1
|
Baral S, Chakraborty S, Steinbach P, Paul D, Min JH, Ansari A. Evidence for intrinsic DNA dynamics and deformability in damage sensing by the Rad4/XPC nucleotide excision repair complex. Nucleic Acids Res 2025; 53:gkae1290. [PMID: 39797732 PMCID: PMC11724326 DOI: 10.1093/nar/gkae1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2024] [Revised: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair. T-jump measurements, together with a novel and rigorous comparison with equilibrium FRET, uncovered conformational dynamics spanning multiple timescales and revealed key differences between Rad4-specific and non-specific DNA. AT-rich non-specific sites (matched or mismatched) exhibited dynamics primarily within the T-jump observation window, albeit with some amplitude in 'missing' fast (<20 μs) kinetics. These fast-kinetics amplitudes were dramatically larger for specific sites (CCC/CCC and TTT/TTT), which also exhibited 'missing' slow (>50 ms) kinetics at elevated temperatures, unseen in non-specific sites. We posit that the rapid (μs-ms) intrinsic DNA fluctuations help stall a diffusing protein at AT-rich/damaged sites and that the >50-ms kinetics in specific DNA reflect a propensity to adopt unwound/bent conformations resembling Rad4-bound DNA structures. These studies provide compelling evidence for sequence/structure-dependent intrinsic DNA dynamics and deformability that likely govern damage sensing by Rad4.
Collapse
Affiliation(s)
- Saroj Baral
- Department of Physics, 845 W Taylor St, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Sagnik Chakraborty
- Department of Physics, 845 W Taylor St, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Peter J Steinbach
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIHBC 31 BG RM 3B-62, 31 Center Drive, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debamita Paul
- Department of Chemistry & Biochemistry, One Bear Place #97348, Baylor University, Waco, TX 76798, USA
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, One Bear Place #97348, Baylor University, Waco, TX 76798, USA
| | - Anjum Ansari
- Department of Physics, 845 W Taylor St, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Biomedical Engineering, 851 S. Morgan St, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
2
|
Wong L, Sami A, Chelico L. Competition for DNA binding between the genome protector replication protein A and the genome modifying APOBEC3 single-stranded DNA deaminases. Nucleic Acids Res 2022; 50:12039-12057. [PMID: 36444883 PMCID: PMC9757055 DOI: 10.1093/nar/gkac1121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
The human APOBEC family of eleven cytosine deaminases use RNA and single-stranded DNA (ssDNA) as substrates to deaminate cytosine to uracil. This deamination event has roles in lipid metabolism by altering mRNA coding, adaptive immunity by causing evolution of antibody genes, and innate immunity through inactivation of viral genomes. These benefits come at a cost where some family members, primarily from the APOBEC3 subfamily (APOBEC3A-H, excluding E), can cause off-target deaminations of cytosine to form uracil on transiently single-stranded genomic DNA, which induces mutations that are associated with cancer evolution. Since uracil is only promutagenic, the mutations observed in cancer genomes originate only when uracil is not removed by uracil DNA glycosylase (UNG) or when the UNG-induced abasic site is erroneously repaired. However, when ssDNA is present, replication protein A (RPA) binds and protects the DNA from nucleases or recruits DNA repair proteins, such as UNG. Thus, APOBEC enzymes must compete with RPA to access their substrate. Certain APOBEC enzymes can displace RPA, bind and scan ssDNA efficiently to search for cytosines, and can become highly overexpressed in tumor cells. Depending on the DNA replication conditions and DNA structure, RPA can either be in excess or deficient. Here we discuss the interplay between these factors and how despite RPA, multiple cancer genomes have a mutation bias at cytosines indicative of APOBEC activity.
Collapse
Affiliation(s)
- Lai Wong
- University of Saskatchewan, College of Medicine, Department of Biochemistry, Microbiology, and Immunology, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Alina Sami
- University of Saskatchewan, College of Medicine, Department of Biochemistry, Microbiology, and Immunology, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Linda Chelico
- To whom correspondence should be addressed. Tel: +1 306 966 4318; Fax: +1 306 966 4298;
| |
Collapse
|
3
|
Diatlova EA, Mechetin GV, Zharkov DO. Distinct Mechanisms of Target Search by Endonuclease VIII-like DNA Glycosylases. Cells 2022; 11:cells11203192. [PMID: 36291061 PMCID: PMC9600533 DOI: 10.3390/cells11203192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 12/02/2022] Open
Abstract
Proteins that recognize specific DNA sequences or structural elements often find their cognate DNA lesions in a processive mode, in which an enzyme binds DNA non-specifically and then slides along the DNA contour by one-dimensional diffusion. Opposite to the processive mechanism is distributive search, when an enzyme binds, samples and releases DNA without significant lateral movement. Many DNA glycosylases, the repair enzymes that excise damaged bases from DNA, use processive search to find their cognate lesions. Here, using a method based on correlated cleavage of multiply damaged oligonucleotide substrates we investigate the mechanism of lesion search by three structurally related DNA glycosylases—bacterial endonuclease VIII (Nei) and its mammalian homologs NEIL1 and NEIL2. Similarly to another homologous enzyme, bacterial formamidopyrimidine–DNA glycosylase, NEIL1 seems to use a processive mode to locate its targets. However, the processivity of Nei was notably lower, and NEIL2 exhibited almost fully distributive action on all types of substrates. Although one-dimensional diffusion is often regarded as a universal search mechanism, our results indicate that even proteins sharing a common fold may be quite different in the ways they locate their targets in DNA.
Collapse
Affiliation(s)
- Evgeniia A. Diatlova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Grigory V. Mechetin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
4
|
Zhao W, Du H, Xia Y, Xie S, Huang YP, Xu T, Zhang J, Gao YQ, Wan X. Accelerating supramolecular aggregation by molecular sliding. Phys Chem Chem Phys 2022; 24:23840-23848. [PMID: 36165176 DOI: 10.1039/d2cp04064f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Diffusion-based translocation along DNA or RNA molecules is essential for genome regulatory proteins to execute their biological functions. The reduced dimensionality of the searching process makes the proteins bind specific target sites at a "faster-than-diffusion-controlled rate". We herein report a photoresponsive slider-track diffusion system capable of self-assembly rate acceleration, which consists of (-)-camphorsulfonic acid, 4-(4'-n-octoxylphenylazo)benzenesulfonic acid, and isotactic poly(2-vinylpyridine). The protonated pyridine rings act as the footholds for anionic azo sliders to diffusively bind and slide along polycationic tracks via electrostatic interactions. Ultraviolet light triggers the trans to cis isomerization and aggregation of azo sliders, which can be monitored by multiple spectroscopic methods without labeling. The presence of vinyl polymer track increases the aggregation rate of cis azobenzene up to ∼20 times, depending on the stereoregularity of the polymer chain, the acid/base ratio and the addition of salt. This system has a feature of simplicity, monitorability, controllability, and could find applications in designing molecular machines with desired functionalities.
Collapse
Affiliation(s)
- Wenjing Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Hongxu Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yijie Xia
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Siyu Xie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu-Peng Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tieqi Xu
- State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Modulating binding affinity, specificity and configurations by multivalent interactions. Biophys J 2022; 121:1868-1880. [PMID: 35450827 DOI: 10.1016/j.bpj.2022.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Biological functions of proteins rely on their specific interactions with binding partners. Many proteins contain multiple domains, which can bind to their targets that often have more than one binding site, resulting in multivalent interactions. While it has been shown that multivalent interactions play an crucial role in modulating binding affinity and specificity, other potential effects of multivalent interactions are less explored. Here, we developed a broadly applicable transfer matrix formalism and used it to investigate the binding of two-domain ligands to targets with multiple binding sites. We show that 1) ligands with two specific binding domains can drastically boost both the binding affinity and specificity and down-shift the working concentration range, compared to single-domain ligands, 2) the presence of a positive domain-domain cooperativity or containing a non-specific binding domain can down-shift the working concentration range of ligands by increasing the binding affinity without compromising the binding specificity, 3) the configuration of the bound ligands has a strong concentration dependence, providing important insights into the physical origin of phase-separation processes taking place in living cells. In line with previous studies, our results suggest that multivalent interactions are utilized by cells for highly efficient regulation of target binding involved in a diverse range of cellular processes such as signal transduction, gene transcription, antibody-antigen recognition.
Collapse
|
6
|
Liu W, Li J, Xu Y, Yin D, Zhu X, Fu H, Su X, Guo X. Complete Mapping of DNA‐Protein Interactions at the Single‐Molecule Level. ADVANCED SCIENCE 2021; 8:2101383. [PMCID: PMC8655176 DOI: 10.1002/advs.202101383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/14/2023]
Abstract
DNA–protein interaction plays an essential role in the storage, expression, and regulation of genetic information. A 1D/3D facilitated diffusion mechanism has been proposed to explain the extraordinarily rapid rate of DNA‐binding protein (DBP) searching for cognate sequence along DNA and further studied by single‐molecule experiments. However, direct observation of the detailed chronological protein searching image is still a formidable challenge. Here, for the first time, a single‐molecule electrical monitoring technique is utilized to realize label‐free detection of the DBP–DNA interaction process based on high‐gain silicon nanowire field‐effect transistors (SiNW FETs). The whole binding process of WRKY domain and DNA has been visualized with high sensitivity and single‐base resolution. Impressively, the swinging of hydrogen bonds between amino acid residues and bases in DNA induce the dynamic collective motion of DBP–DNA. This in situ, label‐free electrical detection platform provides a practical experimental methodology for dynamic studies of various biomolecules.
Collapse
Affiliation(s)
- Wenzhe Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Jie Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Shenzhen Bay LaboratoryShenzhen518132P. R. China
| | - Yongping Xu
- State Key Laboratory of Protein and Plant Gene ResearchBiomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijing100871P. R. China
| | - Dongbao Yin
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Xin Zhu
- Center of Single‐Molecule SciencesFrontiers Science Center for New Organic MatterInstitute of Modern OpticsCollege of Electronic Information and Optical EngineeringNankai University38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| | - Huanyan Fu
- Center of Single‐Molecule SciencesFrontiers Science Center for New Organic MatterInstitute of Modern OpticsCollege of Electronic Information and Optical EngineeringNankai University38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| | - Xiaodong Su
- State Key Laboratory of Protein and Plant Gene ResearchBiomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijing100871P. R. China
| | - Xuefeng Guo
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesBeijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Center of Single‐Molecule SciencesFrontiers Science Center for New Organic MatterInstitute of Modern OpticsCollege of Electronic Information and Optical EngineeringNankai University38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| |
Collapse
|
7
|
Vo TD, Schneider AL, Poon GMK, Wilson WD. DNA-facilitated target search by nucleoproteins: Extension of a biosensor-surface plasmon resonance method. Anal Biochem 2021; 629:114298. [PMID: 34252439 PMCID: PMC8427768 DOI: 10.1016/j.ab.2021.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
To extend the value of biosensor-SPR in the characterization of DNA recognition by nucleoproteins, we report a comparative analysis of DNA-facilitated target search by two ETS-family transcription factors: Elk1 and ETV6. ETS domains represent an attractive system for developing biosensor-based techniques due to a broad range of physicochemical properties encoded within a highly conserved DNA-binding motif. Building on a biosensor approach in which the protein is quantitatively sequestered and presented to immobilized cognate DNA as nonspecific complexes, we assessed the impact of intrinsic cognate and nonspecific affinities on long-range (intersegmental) target search. The equilibrium constants of DNA-facilitated binding were sensitive to the intrinsic binding properties of the proteins such that their relative specificity for cognate DNA were reinforced when binding occurred by transfer vs. without nonspecific DNA. Direct measurement of association and dissociation kinetics revealed ionic features of the activated complex that evidenced DNA-facilitated dissociation, even though Elk1 and ETV6 harbor only a single DNA-binding surface. At salt concentrations that masked the effects of nonspecific pre-binding at equilibrium, the dissociation kinetics of cognate binding were nevertheless distinct from conditions under which nonspecific DNA was absent. These results further strengthen the significance of long-range DNA-facilitated translocation in the physiologic environment.
Collapse
Affiliation(s)
- Tam D Vo
- Department of Chemistry, Georgia State University, USA
| | | | - Gregory M K Poon
- Department of Chemistry, Georgia State University, USA; Center for Diagnostics and Therapeutics, Georgia State University, USA.
| | - W David Wilson
- Department of Chemistry, Georgia State University, USA; Center for Diagnostics and Therapeutics, Georgia State University, USA.
| |
Collapse
|
8
|
Recognition and repair of oxidatively generated DNA lesions in plasmid DNA by a facilitated diffusion mechanism. Biochem J 2021; 478:2359-2370. [PMID: 34060590 DOI: 10.1042/bcj20210095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022]
Abstract
The oxidatively generated genotoxic spiroiminodihydantoin (Sp) lesions are well-known substrates of the base excision repair (BER) pathway initiated by the bifunctional DNA glycosylase NEIL1. In this work, we reported that the excision kinetics of the single Sp lesions site-specifically embedded in the covalently closed circular DNA plasmids (contour length 2686 base pairs) by NEIL1 are biphasic under single-turnover conditions ([NEIL1] ≫ [SpDNApl]) in contrast with monophasic excision kinetics of the same lesions embedded in147-mer Sp-modified DNA duplexes. Under conditions of a large excess of plasmid DNA base pairs over NEIL1 molecules, the kinetics of excision of Sp lesions are biphasic in nature, exhibiting an initial burst phase, followed by a slower rate of formation of excision products The burst phase is associated with NEIL1-DNA plasmid complexes, while the slow kinetic phase is attributed to the dissociation of non-specific NEIL1-DNA complexes. The amplitude of the burst phase is limited because of the competing non-specific binding of NEIL1 to unmodified DNA sequences flanking the lesion. A numerical analysis of the incision kinetics yielded a value of φ ≍ 0.03 for the fraction of NEIL1 encounters with plasmid molecules that result in the excision of the Sp lesion, and a characteristic dissociation time of non-specific NEIL1-DNA complexes (τ-ns ≍ 8 s). The estimated average DNA translocation distance of NEIL1 is ∼80 base pairs. This estimate suggests that facilitated diffusion enhances the probability that NEIL1 can locate its substrate embedded in an excess of unmodified plasmid DNA nucleotides by a factor of ∼10.
Collapse
|
9
|
Belotserkovskii BP. Effects of isolated nonspecific binders upon the search for specific targets: Absolute rates versus competition between the targets. Phys Rev E 2021; 103:022413. [PMID: 33735998 DOI: 10.1103/physreve.103.022413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2020] [Accepted: 02/03/2021] [Indexed: 11/07/2022]
Abstract
Many biological processes involve macromolecules searching for their specific targets that are surrounded by other objects, and binding to these objects affects the target search. Acceleration of the target search by nonspecific binders was observed experimentally and analyzed theoretically, for example, for DNA-binding proteins. According to existing theories this acceleration requires continuous transfer between the nonspecific binders and the specific target. In contrast, our analysis predicts that (i) nonspecific binders could accelerate the search without continuous transfer to the specific target provided that the searching particle is capable of sliding along the binder; (ii) in some cases such binders could decelerate the target search, but provide an advantage in competition with the "binder-free" target; (iii) nonbinding objects decelerate the target search. We also show that although the target search in the presence of binders could be considered as diffusion in inhomogeneous media, in the general case it cannot be described by the effective diffusion coefficient.
Collapse
|
10
|
Wong L, Vizeacoumar FS, Vizeacoumar FJ, Chelico L. APOBEC1 cytosine deaminase activity on single-stranded DNA is suppressed by replication protein A. Nucleic Acids Res 2021; 49:322-339. [PMID: 33330905 PMCID: PMC7797036 DOI: 10.1093/nar/gkaa1201] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Many APOBEC cytidine deaminase members are known to induce ‘off-target’ cytidine deaminations in 5′TC motifs in genomic DNA that contribute to cancer evolution. In this report, we characterized APOBEC1, which is a possible cancer related APOBEC since APOBEC1 mRNA is highly expressed in certain types of tumors, such as lung adenocarcinoma. We found a low level of APOBEC1-induced DNA damage, as measured by γH2AX foci, in genomic DNA of a lung cancer cell line that correlated to its inability to compete in vitro with replication protein A (RPA) for ssDNA. This suggests that RPA can act as a defense against off-target deamination for some APOBEC enzymes. Overall, the data support the model that the ability of an APOBEC to compete with RPA can better predict genomic damage than combined analysis of mRNA expression levels in tumors and analysis of mutation signatures.
Collapse
Affiliation(s)
- Lai Wong
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - Franco J Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada.,Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7S 0A6, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
11
|
Jana T, Brodsky S, Barkai N. Speed-Specificity Trade-Offs in the Transcription Factors Search for Their Genomic Binding Sites. Trends Genet 2021; 37:421-432. [PMID: 33414013 DOI: 10.1016/j.tig.2020.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) regulate gene expression by binding DNA sequences recognized by their DNA-binding domains (DBDs). DBD-recognized motifs are short and highly abundant in genomes. The ability of TFs to bind a specific subset of motif-containing sites, and to do so rapidly upon activation, is fundamental for gene expression in all eukaryotes. Despite extensive interest, our understanding of the TF-target search process is fragmented; although binding specificity and detection speed are two facets of this same process, trade-offs between them are rarely addressed. In this opinion article, we discuss potential speed-specificity trade-offs in the context of existing models. We further discuss the recently described 'distributed specificity' paradigm, suggesting that intrinsically disordered regions (IDRs) promote specificity while reducing the TF-target search time.
Collapse
Affiliation(s)
- Tamar Jana
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
12
|
D'Acunto M. Protein-DNA target search relies on quantum walk. Biosystems 2020; 201:104340. [PMID: 33387562 DOI: 10.1016/j.biosystems.2020.104340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023]
Abstract
Protein-DNA interactions play a fundamental role in all life systems. A critical issue of such interactions is given by the strategy of protein search for specific targets on DNA. The mechanisms by which the protein are able to find relatively small cognate sequences, typically 15-20 base pairs (bps) for repressors, and 4-6 bps for restriction enzymes among the millions of bp of non-specific chromosomal DNA have hardly engaged researchers for decades. Recent experimental studies have generated new insights on the basic processes of protein-DNA interactions evidencing the underlying complex dynamic phenomena involved, which combine three-dimensional and one-dimensional motion along the DNA chain. It has been demonstrated that protein molecules have an extraordinary ability to find the target very quickly on the DNA chain, in some cases, with two orders of magnitude faster than the diffusion limit. This unique property of protein-DNA search mechanism is known as facilitated diffusion. Several theoretical mechanisms have been suggested to describe the origin of facilitated diffusion. However, none of such models currently has the ability to fully describe the protein search strategy. In this paper, we suggest that the ability of proteins to identify consensus sequences on DNA is based on the entanglement of π-π electrons between DNA nucleotides and protein amino acids. The π-π entanglement is based on Quantum Walk (QW), through Coin-position entanglement (CPE). First, the protein identifies a dimer belonging to the consensus sequence, and localize a π on such dimer, hence, the other π electron scans the DNA chain until the sequence is identified. Focusing on the example of recognition of consensus sequences of EcoRV or EcoRI, we will describe the quantum features of QW on protein-DNA complexes during the search strategy, such as walker quadratic spreading on a coherent superposition of different vertices and environment-supported long-time survival probability of the walker. We will employ both discrete- or continuous-time versions of QW. Biased and unbiased classical Random Walk (CRW) have been used for a long time to describe the Protein-DNA search strategy. QW, the quantum version of CRW, has been widely studied for its applications in quantum information applications. In our biological application, the walker (the protein) resides at a vertex in a graph (the DNA structural topology). Differently to CRW, where the walker moves randomly, the quantum walker can hop along the edges in the graph to reach other vertices entering coherently a superposition across different vertices spreading quadratically faster than CRW analogous evidencing the typical speed up features of the QW. When applied to a protein-DNA target search problem, QW gives the possibility to achieve the experimental diffusional motion of proteins over diffusion classical limits experienced along DNA chains exploiting quantum features such as CPE and long-time survival probability supported by the environment. In turn, we come to the conclusion that, under quantum picture, the protein search strategy does not distinguish between one-dimensional (1D) and three-dimensional (3D) cases.
Collapse
Affiliation(s)
- Mario D'Acunto
- CNR-IBF, Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Via Moruzzi 1, 56124, Pisa, Italy.
| |
Collapse
|
13
|
Ferreira RM, Ware AD, Matozel E, Price AC. Salt concentration modulates the DNA target search strategy of NdeI. Biochem Biophys Res Commun 2020; 534:1059-1063. [PMID: 33121681 DOI: 10.1016/j.bbrc.2020.10.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022]
Abstract
DNA target search is a key step in cellular transactions that access genomic information. How DNA binding proteins combine 3D diffusion, sliding and hopping into an overall search strategy remains poorly understood. Here we report the use of a single molecule DNA tethering method to characterize the target search kinetics of the type II restriction endonuclease NdeI. The measured search rate depends strongly on DNA length as well as salt concentration. Using roadblocks, we show that there are significant changes in the DNA sliding length over the salt concentrations in our study. To explain our results, we propose a model including cycles of 3D and 1D search in which salt concentration modulates the strategy by varying the length of DNA probed per 1D scan. At low salt NdeI makes a single non-specific encounter with DNA followed by an effective and complete 1D scan. At higher salt, NdeI must execute multiple cycles of target search due to the reduced efficacy of 1D search.
Collapse
Affiliation(s)
- Raquel M Ferreira
- Department of Biology, Emmanuel College, 400 the Fenway, Boston, MA, 02115, United States
| | - Anna D Ware
- Department of Biology, Emmanuel College, 400 the Fenway, Boston, MA, 02115, United States
| | - Emily Matozel
- Department of Biology, Emmanuel College, 400 the Fenway, Boston, MA, 02115, United States
| | - Allen C Price
- Department of Chemistry and Physics, Emmanuel College, 400 the Fenway, Boston, MA, 02115, United States.
| |
Collapse
|
14
|
Cui TJ, Joo C. Facilitated diffusion of Argonaute-mediated target search. RNA Biol 2019; 16:1093-1107. [PMID: 31068066 PMCID: PMC6693542 DOI: 10.1080/15476286.2019.1616353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022] Open
Abstract
Argonaute (Ago) proteins are of key importance in many cellular processes. In eukaryotes, Ago can induce translational repression followed by deadenylation and degradation of mRNA molecules through base pairing of microRNAs (miRNAs) with a complementary target on a mRNA sequence. In bacteria, Ago eliminates foreign DNA through base pairing of siDNA (small interfering DNA) with a target on a DNA sequence. Effective targeting activities of Ago require fast recognition of the cognate target sequence among numerous off-target sites. Other target search proteins such as transcription factors (TFs) are known to rely on facilitated diffusion for this goal, but it is undetermined to what extent these small nucleic acid-guided proteins utilize this mechanism. Here, we review recent single-molecule studies on Ago target search. We discuss the consequences of the recent findings on the search mechanism. Furthermore, we discuss the open standing research questions that need to be addressed for a complete picture of facilitated target search by small nucleic acids.
Collapse
Affiliation(s)
- Tao Ju Cui
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
15
|
Velmurugu Y, Vivas P, Connolly M, Kuznetsov SV, Rice PA, Ansari A. Two-step interrogation then recognition of DNA binding site by Integration Host Factor: an architectural DNA-bending protein. Nucleic Acids Res 2019; 46:1741-1755. [PMID: 29267885 PMCID: PMC5829579 DOI: 10.1093/nar/gkx1215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2016] [Accepted: 12/08/2017] [Indexed: 12/23/2022] Open
Abstract
The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a μs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 μs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1–10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.
Collapse
Affiliation(s)
- Yogambigai Velmurugu
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Paula Vivas
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Mitchell Connolly
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Serguei V Kuznetsov
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Phoebe A Rice
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
16
|
Barel I, Reich NO, Brown FLH. Integrated rate laws for processive and distributive enzymatic turnover. J Chem Phys 2019; 150:244120. [PMID: 31255081 DOI: 10.1063/1.5097576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
Recently derived steady-state differential rate laws for the catalytic turnover of molecules containing two substrate sites are reformulated as integrated rate laws. The analysis applies to a broad class of Markovian dynamic models, motivated by the varied and often complex mechanisms associated with DNA modifying enzymes. Analysis of experimental data for the methylation kinetics of DNA by Dam (DNA adenine methyltransferase) is drastically improved through the use of integrated rate laws. Data that are too noisy for fitting to differential predictions are reliably interpreted through the integrated rate laws.
Collapse
Affiliation(s)
- Itay Barel
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Frank L H Brown
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
17
|
Munshi S, Gopi S, Asampille G, Subramanian S, Campos LA, Atreya HS, Naganathan AN. Tunable order-disorder continuum in protein-DNA interactions. Nucleic Acids Res 2019; 46:8700-8709. [PMID: 30107436 PMCID: PMC6158747 DOI: 10.1093/nar/gky732] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2018] [Accepted: 07/31/2018] [Indexed: 11/23/2022] Open
Abstract
DNA-binding protein domains (DBDs) sample diverse conformations in equilibrium facilitating the search and recognition of specific sites on DNA over millions of energetically degenerate competing sites. We hypothesize that DBDs have co-evolved to sense and exploit the strong electric potential from the array of negatively charged phosphate groups on DNA. We test our hypothesis by employing the intrinsically disordered DBD of cytidine repressor (CytR) as a model system. CytR displays a graded increase in structure, stability and folding rate on increasing the osmolarity of the solution that mimics the non-specific screening by DNA phosphates. Electrostatic calculations and an Ising-like statistical mechanical model predict that CytR exhibits features of an electric potential sensor modulating its dimensions and landscape in a unique distance-dependent manner, while DNA plays the role of a non-specific macromolecular chaperone. Accordingly, CytR binds its natural half-site faster than the diffusion-controlled limit and even random DNA conforming to an electrostatic-steering binding mechanism. Our work unravels for the first time the synergistic features of a natural electrostatic potential sensor, a novel binding mechanism driven by electrostatic frustration and disorder, and the role of DNA in promoting distance-dependent protein structural transitions critical for switching between specific and non-specific DNA-binding modes.
Collapse
Affiliation(s)
- Sneha Munshi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Sandhyaa Subramanian
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Luis A Campos
- National Biotechnology Center, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Hanudatta S Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
18
|
Abstract
Site-specific DNA binding proteins must search the genome to locate their target sites, and many DNA modifying enzymes have the ability to scan along DNA in search of their substrates. This process is termed processive searching, and it serves to decrease the search time by effectively increasing the DNA binding footprint of a protein. The repertoire of proteins capable of processive searching is expanding, highlighting the need to understand the governing principles behind this fundamental process. Many of the enzymes in the base excision DNA repair pathway are capable of processive searching. Here, we briefly summarize methodology for determining if a protein can scan DNA and highlight the discovery that the base excision repair DNA polymerase β performs a processive search. Elucidation of physical models for DNA searching has also provided a plausible mechanism for pathway coordination during repair. The ability of BER enzymes to transiently sample adjacent DNA sites while bound to their product confers accessibility to downstream enzymes and does not require protein-protein interactions for coordination.
Collapse
Affiliation(s)
- Michael J Howard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, United States
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, United States.
| |
Collapse
|
19
|
Esadze A, Stivers JT. Facilitated Diffusion Mechanisms in DNA Base Excision Repair and Transcriptional Activation. Chem Rev 2018; 118:11298-11323. [PMID: 30379068 DOI: 10.1021/acs.chemrev.8b00513] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Abstract
Preservation of the coding potential of the genome and highly regulated gene expression over the life span of a human are two fundamental requirements of life. These processes require the action of repair enzymes or transcription factors that efficiently recognize specific sites of DNA damage or transcriptional regulation within a restricted time frame of the cell cycle or metabolism. A failure of these systems to act results in accumulated mutations, metabolic dysfunction, and disease. Despite the multifactorial complexity of cellular DNA repair and transcriptional regulation, both processes share a fundamental physical requirement that the proteins must rapidly diffuse to their specific DNA-binding sites that are embedded within the context of a vastly greater number of nonspecific DNA-binding sites. Superimposed on the needle-in-the-haystack problem is the complex nature of the cellular environment, which contains such high concentrations of macromolecules that the time frame for diffusion is expected to be severely extended as compared to dilute solution. Here we critically review the mechanisms for how these proteins solve the needle-in-the-haystack problem and how the effects of cellular macromolecular crowding can enhance facilitated diffusion processes. We restrict the review to human proteins that use stochastic, thermally driven site-recognition mechanisms, and we specifically exclude systems involving energy cofactors or circular DNA clamps. Our scope includes ensemble and single-molecule studies of the past decade or so, with an emphasis on connecting experimental observations to biological function.
Collapse
Affiliation(s)
- Alexandre Esadze
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| |
Collapse
|
20
|
Adolph MB, Love RP, Chelico L. Biochemical Basis of APOBEC3 Deoxycytidine Deaminase Activity on Diverse DNA Substrates. ACS Infect Dis 2018; 4:224-238. [PMID: 29347817 DOI: 10.1021/acsinfecdis.7b00221] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
The Apolipoprotein B mRNA editing complex (APOBEC) family of enzymes contains single-stranded polynucleotide cytidine deaminases. These enzymes catalyze the deamination of cytidine in RNA or single-stranded DNA, which forms uracil. From this 11 member enzyme family in humans, the deamination of single-stranded DNA by the seven APOBEC3 family members is considered here. The APOBEC3 family has many roles, such as restricting endogenous and exogenous retrovirus replication and retrotransposon insertion events and reducing DNA-induced inflammation. Similar to other APOBEC family members, the APOBEC3 enzymes are a double-edged sword that can catalyze deamination of cytosine in genomic DNA, which results in potential genomic instability due to the many mutagenic fates of uracil in DNA. Here, we discuss how these enzymes find their single-stranded DNA substrate in different biological contexts such as during human immunodeficiency virus (HIV) proviral DNA synthesis, retrotransposition of the LINE-1 element, and the "off-target" genomic DNA substrate. The enzymes must be able to efficiently deaminate transiently available single-stranded DNA during reverse transcription, replication, or transcription. Specific biochemical characteristics promote deamination in each situation to increase enzyme efficiency through processivity, rapid enzyme cycling between substrates, or oligomerization state. The use of biochemical data to clarify biological functions and alignment with cellular data is discussed. Models to bridge knowledge from biochemical, structural, and single molecule experiments are presented.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| | - Robin P Love
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| |
Collapse
|
21
|
Barel I, Naughton B, Reich NO, Brown FLH. Specificity versus Processivity in the Sequential Modification of DNA: A Study of DNA Adenine Methyltransferase. J Phys Chem B 2018; 122:1112-1120. [DOI: 10.1021/acs.jpcb.7b10349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Affiliation(s)
- Itay Barel
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
- Department
of Physics, University of California, Santa Barbara, California 93106, United States
| | - Brigitte Naughton
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
| | - Norbert O. Reich
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
| | - Frank L. H. Brown
- Department
of Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106, United States
- Department
of Physics, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
22
|
Adolph MB, Love RP, Feng Y, Chelico L. Enzyme cycling contributes to efficient induction of genome mutagenesis by the cytidine deaminase APOBEC3B. Nucleic Acids Res 2017; 45:11925-11940. [PMID: 28981865 PMCID: PMC5714209 DOI: 10.1093/nar/gkx832] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The single-stranded DNA cytidine deaminases APOBEC3B, APOBEC3H haplotype I, and APOBEC3A can contribute to cancer through deamination of cytosine to form promutagenic uracil in genomic DNA. The enzymes must access single-stranded DNA during the dynamic processes of DNA replication or transcription, but the enzymatic mechanisms enabling this activity are not known. To study this, we developed a method to purify full length APOBEC3B and characterized it in comparison to APOBEC3A and APOBEC3H on substrates relevant to cancer mutagenesis. We found that the ability of an APOBEC3 to cycle between DNA substrates determined whether it was able to efficiently deaminate single-stranded DNA produced by replication and single-stranded DNA bound by replication protein A (RPA). APOBEC3 deaminase activity during transcription had a size limitation that inhibited APOBEC3B tetramers, but not APOBEC3A monomers or APOBEC3H dimers. Altogether, the data support a model in which the availability of single-stranded DNA is necessary, but alone not sufficient for APOBEC3-induced mutagenesis in cells because there is also a dependence on the inherent biochemical properties of the enzymes. The biochemical properties identified in this study can be used to measure the mutagenic potential of other APOBEC enzymes in the genome.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuqing Feng
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
23
|
Howard MJ, Rodriguez Y, Wilson SH. DNA polymerase β uses its lyase domain in a processive search for DNA damage. Nucleic Acids Res 2017; 45:3822-3832. [PMID: 28119421 PMCID: PMC5397181 DOI: 10.1093/nar/gkx047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
DNA polymerase (Pol) β maintains genome fidelity by catalyzing DNA synthesis and removal of a reactive DNA repair intermediate during base excision repair (BER). Situated within the middle of the BER pathway, Pol β must efficiently locate its substrates before damage is exacerbated. The mechanisms of damage search and location by Pol β are largely unknown, but are critical for understanding the fundamental features of the BER pathway. We developed a processive search assay to determine if Pol β has evolved a mechanism for efficient DNA damage location. These assays revealed that Pol β scans DNA using a processive hopping mechanism and has a mean search footprint of ∼24 bp at predicted physiological ionic strength. Lysines within the lyase domain are required for processive searching, revealing a novel function for the lyase domain of Pol β. Application of our processive search assay into nucleosome core particles revealed that Pol β is not processive in the context of a nucleosome, and its single-turnover activity is reduced ∼500-fold, as compared to free DNA. These data suggest that the repair footprint of Pol β mainly resides within accessible regions of the genome and that these regions can be scanned for damage by Pol β.
Collapse
Affiliation(s)
- Michael J Howard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709-2233, USA
| | - Yesenia Rodriguez
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709-2233, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709-2233, USA
| |
Collapse
|
24
|
Howard MJ, Wilson SH. Processive searching ability varies among members of the gap-filling DNA polymerase X family. J Biol Chem 2017; 292:17473-17481. [PMID: 28893909 DOI: 10.1074/jbc.m117.801860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2017] [Revised: 08/29/2017] [Indexed: 11/06/2022] Open
Abstract
DNA repair proteins must locate rare damaged sites within the genome. DNA polymerase β (Pol β), a member of the DNA polymerase X family that is involved in base excision repair, uses a processive hopping search mechanism to locate substrates. This effectively enhances its search footprint on DNA, increasing the probability of locating damaged sites. Processive searching has been reported or proposed for many DNA-binding proteins, raising the question of how widespread or specific to certain enzymes the ability to perform this function is. To provide insight into this question, we compared the ability of three homologous DNA Pol X family members to perform a processive search for 1-nucleotide gaps in DNA using a previously developed biochemical assay. We found that at near-predicted physiological ionic strengths, the intramolecular searching ability of Pol β is at least 4-fold higher than that of Pol μ and ∼2-fold higher than that of Pol λ. Pol β also was able to perform intersegmental transfer with the intersegmental searching ability of Pol β being at least 6- and ∼2-fold higher than that of Pols μ and λ, respectively. Mutational analysis suggested that differences in the N-terminal domains of these polymerases are responsible for the varying degrees of searching competence. Of note, the differences in processive searching ability observed among the DNA Pol X family members correlated with their proposed biological functions in base excision repair and nonhomologous end joining.
Collapse
Affiliation(s)
- Michael J Howard
- From the Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Samuel H Wilson
- From the Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
25
|
Adolph MB, Ara A, Feng Y, Wittkopp CJ, Emerman M, Fraser JS, Chelico L. Cytidine deaminase efficiency of the lentiviral viral restriction factor APOBEC3C correlates with dimerization. Nucleic Acids Res 2017; 45:3378-3394. [PMID: 28158858 PMCID: PMC5389708 DOI: 10.1093/nar/gkx066] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2016] [Accepted: 01/24/2017] [Indexed: 01/28/2023] Open
Abstract
The seven APOBEC3 (A3) enzymes in primates restrict HIV/SIV replication to differing degrees by deaminating cytosine in viral (−)DNA, which forms promutagenic uracils that inactivate the virus. A polymorphism in human APOBEC3C (A3C) that encodes an S188I mutation increases the enzymatic activity of the protein and its ability to restrict HIV-1, and correlates with increased propensity to form dimers. However, other hominid A3C proteins only have an S188, suggesting they should be less active like the common form of human A3C. Nonetheless, here we demonstrate that chimpanzee and gorilla A3C have approximately equivalent activity to human A3C I188 and that chimpanzee and gorilla A3C form dimers at the same interface as human A3C S188I, but through different amino acids. For each of these hominid A3C enzymes, dimerization enables processivity on single-stranded DNA and results in higher levels of mutagenesis during reverse transcription in vitro and in cells. For increased mutagenic activity, formation of a dimer was more important than specific amino acids and the dimer interface is unique from other A3 enzymes. We propose that dimerization is a predictor of A3C enzyme activity.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anjuman Ara
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuqing Feng
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cristina J Wittkopp
- Department of Microbiology, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Science and California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Linda Chelico
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
26
|
Zhang L, Zheng L, Meng Z, Balinin K, Loznik M, Herrmann A. Accelerating chemical reactions by molecular sledding. Chem Commun (Camb) 2017; 53:6331-6334. [PMID: 28548153 DOI: 10.1039/c7cc02500a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
The speed-up of covalent bond formation was achieved between a sulfhydryl group and a 2-bromopropionic acid derivative by utilizing sliding peptide-modified substrates. Moreover, a new type of DNA cleaving reagent was developed, consisting of pVIc covalently coupled to verteporfin. This peptide-porphyrin conjugate allowed targeting of DNA and resulted in increased photodegradation of double-stranded nucleic acids.
Collapse
Affiliation(s)
- Lei Zhang
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
27
|
Sundaramoorthy R, Hughes AL, Singh V, Wiechens N, Ryan DP, El-Mkami H, Petoukhov M, Svergun DI, Treutlein B, Quack S, Fischer M, Michaelis J, Böttcher B, Norman DG, Owen-Hughes T. Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes. eLife 2017; 6. [PMID: 28332978 PMCID: PMC5391205 DOI: 10.7554/elife.22510] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2016] [Accepted: 03/15/2017] [Indexed: 12/11/2022] Open
Abstract
The yeast Chd1 protein acts to position nucleosomes across genomes. Here, we model the structure of the Chd1 protein in solution and when bound to nucleosomes. In the apo state, the DNA-binding domain contacts the edge of the nucleosome while in the presence of the non-hydrolyzable ATP analog, ADP-beryllium fluoride, we observe additional interactions between the ATPase domain and the adjacent DNA gyre 1.5 helical turns from the dyad axis of symmetry. Binding in this conformation involves unravelling the outer turn of nucleosomal DNA and requires substantial reorientation of the DNA-binding domain with respect to the ATPase domains. The orientation of the DNA-binding domain is mediated by sequences in the N-terminus and mutations to this part of the protein have positive and negative effects on Chd1 activity. These observations indicate that the unfavorable alignment of C-terminal DNA-binding region in solution contributes to an auto-inhibited state. DOI:http://dx.doi.org/10.7554/eLife.22510.001
Collapse
Affiliation(s)
| | - Amanda L Hughes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Vijender Singh
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nicola Wiechens
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daniel P Ryan
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hassane El-Mkami
- School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Maxim Petoukhov
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, Germany
| | - Dmitri I Svergun
- Hamburg Outstation, European Molecular Biology Laboratory, Hamburg, Germany
| | - Barbara Treutlein
- Institute for Biophysics, Faculty of Natural Sciences, Ulm University, Ulm, Germany
| | - Salina Quack
- Institute for Biophysics, Faculty of Natural Sciences, Ulm University, Ulm, Germany
| | - Monika Fischer
- Institute for Biophysics, Faculty of Natural Sciences, Ulm University, Ulm, Germany
| | - Jens Michaelis
- Institute for Biophysics, Faculty of Natural Sciences, Ulm University, Ulm, Germany
| | - Bettina Böttcher
- Lehrstuhl für Biochemie, Rudolf-Virchow Zentrum, Universitat Würzburg, Würzburg, Germany
| | - David G Norman
- Nucleic Acids Structure Research Group, University of Dundee, Dundee, United Kingdom
| | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
28
|
Abstract
Biological functions of DNA depend on the sequence-specific binding of DNA-binding proteins to their corresponding binding sites. Binding of these proteins to their binding sites occurs through a facilitated diffusion process that combines three-dimensional diffusion in the cytoplasm with one-dimensional diffusion (sliding) along the DNA. In this work, we use a lattice model of facilitated diffusion to study how the dynamics of binding of a protein to a specific site (e.g., binding of an RNA polymerase to a promoter or of a transcription factor to its operator site) is affected by the presence of other proteins bound to the DNA, which act as 'obstacles' in the sliding process. Different types of these obstacles with different dynamics are implemented. While all types impair facilitated diffusion, the extent of the hindrance depends on the type of obstacle. As a consequence of hindrance by obstacles, more excursions into the cytoplasm are required for optimal target binding compared to the case without obstacles.
Collapse
Affiliation(s)
- David Gomez
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
| | - Stefan Klumpp
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany. and Institute for Nonlinear Dynamics, Georg-August University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
29
|
Cravens SL, Stivers JT. Comparative Effects of Ions, Molecular Crowding, and Bulk DNA on the Damage Search Mechanisms of hOGG1 and hUNG. Biochemistry 2016; 55:5230-42. [PMID: 27571472 DOI: 10.1021/acs.biochem.6b00482] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
The energetic nature of the interactions of DNA base excision repair glycosylases with undamaged and damaged DNA and the nuclear environment are expected to significantly impact the time it takes for these enzymes to search for damaged DNA bases. In particular, the high concentration of monovalent ions, macromolecule crowding, and densely packed DNA chains in the cell nucleus could alter the search mechanisms of these enzymes as compared to findings in dilute buffers typically used in in vitro experiments. Here we utilize an in vitro system where the concerted effects of monovalent ions, macromolecular crowding, and high concentrations of bulk DNA chains on the activity of two paradigm human DNA glycosylases can be determined. We find that the energetic nature of the observed binding free energies of human 8-oxoguanine DNA glycosylase (hOGG1) and human uracil DNA glycosylase (hUNG) for undamaged DNA are derived from different sources. Although hOGG1 uses primarily nonelectrostatic binding interactions with nonspecific DNA, hUNG uses a salt-dependent electrostatic binding mode. Both enzymes turn to a nonelectrostatic mode in their specific complexes with damaged bases in DNA, which enhances damage site specificity at physiological ion concentrations. Neither enzyme was capable of efficiently locating and removing their respective damaged bases in the combined presence of physiological ions and a bulk DNA chain density approximating that found in the nucleus. However, the addition of an inert crowding agent to mimic macromolecular crowding in the nucleus largely restored their ability to track DNA chains and locate damaged sites. These findings suggest how the concerted action of monovalent ions and crowding could contribute to efficient DNA damage recognition in cells.
Collapse
Affiliation(s)
- Shannen L Cravens
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| |
Collapse
|
30
|
Jeong J, Le TT, Kim HD. Single-molecule fluorescence studies on DNA looping. Methods 2016; 105:34-43. [PMID: 27064000 PMCID: PMC4967024 DOI: 10.1016/j.ymeth.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022] Open
Abstract
Structure and dynamics of DNA impact how the genetic code is processed and maintained. In addition to its biological importance, DNA has been utilized as building blocks of various nanomachines and nanostructures. Thus, understanding the physical properties of DNA is of fundamental importance to basic sciences and engineering applications. DNA can undergo various physical changes. Among them, DNA looping is unique in that it can bring two distal sites together, and thus can be used to mediate interactions over long distances. In this paper, we introduce a FRET-based experimental tool to study DNA looping at the single molecule level. We explain the connection between experimental measurables and a theoretical concept known as the J factor with the intent of raising awareness of subtle theoretical details that should be considered when drawing conclusions. We also explore DNA looping-assisted protein diffusion mechanism called intersegmental transfer using protein induced fluorescence enhancement (PIFE). We present some preliminary results and future outlooks.
Collapse
Affiliation(s)
- Jiyoun Jeong
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| | - Tung T Le
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta 30332, USA.
| |
Collapse
|
31
|
Twist-open mechanism of DNA damage recognition by the Rad4/XPC nucleotide excision repair complex. Proc Natl Acad Sci U S A 2016; 113:E2296-305. [PMID: 27035942 DOI: 10.1073/pnas.1514666113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023] Open
Abstract
DNA damage repair starts with the recognition of damaged sites from predominantly normal DNA. In eukaryotes, diverse DNA lesions from environmental sources are recognized by the xeroderma pigmentosum C (XPC) nucleotide excision repair complex. Studies of Rad4 (radiation-sensitive 4; yeast XPC ortholog) showed that Rad4 "opens" up damaged DNA by inserting a β-hairpin into the duplex and flipping out two damage-containing nucleotide pairs. However, this DNA lesion "opening" is slow (˜5-10 ms) compared with typical submillisecond residence times per base pair site reported for various DNA-binding proteins during 1D diffusion on DNA. To address the mystery as to how Rad4 pauses to recognize lesions during diffusional search, we examine conformational dynamics along the lesion recognition trajectory using temperature-jump spectroscopy. Besides identifying the ˜10-ms step as the rate-limiting bottleneck towards opening specific DNA site, we uncover an earlier ˜100- to 500-μs step that we assign to nonspecific deformation (unwinding/"twisting") of DNA by Rad4. The β-hairpin is not required to unwind or to overcome the bottleneck but is essential for full nucleotide-flipping. We propose that Rad4 recognizes lesions in a step-wise "twist-open" mechanism, in which preliminary twisting represents Rad4 interconverting between search and interrogation modes. Through such conformational switches compatible with rapid diffusion on DNA, Rad4 may stall preferentially at a lesion site, offering time to open DNA. This study represents the first direct observation, to our knowledge, of dynamical DNA distortions during search/interrogation beyond base pair breathing. Submillisecond interrogation with preferential stalling at cognate sites may be common to various DNA-binding proteins.
Collapse
|
32
|
Affiliation(s)
- Itay Barel
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Norbert O. Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Frank L. H. Brown
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
33
|
Prentiss M, Prévost C, Danilowicz C. Structure/function relationships in RecA protein-mediated homology recognition and strand exchange. Crit Rev Biochem Mol Biol 2015; 50:453-76. [DOI: 10.3109/10409238.2015.1092943] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
|
34
|
Tabaka M, Burdzy K, Hołyst R. Method for the analysis of contribution of sliding and hopping to a facilitated diffusion of DNA-binding protein: Application to in vivo data. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022721. [PMID: 26382446 DOI: 10.1103/physreve.92.022721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/11/2015] [Indexed: 06/05/2023]
Abstract
DNA-binding protein searches for its target, a specific site on DNA, by means of diffusion. The search process consists of many recurrent steps of one-dimensional diffusion (sliding) along the DNA chain and three-dimensional diffusion (hopping) after dissociation of a protein from the DNA chain. Here we propose a computational method that allows extracting the contribution of sliding and hopping to the search process in vivo from the measurements of the kinetics of the target search by the lac repressor in Escherichia coli [P. Hammar et al., Science 336, 1595 (2012)]. The method combines lattice Monte Carlo simulations with the Brownian excursion theory and includes explicitly steric constraints for hopping due to the helical structure of DNA. The simulation results including all experimental data reveal that the in vivo target search is dominated by sliding. The short-range hopping to the same base pair interrupts one-dimensional sliding while long-range hopping does not contribute significantly to the kinetics of the search of the target in vivo.
Collapse
Affiliation(s)
- Marcin Tabaka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Burdzy
- Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195, USA
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
35
|
Mechetin GV, Zharkov DO. Mechanisms of diffusional search for specific targets by DNA-dependent proteins. BIOCHEMISTRY (MOSCOW) 2015; 79:496-505. [PMID: 25100007 DOI: 10.1134/s0006297914060029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023]
Abstract
To perform their functions, many DNA-dependent proteins have to quickly locate specific targets against the vast excess of nonspecific DNA. Although this problem was first formulated over 40 years ago, the mechanism of such search remains one of the unsolved fundamental problems in the field of protein-DNA interactions. Several complementary mechanisms have been suggested: sliding, based on one-dimensional random diffusion along the DNA contour; hopping, in which the protein "jumps" between the closely located DNA fragments; macroscopic association-dissociation of the protein-DNA complex; and intersegmental transfer. This review covers the modern state of the problem of target DNA search, theoretical descriptions, and methods of research at the macroscopic (molecule ensembles) and microscopic (individual molecules) levels. Almost all studied DNA-dependent proteins search for specific targets by combined three-dimensional diffusion and one-dimensional diffusion along the DNA contour.
Collapse
Affiliation(s)
- G V Mechetin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | |
Collapse
|
36
|
Pollak AJ, Reich NO. DNA Adenine Methyltransferase Facilitated Diffusion Is Enhanced by Protein–DNA “Roadblock” Complexes That Induce DNA Looping. Biochemistry 2015; 54:2181-92. [DOI: 10.1021/bi501344r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Pollak
- Department
of Chemistry and
Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Norbert O. Reich
- Department
of Chemistry and
Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
37
|
Cravens SL, Hobson M, Stivers JT. Electrostatic properties of complexes along a DNA glycosylase damage search pathway. Biochemistry 2014; 53:7680-92. [PMID: 25408964 PMCID: PMC4263432 DOI: 10.1021/bi501011m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
Human uracil DNA glycosylase (hUNG) follows an extended reaction coordinate for locating rare uracil bases in genomic DNA. This process begins with diffusion-controlled engagement of undamaged DNA, followed by a damage search step in which the enzyme remains loosely associated with the DNA chain (translocation), and finally, a recognition step that allows the enzyme to efficiently bind and excise uracil when it is encountered. At each step along this coordinate, the enzyme must form DNA interactions that are highly specialized for either rapid damage searching or catalysis. Here we make extensive measurements of hUNG activity as a function of salt concentration to dissect the thermodynamic, kinetic, and electrostatic properties of key enzyme states along this reaction coordinate. We find that the interaction of hUNG with undamaged DNA is electrostatically driven at a physiological concentration of potassium ions (ΔGelect = -3.5 ± 0.5 kcal mol(-1)), with only a small nonelectrostatic contribution (ΔGnon = -2.0 ± 0.2 kcal mol(-1)). In contrast, the interaction with damaged DNA is dominated by the nonelectrostatic free energy term (ΔGnon = -7.2 ± 0.1 kcal mol(-1)), yet retains the nonspecific electrostatic contribution (ΔGelect = -2.3 ± 0.2 kcal mol(-1)). Stopped-flow kinetic experiments established that the salt sensitivity of damaged DNA binding originates from a reduction of kon, while koff is weakly dependent on salt. Similar findings were obtained from the salt dependences of the steady-state kinetic parameters, where the diffusion-controlled kcat/Km showed a salt dependence similar to kon, while kcat (limited by product release) was weakly dependent on salt. Finally, the salt dependence of translocation between two uracil sites separated by 20 bp in the same DNA chain was indistinguishable from that of kon. This result suggests that the transition-state for translocation over this spacing resembles that for DNA association from bulk solution and that hUNG escapes the DNA ion cloud during translocation. These findings provide key insights into how the ionic environment in cells influences the DNA damage search pathway.
Collapse
Affiliation(s)
- Shannen L Cravens
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | | | | |
Collapse
|
38
|
Pollak AJ, Chin AT, Reich NO. Distinct facilitated diffusion mechanisms by E. coli Type II restriction endonucleases. Biochemistry 2014; 53:7028-37. [PMID: 25350874 DOI: 10.1021/bi501110r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
Abstract
The passive search by proteins for particular DNA sequences involving nonspecific DNA is essential for gene regulation, DNA repair, phage defense, and diverse epigenetic processes. Distinct mechanisms contribute to these searches, and it remains unresolved as to which mechanism or blend of mechanisms best suits a particular protein and, more importantly, its biological role. To address this, we compare the translocation properties of two well-studied bacterial restriction endonucleases (ENases), EcoRI and EcoRV. These dimeric, magnesium-dependent enzymes hydrolyze related sites (EcoRI ENase, 5'-GAATTC-3'; EcoRV ENase, 5'-GATATC-3'), leaving overhangs and blunt DNA segments, respectively. Here, we demonstrate that the extensive sliding by EcoRI ENase, involving sliding up to ∼600 bp prior to dissociating from the DNA, contrasts with a larger reliance on hopping mechanism(s) by EcoRV ENase. The mechanism displayed by EcoRI ENase results in a highly thorough search of DNA, whereas the EcoRV ENase mechanism results in an extended, yet less rigorous, interrogation of DNA sequence space. We describe how these mechanistic distinctions are complemented by other aspects of these endonucleases, such as the 10-fold higher in vivo concentrations of EcoRI ENase compared to that of EcoRV ENase. Further, we hypothesize that the highly diverse enzyme arsenal that bacteria employ against foreign DNA involves seemingly similar enzymes that rely on distinct but complementary search mechanisms. Our comparative approach reveals how different proteins utilize distinct site-locating strategies.
Collapse
Affiliation(s)
- Adam J Pollak
- Department of Chemistry and Biochemistry, University of California at Santa Barbara , Santa Barbara, California 93106, United States
| | | | | |
Collapse
|
39
|
Anink-Groenen LCM, Maarleveld TR, Verschure PJ, Bruggeman FJ. Mechanistic stochastic model of histone modification pattern formation. Epigenetics Chromatin 2014; 7:30. [PMID: 25408711 PMCID: PMC4234852 DOI: 10.1186/1756-8935-7-30] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2014] [Accepted: 10/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The activity of a single gene is influenced by the composition of the chromatin in which it is embedded. Nucleosome turnover, conformational dynamics, and covalent histone modifications each induce changes in the structure of chromatin and its affinity for regulatory proteins. The dynamics of histone modifications and the persistence of modification patterns for long periods are still largely unknown. RESULTS In this study, we present a stochastic mathematical model that describes the molecular mechanisms of histone modification pattern formation along a single gene, with non-phenomenological, physical parameters. We find that diffusion and recruitment properties of histone modifying enzymes together with chromatin connectivity allow for a rich repertoire of stochastic histone modification dynamics and pattern formation. We demonstrate that histone modification patterns at a single gene can be established or removed within a few minutes through diffusion and weak recruitment mechanisms of histone modification spreading. Moreover, we show that strong synergism between diffusion and weak recruitment mechanisms leads to nearly irreversible transitions in histone modification patterns providing stable patterns. In the absence of chromatin connectivity spontaneous and dynamic histone modification boundaries can be formed that are highly unstable, and spontaneous fluctuations cause them to diffuse randomly. Chromatin connectivity destabilizes this synergistic system and introduces bistability, illustrating state switching between opposing modification states of the model gene. The observed bistable long-range and localized pattern formation are critical effectors of gene expression regulation. CONCLUSION This study illustrates how the cooperative interactions between regulatory proteins and the chromatin state generate complex stochastic dynamics of gene expression regulation.
Collapse
Affiliation(s)
- Lisette C M Anink-Groenen
- Swammerdam Institute for Life Science (SILS), University of Amsterdam, Science Park 904, P.O. Box 94215, 1098 GE Amsterdam, The Netherlands
| | - Timo R Maarleveld
- Systems Bioinformatics, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands ; Life Sciences, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands ; BioSolar Cells, Wageningen, The Netherlands
| | - Pernette J Verschure
- Swammerdam Institute for Life Science (SILS), University of Amsterdam, Science Park 904, P.O. Box 94215, 1098 GE Amsterdam, The Netherlands
| | - Frank J Bruggeman
- Systems Bioinformatics, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Bhattacherjee A, Levy Y. Search by proteins for their DNA target site: 1. The effect of DNA conformation on protein sliding. Nucleic Acids Res 2014; 42:12404-14. [PMID: 25324308 PMCID: PMC4227778 DOI: 10.1093/nar/gku932] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023] Open
Abstract
The recognition of DNA-binding proteins (DBPs) to their specific site often precedes by a search technique in which proteins slide, hop along the DNA contour or perform inter-segment transfer and 3D diffusion to dissociate and re-associate to distant DNA sites. In this study, we demonstrated that the strength and nature of the non-specific electrostatic interactions, which govern the search dynamics of DBPs, are strongly correlated with the conformation of the DNA. We tuned two structural parameters, namely curvature and the extent of helical twisting in circular DNA. These two factors are mutually independent of each other and can modulate the electrostatic potential through changing the geometry of the circular DNA conformation. The search dynamics for DBPs on circular DNA is therefore markedly different compared with linear B-DNA. Our results suggest that, for a given DBP, the rotation-coupled sliding dynamics is precluded in highly curved DNA (as well as for over-twisted DNA) because of the large electrostatic energy barrier between the inside and outside of the DNA molecule. Under such circumstances, proteins prefer to hop in order to explore interior DNA sites. The change in the balance between sliding and hopping propensities as a function of DNA curvature or twisting may result in different search efficiency and speed.
Collapse
Affiliation(s)
- Arnab Bhattacherjee
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
41
|
DNA Looping Provides for “Intersegmental Hopping” by Proteins: A Mechanism for Long-Range Site Localization. J Mol Biol 2014; 426:3539-52. [DOI: 10.1016/j.jmb.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2014] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 11/22/2022]
|
42
|
Rowland MM, Schonhoft JD, McKibbin PL, David SS, Stivers JT. Microscopic mechanism of DNA damage searching by hOGG1. Nucleic Acids Res 2014; 42:9295-303. [PMID: 25016526 PMCID: PMC4132736 DOI: 10.1093/nar/gku621] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 01/25/2023] Open
Abstract
The DNA backbone is often considered a track that allows long-range sliding of DNA repair enzymes in their search for rare damage sites in DNA. A proposed exemplar of DNA sliding is human 8-oxoguanine ((o)G) DNA glycosylase 1 (hOGG1), which repairs mutagenic (o)G lesions in DNA. Here we use our high-resolution molecular clock method to show that macroscopic 1D DNA sliding of hOGG1 occurs by microscopic 2D and 3D steps that masquerade as sliding in resolution-limited single-molecule images. Strand sliding was limited to distances shorter than seven phosphate linkages because attaching a covalent chemical road block to a single DNA phosphate located between two closely spaced damage sites had little effect on transfers. The microscopic parameters describing the DNA search of hOGG1 were derived from numerical simulations constrained by the experimental data. These findings support a general mechanism where DNA glycosylases use highly dynamic multidimensional diffusion paths to scan DNA.
Collapse
Affiliation(s)
- Meng M Rowland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Joseph D Schonhoft
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Paige L McKibbin
- Department of Chemistry, University of California at Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Sheila S David
- Department of Chemistry, University of California at Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
43
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
44
|
Esadze A, Kemme CA, Kolomeisky AB, Iwahara J. Positive and negative impacts of nonspecific sites during target location by a sequence-specific DNA-binding protein: origin of the optimal search at physiological ionic strength. Nucleic Acids Res 2014; 42:7039-46. [PMID: 24838572 PMCID: PMC4066804 DOI: 10.1093/nar/gku418] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023] Open
Abstract
The inducible transcription factor Egr-1, which recognizes a 9-bp target DNA sequence via three zinc-finger domains, rapidly activates particular genes upon cellular stimuli such as neuronal signals and vascular stresses. Here, using the stopped-flow fluorescence method, we measured the target search kinetics of the Egr-1 zinc-finger protein at various ionic strengths between 40 and 400 mM KCl and found the most efficient search at 150 mM KCl. We further investigated the kinetics of intersegment transfer, dissociation, and sliding of this protein on DNA at distinct concentrations of KCl. Our data suggest that Egr-1's kinetic properties are well suited for efficient scanning of chromosomal DNA in vivo. Based on a newly developed theory, we analyzed the origin of the optimal search efficiency at physiological ionic strength. Target association is accelerated by nonspecific binding to nearby sites and subsequent sliding to the target as well as by intersegment transfer. Although these effects are stronger at lower ionic strengths, such conditions also favor trapping of the protein at distant nonspecific sites, decelerating the target association. Our data demonstrate that Egr-1 achieves the optimal search at physiological ionic strength through a compromise between the positive and negative impacts of nonspecific interactions with DNA.
Collapse
Affiliation(s)
- Alexandre Esadze
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Catherine A Kemme
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anatoly B Kolomeisky
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
45
|
Ara A, Love RP, Chelico L. Different mutagenic potential of HIV-1 restriction factors APOBEC3G and APOBEC3F is determined by distinct single-stranded DNA scanning mechanisms. PLoS Pathog 2014; 10:e1004024. [PMID: 24651717 PMCID: PMC3961392 DOI: 10.1371/journal.ppat.1004024] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2013] [Accepted: 02/09/2014] [Indexed: 01/12/2023] Open
Abstract
The APOBEC3 deoxycytidine deaminase family functions as host restriction factors that can block replication of Vif (virus infectivity factor) deficient HIV-1 virions to differing degrees by deaminating cytosines to uracils in single-stranded (-)HIV-1 DNA. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite the uracils, thereby inducing C/G→T/A mutations that can functionally inactivate HIV-1. Although both APOBEC3F and APOBEC3G are expressed in cell types HIV-1 infects and are suppressed by Vif, there has been no prior biochemical analysis of APOBEC3F, in contrast to APOBEC3G. Using synthetic DNA substrates, we characterized APOBEC3F and found that similar to APOBEC3G; it is a processive enzyme and can deaminate at least two cytosines in a single enzyme-substrate encounter. However, APOBEC3F scanning movement is distinct from APOBEC3G, and relies on jumping rather than both jumping and sliding. APOBEC3F jumping movements were also different from APOBEC3G. The lack of sliding movement from APOBEC3F is due to an ¹⁹⁰NPM¹⁹² motif, since insertion of this motif into APOBEC3G decreases its sliding movements. The APOBEC3G NPM mutant induced significantly less mutations in comparison to wild-type APOBEC3G in an in vitro model HIV-1 replication assay and single-cycle infectivity assay, indicating that differences in DNA scanning were relevant to restriction of HIV-1. Conversely, mutation of the APOBEC3F ¹⁹¹Pro to ¹⁹¹Gly enables APOBEC3F sliding movements to occur. Although APOBEC3F ¹⁹⁰NGM¹⁹² could slide, the enzyme did not induce more mutagenesis than wild-type APOBEC3F, demonstrating that the unique jumping mechanism of APOBEC3F abrogates the influence of sliding on mutagenesis. Overall, we demonstrate key differences in the impact of APOBEC3F- and APOBEC3G-induced mutagenesis on HIV-1 that supports a model in which both the processive DNA scanning mechanism and preferred deamination motif (APOBEC3F, 5'TTC; APOBEC3G 5'CCC) influences the mutagenic and gene inactivation potential of an APOBEC3 enzyme.
Collapse
Affiliation(s)
- Anjuman Ara
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Robin P. Love
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
46
|
Esadze A, Iwahara J. Stopped-flow fluorescence kinetic study of protein sliding and intersegment transfer in the target DNA search process. J Mol Biol 2013; 426:230-44. [PMID: 24076422 DOI: 10.1016/j.jmb.2013.09.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 01/25/2023]
Abstract
Kinetic characterizations of protein translocation on DNA are nontrivial because the simultaneous presence of multiple different mechanisms makes it difficult to extract the information specific to a particular translocation mechanism. In this study, we have developed new approaches for the kinetic investigations of proteins' sliding and intersegment transfer (also known as "direct transfer") in the target DNA search process. Based on the analytical expression of the mean search time for the discrete-state stochastic model, we derived analytical forms of the apparent rate constant kapp for protein-target association in systems involving competitor DNA and the intersegment transfer mechanism. Our analytical forms of kapp facilitate the experimental determination of the kinetic rate constants for intersegment transfer and sliding in the target association process. Using stopped-flow fluorescence data for the target association kinetics along with the analytical forms of kapp, we have studied the translocation of the Egr-1 zinc-finger protein in the target DNA association process. Sliding was analyzed using the DNA-length-dependent kapp data. Using the dependence of kapp on the concentration of competitor DNA, we determined the second-order rate constant for intersegment transfer. Our results indicate that a major pathway in the target association process for the Egr-1 zinc-finger protein is the one involving intersegment transfer to a nonspecific site and the subsequent sliding to the target.
Collapse
Affiliation(s)
- Alexandre Esadze
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA.
| |
Collapse
|
47
|
Khazanov N, Marcovitz A, Levy Y. Asymmetric DNA-search dynamics by symmetric dimeric proteins. Biochemistry 2013; 52:5335-44. [PMID: 23866074 DOI: 10.1021/bi400357m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Abstract
We focus on dimeric DNA-binding proteins from two well-studied families: orthodox type II restriction endonucleases (REs) and transcription factors (TFs). Interactions of the protein's recognition sites with the DNA and, particularly, the contribution of each of the monomers to one-dimensional (1D) sliding along nonspecific DNA were studied using computational tools. Coarse-grained molecular dynamics simulations of DNA scanning by various TFs and REs provide insights into how the symmetry of a homodimer can be broken while they nonspecifically interact with DNA. The characteristics of protein sliding along DNA, such as the average sliding length, partitioning between 1D and 3D search, and the one-dimensional diffusion coefficient D1, strongly depend on the salt concentration, which in turn affects the probability of the two monomers adopting a cooperative symmetric sliding mechanism. Indeed, we demonstrate that maximal DNA search efficiency is achieved when the protein adopts an asymmetric search mode in which one monomer slides while its partner hops. We find that proteins classified as TFs have a higher affinity for the DNA, longer sliding lengths, and an increased probability of symmetric sliding in comparison with REs. Moreover, TFs can perform their biological function over a much wider range of salt concentrations than REs. Our results demonstrate that the different biological functions of DNA-binding proteins are related to the different nonspecific DNA search mechanisms they adopt.
Collapse
Affiliation(s)
- Netaly Khazanov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
48
|
Hedglin M, Zhang Y, O'Brien PJ. Isolating contributions from intersegmental transfer to DNA searching by alkyladenine DNA glycosylase. J Biol Chem 2013; 288:24550-9. [PMID: 23839988 DOI: 10.1074/jbc.m113.477018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Large genomes pose a challenge to DNA repair pathways because rare sites of damage must be efficiently located from among a vast excess of undamaged sites. Human alkyladenine DNA glycosylase (AAG) employs nonspecific DNA binding interactions and facilitated diffusion to conduct a highly redundant search of adjacent sites. This ensures that every site is searched, but could be a detriment if the protein is trapped in a local segment of DNA. Intersegmental transfer between DNA segments that are transiently in close proximity provides an elegant solution that balances global and local searching processes. It has been difficult to detect intersegmental transfer experimentally; therefore, we developed biochemical assays that allowed us to observe and measure the rates of intersegmental transfer by AAG. AAG has a flexible amino terminus that tunes its affinity for nonspecific DNA, but we find that it is not required for intersegmental transfer. As AAG has only a single DNA binding site, this argues against the bridging model for intersegmental transfer. The rates of intersegmental transfer are strongly dependent on the salt concentration, supporting a jumping mechanism that involves microscopic dissociation and capture by a proximal DNA site. As many DNA-binding proteins have only a single binding site, jumping may be a common mechanism for intersegmental transfer.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Biological Chemistry and the Chemical Biology Doctoral Program, the University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, USA
| | | | | |
Collapse
|
49
|
Schonhoft JD, Kosowicz JG, Stivers JT. DNA translocation by human uracil DNA glycosylase: role of DNA phosphate charge. Biochemistry 2013; 52:2526-35. [PMID: 23506309 DOI: 10.1021/bi301561d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
Human DNA repair glycosylases must encounter and inspect each DNA base in the genome to discover damaged bases that may be present at a density of <1 in 10 million normal base pairs. This remarkable example of specific molecular recognition requires a reduced dimensionality search process (facilitated diffusion) that involves both hopping and sliding along the DNA chain. Despite the widely accepted importance of facilitated diffusion in protein-DNA interactions, the molecular features of DNA that influence hopping and sliding are poorly understood. Here we explore the role of the charged DNA phosphate backbone in sliding and hopping by human uracil DNA glycosylase (hUNG), which is an exemplar that efficiently locates rare uracil bases in both double-stranded DNA and single-stranded DNA. Substitution of neutral methylphosphonate groups for anionic DNA phosphate groups weakened nonspecific DNA binding affinity by 0.4-0.5 kcal/mol per substitution. In contrast, sliding of hUNG between uracil sites embedded in duplex and single-stranded DNA substrates persisted unabated when multiple methylphosphonate linkages were inserted between the sites. Thus, a continuous phosphodiester backbone negative charge is not essential for sliding over nonspecific DNA binding sites. We consider several alternative mechanisms for these results. A model consistent with previous structural and nuclear magnetic resonance dynamic results invokes the presence of open and closed conformational states of hUNG. The open state is short-lived and has weak or nonexistent interactions with the DNA backbone that are conducive for sliding, and the populated closed state has stronger interactions with the phosphate backbone. These data suggest that the fleeting sliding form of hUNG is a distinct weakly interacting state that facilitates rapid movement along the DNA chain and resembles the transition state for DNA dissociation.
Collapse
Affiliation(s)
- Joseph D Schonhoft
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|
50
|
Schonhoft JD, Stivers JT. DNA translocation by human uracil DNA glycosylase: the case of single-stranded DNA and clustered uracils. Biochemistry 2013; 52:2536-44. [PMID: 23506270 DOI: 10.1021/bi301562n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
Human uracil DNA glycosylase (hUNG) plays a central role in DNA repair and programmed mutagenesis of Ig genes, requiring it to act on sparsely or densely spaced uracil bases located in a variety of contexts, including U/A and U/G base pairs, and potentially uracils within single-stranded DNA (ssDNA). An interesting question is whether the facilitated search mode of hUNG, which includes both DNA sliding and hopping, changes in these different contexts. Here we find that hUNG uses an enhanced local search mode when it acts on uracils in ssDNA, and also, in a context where uracils are densely clustered in duplex DNA. In the context of ssDNA, hUNG performs an enhanced local search by sliding with a mean sliding length larger than that of double-stranded DNA (dsDNA). In the context of duplex DNA, insertion of high-affinity abasic product sites between two uracil lesions serves to significantly extend the apparent sliding length on dsDNA from 4 to 20 bp and, in some cases, leads to directionally biased 3' → 5' sliding. The presence of intervening abasic product sites mimics the situation where hUNG acts iteratively on densely spaced uracils. The findings suggest that intervening product sites serve to increase the amount of time the enzyme remains associated with DNA as compared to nonspecific DNA, which in turn increases the likelihood of sliding as opposed to falling off the DNA. These findings illustrate how the search mechanism of hUNG is not predetermined but, instead, depends on the context in which the uracils are located.
Collapse
Affiliation(s)
- Joseph D Schonhoft
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|