1
|
Belikov S, Berg OG, Wrange Ö. Quantification of transcription factor-DNA binding affinity in a living cell. Nucleic Acids Res 2015; 44:3045-58. [PMID: 26657626 PMCID: PMC4838337 DOI: 10.1093/nar/gkv1350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/19/2015] [Indexed: 12/17/2022] Open
Abstract
The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [3H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element.
Collapse
Affiliation(s)
- Sergey Belikov
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Otto G Berg
- Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-75124 Uppsala, Sweden
| | - Örjan Wrange
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
2
|
Belikov S, Bott LC, Fischbeck KH, Wrange Ö. The polyglutamine-expanded androgen receptor has increased DNA binding and reduced transcriptional activity. Biochem Biophys Rep 2015; 3:134-139. [PMID: 29124176 PMCID: PMC5668691 DOI: 10.1016/j.bbrep.2015.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/16/2015] [Accepted: 07/23/2015] [Indexed: 11/09/2022] Open
Abstract
Expansion of a polyglutamine-encoding trinucleotide CAG repeat in the androgen receptor (AR) to more than 37 repeats is responsible for the X-linked neuromuscular disease spinal and bulbar muscular atrophy (SBMA). Here we evaluated the effect of polyglutamine length on AR function in Xenopus oocytes. This allowed us to correlate the nuclear AR concentration to its capacity for specific DNA binding and transcription activation in vivo. AR variants with polyglutamine tracts containing either 25 or 64 residues were expressed in Xenopus oocytes by cytoplasmic injection of the corresponding mRNAs. The intranuclear AR concentration was monitored in isolated nuclei and related to specific DNA binding as well as transcriptional induction from the hormone response element in the mouse mammary tumor virus (MMTV) promoter. The expanded AR with 64 glutamines had increased capacity for specific DNA binding and a reduced capacity for transcriptional induction as related to its DNA binding activity. The possible mechanism behind these polyglutamine-induced alterations in AR function is discussed. Spinal bulbular muscular atrophy is caused by a polyQ expanded androgen receptor. Function of AR with expanded polyQ tract was analyzed in Xenopus oocytes. AR with expanded polyQ tract has increased DNA binding but reduced gene activation.
Collapse
Affiliation(s)
- Sergey Belikov
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Laura C Bott
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden.,Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Örjan Wrange
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
3
|
Oka K, Kohno S, Urushitani H, Guillette LJ, Ohta Y, Iguchi T, Katsu Y. Molecular cloning and characterization of the corticoid receptors from the American alligator. Mol Cell Endocrinol 2013; 365:153-61. [PMID: 23127802 DOI: 10.1016/j.mce.2012.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 01/04/2023]
Abstract
Steroid hormones are essential for health in vertebrates. Corticosteroids, for example, have a regulatory role in many physiological functions, such as osmoregulation, respiration, immune responses, stress responses, reproduction, growth, and metabolism. Although extensively studied in mammals and some non-mammalian species, the molecular mechanisms of corticosteroid hormone (glucocorticoids and mineralocorticoids) action are poorly understood in reptiles. Here, we have evaluated hormone receptor-ligand interactions in the American alligator (Alligator mississippiensis), following the isolation of cDNAs encoding a glucocorticoid receptor (GR) and a mineralocorticoid receptor (MR). The full-length alligator GR (aGR) and aMR cDNAs were obtained using 5' and 3' rapid amplification cDNA ends (RACE). The deduced amino acid sequences exhibited high identity to the chicken orthologs (aGR: 83%; aMR: 90%). Using transient transfection assays of mammalian cells, both aGR and aMR proteins displayed corticosteroid-dependent activation of transcription from keto-steroid hormone responsive, murine mammary tumor virus promoters. We further compared the ligand-specifity of human, chicken, Xenopus, and zebrafish GR and MR. We found that the alligator and chicken GR/MR have very similar amino acid sequences, and this translates to very similar ligand specificity. This is the first report of the full-coding regions of a reptilian GR and MR, and the examination of their transactivation by steroid hormones.
Collapse
Affiliation(s)
- Kaori Oka
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Belikov S, Öberg C, Jääskeläinen T, Rahkama V, Palvimo JJ, Wrange Ö. FoxA1 corrupts the antiandrogenic effect of bicalutamide but only weakly attenuates the effect of MDV3100 (Enzalutamide™). Mol Cell Endocrinol 2013; 365:95-107. [PMID: 23063623 DOI: 10.1016/j.mce.2012.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/26/2012] [Accepted: 10/02/2012] [Indexed: 01/04/2023]
Abstract
Prostate cancer growth depends on androgens. Synthetic antiandrogens are used in the cancer treatment. However, antiandrogens, such as bicalutamide (BIC), have a mixed agonist/antagonist activity. Here we compare the antiandrogenic capacity of BIC to a new antiandrogen, MDV3100 (MDV) or Enzalutamide™. By reconstitution of a hormone-regulated enhancer in Xenopus oocytes we show that both antagonists trigger the androgen receptor (AR) translocation to the nucleus, albeit with a reduced efficiency for MDV. Once in the nucleus, both AR-antagonist complexes can bind sequence specifically to DNA in vivo. The forkhead box transcription factor A (FoxA1) is a negative prognostic indicator for prostate cancer disease. FoxA1 expression presets the enhancer chromatin and makes the DNA more accessible for AR binding. In this context the BIC-AR antiandrogenic effect is seriously compromised as demonstrated by a significant chromatin remodeling and induction of a robust MMTV transcription whereas the MDV-AR complex displays a more persistent antagonistic character.
Collapse
Affiliation(s)
- S Belikov
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
5
|
Öberg C, Izzo A, Schneider R, Wrange Ö, Belikov S. Linker Histone Subtypes Differ in Their Effect on Nucleosomal Spacing In Vivo. J Mol Biol 2012; 419:183-97. [DOI: 10.1016/j.jmb.2012.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/17/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
|
6
|
Belikov S, Holmqvist PH, Åstrand C, Wrange Ö. FoxA1 and glucocorticoid receptor crosstalk via histone H4K16 acetylation at a hormone regulated enhancer. Exp Cell Res 2012; 318:61-74. [DOI: 10.1016/j.yexcr.2011.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/02/2011] [Accepted: 09/29/2011] [Indexed: 12/17/2022]
|
7
|
Abstract
The interactive chromatin modeling web server (ICM Web) is an interactive tool that allows users to rapidly assess nucleosome stability and fold sequences of DNA into putative chromatin templates. ICM Web takes a sequence composed of As, Cs, Gs, and Ts as input and generates (i) a nucleosome energy level diagram, (ii) coarse-grained representations of free DNA and chromatin and (iii) plots of the helical parameters (Tilt, Roll, Twist, Shift, Slide and Rise) as a function of position. The user can select from several different energy models, nucleosome structures and methods for placing nucleosomes in the energy landscape. Alternatively, if nucleosome footprints are known from experiment, ICM Web can use these positions to create a nucleosome array. The default energy model achieves a correlation coefficient of 0.7 with 100 experimentally determined values of stability and properly predicts the location of six positioned nucleosomes in the mouse mammary tumor virus (MMTV) promoter. ICM Web is suitable for interactively investigating nucleosome stability and chromatin folding for sequences up to tens of kilobases in length. No login is required to use ICM Web.
Collapse
Affiliation(s)
- Richard C Stolz
- Department of Biostatistics, Tulane University, 1440 Canal Street, Suite 2001, New Orleans, LA 70112, USA
| | | |
Collapse
|
8
|
Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol Cell 2010; 38:41-53. [PMID: 20385088 PMCID: PMC3641559 DOI: 10.1016/j.molcel.2010.01.042] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/11/2009] [Accepted: 01/25/2010] [Indexed: 12/23/2022]
Abstract
High-order chromatin was reconstituted in vitro. This species reflects the criteria associated with transcriptional regulation in vivo. Histone H1 was determinant to formation of condensed structures, with deacetylated histones giving rise to highly compacted chromatin that approximated 30 nm fibers as evidenced by electron microscopy. Using the PEPCK promoter, we validated the integrity of these templates that were refractory to transcription by attaining transcription through the progressive action of the pertinent factors. The retinoic acid receptor binds to highly compacted chromatin, but the NF1 transcription factor binds only after histone acetylation by p300 and SWI/SNF-mediated nucleosome mobilization, reflecting the in vivo case. Mapping studies revealed the same pattern of nucleosomal repositioning on the PEPCK promoter in vitro and in vivo, correlating with NF1 binding and transcription. The reconstitution of such highly compacted "30 nm" chromatin that mimics in vivo characteristics should advance studies of its conversion to a transcriptionally active form.
Collapse
|
9
|
Biddie SC, John S, Hager GL. Genome-wide mechanisms of nuclear receptor action. Trends Endocrinol Metab 2010; 21:3-9. [PMID: 19800253 PMCID: PMC2818176 DOI: 10.1016/j.tem.2009.08.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/19/2009] [Accepted: 08/21/2009] [Indexed: 01/11/2023]
Abstract
Nuclear receptors are involved in a myriad of physiological processes, responding to ligands and binding to DNA at sequence-specific cis-regulatory elements. This binding occurs in the context of chromatin, a critical factor in regulating eukaryotic transcription. Recent high-throughput assays have examined nuclear receptor action genome-wide, advancing our understanding of receptor binding to regulatory elements. Here, we discuss current knowledge of genome-wide response element occupancy by receptors and the function of transcription factor networks in regulating nuclear receptor action. We highlight emerging roles for the epigenome, chromatin remodeling, histone modification, histone variants and long-range chromosomal interactions in nuclear receptor binding and receptor-dependent gene regulation. These mechanisms contribute importantly to the action of nuclear receptors in health and disease.
Collapse
Affiliation(s)
- Simon C. Biddie
- Laboratory of Receptor Biology and Gene Expression, Building 41, Rm B602, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892-5055
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, The Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol, BS1 3NY United Kingdom
| | - Sam John
- Laboratory of Receptor Biology and Gene Expression, Building 41, Rm B602, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892-5055
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, Building 41, Rm B602, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892-5055
| |
Collapse
|
10
|
FoxA1 binding directs chromatin structure and the functional response of a glucocorticoid receptor-regulated promoter. Mol Cell Biol 2009; 29:5413-25. [PMID: 19687299 DOI: 10.1128/mcb.00368-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reconstitution of the glucocorticoid receptor (GR)-regulated mouse mammary tumor virus (MMTV) promoter in Xenopus oocytes was used to monitor the effects of different transcription factor contexts. Three constitutively binding factors, nuclear factor 1 (NF1), octamer transcription factor 1 (Oct1), and the Forkhead box A1 (FoxA1), were shown to act in concert, to direct the chromatin structure, and to enhance the GR response. FoxA1 has a dominant effect in the absence of hormone and induces a cluster of DNase I-hypersensitive sites in the segment comprising bp -400 to +25. This FoxA1-mediated chromatin remodeling does not induce MMTV transcription, as opposed to that of the GR. However, the robust FoxA1-dependent chromatin opening has the following drastic functional consequences on the hormone regulation: (i) GR-DNA binding is facilitated, as revealed by dimethyl sulfate in vivo footprinting, leading to increased hormone-induced transcription, and (ii) the GR antagonist RU486 is converted into a partial agonist in the presence of FoxA1 via ligand-independent GR activation. We conclude that FoxA1 mediates a preset chromatin structure and directs a context-specific response of a nuclear receptor. Furthermore, the alternative nucleosome arrangement induced by GR and FoxA1 implies this to be determined by constitutive binding of transcription factors rather than by the DNA sequence itself.
Collapse
|
11
|
Astrand C, Belikov S, Wrange O. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter. Exp Cell Res 2009; 315:2604-15. [PMID: 19463811 DOI: 10.1016/j.yexcr.2009.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/29/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
Abstract
Transcription from the mouse mammary tumor virus (MMTV) promoter is induced by the glucocorticoid receptor (GR). This switch was reconstituted in Xenopus oocytes. Previously, we showed that Nuclear Factor 1 (NF1) and Octamer Transcription Factor 1 (Oct1) bind constitutively to the MMTV promoter and thereby induce translational nucleosome positioning representing an intermediary, i.e. preset, state of nucleosome organization. Here we further characterize this NF1 and Oct1 induced preset chromatin in relation to the inactive and the hormone-activated state. The preset chromatin exhibits increased histone acetylation but does not cause dissociation of histone H1 as oppose to the hormone-activated state. Furthermore, upon hormone induction the preset MMTV chromatin displays an enhanced and prolonged GR binding capacity and transcription during an intrinsic and time-dependent silencing of the injected template. The silencing process correlates with a reduced histone acetylation. However, a histone deacetylase inhibitor, trichostatin A (TSA), does not counteract silencing in spite of its distinct stimulation of GR-DNA binding. The latter indicates the importance of histone acetylation to maintain DNA access for inducible factor binding. We discuss how constitutively bound factors such as NF1 and Oct1 may participate in the maintenance of tissue specificity of hormone responsive genes.
Collapse
Affiliation(s)
- Carolina Astrand
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
12
|
Oduro AK, Fritsch MK, Murdoch FE. Chromatin context dominates estrogen regulation of pS2 gene expression. Exp Cell Res 2008; 314:2796-810. [PMID: 18662686 DOI: 10.1016/j.yexcr.2008.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 12/29/2022]
Abstract
Chromatin structure and transcription factor activity collaborate to set the transcription level of a gene. Our understanding of the relative contributions of each of these factors at a specific gene is limited. We studied the effects of an altered chromatin environment on the activity of the estrogen-responsive pS2 promoter. We created stable cell lines with the pS2 promoter situated in an alternative chromatin site in addition to it being in its native site. Both promoters were estrogen-responsive for estrogen receptor alpha (ERalpha) recruitment, but transcription was inducible only at the native site. At the recombinant site, transcription was high and constitutive. Higher histone H3 and H4 acetylation (acH3 and acH4), as well as trimethylated lysine 4 on histone H3 levels, was observed at the recombinant site compared to the native site in vehicle treated cells. Inhibition of histone deacetylases (HDACs) resulted in increased acH4, but only modest increases in acH3, ERalpha binding and basal transcription at the native pS2 site. Inhibiting HDACs had no effect on transcription from the recombinant site. These data suggest that highly active chromatin is not only permissive for transcription, but can override the requirement for the transcription factor at an inducible promoter.
Collapse
Affiliation(s)
- Akua K Oduro
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, MSC 5250, 1300 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
13
|
Chikhirzhina GI, Al-Shekhadat RI, Chikhirzhina EV. Transcription factors of the NF1 family: Role in chromatin remodeling. Mol Biol 2008. [DOI: 10.1134/s0026893308030023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Poirier MG, Bussiek M, Langowski J, Widom J. Spontaneous access to DNA target sites in folded chromatin fibers. J Mol Biol 2008; 379:772-86. [PMID: 18485363 DOI: 10.1016/j.jmb.2008.04.025] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
DNA wrapped in nucleosomes is sterically occluded from many protein complexes that must act on it; how such complexes gain access to nucleosomal DNA is not known. In vitro studies on isolated nucleosomes show that they undergo spontaneous partial unwrapping conformational transitions, which make the wrapped nucleosomal DNA transiently accessible. Thus, site exposure might provide a general mechanism allowing access of protein complexes to nucleosomal DNA. However, existing quantitative analyses of site exposure focused on single nucleosomes, while the presence of neighbor nucleosomes and concomitant chromatin folding might significantly influence site exposure. In this work, we carried out quantitative studies on the accessibility of nucleosomal DNA in homogeneous nucleosome arrays. Two striking findings emerged. Organization into chromatin fibers changes the accessibility of nucleosomal DNA only modestly, from approximately 3-fold decreases to approximately 8-fold increases in accessibility. This means that nucleosome arrays are intrinsically dynamic and accessible even when they are visibly condensed. In contrast, chromatin folding decreases the accessibility of linker DNA by as much as approximately 50-fold. Thus, nucleosome positioning dramatically influences the accessibility of target sites located inside nucleosomes, while chromatin folding dramatically regulates access to target sites in linker DNA.
Collapse
Affiliation(s)
- Michael G Poirier
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
| | | | | | | |
Collapse
|
15
|
Dennis JH, Fan HY, Reynolds SM, Yuan G, Meldrim JC, Richter DJ, Peterson DG, Rando OJ, Noble WS, Kingston RE. Independent and complementary methods for large-scale structural analysis of mammalian chromatin. Genome Res 2007; 17:928-39. [PMID: 17568008 PMCID: PMC1891351 DOI: 10.1101/gr.5636607] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The fundamental building block of chromatin, the nucleosome, occupies 150 bp of DNA in a spaced arrangement that is a primary determinant in regulation of the genome. The nucleosomal organization of some regions of the human genome has been described, but mapping of these regions has been limited to a few kilobases. We have explored two independent and complementary methods for the high-throughput analysis of mammalian chromatin structure. Through adaptations to a protocol used to map yeast chromatin structure, we determined sites of nucleosomal protection over large regions of the mammalian genome using a tiling microarray. By modifying classical primer extension methods, we localized specific internucleosomally cleaved mammalian genomic sequences using a capillary electrophoresis sequencer in a manner that allows high-throughput nucleotide-resolution characterization of nucleosome protection patterns. We developed algorithms for the automated and unbiased analysis of the resulting data, a necessary step toward large-scale analysis. We validated these assays using the known positions of nucleosomes on the mouse mammary tumor virus LTR, and additionally, we characterized the previously unreported chromatin structure of the LCMT2 gene. These results demonstrate the effectiveness of the combined methods for reliable analysis of mammalian chromatin structure in a high-throughput manner.
Collapse
Affiliation(s)
- Jonathan H. Dennis
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Hua-Ying Fan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Sheila M. Reynolds
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Guocheng Yuan
- Bauer Center for Genomics Research, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | - Daniel G. Peterson
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Oliver J. Rando
- Bauer Center for Genomics Research, Harvard University, Cambridge, Massachusetts 02138, USA
| | - William S. Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Robert E. Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Corresponding author.E-mail ; fax (617) 643-2119
| |
Collapse
|
16
|
Belikov S, Astrand C, Wrange O. Mechanism of histone H1-stimulated glucocorticoid receptor DNA binding in vivo. Mol Cell Biol 2007; 27:2398-410. [PMID: 17210632 PMCID: PMC1820493 DOI: 10.1128/mcb.01509-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus oocytes lack somatic linker histone H1 but contain an oocyte-specific variant, B4. The glucocorticoid receptor (GR) inducible mouse mammary tumor virus (MMTV) promoter was reconstituted in Xenopus oocytes to address the effects of histone H1. The expression of Xenopus H1o [corrected] (H1) via cytoplasmic mRNA injection resulted in H1 incorporation into in vivo assembled chromatin based on (i) the appearance of a chromatosome stop, (ii) the increased nucleosome repeat length (NRL), and (iii) H1-DNA binding assayed by chromatin immunoprecipitation (ChIP). The H1 effect on the NRL was saturable and hence represents H1-binding to a specific site. A subsaturating level of H1 enhanced the hormone-dependent binding of GR to the glucocorticoid response elements (GREs) and the hormone-dependent MMTV transcription while it reduced the access to DNA as revealed by micrococcal nuclease (MNase) analysis. These H1 effects were lost at higher levels of H1. ChIP and MNase analysis revealed a hormone-dependent dissociation of H1 from the activated chromatin domain. The proposed mechanism of H1-induced GR binding is based on two effects: (i) a GR-induced asymmetric distribution of H1 in favor of inactive chromatin and (ii) an H1-induced reduction in DNA access. These effects results in increased concentration of free GR and, hence, in increased GR-GRE binding.
Collapse
Affiliation(s)
- Sergey Belikov
- Dept. of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | |
Collapse
|
17
|
Ulyanova NP, Schnitzler GR. Human SWI/SNF generates abundant, structurally altered dinucleosomes on polynucleosomal templates. Mol Cell Biol 2006; 25:11156-70. [PMID: 16314535 PMCID: PMC1316949 DOI: 10.1128/mcb.25.24.11156-11170.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human SWI/SNF (hSWI/SNF) is an evolutionarily conserved ATP-dependent chromatin remodeling complex required for transcriptional regulation and cell cycle control. The regulatory functions of hSWI/SNF are correlated with its ability to create a stable, altered form of chromatin that constrains fewer negative supercoils than normal. Our current studies indicate that this change in supercoiling is due to the conversion of up to one-half of the nucleosomes on polynucleosomal arrays into asymmetric structures, termed "altosomes," each composed of two histone octamers and bearing an asymmetrically located region of nuclease-accessible DNA. Altosomes can be formed on chromatin containing the abundant mammalian linker histone H1 and have a unique micrococcal nuclease digestion footprint that allows their position and abundance on any DNA sequence to be measured. Over time, altosomes spontaneously revert to structurally normal but improperly positioned nucleosomes, suggesting a novel mechanism for transcriptional attenuation as well as transcriptional memory following hSWI/SNF action.
Collapse
Affiliation(s)
- Natalia P Ulyanova
- Tufts University School of Medicine, Department of Biochemistry, Boston, MA 02111, USA
| | | |
Collapse
|
18
|
Roche D, Almouzni G, Quivy JP. Chromatin assembly of DNA templates microinjected into Xenopus oocytes. Methods Mol Biol 2006; 322:139-47. [PMID: 16739721 DOI: 10.1007/978-1-59745-000-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The packaging of deoxyribonucleic acid (DNA) into chromatin within the eukaryotic nucleus can affect processes such as DNA replication, transcription, recombination, and repair. Therefore, studies aimed at understanding at the molecular level how these processes are operating have to take into account the chromatin context. We present a method to assemble DNA into chromatin by nuclear microinjection into Xenopus oocytes. This method allows in vivo chromatin formation in a nuclear environment. We provide the experimental procedures for oocyte preparation, DNA injection, and analysis of the assembled chromatin.
Collapse
Affiliation(s)
- Danièle Roche
- Research Section, Institute Curie, UMR218 du Centre National de la Recherche Scientifique, Paris, France
| | | | | |
Collapse
|
19
|
Ludwig Y, Schafer C, Kramer A, Albermann L, Oberleithner H, Shahin V. Hot Spot Formation in the Nuclear Envelope of Oocytes in Response to Steroids. Cell Physiol Biochem 2006; 17:181-92. [PMID: 16790994 DOI: 10.1159/000094123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A Glucocorticoid-sensitive cell rapidly responds to hormone stimulation with bidirectional exchange of specific macromolecules between cytosol and nucleus. Glucocorticoid-initiated macromolecules (GIMs) must overcome the nuclear envelope (NE) to enter or leave the nucleus. GIM translocation occurs through nuclear pore complexes (NPCs) that span the NE. We investigated the question whether transport of GIMs through NPCs occurs random or involves selected groups of NPCs (hot spots). Glucocorticoid receptors were expressed in Xenopus laevis oocytes and GIM transport was activated by triamcinolone acetonide, a potent synthetic glucocorticoid analogon. Glucocorticoid receptors associated with the NE and the chromatin were identified using western blot analysis and, at single molecule level, atomic force microscopy. Fluorescence-labeled dextran was used to describe passive NE permeability. We observed that after hormone injection (i) small GIMs, most likely GRs, localize within seconds on both sides of the NE. (ii) large GIMs, most likely ribonucleoproteins, localize within minutes on NPCs at the nucleoplasmic side (iii) both small and large GIMs accumulate on selected NPC clusters (iv) NE permeability transiently decreases when GIMs attach to NPCs. We conclude that GIM transport across the nuclear barrier does not randomly take place but is carried out by a selected population of NPCs.
Collapse
Affiliation(s)
- Yvonne Ludwig
- Institute of Physiology II, University of Muenster, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Belikov SV, Grokhovsky SL, Isaguliants MG, Surovaya AN, Gursky GV. Sequence-Specific Minor Groove Binding Ligands as Potential Regulators of Gene Expression in Xenopus Laevis Oocytes. J Biomol Struct Dyn 2005; 23:193-202. [PMID: 16060693 DOI: 10.1080/07391102.2005.10507059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The mouse mammary tumor virus (MMTV) promoter is induced by glucocorticoid hormone. A robust hormone- and receptor-dependent gene activation could be reproduced in Xenopus laevis oocytes. The homogeneous response in this system allowed a detailed analysis of the DNA-protein interactions following hormone activation. The strategy of artificial regulating of gene activity by sequence-specific minor groove binding ligands is very attractive. We have synthesized and studied the interaction with DNA of bis-linked netropsin derivatives in which two monomers are attached via short linkers in head-to-head and tail-to-tail manners. We have found that cis-diammine-platinum bridged bis-netropsin added to Xenopus oocytes media penetrates cellular and nuclear membrane and binds selectively to the MMTV promoter at the DNA segment that partly overlaps with the site recognized by glucocorticoid receptor. DNase I footprinting studies demonstrate that there are more stronger binding sites for cis-diammine-platinum bridged bis-netropsin on the naked MMTV DNA which are found to be inaccessible for its binding in oocytes.
Collapse
Affiliation(s)
- S V Belikov
- Department of Cell and Molecular Biology, The Medical Nobel Institute, Karolinska Institute, SE 17177, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
21
|
Shahin V, Ludwig Y, Schafer C, Nikova D, Oberleithner H. Glucocorticoids remodel nuclear envelope structure and permeability. J Cell Sci 2005; 118:2881-9. [PMID: 15976447 DOI: 10.1242/jcs.02429] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study describes glucocorticoid induced remodelling of nuclear envelope (NE) structure and permeability. A glucocorticoid analogue, triamcinolone acetonide (TA), is injected into Xenopus laevis oocytes that express an exogeneous glucocorticoid receptor (GR). Electrical, fluorescence and nano-imaging techniques are applied to study the permeability and the structure of the NE at 5 and 60 minutes after injection of TA. A remarkable dilation of nuclear pore complexes (NPCs), a rearrangement of NPC distribution and a significant increase of NE permeability for ions and fluorescent 20 kDa dextran are observed within 5 minutes of TA exposure. At regular distances on local NE patches, NPCs seem to adjoin forming clusters each consisting of several hundred NPCs. Interestingly, at the same time of exposure, hydrophobicity of NPC central channels and NPC-free NE surface increases. The changes in permeability and structure are transient as the NE permeability returns to its initial state within 60 minutes. In conclusion, the NE is a barrier of high plasticity sensitive to hydrophobic molecules. Remodelling of NE structure and permeability is a prerequisite for mediating physiological actions of glucocorticoids.
Collapse
Affiliation(s)
- Victor Shahin
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27b, 48149 Münster, Germany.
| | | | | | | | | |
Collapse
|
22
|
Holmqvist PH, Belikov S, Zaret KS, Wrange O. FoxA1 binding to the MMTV LTR modulates chromatin structure and transcription. Exp Cell Res 2005; 304:593-603. [PMID: 15748903 DOI: 10.1016/j.yexcr.2004.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/03/2004] [Accepted: 12/04/2004] [Indexed: 10/26/2022]
Abstract
Novel binding sites for the forkhead transcription factor family member Forkhead box A (FoxA), previously referred to as Hepatocyte Nuclear Factor 3 (HNF3), were found within the mouse mammary tumor virus long terminal repeat (MMTV LTR). The effect of FoxA1 on MMTV LTR chromatin structure, and expression was evaluated in Xenopus laevis oocytes. Mutagenesis of either of the two main FoxA binding sites showed that the distal site, -232/-221, conferred FoxA1-dependent partial inhibition of glucocorticoid receptor (GR) driven MMTV transcription. The proximal FoxA binding segment consisted of two individual FoxA sites at -57/-46 and -45/-34, respectively, that mediated an increased basal MMTV transcription. FoxA1 binding altered the chromatin structure of both the inactive- and the hormone-activated MMTV LTR. Hydroxyl radical foot printing revealed FoxA1-mediated changes in the nucleosome arrangement. Micrococcal nuclease digestion showed the hormone-dependent sub-nucleosome complex, containing approximately 120 bp of DNA, to be expanded by FoxA1 binding to the proximal segment into a larger complex containing approximately 200 bp. The potential function of the FoxA1-mediated expression of the MMTV provirus for maintenance of expression in different tissues is discussed.
Collapse
Affiliation(s)
- Per-Henrik Holmqvist
- Department of Cell and Molecular Biology, The Medical Nobel Institute, Box 285, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
23
|
Shahin V, Albermann L, Schillers H, Kastrup L, Schäfer C, Ludwig Y, Stock C, Oberleithner H. Steroids dilate nuclear pores imaged with atomic force microscopy. J Cell Physiol 2005; 202:591-601. [PMID: 15316931 DOI: 10.1002/jcp.20152] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Macromolecules that act in the cell nucleus must overcome the nuclear envelope (NE). This barrier between cytosol and the nucleus is perforated by nuclear pore complexes (NPCs) that serve as translocation machineries. We visualized the translocation process at the NE surface, applying a nanotechnical approach using atomic force microscopy (AFM). In order to initiate protein targeting to NPCs, dexamethasone (dex) was injected into Xenopus laevis oocytes. Dex is a synthetic steroid of great therapeutic relevance that specifically binds to glucocorticoid receptors and thus triggers an intracellular signal cascade involving the cell nucleus. Ninety and 180 sec after dex injection cell nuclei were isolated, the NEs spread on glass and scanned with AFM. With single molecule resolution we observed that dex initiated proteins (DIPs) first bind to NPC-free areas of the outer nuclear membrane. This causes NPCs to dilate. Then, in a second step, DIPs attach directly to NPCs and enter the dilated central channels. DIPs accumulation and NPC conformational changes were blocked by RU486, a specific glucocorticoid receptor antagonist. In conclusion, dex exposure induces NPC dilation. NPCs change conformation already prior to transport. The NPC dilation signal is most likely transmitted through NPC associated filaments or yet unknown structures in the NE outer membrane. NPC dilation could have significant impact on nuclear targeting of therapeutic macromolecules.
Collapse
Affiliation(s)
- Victor Shahin
- Nanolab, Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ingram R, Tagoh H, Riggs AD, Bonifer C. Rapid, solid-phase based automated analysis of chromatin structure and transcription factor occupancy in living eukaryotic cells. Nucleic Acids Res 2005; 33:e1. [PMID: 15644555 PMCID: PMC546173 DOI: 10.1093/nar/gni001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transcription factors, chromatin components and chromatin modification activities are involved in many diseases including cancer. However, the means by which alterations in these factors influence the epigenotype of specific cell types is poorly understood. One problem that limits progress is that regulatory regions of eukaryotic genes sometimes extend over large regions of DNA. To improve chromatin structure–function analysis over such large regions, we have developed an automated, relatively simple procedure that uses magnetic beads and a capillary sequencer for ligation-mediated-PCR (LM-PCR). We show that the procedure can be used for the rapid examination of chromatin fine-structure, nucleosome positioning as well as changes in transcription factor binding-site occupancy during cellular differentiation.
Collapse
Affiliation(s)
| | | | - Arthur D. Riggs
- Division of Biology, Beckman Institute of City of Hope1500 Duarte Road, Duarte, CA 91010, USA
| | - Constanze Bonifer
- To whom correspondence should be addressed. Tel: +44 113 206 5676; Fax: +44 113 244 4475;
| |
Collapse
|
25
|
Belikov S, Holmqvist PH, Astrand C, Wrange O. Nuclear Factor 1 and Octamer Transcription Factor 1 Binding Preset the Chromatin Structure of the Mouse Mammary Tumor Virus Promoter for Hormone Induction. J Biol Chem 2004; 279:49857-67. [PMID: 15381691 DOI: 10.1074/jbc.m409713200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When the mouse mammary tumor virus (MMTV) is integrated into the genome of a mammalian cell, its long terminal repeat (LTR) harbors six specifically positioned nucleosomes. Transcription from the MMTV promoter is regulated by the glucocorticoid hormone via the glucocorticoid receptor (GR). The mechanism of the apparently constitutive nucleosome arrangement has remained unclear. Previous in vitro reconstitution of nucleosome(s) on small segments of the MMTV LTR suggested that the DNA sequence was decisive for the nucleosome arrangement. However, microinjection of MMTV LTR DNA in Xenopus oocytes rendered randomly distributed nucleosomes. This indicated that oocytes lack factor(s) that induces nucleosome positioning at the MMTV LTR in other cells. Here we demonstrate that specific and concomitant binding of nuclear factor 1 (NF1) and octamer factor 1 (Oct1) to their cognate sites within the MMTV promoter induce a partial nucleosome positioning that is an intermediary state between the randomly organized inactive promoter and the hormone and GR-activated promoter containing distinctly positioned nucleosomes. Oct1 and NF1 reciprocally facilitate each other's binding to the MMTV LTR in vivo. The NF1 and Oct1 binding also facilitate hormone-dependent GR-DNA interaction and result in a faster and stronger hormone response. Since NF1 and Oct1 generate an intermediary state of nucleosome positioning and enhance the hormone-induced response, we refer to this as a preset chromatin structure. We propose that this state of NF1 and Oct1-induced chromatin presetting mimics the early step(s) of chromatin remodeling involved in tissue-specific gene expression.
Collapse
Affiliation(s)
- Sergey Belikov
- Department of Cell and Molecular Biology, The Medical Nobel Institute, P. O. Box 285, Karolinska Institutet, Stockholm SE-17177, Sweden
| | | | | | | |
Collapse
|
26
|
Abstract
Glucocorticoids are among the most widely prescribed anti-inflammatory drugs. They act by binding to the glucocorticoid receptor (GR) that, upon activation, translocates to the nucleus and either stimulates or inhibits gene expression. GR inhibition of many proinflammatory response genes occurs through induction of the synthesis of anti-inflammatory proteins as well as through repression of proinflammatory transcription factors, such as nuclear factor-kappaB (NF-kappaB) or activator protein-1 (AP-1). In this review, we discuss the molecular mechanisms underlying GR inhibition of inflammatory responses, with an emphasis on repression of NF-kappaB and AP-1 and their respective signaling pathways.
Collapse
Affiliation(s)
- Kathleen A Smoak
- Department of Health and Human Services, Laboratory of Signal Transduction, National Institute of Environmental Health Services, National Institutes of Health, Building 101, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
27
|
Simonsson S, Gurdon J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol 2004; 6:984-90. [PMID: 15448701 DOI: 10.1038/ncb1176] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 08/20/2004] [Indexed: 11/09/2022]
Abstract
Nuclear transplantation experiments in amphibia and mammals have shown that oocyte and egg cytoplasm can extensively reprogram somatic cell nuclei with new patterns of gene expression and new pathways of cell differentiation; however, very little is known about the molecular mechanism of nuclear reprogramming. Here we have used nuclear and DNA transfer from mammalian somatic cells to analyse the mechanism of activation of the stem cell marker gene oct4 by Xenopus oocytes. We find that the removal of nuclear protein accelerates the rate of reprogramming, but even more important is the demethylation of somatic cell DNA. DNA demethylation seems to precede gene reprogramming, and is absolutely necessary for oct4 transcription. Reprogramming by oocytes occurs in the absence of DNA replication and RNA/protein synthesis. It is also selective, operating only on the promoter, but not enhancers, of oct4; both a putative Sp1/Sp3 and a GGGAGGG binding site are required for demethylation and transcription. We conclude that the demethylation of promoter DNA may be a necessary step in the epigenetic reprogramming of somatic cell nuclei.
Collapse
Affiliation(s)
- Stina Simonsson
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QR, UK
| | | |
Collapse
|
28
|
Isaguliants MG, Petrakova NV, Kashuba EV, Suzdaltzeva YG, Belikov SV, Mokhonov VV, Prilipov AG, Matskova L, Smirnova IS, Jolivet-Reynaud C, Nordenfelt E. Immunization with hepatitis C virus core gene triggers potent T-cell response, but affects CD4+ T-cells. Vaccine 2004; 22:1656-65. [PMID: 15068848 DOI: 10.1016/j.vaccine.2003.09.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Numerous attempts to induce immunity against HCV core (HCV-C) by DNA immunization met serious difficulties in optimizing T-helper cell and antibody responses. Immunomodulatory properties of HCV-C could be blamed that seem to be dependent on the genotype of HCV source. Here, we characterized HCV-C gene from HCV 1b isolate 274933RU. Eukaryotic expression of HCV-C was effectively driven by CMVIE, while human elongation factor 1 alpha promoter directed low levels of HCV-C expression. C57BL/6 mice were immunized with CMVIE-driven HCV-C gene, and assessed for specific antibody production, T-cell proliferation and cytokine secretion. The number and proportion of CD19+, CD3+, CD3+/CD4+, and CD3+/CD8+ splenocytes in HCV-C gene recipients was evaluated by flow cytometry. A significant mounting drop in CD3+/CD4+ T-cell counts occurred in HCV-C gene-recipients as compared to the controls. Despite that, 75% of mice exhibited core-specific cellular reactivity revealed as high proliferative responses to HCV-C and HCV-C peptides. Stimulated T-cells secreted predominantly IFN-gamma and IL-2. A shift of epitope specificity was observed with the early response being broad, and the late limited to the HCV-C C-terminus. Thus, we demonstrate both T-cell immunogenicity and T-cell modulation by core of HCV 1b. Immune modulation by HCV core may affect host ability to mount long-lasting cellular and antibody response and should be dealt with in designing core-based HCV vaccines.
Collapse
|
29
|
Belikov S, Astrand C, Holmqvist PH, Wrange O. Chromatin-mediated restriction of nuclear factor 1/CTF binding in a repressed and hormone-activated promoter in vivo. Mol Cell Biol 2004; 24:3036-47. [PMID: 15024090 PMCID: PMC371135 DOI: 10.1128/mcb.24.7.3036-3047.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) promoter-driven transcription is induced by glucocorticoid hormone via binding of the glucocorticoid receptor (GR). The MMTV promoter also harbors a binding site for nuclear factor 1 (NF1). NF1 and GR were expressed in Xenopus oocytes; this revealed GR-NF1 cooperativity both in terms of DNA binding and chromatin remodeling but not transcription. A fraction of NF1 sites were occupied in a hormone-dependent fashion, but a significant and NF1 concentration-dependent fraction were constitutively bound. Activation of the MMTV promoter resulted in an approximately 50-fold increase in the NF1 accessibility for its DNA site. The hormone-dependent component of NF1 binding was dissociated by addition of a GR antagonist; however, the antagonist RU486, which supports partial GR-DNA binding, also maintained partial NF1 binding. Hence GR-NF1 cooperativity is independent of agonist-driven chromatin remodeling. NF1 induced the formation of a micrococcal-nuclease-resistant protein-DNA complex containing the DNA segment from -185 to -55, the MMTV enhanceosome. Coexpression of NF1 and Oct1 resulted in a significant stimulation of hormone-induced MMTV transcription and also in increased basal transcription. We propose that hormone-independent NF1 binding may be involved in maintaining transcriptional competence and establishment of tissue-specific gene networks.
Collapse
Affiliation(s)
- Sergey Belikov
- Department of Cell and Molecular Biology, The Medical Nobel Institute, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
30
|
Astrand C, Klenka T, Wrange O, Belikov S. Trichostatin A reduces hormone-induced transcription of theMMTVpromoter and has pleiotropic effects on its chromatin structure. ACTA ACUST UNITED AC 2004; 271:1153-62. [PMID: 15009194 DOI: 10.1111/j.1432-1033.2004.04019.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The deacetylase inhibitor trichostatin A (TSA) has long been used to study the relationship between gene transcription and the acetylation status of chromatin. We have used Xenopus laevis oocytes to study the effects of TSA on glucocorticoid receptor (GR)-dependent transcription and we have related these effects to changes in the chromatin structure of a reporter mouse mammary tumor virus (MMTV) promoter. We show that TSA induces a low level of constitutive transcription. This correlates with a change of acetylation pattern and a more open chromatin structure over the MMTV chromatin, and with specific acetylation and remodeling events in the promoter region. Specifically, a repositioning of initially randomly positioned nucleosomes along the distal MMTV long terminal repeat is seen. This nucleosome rearrangement is similar to the translational nucleosome positioning that occurs upon hormone activation. We also note a reduced hormone response in the presence of TSA. TSA effects have for a long time been associated with transcriptional activation and chromatin opening through inhibition of the deacetylation of histones. However, our results and those of others show that TSA-induced changes in expression and chromatin structure can be quite different in different promoter contexts and, thus, the effects of TSA are more complex than previously believed.
Collapse
Affiliation(s)
- Carolina Astrand
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
31
|
Chen L, Peng Z, Bateman E. In vivo interactions of the Acanthamoeba TBP gene promoter. Nucleic Acids Res 2004; 32:1251-60. [PMID: 14976219 PMCID: PMC390285 DOI: 10.1093/nar/gkh297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcription of the TATA box binding protein (TBP) gene in Acanthamoeba castellanii is regulated by TATA box binding protein promoter binding factor (TPBF), which binds to an upstream TBP promoter element to stimulate transcription, and to a TATA proximal element, where it represses transcription. In order to extend these observations to the in vivo chromatin context, the TBP gene was examined by in situ footprinting and chromatin immunoprecipitation (ChIP). Acanthamoeba DNA is nucleosomal with a repeat of approximately 160 bp, and an intranucleosomal DNA periodicity of 10.5 bp. The TBP gene comprises a 220 bp micrococcal nuclease hypersensitive site corresponding to the promoter regulatory elements previously identified, flanked by protected regions of a size consistent with the presence of nucleosomes. ChIP data indicated that TPBF is associated with the TBP, TPBF and MIL gene promoters, but not to the CSP21, MIIHC, 5SrRNA or 39SrRNA promoters, or to the MIL gene C-terminal region. Binding by TPBF to the TPBF and MIL gene promoters was confirmed by in vitro assays. These results validate the in vitro model for TBP gene regulation and further suggest that TPBF may be autoregulated and may participate in the regulation of the MIL gene.
Collapse
Affiliation(s)
- Li Chen
- Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
32
|
Segalla S, Rinaldi L, Kilstrup-Nielsen C, Badaracco G, Minucci S, Pelicci PG, Landsberger N. Retinoic acid receptor alpha fusion to PML affects its transcriptional and chromatin-remodeling properties. Mol Cell Biol 2003; 23:8795-808. [PMID: 14612419 PMCID: PMC262687 DOI: 10.1128/mcb.23.23.8795-8808.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PML-RAR is an oncogenic transcription factor forming in acute promyelocytic leukemias (APL) because of a chromosomal translocation. Without its ligand, retinoic acid (RA), PML-RAR functions as a constitutive transcriptional repressor, abnormally associating with the corepressor-histone deacetylase complex and blocking hematopoietic differentiation. In the presence of pharmacological concentrations of RA, PML-RAR activates transcription and stimulates differentiation. Even though it has been suggested that chromatin alteration is important for APL onset, the PML-RAR effect on chromatin of target promoters has not been investigated. Taking advantage of the Xenopus oocyte system, we compared the wild-type transcription factor RARalpha with PML-RAR as both transcriptional regulators and chromatin structure modifiers. Without RA, we found that PML-RAR is a more potent transcriptional repressor that does not require the cofactor RXR and produces a closed chromatin configuration. Surprisingly, repression by PML-RAR occurs through a further pathway that is independent of nucleosome deposition and histone deacetylation. In the presence of RA, PML-RAR is a less efficient transcriptional activator that is unable to modify the DNA nucleoprotein structure. We propose that PML-RAR, aside from its ability to recruit aberrant quantities of histone deacetylase complexes, has acquired additional repressive mechanisms and lost important activating functions; the comprehension of these mechanisms might reveal novel targets for antileukemic intervention.
Collapse
Affiliation(s)
- Simona Segalla
- Dipartimento di Biologia Strutturale e Funzionale, Università dell'Insubria, 21052 Busto Arsizio (VA), Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Bjork P, Baurén G, Gelius B, Wrange O, Wieslander L. The Chironomus tentans translation initiation factor eIF4H is present in the nucleus but does not bind to mRNA until the mRNA reaches the cytoplasmic perinuclear region. J Cell Sci 2003; 116:4521-32. [PMID: 14576346 DOI: 10.1242/jcs.00766] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the cell nucleus, precursors to mRNA, pre-mRNAs, associate with a large number of proteins and are processed to mRNA-protein complexes, mRNPs. The mRNPs are then exported to the cytoplasm and the mRNAs are translated into proteins. The mRNAs containing in-frame premature stop codons are recognized and degraded in the nonsense-mediated mRNA decay process. This mRNA surveillence may also occur in the nucleus and presumably involves components of the translation machinery. Several translation factors have been detected in the nucleus, but their functional relationship to the dynamic protein composition of pre-mRNPs and mRNPs in the nucleus is still unclear.
Here, we have identified and characterized the translation initiation factor eIF4H in the dipteran Chironomus tentans. In the cytoplasm, Ct-eIF4H is associated with poly(A+) RNA in polysomes. We show that a minor fraction of Ct-eIF4H enters the nucleus. This fraction is independent on the level of transcription. CteIF4H could not be detected in gene-specific pre-mRNPs or mRNPs, nor in bulk mRNPs in the nucleus. Our immunoelectron microscopy data suggest that Ct-eIF4H associates with mRNP in the cytoplasmic perinuclear region, immediately as the mRNP exits from the nuclear pore complex.
Collapse
Affiliation(s)
- Petra Bjork
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
34
|
De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 2003; 24:488-522. [PMID: 12920152 DOI: 10.1210/er.2002-0006] [Citation(s) in RCA: 629] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inflammatory response is a highly regulated physiological process that is critically important for homeostasis. A precise physiological control of inflammation allows a timely reaction to invading pathogens or to other insults without causing overreaction liable to damage the host. The cellular signaling pathways identified as important regulators of inflammation are the signal transduction cascades mediated by the nuclear factor-kappaB and the activator protein-1, which can both be modulated by glucocorticoids. Their use in the clinic includes treatment of rheumatoid arthritis, asthma, allograft rejection, and allergic skin diseases. Although glucocorticoids have been widely used since the late 1940s, the molecular mechanisms responsible for their antiinflammatory activity are still under investigation. The various molecular pathways proposed so far are discussed in more detail.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Department of Molecular Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | |
Collapse
|
35
|
Abstract
Glucocorticoids are widely used to treat inflammatory and immune diseases. The most common use of glucocorticoids today is in the treatment of asthma. Inhaled glucocorticoids are first-line treatment in adults and children with persistent asthma, the most common chronic airway inflammatory disease. Our knowledge of how glucocorticoids suppress inflammation is based on recent developments in understanding the fundamental mechanisms of gene transcription, namely recruitment of histone-modifying co-factors. The determination of the crystal structure of the ligand-binding domain of the human glucocorticoid receptor (GR) has advanced our understanding of how ligands interact with GR and provide a glimpse of a future of rational drug design based on "space-filling" structures with dissociated properties. This might have important clinical implications, leading to a better understanding of the inflammatory mechanisms of many diseases and might signal the development of new anti-inflammatory treatments in the future.
Collapse
Affiliation(s)
- Ian M Adcock
- Department of Thoracic Medicine, National Heart and Lung Institute, Dovehouse St., London SW3 6LY, UK.
| |
Collapse
|
36
|
Bruland T, Lavik LAS, Dai HY, Dalen A. A glucocorticoid response element in the LTR U3 region of Friend murine leukaemia virus variant FIS-2 enhances virus production in vitro and is a major determinant for sex differences in susceptibility to FIS-2 infection in vivo. J Gen Virol 2003; 84:907-916. [PMID: 12655091 DOI: 10.1099/vir.0.18625-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleotide sequence of the Friend murine leukaemia virus variant FIS-2 LTR has high identity with the closely related Friend murine leukaemia virus (F-MuLV) LTR, except for the deletion of one direct repeat, a few point mutations and the generation of a glucocorticoid response element (GRE) in the U3 region. The GRE can mediate gene induction by glucocorticoids, mineral corticoids, progesterone and androgens, and it has been shown that incorporation of a GRE(s) within the LTR can increase the transcriptional activity of retroviral enhancers. We have previously reported an increased early virus replication in male mice compared with female mice when infected with a virus containing the FIS-2 LTR and have proposed that the GRE might contribute to this sex difference. In the present study, we introduced a single point mutation in the GRE and performed comparative studies in NIH 3T3 cells and in young adult male and female NMRI mice. We found that significantly more virus was produced from NIH 3T3 cells infected with wt FIS-2 than from cells infected with the FIS-2 GRE mutant and that this difference was further augmented by glucocorticoids. The glucocorticoid antagonist RU486 inhibited virus production in a dose-dependent manner. The wt FIS-2 disseminated significantly faster than the FIS-2 GRE mutant in both male and female mice. There was no significant difference in the dissemination rate between male and female mice infected with the FIS-2 GRE mutant. Hence, the GRE in the FIS-2 LTR is one determinant of the significant sex difference in susceptibility to FIS-2 infection.
Collapse
Affiliation(s)
- Torunn Bruland
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology, MTFS Olav Kyrresg. 3, N-7489 Trondheim, Norway
| | | | | | - Are Dalen
- St Olavs Hospital HF, Trondheim, Norway
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology, MTFS Olav Kyrresg. 3, N-7489 Trondheim, Norway
| |
Collapse
|
37
|
Roy AK, Oh T, Rivera O, Mubiru J, Song CS, Chatterjee B. Impacts of transcriptional regulation on aging and senescence. Ageing Res Rev 2002; 1:367-80. [PMID: 12067592 DOI: 10.1016/s1568-1637(02)00006-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The genetic makeup of the organism appears to dictate the species-specific rate of aging and the maximum life-span potential. The genotype is converted to phenotype through transcriptional and translational regulation. A group of gene regulatory proteins (transcription factors) play critical roles in controlling the rates of transcription of specific genes by directly interacting with regulatory sequences at gene promoters. Here, we review the basic mechanism of transcriptional control and the role of a number of transcription factors whose level and/or activity alter with age. Among these age-dependent transcription factors, many are involved in the regulation of stress and inflammatory responses and are subjected to functional alterations by reactive oxygen species (ROSs). A progressive rise of oxidative stress, impaired ability to cope with stressful stimuli and prolongation of the inflammatory response are some of the hallmarks of the senescent phenotype. Results published to date are supportive of the concept that a species-specific program of the temporal regulation of genes with additional modulation by a number of epigenetic factors, mediates the age-dependent deterioration of physiological functions and development of the senescent phenotype.
Collapse
Affiliation(s)
- Arun K Roy
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Chen C, Yang TP. Nucleosomes are translationally positioned on the active allele and rotationally positioned on the inactive allele of the HPRT promoter. Mol Cell Biol 2001; 21:7682-95. [PMID: 11604504 PMCID: PMC99939 DOI: 10.1128/mcb.21.22.7682-7695.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2001] [Accepted: 08/20/2001] [Indexed: 11/20/2022] Open
Abstract
Differential chromatin structure is one of the hallmarks distinguishing active and inactive genes. For the X-linked human hypoxanthine phosphoribosyltransferase gene (HPRT), this difference in chromatin structure is evident in the differential general DNase I sensitivity and hypersensitivity of the promoter regions on active versus inactive X chromosomes. Here we characterize the nucleosomal organization responsible for the differential chromatin structure of the active and inactive HPRT promoters. The micrococcal nuclease digestion pattern of chromatin from the active allele in permeabilized cells reveals an ordered array of translationally positioned nucleosomes in the promoter region except over a 350-bp region that is either nucleosome free or contains structurally altered nucleosomes. This 350-bp region includes the entire minimal promoter and all of the multiple transcription initiation sites of the HPRT gene. It also encompasses all of the transcription factor binding sites identified by either dimethyl sulfate or DNase I in vivo footprinting of the active allele. In contrast, analysis of the inactive HPRT promoter reveals no hypersensitivity to either DNase I or a micrococcal nuclease and no translational positioning of nucleosomes. Although nucleosomes on the inactive promoter are not translationally positioned, high-resolution DNase I cleavage analysis of permeabilized cells indicates that nucleosomes are rotationally positioned over a region of at least 210 bp on the inactive promoter, which coincides with the 350-bp nuclease-hypersensitive region on the active allele, including the entire minimal promoter. This rotational positioning of nucleosomes is not observed on the active promoter. These results suggest a model in which the silencing of the HPRT promoter during X chromosome inactivation involves remodeling a transcriptionally competent, translationally positioned nucleosomal array into a transcriptionally repressed architecture consisting of rotationally but not translationally positioned nucleosomal arrays.
Collapse
Affiliation(s)
- C Chen
- Department of Biochemistry and Molecular Biology, Center for Mammalian Genetics, University of Florida, Gainesville, 32610, USA
| | | |
Collapse
|
39
|
Rao S, Procko E, Shannon MF. Chromatin remodeling, measured by a novel real-time polymerase chain reaction assay, across the proximal promoter region of the IL-2 gene. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4494-503. [PMID: 11591776 DOI: 10.4049/jimmunol.167.8.4494] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The structure of chromatin and its remodeling following activation are important aspects of the control of inducible gene transcription. The IL-2 gene is induced in a cell specific-manner in T cells following an antigenic stimulus. We show, using a novel real-time PCR assay, that significant chromatin remodeling of the IL-2 proximal promoter region occurred upon stimulation of both the murine EL-4 T cell line and primary CD4(+) T cells. Chromatin remodeling appears to be limited to the first 300 bp of the proximal promoter region as measured by micrococcal nuclease and restriction enzyme accessibility. Time course studies indicated that chromatin remodeling was observed at 1.5 h postinduction and was maintained for up to 16 h. The remodeling is reversible upon removal of the stimulus. The region immediately upstream from the transcription start site, however, remains accessible for up to 16 h. Upon restimulation, remodeling occurs much more rapidly, consistent with a more rapid rise in IL-2 mRNA levels. Using a number of pharmacological inhibitors we show that remodeling is dependent on the presence of specific transcription factors, but not on the modification of histones. The development of this novel chromatin accessibility assay based on real-time PCR has allowed rapid, sensitive, and quantitative measurements on the IL-2 gene following cellular activation in both T cell lines and primary cells.
Collapse
Affiliation(s)
- S Rao
- Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra, Australia
| | | | | |
Collapse
|
40
|
Bristeau A, Catherin AM, Weiss MC, Faust DM. Hormone response of rodent phenylalanine hydroxylase requires HNF1 and the glucocorticoid receptor. Biochem Biophys Res Commun 2001; 287:852-8. [PMID: 11573942 DOI: 10.1006/bbrc.2001.5673] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Expression of the rodent phenylalanine hydroxylase (PAH) gene is dependent upon hormones. Induction by glucocorticoids and cAMP occurs slowly and maximal stimulation is obtained by a synergistic effect of the two compounds. Hormone responsiveness is conferred by the tissue-specific HSIII enhancer and involves (i) protein kinase A mediating the cAMP response, even though a consensus sequence for binding of the cAMP response element binding protein is not present; (ii) other serine/threonine kinases as deduced from inhibitor studies; (iii) glucocorticoid receptor protein bound to glucocorticoid response element half sites; and (iv) binding of the liver-enriched transcription factor hepatocyte nuclear factor 1 (HNF1) to sites in the enhancer. Glucocorticoid receptor and HNF1, bound to their cognate sites, cooperatively increase the glucocorticoid response of the PAH gene, this response being synergistically enhanced by cAMP after long-term treatment.
Collapse
Affiliation(s)
- A Bristeau
- Unité de Génétique de la Différenciation, FRE 2364, Centre National de la Recherche Scientifique, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
41
|
Shen CH, Clark DJ. DNA sequence plays a major role in determining nucleosome positions in yeast CUP1 chromatin. J Biol Chem 2001; 276:35209-16. [PMID: 11461917 DOI: 10.1074/jbc.m104733200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of DNA sequence in determining nucleosome positions in vivo was investigated by comparing the positions adopted by nucleosomes reconstituted on a yeast plasmid in vitro using purified core histones with those in native chromatin containing the same DNA, described previously. Nucleosomes were reconstituted on a 2.5 kilobase pair DNA sequence containing the yeast TRP1ARS1 plasmid with CUP1 as an insert (TAC-DNA). Multiple, alternative, overlapping nucleosome positions were mapped on TAC-DNA. For the 58 positioned nucleosomes identified, the relative positioning strengths and the stabilities to salt and temperature were determined. These positions were, with a few exceptions, identical to those observed in native, remodeled TAC chromatin containing an activated CUP1 gene. Only some of these positions are utilized in native, unremodeled chromatin. These observations suggest that DNA sequence is likely to play a very important role in positioning nucleosomes in vivo. We suggest that events occurring in yeast CUP1 chromatin determine which positions are occupied in vivo and when they are occupied.
Collapse
Affiliation(s)
- C H Shen
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
42
|
Collingwood TN, Urnov FD, Chatterjee VK, Wolffe AP. Chromatin remodeling by the thyroid hormone receptor in regulation of the thyroid-stimulating hormone alpha-subunit promoter. J Biol Chem 2001; 276:34227-34. [PMID: 11454868 DOI: 10.1074/jbc.m105172200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chromatin architecture of a promoter is an important determinant of its transcriptional response. For most target genes, the thyroid hormone receptor (TR) activates gene expression in response to thyroid hormone (T(3)). In contrast, the thyroid-stimulating hormone alpha-subunit (TSH alpha) gene promoter is down-regulated by TR in the presence of T(3). Here we utilize the capacity for the Xenopus oocyte to chromatinize exogenous nuclear- injected DNA to analyze the chromatin architecture of the TSH alpha promoter and how this changes upon TR-mediated regulation. Interestingly, in the oocyte, the TSH alpha promoter was positively regulated by T(3). In the inactive state, the promoter contained six loosely positioned nucleosomes. The addition of TR/retinoid X receptor together had no effect on the chromatin structure, but the inclusion of T(3) induced strong positioning of a dinucleosome in the TSH alpha proximal promoter that was bordered by regions that were hypersensitive to cleavage by methidiumpropyl EDTA. We identified a novel thyroid response element that coincided with the proximal hypersensitive region. Furthermore, we examined the consequences of mutations in TR that impaired coactivator recruitment. In a comparison with the Xenopus TR beta A promoter, we found that the effects of these mutations on transactivation and chromatin remodeling were significantly more severe on the TSH alpha promoter.
Collapse
Affiliation(s)
- T N Collingwood
- Laboratory of Molecular Embryology, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
43
|
Onishi Y, Kiyama R. Enhancer activity of HS2 of the human beta-LCR is modulated by distance from the key nucleosome. Nucleic Acids Res 2001; 29:3448-57. [PMID: 11504883 PMCID: PMC55842 DOI: 10.1093/nar/29.16.3448] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A class of curved DNA appears universally in eukaryotic genomic DNA at an average distance of approximately 680 bp and shows nucleosome positioning activity by having high affinity for histone core particles in an orientation- and position-dependent manner. Here, we report that the enhancer activity at DNase I hypersensitive site 2 (HS2) of the human beta-globin locus control region (beta-LCR) can be modulated by the curved DNA located at a distance of two nucleosomes from HS2 and that the nucleosome at the curved DNA regulates nearby nucleosome phases as a key nucleosome. Erythroid-specific nucleosome phases which caused deviation of the NF-E2 (p18-p45 dimer) binding site from the nucleosome dyad axis were over-represented when the distance between the key nucleosome and HS2 exceeded 80 bp longer than the original length. At this state, enhancer activity was approximately 50% of that in the original construct, presumably due to reduced binding of transcription factors.
Collapse
Affiliation(s)
- Y Onishi
- Institute of Molecular and Cell Biology, AIST Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | |
Collapse
|
44
|
Abstract
The actions of lipophilic hormones, including steroids, retinoids, thyroid hormone and vitamin D(3), are mediated through a conserved superfamily of nuclear receptor proteins that function as ligand-regulated, DNA-binding transcriptional activators in the chromatin environment of the nucleus. The ligand-dependent transcriptional activity of nuclear receptors is enhanced by various cofactors that remodel chromatin, acetylate nucleosomal histones and contact the basal transcriptional machinery. The current challenge is to understand the mechanistic details of how interactions among these factors enhance transcription of hormone-regulated genes assembled into chromatin. Current biochemical and cell-based methods are providing some important clues.
Collapse
Affiliation(s)
- K C Lee
- Dept of Molecular Biology and Genetics, Cornell University, 14853, Ithaca, NY, USA
| | | |
Collapse
|
45
|
Abstract
The nuclear hormone receptor superfamily includes receptors for thyroid and steroid hormones, retinoids and vitamin D, as well as different "orphan" receptors of unknown ligand. Ligands for some of these receptors have been recently identified, showing that products of lipid metabolism such as fatty acids, prostaglandins, or cholesterol derivatives can regulate gene expression by binding to nuclear receptors. Nuclear receptors act as ligand-inducible transcription factors by directly interacting as monomers, homodimers, or heterodimers with the retinoid X receptor with DNA response elements of target genes, as well as by "cross-talking" to other signaling pathways. The effects of nuclear receptors on transcription are mediated through recruitment of coregulators. A subset of receptors binds corepressor factors and actively represses target gene expression in the absence of ligand. Corepressors are found within multicomponent complexes that contain histone deacetylase activity. Deacetylation leads to chromatin compactation and transcriptional repression. Upon ligand binding, the receptors undergo a conformational change that allows the recruitment of multiple coactivator complexes. Some of these proteins are chromatin remodeling factors or possess histone acetylase activity, whereas others may interact directly with the basic transcriptional machinery. Recruitment of coactivator complexes to the target promoter causes chromatin decompactation and transcriptional activation. The characterization of corepressor and coactivator complexes, in concert with the identification of the specific interaction motifs in the receptors, has demonstrated the existence of a general molecular mechanism by which different receptors elicit their transcriptional responses in target genes.
Collapse
Affiliation(s)
- A Aranda
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
46
|
Urnov FD, Wolffe AP. An array of positioned nucleosomes potentiates thyroid hormone receptor action in vivo. J Biol Chem 2001; 276:19753-61. [PMID: 11274156 DOI: 10.1074/jbc.m100924200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly of the genome into chromatin imposes a poorly understood set of rules and constraints on action by regulatory factors. We investigated the role played by chromatin infrastructure in enabling an acute response of the Xenopus TRbetaA gene to thyroid hormone receptor (TR), an extensively studied member of the nuclear hormone receptor superfamily. We found that in addition to the known TR response element (TRE) in the promoter, full range regulation required an upstream enhancer that contained multiple nonconsensus TREs and augmented ligand action at high receptor levels. An array of translationally positioned nucleosomes formed over the TRbetaA locus in vivo; unliganded TR engaged this array in linker DNA between two nucleosomes and via TREs on the surface of histone octamers. Remarkably, assembly of enhancer DNA into mature chromatin potentiated binding by TR to its target response elements and enabled a greater range of regulation by TR than was observed on immature chromatin templates. Because assembly of enhancer DNA into chromatin increased TR binding to the nonconsensus TREs, we hypothesize that chromatin disruption targeted by liganded TR to the enhancer may lead to receptor release from the template and to an attenuation of response to hormone.
Collapse
Affiliation(s)
- F D Urnov
- Sangamo Biosciences, Point Richmond Tech Center, Richmond, California 94804, USA.
| | | |
Collapse
|
47
|
Belikov S, Gelius B, Wrange Ö. Hormone-induced nucleosome positioning in the MMTV promoter is reversible. EMBO J 2001; 20:2802-11. [PMID: 11387213 PMCID: PMC125491 DOI: 10.1093/emboj/20.11.2802] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mouse mammary tumor virus (MMTV) promoter is induced by glucocorticoid hormone via the glucocorticoid receptor (GR). The hormone-triggered effects on MMTV transcription and chromatin structure were studied in Xenopus oocytes. We previously showed that the nucleosomes organizing the MMTV promoter became translationally positioned upon hormone induction. A single GR-binding site was necessary and sufficient for the chromatin events to occur, while transcription and basal promoter elements were dispensable. Here we show that addition of the hormone antagonists RU486 or RU43044 to the previously hormone-induced MMTV promoter results in cessation of transcription and loss of chromatin remodeling and nucleosome positioning. In vivo footprinting demonstrated agonist- and RU486-induced GR binding to its DNA response element (GRE), while the other antagonist, RU43044, did not promote GR-GRE interaction. These results demonstrate that induction and maintenance of nucleosome positioning is an active process that requires constant 'pressure' of agonist-GR-recruited chromatin-modifying factor(s) rather than GR-DNA binding itself.
Collapse
Affiliation(s)
- Sergey Belikov
- Department of Cell and Molecular Biology, The Medical Nobel Institute, Box 285, Karolinska Institutet, SE-17177 Stockholm, Sweden and W.A.Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 117984, Russia Corresponding author e-mail:
| | - Birgitta Gelius
- Department of Cell and Molecular Biology, The Medical Nobel Institute, Box 285, Karolinska Institutet, SE-17177 Stockholm, Sweden and W.A.Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 117984, Russia Corresponding author e-mail:
| | - Örjan Wrange
- Department of Cell and Molecular Biology, The Medical Nobel Institute, Box 285, Karolinska Institutet, SE-17177 Stockholm, Sweden and W.A.Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 117984, Russia Corresponding author e-mail:
| |
Collapse
|
48
|
Gelius B, Wrange O. Glucocorticoid hormone-induced receptor localization to the chromatin fibers formed on injected DNA in Xenopus oocytes. Exp Cell Res 2001; 265:319-28. [PMID: 11302698 DOI: 10.1006/excr.2001.5184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oocytes from Xenopus laevis have provided a model system for studying the dynamic changes that occur in chromatin during gene activation. We have reconstituted glucocorticoid receptor (GR) induced transcription from the mouse mammary tumor virus (MMTV) promoter by intranuclear injection of an MMTV-driven reporter and cytoplasmic injection of synthetic mRNA(GR) into Xenopus oocytes. Here we investigate the intranuclear distribution of injected DNA, which is assembled into chromatin. We show that this chromatin is organized as an intranuclear fibrous network. Unliganded GR is located in the cytosol and hormone triggers its nuclear translocation and association with the chromatin fibers. Furthermore, we analyze the intranuclear distribution of other factors involved in transcription from the MMTV promoter. Indirect immunofluorescence microscopy on cryostat-sectioned oocytes revealed that BRG1, which is a subunit of the SWI/SNF chromatin remodeling complex, as well as RNA polymerase II and recombinantly expressed Xenopus nuclear factor 1-B, are all associated with the endogenous chromosomes and the chromatin fibers formed on injected DNA. This association does not depend on specific DNA binding sites and appears to be nonspecific.
Collapse
Affiliation(s)
- B Gelius
- Laboratory of Molecular Genetics, Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
49
|
Gui CY, Dean A. Acetylation of a specific promoter nucleosome accompanies activation of the epsilon-globin gene by beta-globin locus control region HS2. Mol Cell Biol 2001; 21:1155-63. [PMID: 11158302 PMCID: PMC99569 DOI: 10.1128/mcb.21.4.1155-1163.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
On stably replicating episomes, transcriptional activation of the epsilon-globin promoter by the beta-globin locus control region HS2 enhancer is correlated with an increase in nuclease sensitivity which is limited to the TATA-proximal nucleosome (N1). To elucidate what underlies this increase in nuclease sensitivity and the link between chromatin modification and gene expression, we examined the nucleoprotein composition and histone acetylation status of transcriptionally active and inactive promoters. Micrococcal nuclease digestion of active promoters in nuclei released few nucleosome-like nucleoprotein complexes containing N1 sequences in comparison to results with inactive promoters. We also observed that N1 DNA fragments from active promoters are of a subnucleosomal length. Nevertheless, chromatin immunoprecipitation experiments indicate that histones H3 and H4 are present on N1 sequences from active promoters, with H3 being dramatically hyperacetylated compared with that from inactive promoters and vector sequences. Strikingly, H3 in the adjacent upstream nucleosome (N2) does not appear to be differentially acetylated in active and inactive promoters, indicating that the nucleosome modification of the promoter that accompanies transactivation by HS2 is highly directed and specific. However, global acetylation of histones in vivo by trichostatin A did not activate transcription in the absence of HS2, suggesting that HS2 contributes additional activities necessary for transactivation. N1 sequences from active promoters also contain reduced levels of linker histone H1. The detection of a protected subnucleosomal sized N1 DNA fragment and the recovery of N1 DNA sequences in immunoprecipitations using anti-acetylated H3 and H4 antibodies argue that N1 is present, but in an altered conformation, in the active promoters.
Collapse
Affiliation(s)
- C Y Gui
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-2715, USA
| | | |
Collapse
|
50
|
Urnov FD, Wolffe AP. A necessary good: nuclear hormone receptors and their chromatin templates. Mol Endocrinol 2001; 15:1-16. [PMID: 11145735 DOI: 10.1210/mend.15.1.0589] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- F D Urnov
- Sangamo Biosciences Point Richmond Technical Center Richmond, California 94804, USA
| | | |
Collapse
|