX
| |
Collapse
|
9
|
Wang Y, Hu S, Zhang W, Zhang B, Yang Z. Emerging role and therapeutic implications of p53 in intervertebral disc degeneration. Cell Death Discov 2023; 9:433. [PMID: 38040675 PMCID: PMC10692240 DOI: 10.1038/s41420-023-01730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
Lower back pain (LBP) is a common degenerative musculoskeletal disease that imposes a huge economic burden on both individuals and society. With the aggravation of social aging, the incidence of LBP has increased globally. Intervertebral disc degeneration (IDD) is the primary cause of LBP. Currently, IDD treatment strategies include physiotherapy, medication, and surgery; however, none can address the root cause by ending the degeneration of intervertebral discs (IVDs). However, in recent years, targeted therapy based on specific molecules has brought hope for treating IDD. The tumor suppressor gene p53 produces a transcription factor that regulates cell metabolism and survival. Recently, p53 was shown to play an important role in maintaining IVD microenvironment homeostasis by regulating IVD cell senescence, apoptosis, and metabolism by activating downstream target genes. This study reviews research progress regarding the potential role of p53 in IDD and discusses the challenges of targeting p53 in the treatment of IDD. This review will help to elucidate the pathogenesis of IDD and provide insights for the future development of precision treatments.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Shouye Hu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weisong Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Zeng Y, Ng JPL, Wang L, Xu X, Law BYK, Chen G, Lo HH, Yang L, Yang J, Zhang L, Qu L, Yun X, Zhong J, Chen R, Zhang D, Wang Y, Luo W, Qiu C, Huang B, Liu W, Liu L, Wong VKW. Mutant p53 R211* ameliorates inflammatory arthritis in AIA rats via inhibition of TBK1-IRF3 innate immune response. Inflamm Res 2023; 72:2199-2219. [PMID: 37935918 PMCID: PMC10656327 DOI: 10.1007/s00011-023-01809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/12/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune inflammation disease characterized by imbalance of immune homeostasis. p53 mutants are commonly described as the guardian of cancer cells by conferring them drug-resistance and immune evasion. Importantly, p53 mutations have also been identified in RA patients, and this prompts the investigation of its role in RA pathogenesis. METHODS The cytotoxicity of disease-modifying anti-rheumatic drugs (DMARDs) against p53 wild-type (WT)/mutant-transfected RA fibroblast-like synoviocytes (RAFLSs) was evaluated by MTT assay. Adeno-associated virus (AAV) was employed to establish p53 WT/R211* adjuvant-induced arthritis (AIA) rat model. The arthritic condition of rats was assessed by various parameters such as micro-CT analysis. Knee joint samples were isolated for total RNA sequencing analysis. The expressions of cytokines and immune-related genes were examined by qPCR, ELISA assay and immunofluorescence. The mechanistic pathway was determined by immunoprecipitation and Western blotting in vitro and in vivo. RESULTS Among p53 mutants, p53R213* exhibited remarkable DMARD-resistance in RAFLSs. However, AAV-induced p53R211* overexpression ameliorated inflammatory arthritis in AIA rats without Methotrexate (MTX)-resistance, and our results discovered the immunomodulatory effect of p53R211* via suppression of T-cell activation and T helper 17 cell (Th17) infiltration in rat joint, and finally downregulated expressions of pro-inflammatory cytokines. Total RNA sequencing analysis identified the correlation of p53R211* with immune-related pathways. Further mechanistic studies revealed that p53R213*/R211* instead of wild-type p53 interacted with TANK-binding kinase 1 (TBK1) and suppressed the innate immune TBK1-Interferon regulatory factor 3 (IRF3)-Stimulator of interferon genes (STING) cascade. CONCLUSIONS This study unravels the role of p53R213* mutant in RA pathogenesis, and identifies TBK1 as a potential anti-inflammatory target.
Collapse
Affiliation(s)
- Yaling Zeng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jerome P L Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Linna Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiongfei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Guobing Chen
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510630, China
| | - Hang Hong Lo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lijun Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jiujie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lei Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Liqun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiaoyun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jing Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Ruihong Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Dingqi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Yuping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Weidan Luo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Congling Qiu
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510630, China
| | - Baixiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
11
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
12
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
13
|
Xie X, Su M, Ren K, Ma X, Lv Z, Li Z, Mei Y, Ji P. Clonal hematopoiesis and bone marrow inflammation. Transl Res 2023; 255:159-170. [PMID: 36347490 DOI: 10.1016/j.trsl.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Clonal hematopoiesis (CH) occurs in hematopoietic stem cells with increased risks of progressing to hematologic malignancies. CH mutations are predominantly found in aged populations and correlate with an increased incidence of cardiovascular and other diseases. Increased lines of evidence demonstrate that CH mutations are closely related to the inflammatory bone marrow microenvironment. In this review, we summarize the recent advances in this topic starting from the discovery of CH and its mutations. We focus on the most commonly mutated and well-studied genes in CH and their contributions to the innate immune responses and inflammatory signaling, especially in the hematopoietic cells of bone marrow. We also aimed to discuss the interrelationship between inflammatory bone marrow microenvironment and CH mutations. Finally, we provide our perspectives on the challenges in the field and possible future directions to help understand the pathophysiology of CH.
Collapse
Affiliation(s)
- Xinshu Xie
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Meng Su
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Xuezhen Ma
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhiyi Lv
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhaofeng Li
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yang Mei
- School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China.
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.
| |
Collapse
|
14
|
Gupta S, Panda PK, Silveira DA, Ahuja R, Hashimoto RF. Quadra-Stable Dynamics of p53 and PTEN in the DNA Damage Response. Cells 2023; 12:cells12071085. [PMID: 37048159 PMCID: PMC10093226 DOI: 10.3390/cells12071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Cell fate determination is a complex process that is frequently described as cells traveling on rugged pathways, beginning with DNA damage response (DDR). Tumor protein p53 (p53) and phosphatase and tensin homolog (PTEN) are two critical players in this process. Although both of these proteins are known to be key cell fate regulators, the exact mechanism by which they collaborate in the DDR remains unknown. Thus, we propose a dynamic Boolean network. Our model incorporates experimental data obtained from NSCLC cells and is the first of its kind. Our network's wild-type system shows that DDR activates the G2/M checkpoint, and this triggers a cascade of events, involving p53 and PTEN, that ultimately lead to the four potential phenotypes: cell cycle arrest, senescence, autophagy, and apoptosis (quadra-stable dynamics). The network predictions correspond with the gain-and-loss of function investigations in the additional two cell lines (HeLa and MCF-7). Our findings imply that p53 and PTEN act as molecular switches that activate or deactivate specific pathways to govern cell fate decisions. Thus, our network facilitates the direct investigation of quadruplicate cell fate decisions in DDR. Therefore, we concluded that concurrently controlling PTEN and p53 dynamics may be a viable strategy for enhancing clinical outcomes.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | | | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Ronaldo F Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil
| |
Collapse
|
15
|
Scinicariello S, Soderholm A, Schäfer M, Shulkina A, Schwartz I, Hacker K, Gogova R, Kalis R, Froussios K, Budroni V, Bestehorn A, Clausen T, Kovarik P, Zuber J, Versteeg GA. HUWE1 controls tristetraprolin proteasomal degradation by regulating its phosphorylation. eLife 2023; 12:e83159. [PMID: 36961408 PMCID: PMC10038661 DOI: 10.7554/elife.83159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/26/2023] [Indexed: 03/25/2023] Open
Abstract
Tristetraprolin (TTP) is a critical negative immune regulator. It binds AU-rich elements in the untranslated-regions of many mRNAs encoding pro-inflammatory mediators, thereby accelerating their decay. A key but poorly understood mechanism of TTP regulation is its timely proteolytic removal: TTP is degraded by the proteasome through yet unidentified phosphorylation-controlled drivers. In this study, we set out to identify factors controlling TTP stability. Cellular assays showed that TTP is strongly lysine-ubiquitinated, which is required for its turnover. A genetic screen identified the ubiquitin E3 ligase HUWE1 as a strong regulator of TTP proteasomal degradation, which we found to control TTP stability indirectly by regulating its phosphorylation. Pharmacological assessment of multiple kinases revealed that HUWE1-regulated TTP phosphorylation and stability was independent of the previously characterized effects of MAPK-mediated S52/S178 phosphorylation. HUWE1 function was dependent on phosphatase and E3 ligase binding sites identified in the TTP C-terminus. Our findings indicate that while phosphorylation of S52/S178 is critical for TTP stabilization at earlier times after pro-inflammatory stimulation, phosphorylation of the TTP C-terminus controls its stability at later stages.
Collapse
Affiliation(s)
- Sara Scinicariello
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Adrian Soderholm
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Markus Schäfer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Alexandra Shulkina
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Irene Schwartz
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Kathrin Hacker
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Rebeca Gogova
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Robert Kalis
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Kimon Froussios
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Valentina Budroni
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Annika Bestehorn
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
- Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Pavel Kovarik
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
- Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Gijs A Versteeg
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
16
|
Benito-León M, Gil-Redondo JC, Perez-Sen R, Delicado EG, Ortega F, Gomez-Villafuertes R. BCI, an inhibitor of the DUSP1 and DUSP6 dual specificity phosphatases, enhances P2X7 receptor expression in neuroblastoma cells. Front Cell Dev Biol 2022; 10:1049566. [PMID: 36589747 PMCID: PMC9797830 DOI: 10.3389/fcell.2022.1049566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
P2X7 receptor (P2RX7) is expressed strongly by most human cancers, including neuroblastoma, where high levels of P2RX7 are correlated with a poor prognosis for patients. Tonic activation of P2X7 receptor favors cell metabolism and angiogenesis, thereby promoting cancer cell proliferation, immunosuppression, and metastasis. Although understanding the mechanisms that control P2X7 receptor levels in neuroblastoma cells could be biologically and clinically relevant, the intracellular signaling pathways involved in this regulation remain poorly understood. Here we show that (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), an allosteric inhibitor of dual specificity phosphatases (DUSP) 1 and 6, enhances the expression of P2X7 receptor in N2a neuroblastoma cells. We found that exposure to BCI induces the phosphorylation of mitogen-activated protein kinases p38 and JNK, while it prevents the phosphorylation of ERK1/2. BCI enhanced dual specificity phosphatase 1 expression, whereas it induced a decrease in the dual specificity phosphatase 6 transcripts, suggesting that BCI-dependent inhibition of dual specificity phosphatase 1 may be responsible for the increase in p38 and JNK phosphorylation. The weaker ERK phosphorylation induced by BCI was reversed by p38 inhibition, indicating that this MAPK is involved in the regulatory loop that dampens ERK activity. The PP2A phosphatase appears to be implicated in the p38-dependent dephosphorylation of ERK1/2. In addition, the PTEN phosphatase inhibition also prevented ERK1/2 dephosphorylation, probably through p38 downregulation. By contrast, inhibition of the p53 nuclear factor decreased ERK phosphorylation, probably enhancing the activity of p38. Finally, the inhibition of either p38 or Sp1-dependent transcription halved the increase in P2X7 receptor expression induced by BCI. Moreover, the combined inhibition of both p38 and Sp1 completely prevented the effect exerted by BCI. Together, our results indicate that dual specificity phosphatase 1 acts as a novel negative regulator of P2X7 receptor expression in neuroblastoma cells due to the downregulation of the p38 pathway.
Collapse
Affiliation(s)
- María Benito-León
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,Department of Nanobiotechnology, Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Vienna, Austria
| | - Raquel Perez-Sen
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Esmerilda G. Delicado
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| | - Rosa Gomez-Villafuertes
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| |
Collapse
|
17
|
Muacevic A, Adler JR. Mitogen Activated Protein Kinase (MAPK) Activation, p53, and Autophagy Inhibition Characterize the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein Induced Neurotoxicity. Cureus 2022; 14:e32361. [PMID: 36514706 PMCID: PMC9733976 DOI: 10.7759/cureus.32361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and prions use common pathogenic pathways to induce toxicity in neurons. Infectious prions rapidly activate the p38 mitogen activated protein kinase (MAPK) pathway, and SARS-CoV-2 spike proteins rapidly activate both the p38 MAPK and c-Jun NH2-terminal kinase (JNK) pathways through toll-like receptor signaling, indicating the potential for similar neurotoxicity, causing prion and prion-like disease. In this review, we analyze the roles of autophagy inhibition, molecular mimicry, elevated intracellular p53 levels and reduced Wild-type p53-induced phosphatase 1 (Wip1) and dual-specificity phosphatase (DUSP) expression in neurons in the disease process. The pathways induced by the spike protein via toll-like receptor activation induce both the upregulation of PrPC (the normal isoform of the prion protein, PrP) and the expression of β amyloid. Through the spike-protein-dependent elevation of p53 levels via β amyloid metabolism, increased PrPC expression can lead to PrP misfolding and impaired autophagy, generating prion disease. We conclude that, according to the age of the spike protein-exposed patient and the state of their cellular autophagy activity, excess sustained activity of p53 in neurons may be a catalytic factor in neurodegeneration. An autoimmune reaction via molecular mimicry likely also contributes to neurological symptoms. Overall results suggest that neurodegeneration is in part due to the intensity and duration of spike protein exposure, patient advanced age, cellular autophagy activity, and activation, function and regulation of p53. Finally, the neurologically damaging effects can be cumulatively spike-protein dependent, whether exposure is by natural infection or, more substantially, by repeated mRNA vaccination.
Collapse
|
18
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:ijms232214480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
19
|
Duan Y, Zhang W, Chen X, Wang M, Zhong L, Liu J, Bian W, Zhang S. Genome-wide identification and expression analysis of mitogen-activated protein kinase (MAPK) genes in response to salinity stress in channel catfish (Ictalurus punctatus). JOURNAL OF FISH BIOLOGY 2022; 101:972-984. [PMID: 35818162 DOI: 10.1111/jfb.15158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The mitogen-activated protein kinase (MAPK) gene family has been systematically described in several fish species, but less so in channel catfish (Ictalurus punctatus), which is an important global aquaculture species. In this study, 16 MAPK genes were identified in the channel catfish genome and classified into three subfamilies based on phylogenetic analysis, including six extracellular signal regulated kinase (ERK) genes, six p38-MAPK genes and four C-Jun N-terminal kinase (JNK) genes. All MAPK genes were distributed unevenly across 10 chromosomes, of which three (IpMAPK8, IpMAPK12 and IpMAPK14) underwent teleost-specific whole genome duplication during evolution. Gene expression profiles in channel catfish during salinity stress were analysed using transcriptome sequencing and qRT-PCR (quantitative reverse transcription PCR). Results from reads per kilobase million (RPKM) analysis showed IpMAPK13, IpMAPK14a and IpMAPK14b genes were differentially expressed when compared with other genes between treatment and control groups. Furthermore, three of these genes were validated by qRT-PCR, of which IpMAPK14a expression levels were significantly upregulated in treatment groups (high and low salinity) when compared with the control group, with the highest expression levels in the low salinity group (P < 0.05). Therefore, IpMAPK14a may have important response roles to salinity stress in channel catfish.
Collapse
Affiliation(s)
- Yongqiang Duan
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenping Zhang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Xiaohui Chen
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Minghua Wang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Liqiang Zhong
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Ju Liu
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Wenji Bian
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Shiyong Zhang
- National Genetic Breeding Center of Channel Catfish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| |
Collapse
|
20
|
Substrate spectrum of PPM1D in the cellular response to DNA double-strand breaks. iScience 2022; 25:104892. [PMID: 36060052 PMCID: PMC9436757 DOI: 10.1016/j.isci.2022.104892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/03/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
PPM1D is a p53-regulated protein phosphatase that modulates the DNA damage response (DDR) and is frequently altered in cancer. Here, we employed chemical inhibition of PPM1D and quantitative mass spectrometry-based phosphoproteomics to identify the substrates of PPM1D upon induction of DNA double-strand breaks (DSBs) by etoposide. We identified 73 putative PPM1D substrates that are involved in DNA repair, regulation of transcription, and RNA processing. One-third of DSB-induced S/TQ phosphorylation sites are dephosphorylated by PPM1D, demonstrating that PPM1D only partially counteracts ATM/ATR/DNA-PK signaling. PPM1D-targeted phosphorylation sites are found in a specific amino acid sequence motif that is characterized by glutamic acid residues, high intrinsic disorder, and poor evolutionary conservation. We identified a functionally uncharacterized protein Kanadaptin as ATM and PPM1D substrate upon DSB induction. We propose that PPM1D plays a role during the response to DSBs by regulating the phosphorylation of DNA- and RNA-binding proteins in intrinsically disordered regions. MS-based phosphoproteomic profiling of PPM1D substrates in U2OS and HCT116 cells PPM1D counteracts ATM in the cellular response to DNA double-strand breaks PPM1D target sites localize to glutamic acid-rich regions with high intrinsic disorder Kanadaptin is a putative DNA damage response factor regulated by ATM and PPM1D
Collapse
|
21
|
Development of Antibody-like Proteins Targeting the Oncogenic Ser/Thr Protein Phosphatase PPM1D. Processes (Basel) 2022. [DOI: 10.3390/pr10081501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PPM1D, a protein Ser/Thr phosphatase, is overexpressed in various cancers and functions as an oncogenic protein by inactivating the p53 pathway. Therefore, molecules that bind PPM1D are expected to be useful anti-cancer agents. In this study, we constructed a phage display library based on the antibody-like small molecule protein adnectin and screened for PPM1D-specific binding molecules. We identified two adnectins, PMDB-1 and PMD-24, that bind PPM1D specific B-loop and PPM1D430 as targets, respectively. Specificity analyses of these recombinant proteins using other Ser/Thr protein phosphatases showed that these molecules bind to only PPM1D. Expression of PMDB-1 in breast cancer-derived MCF-7 cells overexpressing endogenous PPM1D stabilized p53, indicating that PMDB-1 functions as an inhibitor of PPM1D. Furthermore, MTT assay exhibited that MCF-7 cells expressing PMDB-1 showed inhibition of cell proliferation. These data suggest that the adnectin PMDB-1 identified in this study can be used as a lead compound for anti-cancer drugs targeting intracellular PPM1D.
Collapse
|
22
|
The cross-talk of autophagy and apoptosis in breast carcinoma: implications for novel therapies? Biochem J 2022; 479:1581-1608. [PMID: 35904454 DOI: 10.1042/bcj20210676] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer is still the most common cancer in women worldwide. Resistance to drugs and recurrence of the disease are two leading causes of failure in treatment. For a more efficient treatment of patients, the development of novel therapeutic regimes is needed. Recent studies indicate that modulation of autophagy in concert with apoptosis induction may provide a promising novel strategy in breast cancer treatment. Apoptosis and autophagy are two tightly regulated distinct cellular processes. To maintain tissue homeostasis abnormal cells are disposed largely by means of apoptosis. Autophagy, however, contributes to tissue homeostasis and cell fitness by scavenging of damaged organelles, lipids, proteins, and DNA. Defects in autophagy promote tumorigenesis, whereas upon tumor formation rapidly proliferating cancer cells may rely on autophagy to survive. Given that evasion of apoptosis is one of the characteristic hallmarks of cancer cells, inhibiting autophagy and promoting apoptosis can negatively influence cancer cell survival and increase cell death. Hence, combination of antiautophagic agents with the enhancement of apoptosis may restore apoptosis and provide a therapeutic advantage against breast cancer. In this review, we discuss the cross-talk of autophagy and apoptosis and the diverse facets of autophagy in breast cancer cells leading to novel models for more effective therapeutic strategies.
Collapse
|
23
|
Han Y, Zhong L, Ren F. A simple method for the preparation of positive samples to preliminarily determine the quality of phosphorylation-specific antibody. PLoS One 2022; 17:e0272138. [PMID: 35877775 PMCID: PMC9312364 DOI: 10.1371/journal.pone.0272138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
Protein phosphorylation is one of the most common and important post-translational modifications and is involved in many biological processes, including DNA damage repair, transcriptional regulation, signal transduction, and apoptosis regulation. The use of antibodies targeting phosphorylated protein is a convenient method to detect protein phosphorylation. Therefore, high-quality antibodies are essential, and uniform and effective standards are urgently needed to evaluate the quality of these phosphorylation-specific antibodies. In this study, we established a simple, broad-spectrum system for the preparation of phosphorylation-positive samples. The positive samples for evaluation of phosphorylation-specific antibodies were then validated in cells from different species and tissues, and also been proven effectively in western blot, enzyme-linked immunosorbent assays, LC-MS/MS and immunofluorescence analysis. Overall, our findings established a novel approach for evaluation of the quality of phosphorylation-specific antibodies and may have applications in various biomedical fields.
Collapse
Affiliation(s)
- Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, Hubei, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei, China
- * E-mail:
| | - Lin Zhong
- Department of Analysis and Reporting, Pfizer (Wuhan) Research and Development Co. LTD, Hubei, China
| | - Fuli Ren
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, Hubei, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei, China
| |
Collapse
|
24
|
Chen M, Wang W, Hu S, Tong Y, Li Y, Wei Q, Yu L, Zhu L, Zhu Y, Liu L, Ju Z, Wang X, Jin H, Feng L. Co-targeting WIP1 and PARP induces synthetic lethality in hepatocellular carcinoma. Cell Commun Signal 2022; 20:39. [PMID: 35346236 PMCID: PMC8962187 DOI: 10.1186/s12964-022-00850-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most fatal cancers. Due to limited strategies for effective treatments, patients with advanced HCC have a very poor prognosis. This study aims to identify new insights in HCC to develop novel strategies for HCC management. Methods The role of WIP1 (wild type p53 induced protein phosphatase1) in HCC was analyzed in HCC cells, xenograft model, DEN (Diethylnitrosamine) induced mice liver cancer model with WIP1 knockout mice, and TCGA database. DNA damage was evaluated by Gene Set Enrichment Analysis, western blotting, comet assay, and Immunofluorescence. Results High expression of WIP1 is associated with the poor prognosis of patients with HCC. Genetically and chemically suppression of WIP1 drastically reduced HCC cell proliferation. Besides, WIP1 knockout retarded DEN induced mice hepato-carcinogenesis. Mechanically, WIP1 inhibition induced DNA damage by increasing H2AX phosphorylation (γH2AX). Therefore, suppression of WIP1 and PARP induced synthetic lethality in HCC in vitro and in vivo by augmenting DNA damage. Conclusion WIP1 plays an oncogenic effect in HCC development, and targeting WIP1-dependent DNA damage repair alone or in combination with PARP inhibition might be a reasonable strategy for HCC management. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00850-2.
Collapse
|
25
|
Miller KJ, Asim M. Unravelling the Role of Kinases That Underpin Androgen Signalling in Prostate Cancer. Cells 2022; 11:cells11060952. [PMID: 35326402 PMCID: PMC8946764 DOI: 10.3390/cells11060952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The androgen receptor (AR) signalling pathway is the key driver in most prostate cancers (PCa), and is underpinned by several kinases both upstream and downstream of the AR. Many popular therapies for PCa that target the AR directly, however, have been circumvented by AR mutation, such as androgen receptor variants. Some upstream kinases promote AR signalling, including those which phosphorylate the AR and others that are AR-regulated, and androgen regulated kinase that can also form feed-forward activation circuits to promotes AR function. All of these kinases represent potentially druggable targets for PCa. There has generally been a divide in reviews reporting on pathways upstream of the AR and those reporting on AR-regulated genes despite the overlap that constitutes the promotion of AR signalling and PCa progression. In this review, we aim to elucidate which kinases—both upstream and AR-regulated—may be therapeutic targets and require future investigation and ongoing trials in developing kinase inhibitors for PCa.
Collapse
|
26
|
Baudrimont A, Paouneskou D, Mohammad A, Lichtenberger R, Blundon J, Kim Y, Hartl M, Falk S, Schedl T, Jantsch V. Release of CHK-2 from PPM-1.D anchorage schedules meiotic entry. SCIENCE ADVANCES 2022; 8:eabl8861. [PMID: 35171669 PMCID: PMC8849337 DOI: 10.1126/sciadv.abl8861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/22/2021] [Indexed: 05/13/2023]
Abstract
Transition from the stem/progenitor cell fate to meiosis is mediated by several redundant posttranscriptional regulatory pathways in Caenorhabditis elegans. Interfering with all three branches causes tumorous germ lines. SCFPROM-1 comprises one branch and mediates a scheduled degradation step at entry into meiosis. prom-1 mutants show defects in the timely initiation of meiotic prophase I events, resulting in high rates of embryonic lethality. Here, we identify the phosphatase PPM-1.D/Wip1 as crucial substrate for PROM-1. We report that PPM-1.D antagonizes CHK-2 kinase, a key regulator for meiotic prophase initiation, including DNA double-strand breaks, chromosome pairing, and synaptonemal complex formation. We propose that PPM-1.D controls the amount of active CHK-2 via both catalytic and noncatalytic activities; notably, noncatalytic regulation seems to be crucial at meiotic entry. PPM-1.D sequesters CHK-2 at the nuclear periphery, and programmed SCFPROM-1-mediated degradation of PPM-1.D liberates the kinase and promotes meiotic entry.
Collapse
Affiliation(s)
- Antoine Baudrimont
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Dimitra Paouneskou
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Ariz Mohammad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Raffael Lichtenberger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Joshua Blundon
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Yumi Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | - Sebastian Falk
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
27
|
MiR-145-5p Inhibits the Invasion of Prostate Cancer and Induces Apoptosis by Inhibiting WIP1. JOURNAL OF ONCOLOGY 2021; 2021:4412705. [PMID: 34899906 PMCID: PMC8660234 DOI: 10.1155/2021/4412705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Prostate cancer (PCa) is a common malignant tumor of the male genitourinary system that seriously affects the quality of life of patients. Studying the pathogenesis and therapeutic targets of PCa is important. In this study, we investigated the role of miR-145-5p in PCa and its potential molecular mechanisms. The expression levels of miR-145-5p in PCa tissues and adjacent control tissues were detected by real-time quantitative polymerase chain reaction. The effects of miR-145-5p overexpression on PCa were studied using cell proliferation, migration, and invasion experiments. Furthermore, WIP1 was the target gene of miR-145-5p through the bioinformatics website and dual-luciferase reporter gene experiment. Further studies found that WIP1 downregulation could inhibit the proliferation, invasion, and cloning of PCa cells. Overexpression of WIP1 reversed the anticancer effects of miR-145. The anticancer effect of miR-145 was achieved by inhibiting the PI3K/AKT signaling pathway and upregulating ChK2 and p-p38MAPK. Taken together, these results confirmed that miR-145-5p inhibited the growth and metastasis of PCa cells by inhibiting the expression of proto-oncogene WIP1, thereby playing a role in tumor suppression in PCa and may become a potential therapeutic target for the treatment of PCa.
Collapse
|
28
|
Targeting T-type channels in cancer: What is on and what is off? Drug Discov Today 2021; 27:743-758. [PMID: 34838727 DOI: 10.1016/j.drudis.2021.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/10/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022]
Abstract
Over the past 20 years, various studies have demonstrated a pivotal role of T-type calcium channels (TTCCs) in tumor progression. Cytotoxic effects of TTCC pharmacological blockers have been reported in vitro and in preclinical models. However, their roles in cancer physiology are only beginning to be understood. In this review, we discuss evidence for the signaling pathways and cellular processes stemming from TTCC activity, mainly inferred by inverse reasoning from pharmacological blocks and, only in a few studies, by gene silencing or channel activation. A thorough analysis indicates that drug-induced cytotoxicity is partially an off-target effect. Dissection of on/off-target activity is paramount to elucidate the physiological roles of TTCCs, and to deliver efficacious therapies suited to different cancer types and stages.
Collapse
|
29
|
Awasthi A, Raju MB, Rahman MA. Current Insights of Inhibitors of p38 Mitogen-Activated Protein Kinase in Inflammation. Med Chem 2021; 17:555-575. [PMID: 32106802 DOI: 10.2174/1573406416666200227122849] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/01/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The inflammatory process is one of the mechanisms by which our body upholds us from pathogens such as parasites, bacteria, viruses, and other harmful microorganisms. Inflammatory stimuli activate many intracellular signaling pathways such as the nuclear factor-kB (NF-kB) pathway and three mitogen-activated protein kinase (MAPK) pathways, which are mediated through extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. The p38 has evolved as an enticing target in treating many persistent inflammatory diseases. Hence, designing novel p38 inhibitors targeting MAPK pathways has acquired significance. OBJECTIVE Peruse to identify the lead target to discover novel p38MAPK inhibitors with different scaffolds having improved selectivity over the prototype drugs. METHODS Structure and the binding sites of p38MAPK were focused. Various scaffolds designed for inhibition and the molecules which have entered the clinical trials are discussed. RESULTS This review aspires to present the available information on the structure and the 3D binding sites of p38MAPK, various scaffolds designed for imidazole, urea, benzamide, azoles, quinoxaline, chromone, ketone as a potent p38MAPK inhibitors and their SAR studies and the molecules which have entered the clinical trials. CONCLUSION The development of successful selective p38MAPK inhibitors in inflammatory diseases is in progress despite all challenges. It was speculated that p38MAPK also plays an important role in treating diseases such as neuroinflammation, arterial inflammation, vascular inflammation, cancer and so on, which are posing the world with treatment challenges. In this review, clinical trials of drugs are discussed related to inflammatory and its related diseases. Research is in progress to design and develop novel p38MAPK inhibitors with minimal side effects.
Collapse
Affiliation(s)
- Archana Awasthi
- Department of Pharmaceutical Chemistry, Sri Venkateshwara College of Pharmacy, Madhapur, Hyderabad, Telangana, India
| | - Mantripragada Bhagavan Raju
- Department of Pharmaceutical Chemistry, Sri Venkateshwara College of Pharmacy, Madhapur, Hyderabad, Telangana, India
| | - Md Azizur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
30
|
Wen J, Wang D. Deciphering the PTM codes of the tumor suppressor p53. J Mol Cell Biol 2021; 13:774-785. [PMID: 34289043 PMCID: PMC8782589 DOI: 10.1093/jmcb/mjab047] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/14/2022] Open
Abstract
The genome guardian p53 functions as a transcription factor that senses numerous cellular stresses and orchestrates the corresponding transcriptional events involved in determining various cellular outcomes, including cell cycle arrest, apoptosis, senescence, DNA repair, and metabolic regulation. In response to diverse stresses, p53 undergoes multiple posttranslational modifications (PTMs) that coordinate with intimate interdependencies to precisely modulate its diverse properties in given biological contexts. Notably, PTMs can recruit ‘reader’ proteins that exclusively recognize specific modifications and facilitate the functional readout of p53. Targeting PTM–reader interplay has been developing into a promising cancer therapeutic strategy. In this review, we summarize the advances in deciphering the ‘PTM codes’ of p53, focusing particularly on the mechanisms by which the specific reader proteins functionally decipher the information harbored within these PTMs of p53. We also highlight the potential applications of intervention with p53 PTM–reader interactions in cancer therapy and discuss perspectives on the ‘PTMomic’ study of p53 and other proteins.
Collapse
Affiliation(s)
- Jia Wen
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
31
|
Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses. Nat Commun 2021; 12:3622. [PMID: 34131120 PMCID: PMC8206133 DOI: 10.1038/s41467-021-23330-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
PPM1D/Wip1 is a negative regulator of the tumor suppressor p53 and is overexpressed in several human solid tumors. Recent reports associate gain-of-function mutations of PPM1D in immune cells with worse outcomes for several human cancers. Here we show that mice with genetic knockout of Ppm1d or with conditional knockout of Ppm1d in the hematopoietic system, in myeloid cells, or in neutrophils all display significantly reduced growth of syngeneic melanoma or lung carcinoma tumors. Ppm1d knockout neutrophils infiltrate tumors extensively. Chemical inhibition of Wip1 in human or mouse neutrophils increases anti-tumor phenotypes, p53-dependent expression of co-stimulatory ligands, and proliferation of co-cultured cytotoxic T cells. These results suggest that inhibition of Wip1 in neutrophils enhances immune anti-tumor responses.
Collapse
|
32
|
Storchova R, Burdova K, Palek M, Medema RH, Macurek L. A novel assay for screening WIP1 phosphatase substrates in nuclear extracts. FEBS J 2021; 288:6035-6051. [PMID: 33982878 DOI: 10.1111/febs.15965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
Upon exposure to genotoxic stress, cells activate DNA damage response (DDR) that coordinates DNA repair with a temporal arrest in the cell cycle progression. DDR is triggered by activation of ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related protein kinases that phosphorylate multiple targets including tumor suppressor protein tumor suppressor p53 (p53). In addition, DNA damage can activate parallel stress response pathways [such as mitogen-activated protein kinase p38 alpha (p38)/MAPK-activated protein kinase 2 (MK2) kinases] contributing to establishing the cell cycle arrest. Wild-type p53-induced phosphatase 1 (WIP1) controls timely inactivation of DDR and is needed for recovery from the G2 checkpoint by counteracting the function of p53. Here, we developed a simple in vitro assay for testing WIP1 substrates in nuclear extracts. Whereas we did not detect any activity of WIP1 toward p38/MK2, we confirmed p53 as a substrate of WIP1. Inhibition or inactivation of WIP1 in U2OS cells increased phosphorylation of p53 at S15 and potentiated its acetylation at K382. Further, we identified Deleted in breast cancer gene 1 (DBC1) as a new substrate of WIP1 but surprisingly, depletion of DBC1 did not interfere with the ability of WIP1 to regulate p53 acetylation. Instead, we have found that WIP1 activity suppresses p53-K382 acetylation by inhibiting the interaction between p53 and the acetyltransferase p300. Newly established phosphatase assay allows an easy comparison of WIP1 ability to dephosphorylate various proteins and thus contributes to identification of its physiological substrates.
Collapse
Affiliation(s)
- Radka Storchova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Kamila Burdova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Matous Palek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
33
|
The p53 status in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Immunol Res 2021; 69:225-238. [PMID: 33983569 DOI: 10.1007/s12026-021-09202-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
P53 is a transcription factor that regulates many signaling pathways like apoptosis, cell cycle, DNA repair, and cellular stress responses. P53 is involved in inflammatory responses through the regulation of inflammatory signaling pathways, induction of cytokines, and matrix metalloproteinase expression. Also, p53 regulates immune responses through modulating Toll-like receptors expression and innate and adaptive immune cell differentiation and maturation. P53 is a modulator of the apoptosis and proliferation processes through regulating multiple anti and pro-apoptotic genes. Rheumatoid arthritis (RA) is categorized as an invasive inflammatory autoimmune disease with irreversible deformity of joints and bone resorption. Different immune and non-immune cells contribute to RA pathogenesis. Fibroblast-like synoviocytes (FLSs) have been recently introduced as a key player in the pathogenesis of RA. These cells in RA synovium produce inflammatory cytokines and matrix metalloproteinases which results in synovitis and joint destruction. Besides, hyper proliferation and apoptosis resistance of FLSs lead to synovial hyperplasia and bone and cartilage destruction. Given the critical role of p53 in inflammation, apoptosis, and cell proliferation, lack of p53 function (due to mutation or low expression) exerts a prominent role for this gene in the pathogenesis of RA. This review focuses on the role of p53 in different mechanisms and cells (specially FLSs) that involved in RA pathogenesis.
Collapse
|
34
|
Seumen CHT, Grimm TM, Hauck CR. Protein phosphatases in TLR signaling. Cell Commun Signal 2021; 19:45. [PMID: 33882943 PMCID: PMC8058998 DOI: 10.1186/s12964-021-00722-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are critical sensors for the detection of potentially harmful microbes. They are instrumental in initiating innate and adaptive immune responses against pathogenic organisms. However, exaggerated activation of TLR receptor signaling can also be responsible for the onset of autoimmune and inflammatory diseases. While positive regulators of TLR signaling, such as protein serine/threonine kinases, have been studied intensively, only little is known about phosphatases, which counterbalance and limit TLR signaling. In this review, we summarize protein phosphorylation events and their roles in the TLR pathway and highlight the involvement of protein phosphatases as negative regulators at specific steps along the TLR-initiated signaling cascade. Then, we focus on individual phosphatase families, specify the function of individual enzymes in TLR signaling in more detail and give perspectives for future research. A better understanding of phosphatase-mediated regulation of TLR signaling could provide novel access points to mitigate excessive immune activation and to modulate innate immune signaling.![]() Video Abstract
Collapse
Affiliation(s)
- Clovis H T Seumen
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany
| | - Tanja M Grimm
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
35
|
Zhang X, Park JE, Kim EH, Hong J, Hwang KT, Kim YA, Jang CY. Wip1 controls the translocation of the chromosomal passenger complex to the central spindle for faithful mitotic exit. Cell Mol Life Sci 2021; 78:2821-2838. [PMID: 33067654 PMCID: PMC11072438 DOI: 10.1007/s00018-020-03665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Dramatic cellular reorganization in mitosis critically depends on the timely and temporal phosphorylation of a broad range of proteins, which is mediated by the activation of the mitotic kinases and repression of counteracting phosphatases. The mitosis-to-interphase transition, which is termed mitotic exit, involves the removal of mitotic phosphorylation by protein phosphatases. Although protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) drive this reversal in animal cells, the phosphatase network associated with ordered bulk dephosphorylation in mitotic exit is not fully understood. Here, we describe a new mitotic phosphatase relay in which Wip1/PPM1D phosphatase activity is essential for chromosomal passenger complex (CPC) translocation to the anaphase central spindle after release from the chromosome via PP1-mediated dephosphorylation of histone H3T3. Depletion of endogenous Wip1 and overexpression of the phosphatase-dead mutant disturbed CPC translocation to the central spindle, leading to failure of cytokinesis. While Wip1 was degraded in early mitosis, its levels recovered in anaphase and the protein functioned as a Cdk1-counteracting phosphatase at the anaphase central spindle and midbody. Mechanistically, Wip1 dephosphorylated Thr-59 in inner centromere protein (INCENP), which, subsequently bound to MKLP2 and recruited other components to the central spindle. Furthermore, Wip1 overexpression is associated with the overall survival rate of patients with breast cancer, suggesting that Wip1 not only functions as a weak oncogene in the DNA damage network but also as a tumor suppressor in mitotic exit. Altogether, our findings reveal that sequential dephosphorylation of mitotic phosphatases provides spatiotemporal regulation of mitotic exit to prevent tumor initiation and progression.
Collapse
Affiliation(s)
- Xianghua Zhang
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Ji Eun Park
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Jihee Hong
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Ki-Tae Hwang
- Department of Surgery, Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Young A Kim
- Department of Pathology, Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea.
| | - Chang-Young Jang
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
36
|
Liu SC, Zhang M, Gan P, Yu HF, Ding CF, Zhang RP, He ZY, Hu WY. Wip1 phosphatase deficiency impairs spatial learning and memory. Biochem Biophys Res Commun 2020; 533:1309-1314. [PMID: 33051059 DOI: 10.1016/j.bbrc.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
Spatial learning and memory are typically assessed to evaluate hippocampus-dependent cognitive and memory functions in vivo. Protein phosphorylation and dephosphorylation by kinases and phosphatases play critical roles in spatial learning and memory. Here we report that the Wip1 phosphatase is essential for spatial learning, with knockout mice lacking Wip1 phosphatase exhibiting dysfunctional spatial cognition. Aberrant phosphorylation of the Wip1 substrates p38, ATM, and p53 were observed in the hippocampi of Wip1-/- mice, but only p38 inhibition reversed impairments in long-term potentiation in Wip1-knockout mice. p38 inhibition consistently ameliorated the spatial learning dysfunction caused by Wip1 deficiency. Our results demonstrate that deletion of Wip1 phosphatase impairs hippocampus-dependent spatial learning and memory, with aberrant downstream p38 phosphorylation involved in this process and providing a potential therapeutic target.
Collapse
Affiliation(s)
- Si-Cheng Liu
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650228, China; Second Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Ming Zhang
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650228, China
| | - Ping Gan
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Hao-Fei Yu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Cai-Feng Ding
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Rong-Ping Zhang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Zhi-Yong He
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650228, China.
| | - Wei-Yan Hu
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650228, China; School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
37
|
Phosphatase magnesium-dependent 1 δ (PPM1D), serine/threonine protein phosphatase and novel pharmacological target in cancer. Biochem Pharmacol 2020; 184:114362. [PMID: 33309518 DOI: 10.1016/j.bcp.2020.114362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Aberrations in DNA damage response genes are recognized mediators of tumorigenesis and resistance to chemo- and radiotherapy. While protein phosphatase magnesium-dependent 1 δ (PPM1D), located on the long arm of chromosome 17 at 17q22-23, is a key regulator of cellular responses to DNA damage, amplification, overexpression, or mutation of this gene is important in a wide range of pathologic processes. In this review, we describe the physiologic function of PPM1D, as well as its role in diverse processes, including fertility, development, stemness, immunity, tumorigenesis, and treatment responsiveness. We highlight both the advances and limitations of current approaches to targeting malignant processes mediated by pathogenic alterations in PPM1D with the goal of providing rationale for continued research and development of clinically viable treatment approaches for PPM1D-associated diseases.
Collapse
|
38
|
Husby S, Hjermind Justesen E, Grønbæk K. Protein phosphatase, Mg 2+/Mn 2+-dependent 1D (PPM1D) mutations in haematological cancer. Br J Haematol 2020; 192:697-705. [PMID: 33616916 DOI: 10.1111/bjh.17120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023]
Abstract
Until recently, the protein phosphatase, Mg2+/Mn2+-dependent 1D (PPM1D) gene had not been examined in haematological cancer, but several studies have now explored the functional role of this gene and its aberrations. It is often mutated in the context of clonal haemopoiesis (including in patients with lymphoma, myeloproliferative neoplasms and myelodysplastic syndrome) and mutations have been associated with exposure to cytotoxic and radiation therapy, development of therapy-related neoplasms and inferior survival. The vast majority of PPM1D mutations found in haematopoietic cells are of the nonsense or frameshift type and located within terminal exon 6. These genetic defects are rarely found in the blood of healthy individuals. PPM1D encodes the PPM1D phosphatase [also named wild-type p53-induced phosphatase 1 (WIP1)], which negatively regulates signalling molecules within the DNA damage response pathway, including tumour suppressor p53. Clonal expansion of PPM1D mutant haematopoietic cells can potentially be prevented with inhibitors; however, human trials are awaited. In the present review, we provide a review of the literature regarding PPM1D and its role in haematological cancer.
Collapse
Affiliation(s)
- Simon Husby
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Emma Hjermind Justesen
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Grønbæk
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Characterization of BRCA1-deficient premalignant tissues and cancers identifies Plekha5 as a tumor metastasis suppressor. Nat Commun 2020; 11:4875. [PMID: 32978388 PMCID: PMC7519681 DOI: 10.1038/s41467-020-18637-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Single-cell whole-exome sequencing (scWES) is a powerful approach for deciphering intratumor heterogeneity and identifying cancer drivers. So far, however, simultaneous analysis of single nucleotide variants (SNVs) and copy number variations (CNVs) of a single cell has been challenging. By analyzing SNVs and CNVs simultaneously in bulk and single cells of premalignant tissues and tumors from mouse and human BRCA1-associated breast cancers, we discover an evolution process through which the tumors initiate from cells with SNVs affecting driver genes in the premalignant stage and malignantly progress later via CNVs acquired in chromosome regions with cancer driver genes. These events occur randomly and hit many putative cancer drivers besides p53 to generate unique genetic and pathological features for each tumor. Upon this, we finally identify a tumor metastasis suppressor Plekha5, whose deficiency promotes cancer metastasis to the liver and/or lung.
Collapse
|
40
|
Wang J, Wang G, Cheng D, Huang S, Chang A, Tan X, Wang Q, Zhao S, Wu D, Liu AT, Yang S, Xiang R, Sun P. Her2 promotes early dissemination of breast cancer by suppressing the p38-MK2-Hsp27 pathway that is targetable by Wip1 inhibition. Oncogene 2020; 39:6313-6326. [PMID: 32848211 PMCID: PMC7541706 DOI: 10.1038/s41388-020-01437-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Cancer can metastasize from early lesions without detectable tumors. Despite extensive studies on metastasis in cancer cells from patients with detectable primary tumors, mechanisms for early metastatic dissemination are poorly understood. Her2 promotes breast cancer early dissemination by inhibiting p38, but the downstream pathway in this process was unknown. Using early lesion breast cancer models, we demonstrate that the effect of p38 suppression by Her2 on early dissemination is mediated by MK2 and Hsp27. The early disseminating cells in the MMTV-Her2 breast cancer model are Her2highp-p38lowp-MK2lowp-Hsp27low, which also exist in human breast carcinoma tissues. Suppression of p38 and MK2 by Her2 reduces MK2-mediated Hsp27 phosphorylation, and unphosphorylated Hsp27 binds to β-catenin and enhances its phosphorylation by Src, leading to β-catenin activation and disseminating phenotypes in early lesion breast cancer cells. Pharmacological inhibition of MK2 promotes, while inhibition of a p38 phosphatase Wip1 suppresses, early dissemination in vivo. These findings identify Her2-mediated suppression of the p38-MK2-Hsp27 pathway as a novel mechanism for cancer early dissemination, and provide a basis for new therapies targeting early metastatic dissemination in Her2+ breast cancer.
Collapse
Affiliation(s)
- Juan Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Guanwen Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Dongmei Cheng
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Shan Huang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Antao Chang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Xiaoming Tan
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA.,Department of Respiratory Disease, South Campus, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Qiong Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Shaorong Zhao
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Dan Wu
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Andy T Liu
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA.,University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shuang Yang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.
| | - Peiqing Sun
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA.
| |
Collapse
|
41
|
Hat B, Jaruszewicz-Błońska J, Lipniacki T. Model-based optimization of combination protocols for irradiation-insensitive cancers. Sci Rep 2020; 10:12652. [PMID: 32724100 PMCID: PMC7387345 DOI: 10.1038/s41598-020-69380-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/19/2020] [Indexed: 01/07/2023] Open
Abstract
Alternations in the p53 regulatory network may render cancer cells resistant to the radiation-induced apoptosis. In this theoretical study we search for the best protocols combining targeted therapy with radiation to treat cancers with wild-type p53, but having downregulated expression of PTEN or overexpression of Wip1 resulting in resistance to radiation monotherapy. Instead of using the maximum tolerated dose paradigm, we exploit stochastic computational model of the p53 regulatory network to calculate apoptotic fractions for both normal and cancer cells. We consider combination protocols, with irradiations repeated every 12, 18, 24, or 36 h to find that timing between Mdm2 inhibitor delivery and irradiation significantly influences the apoptotic cell fractions. We assume that uptake of the inhibitor is higher by cancer than by normal cells and that cancer cells receive higher irradiation doses from intersecting beams. These two assumptions were found necessary for the existence of protocols inducing massive apoptosis in cancer cells without killing large fraction of normal cells neighboring tumor. The best found protocols have irradiations repeated every 24 or 36 h with two inhibitor doses per irradiation cycle, and allow to induce apoptosis in more than 95% of cancer cells, killing less than 10% of normal cells.
Collapse
Affiliation(s)
- Beata Hat
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | | | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
42
|
Shi L, Tian Q, Feng C, Zhang P, Zhao Y. The biological function and the regulatory roles of wild-type p53-induced phosphatase 1 in immune system. Int Rev Immunol 2020; 39:280-291. [PMID: 32696682 DOI: 10.1080/08830185.2020.1795153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Wild-type p53-induced phosphatase 1 (WIP1) belongs to the protein phosphatase 2C (PP2C) family and is a mammalian serine/threonine specific protein phosphatase to dephosphorylate numerous signaling molecules. Mammalian WIP1 regulates a wide array of targeting molecules and plays key regulatory roles in many cell processes such as DNA damage and repair, cell proliferation, differentiation, apoptosis, and senescence. WIP1 promotes the formation and development of tumors as an oncogene and a negative regulator of p53. It is also involved in the regulation of aging, neurological diseases and immune diseases. Recent studies demonstrated the critical roles of WIP1 in the differentiation and function of immune cells including T cells, neutrophils and macrophages. In the present manuscript, we briefly summarized the expression patterns, biological function and the target molecules and signal pathways of WIP1 and mainly discussed the latest advances on the regulatory effects of WIP1 in the immune system. WIP1 may be a potential target molecule to treat cancers and immune diseases such as allergic asthma.
Collapse
Affiliation(s)
- Lu Shi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianchuan Tian
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chang Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Li B, Hu J, He D, Chen Q, Liu S, Zhu X, Yu M. PPM1D Knockdown Suppresses Cell Proliferation, Promotes Cell Apoptosis, and Activates p38 MAPK/p53 Signaling Pathway in Acute Myeloid Leukemia. Technol Cancer Res Treat 2020; 19:1533033820942312. [PMID: 32691668 PMCID: PMC7375723 DOI: 10.1177/1533033820942312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES This study was to explore the effect of protein phosphatase, Mg2+/Mn2+ dependent 1D knockdown on proliferation and apoptosis as well as p38 MAPK/p53 signaling pathway in acute myeloid leukemia. METHODS The expression of protein phosphatase, Mg2+/Mn2+ dependent 1D was detected in acute myeloid leukemia cell lines including SKM-1, KG-1, AML-193, and THP-1 cells, and normal bone marrow mononuclear cells isolated from healthy donors. The knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D was conducted by transfecting small interfering RNA into AML-193 cells and KG-1 cells. RESULTS The relative messenger RNA/protein expressions of protein phosphatase, Mg2+/Mn2+ dependent 1D were higher in SKM-1, KG-1, AML-193, and THP-1 cells compared with control cells (normal bone marrow mononuclear cells). After transfecting protein phosphatase, Mg2+/Mn2+ dependent 1D small interfering RNA into AML-193 cells and KG-1 cells, both messenger RNA and protein expressions of protein phosphatase, Mg2+/Mn2+ dependent 1D were significantly reduced, indicating the successful transfection. Most importantly, knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D suppressed cell proliferation and promoted cell apoptosis in AML-193 cells and KG-1 cells. In addition, knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D enhanced the expressions of p-p38 and p53 in AML-193 cells and KG-1 cells. The above observation suggested that protein phosphatase, Mg2+/Mn2+ dependent 1D knockdown suppressed cell proliferation, promoted cell apoptosis, and activated p38 MAPK/p53 signaling pathway in acute myeloid leukemia cells. CONCLUSION Protein phosphatase, Mg2+/Mn2+ dependent 1D is implicated in acute myeloid leukemia carcinogenesis, which illuminates its potential role as a treatment target for acute myeloid leukemia.
Collapse
Affiliation(s)
- Bin Li
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Jie Hu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Di He
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Qi Chen
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Suna Liu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Xiaoling Zhu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Meijia Yu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| |
Collapse
|
44
|
Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215:107622. [PMID: 32650009 DOI: 10.1016/j.pharmthera.2020.107622] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphatases and kinases control multiple cellular events including proliferation, differentiation, and stress responses through regulating reversible protein phosphorylation, the most important post-translational modification. Members of metal-dependent protein phosphatase (PPM) family, also known as PP2C phosphatases, are Ser/Thr phosphatases that bind manganese/magnesium ions (Mn2+/Mg2+) in their active center and function as single subunit enzymes. In mammals, there are 20 isoforms of PPM phosphatases: PPM1A, PPM1B, PPM1D, PPM1E, PPM1F, PPM1G, PPM1H, PPM1J, PPM1K, PPM1L, PPM1M, PPM1N, ILKAP, PDP1, PDP2, PHLPP1, PHLPP2, PP2D1, PPTC7, and TAB1, whereas there are only 8 in yeast. Phylogenetic analysis of the DNA sequences of vertebrate PPM isoforms revealed that they can be divided into 12 different classes: PPM1A/PPM1B/PPM1N, PPM1D, PPM1E/PPM1F, PPM1G, PPM1H/PPM1J/PPM1M, PPM1K, PPM1L, ILKAP, PDP1/PDP2, PP2D1/PHLPP1/PHLPP2, TAB1, and PPTC7. PPM-family members have a conserved catalytic core region, which contains the metal-chelating residues. The different isoforms also have isoform specific regions within their catalytic core domain and terminal domains, and these regions may be involved in substrate recognition and/or functional regulation of the phosphatases. The twenty mammalian PPM phosphatases are involved in regulating diverse cellular functions, such as cell cycle control, cell differentiation, immune responses, and cell metabolism. Mutation, overexpression, or deletion of the PPM phosphatase gene results in abnormal cellular responses, which lead to various human diseases. This review focuses on the structures and biological functions of the PPM-phosphatase family and their associated diseases. The development of specific inhibitors against the PPM phosphatase family as a therapeutic strategy will also be discussed.
Collapse
|
45
|
Liu Y, Lu H, Dong Q, Hao X, Qiao L. Maslinic acid induces anticancer effects in human neuroblastoma cells mediated via apoptosis induction and caspase activation, inhibition of cell migration and invasion and targeting MAPK/ERK signaling pathway. AMB Express 2020; 10:104. [PMID: 32488691 PMCID: PMC7266924 DOI: 10.1186/s13568-020-01035-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/23/2020] [Indexed: 01/11/2023] Open
Abstract
Maslinic acid is an active member of pentacyclic triterpenes predominantly found in dietary plants including hawthorn berries and olive fruit skins. It has been reported to show immense pharmacological and biological importance including anticancer property. This research was initiated to explore the anticancer potential of maslinic acid against human neuroblastoma. The effects of maslinic acid on cellular apoptosis, ROS generation, cell migration and invasion, caspase activation and targeting MAPK/ERK signaling pathway were investigated. The proliferation percentage was calculated by performing of MTT assay. AO/EB and annexin V/PI staining assays along with western blotting were used to monitor the apoptosis and expressions of apoptosis connected proteins. Spectrofluorometry was used for ROS monitoring. To assess the anti-metastatic effects of maslinic acid on neuroblastoma cells, transwell chambers assays for migration as well as invasion were executed. Western blotting was implemented to establish the expressions of MAPK/ERK signaling pathway connected proteins. Results evidenced remarkable anticancer potential of maslinic acid against human neuroblastoma. It induced dose as well as time reliant anti-proliferative effects against SHSY-5Y cells selectively. The underlying mechanism of cancer suppressive effects of maslinic acid was found to mediate via caspase-dependent apoptosis. Further, ROS production amplified terrifically with exposure of SHSY-5Y to higher maslinic acid doses. Cell migration and invasion in SHSY-5Y cells were both reduced remarkably by maslinic acid. Finally, the activity of proteins associated with MAPK/ERK signaling pathway was found to be significantly reduced with increasing maslinic acid doses. In conclusion, it was observed that maslinic acid possesses a great anti-neuroblastoma potential and could be considered for its chemotherapy provided further investigations are recommended.
Collapse
|
46
|
Ozen M, Lipniacki T, Levchenko A, Emamian ES, Abdi A. Modeling and measurement of signaling outcomes affecting decision making in noisy intracellular networks using machine learning methods. Integr Biol (Camb) 2020; 12:122-138. [PMID: 32424393 DOI: 10.1093/intbio/zyaa009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
Characterization of decision-making in cells in response to received signals is of importance for understanding how cell fate is determined. The problem becomes multi-faceted and complex when we consider cellular heterogeneity and dynamics of biochemical processes. In this paper, we present a unified set of decision-theoretic, machine learning and statistical signal processing methods and metrics to model the precision of signaling decisions, in the presence of uncertainty, using single cell data. First, we introduce erroneous decisions that may result from signaling processes and identify false alarms and miss events associated with such decisions. Then, we present an optimal decision strategy which minimizes the total decision error probability. Additionally, we demonstrate how graphing receiver operating characteristic curves conveniently reveals the trade-off between false alarm and miss probabilities associated with different cell responses. Furthermore, we extend the introduced framework to incorporate the dynamics of biochemical processes and reactions in a cell, using multi-time point measurements and multi-dimensional outcome analysis and decision-making algorithms. The introduced multivariate signaling outcome modeling framework can be used to analyze several molecular species measured at the same or different time instants. We also show how the developed binary outcome analysis and decision-making approach can be extended to more than two possible outcomes. As an example and to show how the introduced methods can be used in practice, we apply them to single cell data of PTEN, an important intracellular regulatory molecule in a p53 system, in wild-type and abnormal cells. The unified signaling outcome modeling framework presented here can be applied to various organisms ranging from viruses, bacteria, yeast and lower metazoans to more complex organisms such as mammalian cells. Ultimately, this signaling outcome modeling approach can be utilized to better understand the transition from physiological to pathological conditions such as inflammation, various cancers and autoimmune diseases.
Collapse
Affiliation(s)
- Mustafa Ozen
- Center for Wireless Information Processing, Department of Electrical and Computer Engineering, New Jersey Institute of Technology, 323 King Blvd, Newark, NJ 07102, USA
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
| | - Andre Levchenko
- Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Effat S Emamian
- Advanced Technologies for Novel Therapeutics, Enterprise Development Center, New Jersey Institute of Technology, 211 Warren St., Newark, NJ 07103, USA
| | - Ali Abdi
- Center for Wireless Information Processing, Department of Electrical and Computer Engineering, New Jersey Institute of Technology, 323 King Blvd, Newark, NJ 07102, USA.,Department of Biological Sciences, New Jersey Institute of Technology, 323 King Blvd, Newark, NJ 07102, USA
| |
Collapse
|
47
|
The p38 Pathway: From Biology to Cancer Therapy. Int J Mol Sci 2020; 21:ijms21061913. [PMID: 32168915 PMCID: PMC7139330 DOI: 10.3390/ijms21061913] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/27/2022] Open
Abstract
The p38 MAPK pathway is well known for its role in transducing stress signals from the environment. Many key players and regulatory mechanisms of this signaling cascade have been described to some extent. Nevertheless, p38 participates in a broad range of cellular activities, for many of which detailed molecular pictures are still lacking. Originally described as a tumor-suppressor kinase for its inhibitory role in RAS-dependent transformation, p38 can also function as a tumor promoter, as demonstrated by extensive experimental data. This finding has prompted the development of specific inhibitors that have been used in clinical trials to treat several human malignancies, although without much success to date. However, elucidating critical aspects of p38 biology, such as isoform-specific functions or its apparent dual nature during tumorigenesis, might open up new possibilities for therapy with unexpected potential. In this review, we provide an extensive description of the main biological functions of p38 and focus on recent studies that have addressed its role in cancer. Furthermore, we provide an updated overview of therapeutic strategies targeting p38 in cancer and promising alternatives currently being explored.
Collapse
|
48
|
Puetkasichonpasutha J, Namwat N, Sa-Ngiamwibool P, Titapun A, Suthiphongchai T. Evaluation of p53 and Its Target Gene Expression as Potential Biomarkers of Cholangiocarcinoma in Thai Patients. Asian Pac J Cancer Prev 2020; 21:791-798. [PMID: 32212809 PMCID: PMC7437311 DOI: 10.31557/apjcp.2020.21.3.791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), a common cancer in northeastern Thailand, is a severe disease with poor prognosis and short survival time following diagnosis. DNA damage in CCA is believed to be caused by liver fluke infection in combination with exposure to carcinogens. p53, a tumor suppressor, is the most mutated gene in human cancers including liver fluke-associated CCA. Hence, expression patterns of p53 and its target genes may be useful for diagnosis and/or prognosis of CCA patients. METHODS Differential mRNA expression of p53 and its target genes, namely, FUCA1, ICAM2 MDM2, p21, PAI-1, S100A9, and WIP1 in CCA tissue samples (n = 30) relative to matched adjacent non-tumor tissues was determined by quantitative RT-PCR and compared to clinicopathological features. Level of p53 protein was determined by immunohistochemistry and correlated with the expression of its target genes. RESULTS Immunohistochemistry showed elevation of p53 protein level in 77% of the cases, while RT-PCR showed downregulation of p53 mRNA and its seven target genes in 23% and 47-97% of the samples. PAI-1 was down-regulated in almost all CCA samples, thus highlighting it as a potential diagnostic marker for CCA. However, no significant clinical associations were found except for down-regulation of WIP1 that was significantly correlated with non-papillary type tissue (p-value = 0.001) and with high p53 protein level (p-value = 0.007). CONCLUSION Our results demonstrated statistically significant association between down-regulation of WIP1 with non-papillary type and with high p53 protein level, and PAI-1 was down-regulated in almost all CCA. Therefore, expression level of WIP1 and PAI-1 may be useful for predicting p53 functional status and as a potential diagnostic marker of CCA, respectively.
Collapse
Affiliation(s)
| | - Nisana Namwat
- Department of Biochemistry,
- Department of Pathology,
| | | | - Attapol Titapun
- Department of Pathology,
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| | | |
Collapse
|
49
|
Wang C, Huang W, Lin J, Fang F, Wang X, Wang H. Triclosan-induced liver and brain injury in zebrafish (Danio rerio) via abnormal expression of miR-125 regulated by PKCα/Nrf2/p53 signaling pathways. CHEMOSPHERE 2020; 241:125086. [PMID: 31627110 DOI: 10.1016/j.chemosphere.2019.125086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS) is widely used in personal care products, and its chronic exposure leads to severely toxic effects in zebrafish (Danio rerio). PKCα, Nrf2 and p53 are three important signaling pathways concerned with cell development. Herein, we speculated on and verified a novel TCS regulatory pathway: (1) TCS acted on GPER (G-protein-coupled estrogen receptor) to activate MAPK/ERK pathway, further resulting in the expression changes of protein kinase C (PKC) family; (2) PKC participated in Nrf2 phosphorylation; (3) The expression of miR-125b was regulated by Nrf2; and (4) The expression changes of related genes in the PKCs-Nrf2-ARE pathway showed the specificity of zebrafish tissue and organ. TCS exposure led to down-regulation of the Nrf2 and phosphorylated Nrf2(Ser40) protein in diencephalon nucleus, stratum marginale and stratum centrale areas in adult zebrafish brain. The phosphorylated Nrf2(Ser40) was mainly expressed in PGz area, while it was not the case for Nrf2. Both Nrf2 and phosphorylated Nrf2 were activated by TCS exposure; however, the changing trend of PKCs was opposite to that of Nrf2 in the liver. Both DAPI staining and Merge images demonstrated that TCS induced oxidative phosphorylation, and phosphorylated Nrf2 is translocated into the nucleus as the transcription factor to regulate gene transcription in liver and brain. Nrf2 over-expression increased accumulation of lipid droplets in yolk, brain and liver, resulting from the upregulation of pri-miR-125b1, pri-miR-125b3, but not pri-miR-125b2. These findings reveal the upstream regulation mechanism of miR-125b for TCS-induced fat-metabolism disorder from the regulatory perspective of the pri-miR-125b promoter region.
Collapse
Affiliation(s)
- Caihong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenhao Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiebo Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fang Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
50
|
Cell Cycle and DNA Repair Regulation in the Damage Response: Protein Phosphatases Take Over the Reins. Int J Mol Sci 2020; 21:ijms21020446. [PMID: 31936707 PMCID: PMC7014277 DOI: 10.3390/ijms21020446] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cells are constantly suffering genotoxic stresses that affect the integrity of our genetic material. Genotoxic insults must be repaired to avoid the loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental abnormalities and tumorigenesis. To combat this threat, eukaryotic cells have evolved a set of sophisticated molecular mechanisms that are collectively known as the DNA damage response (DDR). This surveillance system controls several aspects of the cellular response, including the detection of lesions, a temporary cell cycle arrest, and the repair of the broken DNA. While the regulation of the DDR by numerous kinases has been well documented over the last decade, the complex roles of protein dephosphorylation have only recently begun to be investigated. Here, we review recent progress in the characterization of DDR-related protein phosphatases during the response to a DNA lesion, focusing mainly on their ability to modulate the DNA damage checkpoint and the repair of the damaged DNA. We also discuss their protein composition and structure, target specificity, and biochemical regulation along the different stages encompassed in the DDR. The compilation of this information will allow us to better comprehend the physiological significance of protein dephosphorylation in the maintenance of genome integrity and cell viability in response to genotoxic stress.
Collapse
|