1
|
Chen H, Liu D, Guo J, Aditham A, Zhou Y, Tian J, Luo S, Ren J, Hsu A, Huang J, Kostas F, Wu M, Liu DR, Wang X. Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nat Biotechnol 2024:10.1038/s41587-024-02174-7. [PMID: 38519719 PMCID: PMC11416571 DOI: 10.1038/s41587-024-02174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/15/2024] [Indexed: 03/25/2024]
Abstract
Although messenger RNA (mRNA) has proved effective as a vaccine, its potential as a general therapeutic modality is limited by its instability and low translation capacity. To increase the duration and level of protein expression from mRNA, we designed and synthesized topologically and chemically modified mRNAs with multiple synthetic poly(A) tails. Here we demonstrate that the optimized multitailed mRNA yielded ~4.7-19.5-fold higher luminescence signals than the control mRNA from 24 to 72 h post transfection in cellulo and 14 days detectable signal versus <7 days signal from the control in vivo. We further achieve efficient multiplexed genome editing of the clinically relevant genes Pcsk9 and Angptl3 in mouse liver at a minimal mRNA dosage. Taken together, these results provide a generalizable approach to synthesize capped branched mRNA with markedly enhanced translation capacity.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dangliang Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jianting Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Abhishek Aditham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yiming Zhou
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiakun Tian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shuchen Luo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jingyi Ren
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alvin Hsu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jiahao Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Franklin Kostas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mingrui Wu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Ma T, Xiong ES, Lardelli RM, Lykke-Andersen J. Sm complex assembly and 5' cap trimethylation promote selective processing of snRNAs by the 3' exonuclease TOE1. Proc Natl Acad Sci U S A 2024; 121:e2315259121. [PMID: 38194449 PMCID: PMC10801842 DOI: 10.1073/pnas.2315259121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
Competing exonucleases that promote 3' end maturation or degradation direct quality control of small non-coding RNAs, but how these enzymes distinguish normal from aberrant RNAs is poorly understood. The Pontocerebellar Hypoplasia 7 (PCH7)-associated 3' exonuclease TOE1 promotes maturation of canonical small nuclear RNAs (snRNAs). Here, we demonstrate that TOE1 achieves specificity toward canonical snRNAs through their Sm complex assembly and cap trimethylation, two features that distinguish snRNAs undergoing correct biogenesis from other small non-coding RNAs. Indeed, disruption of Sm complex assembly via snRNA mutations or protein depletions obstructs snRNA processing by TOE1, and in vitro snRNA processing by TOE1 is stimulated by a trimethylated cap. An unstable snRNA variant that normally fails to undergo maturation becomes fully processed by TOE1 when its degenerate Sm binding motif is converted into a canonical one. Our findings uncover the molecular basis for how TOE1 distinguishes snRNAs from other small non-coding RNAs and explain how TOE1 promotes maturation specifically of canonical snRNAs undergoing proper processing.
Collapse
Affiliation(s)
- Tiantai Ma
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Erica S. Xiong
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Rea M. Lardelli
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Jens Lykke-Andersen
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
3
|
Huynh TN, Parker R. The PARN, TOE1, and USB1 RNA deadenylases and their roles in non-coding RNA regulation. J Biol Chem 2023; 299:105139. [PMID: 37544646 PMCID: PMC10493513 DOI: 10.1016/j.jbc.2023.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023] Open
Abstract
The levels of non-coding RNAs (ncRNAs) are regulated by transcription, RNA processing, and RNA degradation pathways. One mechanism for the degradation of ncRNAs involves the addition of oligo(A) tails by non-canonical poly(A) polymerases, which then recruit processive sequence-independent 3' to 5' exonucleases for RNA degradation. This pathway of decay is also regulated by three 3' to 5' exoribonucleases, USB1, PARN, and TOE1, which remove oligo(A) tails and thereby can protect ncRNAs from decay in a manner analogous to the deubiquitination of proteins. Loss-of-function mutations in these genes lead to premature degradation of some ncRNAs and lead to specific human diseases such as Poikiloderma with Neutropenia (PN) for USB1, Dyskeratosis Congenita (DC) for PARN and Pontocerebellar Hypoplasia type 7 (PCH7) for TOE1. Herein, we review the biochemical properties of USB1, PARN, and TOE1, how they modulate ncRNA levels, and their roles in human diseases.
Collapse
Affiliation(s)
- Thao Ngoc Huynh
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| |
Collapse
|
4
|
Ma T, Xiong ES, Lardelli RM, Lykke-Andersen J. The 3' exonuclease TOE1 selectively processes snRNAs through recognition of Sm complex assembly and 5' cap trimethylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553431. [PMID: 37645788 PMCID: PMC10462049 DOI: 10.1101/2023.08.15.553431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Competing exonucleases that promote 3' end maturation or degradation direct quality control of small non-coding RNAs, but how these enzymes distinguish normal from aberrant RNAs is poorly understood. The Pontocerebellar Hypoplasia 7 (PCH7)-associated 3' exonuclease TOE1 promotes maturation of canonical small nuclear RNAs (snRNAs). Here, we demonstrate that TOE1 achieves specificity towards canonical snRNAs by recognizing Sm complex assembly and cap trimethylation, two features that distinguish snRNAs undergoing correct biogenesis from other small non-coding RNAs. Indeed, disruption of Sm complex assembly via snRNA mutations or protein depletions obstructs snRNA processing by TOE1, and in vitro snRNA processing by TOE1 is stimulated by a trimethylated cap. An unstable snRNA variant that normally fails to undergo maturation becomes fully processed by TOE1 when its degenerate Sm binding motif is converted into a canonical one. Our findings uncover the molecular basis for how TOE1 distinguishes snRNAs from other small non-coding RNAs and explain how TOE1 promotes maturation specifically of canonical snRNAs undergoing proper processing.
Collapse
Affiliation(s)
- Tiantai Ma
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Erica S Xiong
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rea M Lardelli
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jens Lykke-Andersen
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
5
|
Huynh TN, Shukla S, Reigan P, Parker R. Identification of PARN nuclease activity inhibitors by computational-based docking and high-throughput screening. Sci Rep 2023; 13:5244. [PMID: 37002320 PMCID: PMC10066322 DOI: 10.1038/s41598-023-32039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that removes poly(A) tails from the 3' end of RNAs. PARN is known to deadenylate some ncRNAs, including hTR, Y RNAs, and some miRNAs and thereby enhance their stability by limiting the access of 3' to 5' exonucleases recruited by oligo(A) tails. Several PARN-regulated miRNAs target p53 mRNA, and PARN knockdown leads to an increase of p53 protein levels in human cells. Thus, PARN inhibitors might be used to induce p53 levels in some human tumors and act as a therapeutic strategy to treat cancers caused by repressed p53 protein. Herein, we used computational-based molecular docking and high-throughput screening (HTS) to identify small molecule inhibitors of PARN. Validation with in vitro and cell-based assays, identified 4 compounds, including 3 novel compounds and pyrimidopyrimidin-2-one GNF-7, previously shown to be a Bcr-Abl inhibitor, as PARN inhibitors. These inhibitors can be used as tool compounds and as lead compounds for the development of improved PARN inhibitors.
Collapse
Affiliation(s)
- Thao Ngoc Huynh
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Siddharth Shukla
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Aurora, CO, 80045, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
6
|
Ding D, Gao R, Xue Q, Luan R, Yang J. Genomic Fingerprint Associated with Familial Idiopathic Pulmonary Fibrosis: A Review. Int J Med Sci 2023; 20:329-345. [PMID: 36860670 PMCID: PMC9969503 DOI: 10.7150/ijms.80358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe interstitial lung disease; although the recent introduction of two anti-fibrosis drugs, pirfenidone and Nidanib, have resulted in a significant reduction in lung function decline, IPF is still not curable. Approximately 2-20% of patients with IPF have a family history of the disease, which is considered the strongest risk factor for idiopathic interstitial pneumonia. However, the genetic predispositions of familial IPF (f-IPF), a particular type of IPF, remain largely unknown. Genetics affect the susceptibility and progression of f-IPF. Genomic markers are increasingly being recognized for their contribution to disease prognosis and drug therapy outcomes. Existing data suggest that genomics may help identify individuals at risk for f-IPF, accurately classify patients, elucidate key pathways involved in disease pathogenesis, and ultimately develop more effective targeted therapies. Since several genetic variants associated with the disease have been found in f-IPF, this review systematically summarizes the latest progress in the gene spectrum of the f-IPF population and the underlying mechanisms of f-IPF. The genetic susceptibility variation related to the disease phenotype is also illustrated. This review aims to improve the understanding of the IPF pathogenesis and facilitate his early detection.
Collapse
Affiliation(s)
- Dongyan Ding
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rong Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Hospital of Jilin University, Changchun, China
| | - Rumei Luan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Nanjappa DP, Babu N, Khanna-Gupta A, O'Donohue MF, Sips P, Chakraborty A. Poly (A)-specific ribonuclease (PARN): More than just "mRNA stock clearing". Life Sci 2021; 285:119953. [PMID: 34520768 DOI: 10.1016/j.lfs.2021.119953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the balance between the synthesis and the degradation decides the steady-state levels of messenger RNAs (mRNA). The removal of adenosine residues from the poly(A) tail, called deadenylation, is the first and the most crucial step in the process of mRNA degradation. Poly (A)-specific ribonuclease (PARN) is one such enzyme that catalyses the process of deadenylation. Although PARN has been primarily known as the regulator of the mRNA stability, recent evidence clearly suggests several other functions of PARN, including a role in embryogenesis, oocyte maturation, cell-cycle progression, telomere biology, non-coding RNA maturation and ribosome biogenesis. Also, deregulated PARN activity is shown to be a hallmark of specific disease conditions. Pathogenic variants in the PARN gene have been observed in various cancers and inherited bone marrow failure syndromes. The focus in this review is to highlight the emerging functions of PARN, particularly in the context of human diseases.
Collapse
Affiliation(s)
- Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Nishith Babu
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Arati Khanna-Gupta
- Consortium of Rare Genetic and Bone Marrow Disorders, India network@NitteDU, NITTE (Deemed to be University, Deralakatte, Mangaluru, India
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative CBI, Université de Toulouse- CNRS- UPS- Toulouse-, Dynamics and Disorders of Ribosome Synthesis, Toulouse, France
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India.
| |
Collapse
|
8
|
Dynamic Variations of 3'UTR Length Reprogram the mRNA Regulatory Landscape. Biomedicines 2021; 9:biomedicines9111560. [PMID: 34829789 PMCID: PMC8615635 DOI: 10.3390/biomedicines9111560] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
This paper concerns 3′-untranslated regions (3′UTRs) of mRNAs, which are non-coding regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs. Many mRNAs have polymorphic 3′UTR regions. Controlling 3′UTR length and sequence facilitates the regulation of the accessibility of functional effectors (RNA binding proteins, miRNAs or other ncRNAs) to 3′UTR functional boxes and motifs and the establishment of different regulatory landscapes for mRNA function. In this context, shortening of 3′UTRs would loosen miRNA or protein-based mechanisms of mRNA degradation, while 3′UTR lengthening would strengthen accessibility to these effectors. Alterations in the mechanisms regulating 3′UTR length would result in widespread deregulation of gene expression that could eventually lead to diseases likely linked to the loss (or acquisition) of specific miRNA binding sites. Here, we will review the mechanisms that control 3′UTR length dynamics and their alterations in human disorders. We will discuss, from a mechanistic point of view centered on the molecular machineries involved, the generation of 3′UTR variability by the use of alternative polyadenylation and cleavage sites, of mutually exclusive terminal alternative exons (exon skipping) as well as by the process of exonization of Alu cassettes to generate new 3′UTRs with differential functional features.
Collapse
|
9
|
Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
DNA damage response (DDR) is a coordinated network of diverse cellular processes including the detection, signaling, and repair of DNA lesions, the adjustment of metabolic network and cell fate determination. To deal with the unavoidable DNA damage caused by either endogenous or exogenous stresses, the cells need to reshape the gene expression profile to allow efficient transcription and translation of DDR-responsive messenger RNAs (mRNAs) and to repress the nonessential mRNAs. A predominant method to adjust RNA fate is achieved by modulating the 3'-end oligo(A) or poly(A) length via the opposing actions of polyadenylation and deadenylation. Poly(A)-specific ribonuclease (PARN) and the carbon catabolite repressor 4 (CCR4)-Not complex, the major executors of deadenylation, are indispensable to DDR and genomic integrity in eukaryotic cells. PARN modulates cell cycle progression by regulating the stabilities of mRNAs and microRNA (miRNAs) involved in the p53 pathway and contributes to genomic stability by affecting the biogenesis of noncoding RNAs including miRNAs and telomeric RNA. The CCR4-Not complex is involved in diverse pathways of DDR including transcriptional regulation, signaling pathways, mRNA stabilities, translation regulation, and protein degradation. The RNA targets of deadenylases are tuned by the DDR signaling pathways, while in turn the deadenylases can regulate the levels of DNA damage-responsive proteins. The mutual feedback between deadenylases and the DDR signaling pathways allows the cells to precisely control DDR by dynamically adjusting the levels of sensors and effectors of the DDR signaling pathways. Here, the diverse functions of deadenylases in DDR are summarized and the underlying mechanisms are proposed according to recent findings. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Shukla S, Bjerke GA, Muhlrad D, Yi R, Parker R. The RNase PARN Controls the Levels of Specific miRNAs that Contribute to p53 Regulation. Mol Cell 2019; 73:1204-1216.e4. [PMID: 30770239 DOI: 10.1016/j.molcel.2019.01.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/08/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
PARN loss-of-function mutations cause a severe form of the hereditary disease dyskeratosis congenita (DC). PARN deficiency affects the stability of non-coding RNAs such as human telomerase RNA (hTR), but these effects do not explain the severe disease in patients. We demonstrate that PARN deficiency affects the levels of numerous miRNAs in human cells. PARN regulates miRNA levels by stabilizing either mature or precursor miRNAs by removing oligo(A) tails added by the poly(A) polymerase PAPD5, which if remaining recruit the exonuclease DIS3L or DIS3L2 to degrade the miRNA. PARN knockdown destabilizes multiple miRNAs that repress p53 translation, which leads to an increase in p53 accumulation in a Dicer-dependent manner, thus explaining why PARN-defective patients show p53 accumulation. This work also reveals that DIS3L and DIS3L2 are critical 3' to 5' exonucleases that regulate miRNA stability, with the addition and removal of 3' end extensions controlling miRNA levels in the cell.
Collapse
Affiliation(s)
- Siddharth Shukla
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Glen A Bjerke
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Denise Muhlrad
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rui Yi
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
11
|
Fonseca BD, Lahr RM, Damgaard CK, Alain T, Berman AJ. LARP1 on TOP of ribosome production. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1480. [PMID: 29722158 PMCID: PMC6214789 DOI: 10.1002/wrna.1480] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/27/2022]
Abstract
The ribosome is an essential unit of all living organisms that commands protein synthesis, ultimately fuelling cell growth (accumulation of cell mass) and cell proliferation (increase in cell number). The eukaryotic ribosome consists of 4 ribosomal RNAs (rRNAs) and 80 ribosomal proteins (RPs). Despite its fundamental role in every living organism, our present understanding of how higher eukaryotes produce the various ribosome components is incomplete. Uncovering the mechanisms utilized by human cells to generate functional ribosomes will likely have far-reaching implications in human disease. Recent biochemical and structural studies revealed La-related protein 1 (LARP1) as a key new player in RP production. LARP1 is an RNA-binding protein that belongs to the LARP superfamily; it controls the translation and stability of the mRNAs that encode RPs and translation factors, which are characterized by a 5' terminal oligopyrimidine (5'TOP) motif and are thus known as TOP mRNAs. The activity of LARP1 is regulated by the mammalian target of rapamycin complex 1 (mTORC1): a eukaryotic protein kinase complex that integrates nutrient sensing with mRNA translation, particularly that of TOP mRNAs. In this review, we provide an overview of the role of LARP1 in the control of ribosome production in multicellular eukaryotes. This article is categorized under: Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
| | | | | | - Tommy Alain
- Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | |
Collapse
|
12
|
Bukhari SIA, Truesdell SS, Vasudevan S. Analysis of MicroRNA-Mediated Translation Activation of In Vitro Transcribed Reporters in Quiescent Cells. Methods Mol Biol 2018; 1686:251-264. [PMID: 29030826 DOI: 10.1007/978-1-4939-7371-2_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quiescence (G0) is defined as an assortment of cell cycle arrested states that exhibit distinct properties. Leukemias harbor a subpopulation of G0 cells that can be enriched by growth factor deprivation or serum starvation. Target site reporters with shortened poly(A) tails show translation activation by microRNAs, via a noncanonical mechanism, when introduced into the nucleus of G0 cells. This is because recruitment by the activation causing FXR1a-microRNA-protein complex (FXR1a-microRNP) is nuclear and requires shortened poly(A) tails to avoid repressive factors and canonical translation. When introduced into the cytoplasm, target mRNAs and microRNAs are directed toward repression rather than translation activation. Leukemic cell lines are difficult to transfect but can be routinely nucleofected-where in vitro transcribed mRNA reporters and microRNAs are introduced into the nucleus of G0 leukemic cells. Nucleofection of a microRNA target reporter and either cognate, targeting microRNA, or control microRNA, into the nucleus of G0 cells, enables analysis of translation activation by microRNAs in G0. We discuss a modified protocol that we developed for transfection of mRNAs along with microRNAs to test translation regulation by microRNAs in G0 leukemic cells.
Collapse
Affiliation(s)
- Syed I A Bukhari
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Samuel S Truesdell
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Shobha Vasudevan
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
13
|
Bukhari SIA, Vasudevan S. FXR1a-associated microRNP: A driver of specialized non-canonical translation in quiescent conditions. RNA Biol 2016; 14:137-145. [PMID: 27911187 DOI: 10.1080/15476286.2016.1265197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic protein synthesis is a multifaceted process that requires coordination of a set of translation factors in a particular cellular state. During normal growth and proliferation, cells generally make their proteome via conventional translation that utilizes canonical translation factors. When faced with environmental stress such as growth factor deprivation, or in response to biological cues such as developmental signals, cells can reduce canonical translation. In this situation, cells adapt alternative modes of translation to make specific proteins necessary for required biological functions under these distinct conditions. To date, a number of alternative translation mechanisms have been reported, which include non-canonical, cap dependent translation and cap independent translation such as IRES mediated translation. Here, we discuss one of the alternative modes of translation mediated by a specialized microRNA complex, FXR1a-microRNP that promotes non-canonical, cap dependent translation in quiescent conditions, where canonical translation is reduced due to low mTOR activity.
Collapse
Affiliation(s)
- Syed I A Bukhari
- a Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Shobha Vasudevan
- a Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
14
|
Łabno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3125-3147. [PMID: 27713097 DOI: 10.1016/j.bbamcr.2016.09.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022]
Abstract
RNA decay plays a crucial role in post-transcriptional regulation of gene expression. Work conducted over the last decades has defined the major mRNA decay pathways, as well as enzymes and their cofactors responsible for these processes. In contrast, our knowledge of the mechanisms of degradation of non-protein coding RNA species is more fragmentary. This review is focused on the cytoplasmic pathways of mRNA and ncRNA degradation in eukaryotes. The major 3' to 5' and 5' to 3' mRNA decay pathways are described with emphasis on the mechanisms of their activation by the deprotection of RNA ends. More recently discovered 3'-end modifications such as uridylation, and their relevance to cytoplasmic mRNA decay in various model organisms, are also discussed. Finally, we provide up-to-date findings concerning various pathways of non-coding RNA decay in the cytoplasm.
Collapse
Affiliation(s)
- Anna Łabno
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
15
|
Molecular recognition of mRNA 5' cap by 3' poly(A)-specific ribonuclease (PARN) differs from interactions known for other cap-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:331-45. [PMID: 26772900 DOI: 10.1016/j.bbapap.2016.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 12/30/2022]
Abstract
The mRNA 5' cap structure plays a pivotal role in coordination of eukaryotic translation and mRNA degradation. Poly(A)-specific ribonuclease (PARN) is a dimeric exoribonuclease that efficiently degrades mRNA 3' poly(A) tails while also simultaneously interacting with the mRNA 5' cap. The cap binding amplifies the processivity of PARN action. We used surface plasmon resonance kinetic analysis, quantitative equilibrium fluorescence titrations and circular dichroism to study the cap binding properties of PARN. The molecular mechanism of 5' cap recognition by PARN has been demonstrated to differ from interactions seen for other known cap-binding proteins in that: i) the auxiliary biological function of 5' cap binding by the 3' degrading enzyme is accomplished by negative cooperativity of PARN dimer subunits; ii) non-coulombic interactions are major factors in the complex formation; and iii) PARN has versatile activity toward alternative forms of the cap. These characteristics contribute to stabilization of the PARN-cap complex needed for the deadenylation processivity. Our studies provide a consistent biophysical basis for elucidation of the processive mechanism of PARN-mediated 3' mRNA deadenylation and provide a new framework to interpret the role of the 5' cap in mRNA degradation.
Collapse
|
16
|
Pros and cons of pDNA and mRNA transfection to study mRNA translation in mammalian cells. Gene 2015; 578:1-6. [PMID: 26680098 DOI: 10.1016/j.gene.2015.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/07/2015] [Indexed: 02/02/2023]
Abstract
Protein synthesis in eukaryotes is subject to stringent control. The misregulation of translation of certain mRNAs is often a hallmark of many diseases, including malignancies and autoimmune disorders. To understand why and how it happens, it is important to investigate the translational control of specific mRNAs. In this case, one could use reporter mRNAs in order to identify cis-acting elements responsible for regulation. Here we overview plasmid DNA (pDNA) and mRNA transfections, their pitfalls and limitations, as well as some emerging applications for mRNA transfection.
Collapse
|
17
|
Moon DH, Segal M, Boyraz B, Guinan E, Hofmann I, Cahan P, Tai AK, Agarwal S. Poly(A)-specific ribonuclease (PARN) mediates 3'-end maturation of the telomerase RNA component. Nat Genet 2015; 47:1482-8. [PMID: 26482878 DOI: 10.1038/ng.3423] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/25/2015] [Indexed: 12/18/2022]
Abstract
Mutations in the PARN gene (encoding poly(A)-specific ribonuclease) cause telomere diseases including familial idiopathic pulmonary fibrosis (IPF) and dyskeratosis congenita, but how PARN deficiency impairs telomere maintenance is unclear. Here, using somatic cells and induced pluripotent stem cells (iPSCs) from patients with dyskeratosis congenita with PARN mutations, we show that PARN is required for the 3'-end maturation of the telomerase RNA component (TERC). Patient-derived cells as well as immortalized cells in which PARN is disrupted show decreased levels of TERC. Deep sequencing of TERC RNA 3' termini shows that PARN is required for removal of post-transcriptionally acquired oligo(A) tails that target nuclear RNAs for degradation. Diminished TERC levels and the increased proportion of oligo(A) forms of TERC are normalized by restoring PARN, which is limiting for TERC maturation in cells. Our results demonstrate a new role for PARN in the biogenesis of TERC and provide a mechanism linking PARN mutations to telomere diseases.
Collapse
Affiliation(s)
- Diane H Moon
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Segal
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Baris Boyraz
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Eva Guinan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Inga Hofmann
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Cahan
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Albert K Tai
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Stuart BD, Choi J, Zaidi S, Xing C, Holohan B, Chen R, Choi M, Dharwadkar P, Torres F, Girod CE, Weissler J, Fitzgerald J, Kershaw C, Klesney-Tait J, Mageto Y, Shay JW, Ji W, Bilguvar K, Mane S, Lifton RP, Garcia CK. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat Genet 2015; 47:512-7. [PMID: 25848748 PMCID: PMC4414891 DOI: 10.1038/ng.3278] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/17/2015] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related disease featuring progressive lung scarring. To elucidate the molecular basis of IPF, we performed exome sequencing of familial kindreds with pulmonary fibrosis. Gene burden analysis comparing 78 European cases and 2,816 controls implicated PARN, an exoribonuclease with no previous connection to telomere biology or disease, with five new heterozygous damaging mutations in unrelated cases and none in controls (P = 1.3 × 10(-8)); mutations were shared by all affected relatives (odds in favor of linkage = 4,096:1). RTEL1, an established locus for dyskeratosis congenita, harbored significantly more new damaging and missense variants at conserved residues in cases than in controls (P = 1.6 × 10(-6)). PARN and RTEL1 mutation carriers had shortened leukocyte telomere lengths, and we observed epigenetic inheritance of short telomeres in family members. Together, these genes explain ~7% of familial pulmonary fibrosis and strengthen the link between lung fibrosis and telomere dysfunction.
Collapse
Affiliation(s)
- Bridget D. Stuart
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
| | - Samir Zaidi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Brody Holohan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rui Chen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mihwa Choi
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Pooja Dharwadkar
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fernando Torres
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Carlos E. Girod
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jonathan Weissler
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John Fitzgerald
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Corey Kershaw
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julia Klesney-Tait
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Yolanda Mageto
- Department of Internal Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Jerry W. Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Weizhen Ji
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shrikant Mane
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christine Kim Garcia
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Tummala H, Walne A, Collopy L, Cardoso S, de la Fuente J, Lawson S, Powell J, Cooper N, Foster A, Mohammed S, Plagnol V, Vulliamy T, Dokal I. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J Clin Invest 2015; 125:2151-60. [PMID: 25893599 DOI: 10.1172/jci78963] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/12/2015] [Indexed: 11/17/2022] Open
Abstract
Dyskeratosis congenita (DC) and related syndromes are inherited, life-threatening bone marrow (BM) failure disorders, and approximately 40% of cases are currently uncharacterized at the genetic level. Here, using whole exome sequencing (WES), we have identified biallelic mutations in the gene encoding poly(A)-specific ribonuclease (PARN) in 3 families with individuals exhibiting severe DC. PARN is an extensively characterized exonuclease with deadenylation activity that controls mRNA stability in part and therefore regulates expression of a large number of genes. The DC-associated mutations identified affect key domains within the protein, and evaluation of patient cells revealed reduced deadenylation activity. This deadenylation deficiency caused an early DNA damage response in terms of nuclear p53 regulation, cell-cycle arrest, and reduced cell viability upon UV treatment. Individuals with biallelic PARN mutations and PARN-depleted cells exhibited reduced RNA levels for several key genes that are associated with telomere biology, specifically TERC, DKC1, RTEL1, and TERF1. Moreover, PARN-deficient cells also possessed critically short telomeres. Collectively, these results identify a role for PARN in telomere maintenance and demonstrate that it is a disease-causing gene in a subset of patients with severe DC.
Collapse
|
20
|
Gunawardana D, Domashevskiy AV, Gayler KR, Goss DJ. Efficient preparation and properties of mRNAs containing a fluorescent cap analog: Anthraniloyl-m(7)GpppG. ACTA ACUST UNITED AC 2015; 3:e988538. [PMID: 26779415 DOI: 10.4161/21690731.2014.988538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/30/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022]
Abstract
A method has been developed for synthesising fluorescently labeled capped mRNA. The method incorporates a single fluorescent molecule as part of the 5'-mRNA or oligonucleotide cap site. The fluorescent molecule, Ant-m(7)GTP is specifically incorporated into the cap site to yield Ant-m(7)GpppG-capped mRNA or oligonucleotide. Efficient capping was observed with 60-100% of the RNA transcripts capped with the fluorescent molecule. The Ant-m(7)G derivative, which has been previously shown to interact with the eukaryotic cap binding protein eIF4E, is shown in this paper to be a substrate for the Vaccinia capping enzyme and the DCP2 decapping enzyme from Arabidopsis. Further, the Ant-m(7)GTP-capped RNA is readily translated. This Ant-m(7)GTP-capped RNA provides an important tool for monitoring capping reactions, translation, and biophysical studies.
Collapse
Affiliation(s)
- Dilantha Gunawardana
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; University of Melbourne, Parkville; Victoria, Australia; Present address: Department of Botany; University of Sri Jayewardenepura; Soratha Mawatha, Nugegoda, Sri Lanka
| | - Artem V Domashevskiy
- Department of Sciences; John Jay College of Criminal Justice; City University of New York ; New York, NY USA
| | - Ken R Gayler
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; University of Melbourne, Parkville ; Victoria, Australia
| | - Dixie J Goss
- Department of Chemistry and Graduate Center; Hunter College; City University of New York ; New York, NY USA
| |
Collapse
|
21
|
He GJ, Yan YB. Self-association of poly(A)-specific ribonuclease (PARN) triggered by the R3H domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2077-85. [PMID: 25239613 DOI: 10.1016/j.bbapap.2014.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
Poly(A)-specific ribonuclease (PARN) is a deadenylase with three RNA-binding domains (the nuclease, R3H and RRM domains) and a C-terminal domain. PARN participates in diverse physiological processes by regulating mRNA fates through deadenylation. PARN mainly exists as a dimer in dilute solutions. In this research, we found that PARN could self-associate into tetramer and high-order oligomers both in vitro and in living cells. Mutational and spectroscopic analysis indicated that PARN oligomerization was triggered by the R3H domain, which led to the solvent-exposed Trp219 fluorophore to become buried in a solvent-inaccessible microenvironment. The RRM and C-terminal domains also played a role in modulating the dissociation rate of the tetrameric PARN. Enzymatic analysis indicated that tetramerization did not affect the catalytic behavior of the full-length PARN and truncated enzymes containing the RRM domain, which might be caused by the high propensity of the dimeric proteins to self-associate into oligomers. Tetramerization significantly enhanced the catalytic activity and processivity of the truncated form with the removal of the RRM and C-terminal domains. The results herein suggested that self-association might be one of the regulation methods for PARN to achieve a highly regulated deadenylase activity. We propose that self-association may facilitate PARN to concentrate around the target mRNAs by restricted diffusion.
Collapse
Affiliation(s)
- Guang-Jun He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
22
|
Kocic G, Bjelakovic L, Bjelakovic B, Jevtoci-Stoimenov T, Sokolovic D, Cvetkovic T, Kocic H, Stojanovic S, Langerholc T, Jonovic M. Impact of folic acid supplementation on single- and double-stranded RNA degradation in human colostrum and mature milk. J Med Food 2014; 17:804-9. [PMID: 24650098 DOI: 10.1089/jmf.2013.0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sufficient intake of folic acid is necessary for normal embryogenesis, fetal, and neonatal development. Folic acid facilitates nucleic acid internalization, and protects cellular DNA from nuclease degradation. Human milk contains enzymes, antimicrobial proteins, and antibodies, along with macrophages, that protect against infections and allergies. However, little to no information is available on the effects of folic acid supplementation on degradation of nucleic acids in human milk. In the present study, we aimed to determine the RNase activity (free and inhibitor-bound) in colostrum and mature milk, following folic acid supplementation. The study design included a total of 59 women, 27 of whom received 400 μg of folic acid daily periconceptionally and after. Folic acid supplementation increased the free RNase and polyadenylase activity following lactation. However, the increased RNase activity was not due to de novo enzyme synthesis, as the inhibitor-bound (latent) RNase activity was significantly lower and disappeared after one month. Folic acid reduced RNase activity by using double-stranded RNA as substrate. Data suggests that folic acid supplementation may improve viral RNAs degradation and mRNA degradation, but not dsRNA degradation, preserving in this way the antiviral defense.
Collapse
Affiliation(s)
- Gordana Kocic
- 1 Department of Biochemistry, Medical Faculty, University Nis , Nis, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lutz CS, Cornett AL. Regulation of genes in the arachidonic acid metabolic pathway by RNA processing and RNA-mediated mechanisms. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 4:593-605. [PMID: 23956046 DOI: 10.1002/wrna.1183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/22/2023]
Abstract
Arachidonic acid (AA) is converted by enzymes in an important metabolic pathway to produce molecules known collectively as eicosanoids, 20 carbon molecules with significant physiological and pathological functions in the human body. Cyclooxygenase (COX) enzymes work in one arm of the pathway to produce prostaglandins (PGs) and thromboxanes (TXs), while the actions of 5-lipoxygenase (ALOX5 or 5LO) and its associated protein (ALOX5AP or FLAP) work in the other arm of the metabolic pathway to produce leukotrienes (LTs). The expression of the COX and ALOX5 enzymes that convert AA to eicosanoids is highly regulated at the post- or co-transcriptional level by alternative mRNA splicing, alternative mRNA polyadenylation, mRNA stability, and microRNA (miRNA) regulation. This review article will highlight these mechanisms of mRNA modulation.
Collapse
Affiliation(s)
- Carol S Lutz
- Department of Biochemistry and Molecular Biology, New Jersey Medical School and the Graduate School of Biomedical Sciences, Rutgers, NJ, USA.
| | | |
Collapse
|
24
|
Abstract
The 7mG (7-methylguanosine cap) formed on mRNA is fundamental to eukaryotic gene expression. Protein complexes recruited to 7mG mediate key processing events throughout the lifetime of the transcript. One of the most important mediators of 7mG functions is CBC (cap-binding complex). CBC has a key role in several gene expression mechanisms, including transcription, splicing, transcript export and translation. Gene expression can be regulated by signalling pathways which influence CBC function. The aim of the present review is to discuss the mechanisms by which CBC mediates and co-ordinates multiple gene expression events.
Collapse
|
25
|
Gonatopoulos-Pournatzis T, Cowling VH. Cap-binding complex (CBC). Biochem J 2014. [PMID: 24354960 DOI: 10.1042/bj2013121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The 7mG (7-methylguanosine cap) formed on mRNA is fundamental to eukaryotic gene expression. Protein complexes recruited to 7mG mediate key processing events throughout the lifetime of the transcript. One of the most important mediators of 7mG functions is CBC (cap-binding complex). CBC has a key role in several gene expression mechanisms, including transcription, splicing, transcript export and translation. Gene expression can be regulated by signalling pathways which influence CBC function. The aim of the present review is to discuss the mechanisms by which CBC mediates and co-ordinates multiple gene expression events.
Collapse
Affiliation(s)
| | - Victoria H Cowling
- *MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| |
Collapse
|
26
|
Abstract
Messenger RNA deadenylation is a process that allows rapid regulation of gene expression in response to different cellular conditions. The change of the mRNA poly(A) tail length by the activation of deadenylation might regulate gene expression by affecting mRNA stability, mRNA transport, or translation initiation. Activation of deadenylation processes are highly regulated and associated with different cellular conditions such as cancer, development, mRNA surveillance, DNA damage response, and cell differentiation. In the last few years, new technologies for studying deadenylation have been developed. Here we overview concepts related to deadenylation and its regulation in eukaryotic cells. We also describe some of the most commonly used protocols to study deadenylation in eukaryotic cells.
Collapse
Affiliation(s)
- Xiaokan Zhang
- Department of Chemistry, Hunter College and Graduate Center, City University of New York, 10065, New York, NY, USA
| | | | | |
Collapse
|
27
|
Maryati M, Kaur I, Jadhav GP, Olotu-Umoren L, Oveh B, Hashmi L, Fischer PM, Winkler GS. A fluorescence-based assay suitable for quantitative analysis of deadenylase enzyme activity. Nucleic Acids Res 2013; 42:e30. [PMID: 24170810 PMCID: PMC3950723 DOI: 10.1093/nar/gkt972] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In eukaryotic cells, the shortening and removal of the poly(A) tail of cytoplasmic mRNA by deadenylase enzymes is a critical step in post-transcriptional gene regulation. The ribonuclease activity of deadenylase enzymes is attributed to either a DEDD (Asp-Glu-Asp-Asp) or an endonuclease–exonuclease–phosphatase domain. Both domains require the presence of two Mg2+ ions in the active site. To facilitate the biochemical analysis of deadenylase enzymes, we have developed a fluorescence-based deadenylase assay. The assay is based on end-point measurement, suitable for quantitative analysis and can be adapted for 96- and 384-well microplate formats. We demonstrate the utility of the assay by screening a chemical compound library, resulting in the identification of non-nucleoside inhibitors of the Caf1/CNOT7 enzyme, a catalytic subunit of the Ccr4–Not deadenylase complex. These compounds may be useful tools for the biochemical analysis of the Caf1/CNOT7 deadenylase subunit of the Ccr4–Not complex and indicate the feasibility of developing selective inhibitors of deadenylase enzymes using the fluorescence-based assay.
Collapse
Affiliation(s)
- Maryati Maryati
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Nousch M, Techritz N, Hampel D, Millonigg S, Eckmann CR. The Ccr4-Not deadenylase complex constitutes the main poly(A) removal activity in C. elegans. J Cell Sci 2013; 126:4274-85. [PMID: 23843623 DOI: 10.1242/jcs.132936] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Post-transcriptional regulatory mechanisms are widely used to control gene expression programs of tissue development and physiology. Controlled 3' poly(A) tail-length changes of mRNAs provide a mechanistic basis of such regulation, affecting mRNA stability and translational competence. Deadenylases are a conserved class of enzymes that facilitate poly(A) tail removal, and their biochemical activities have been mainly studied in the context of single-cell systems. Little is known about the different deadenylases and their biological role in multicellular organisms. In this study, we identify and characterize all known deadenylases of Caenorhabditis elegans, and identify the germ line as tissue that depends strongly on deadenylase activity. Most deadenylases are required for hermaphrodite fertility, albeit to different degrees. Whereas ccr-4 and ccf-1 deadenylases promote germline function under physiological conditions, panl-2 and parn-1 deadenylases are only required under heat-stress conditions. We also show that the Ccr4-Not core complex in nematodes is composed of the two catalytic subunits CCR-4 and CCF-1 and the structural subunit NTL-1, which we find to regulate the stability of CCF-1. Using bulk poly(A) tail measurements with nucleotide resolution, we detect strong deadenylation defects of mRNAs at the global level only in the absence of ccr-4, ccf-1 and ntl-1, but not of panl-2, parn-1 and parn-2. Taken together, this study suggests that the Ccr4-Not complex is the main deadenylase complex in C. elegans germ cells. On the basis of this and as a result of evidence in flies, we propose that the conserved Ccr4-Not complex is an essential component in post-transcriptional regulatory networks promoting animal reproduction.
Collapse
Affiliation(s)
- Marco Nousch
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
29
|
Dobson T, Chen J, Krushel LA. Dysregulating IRES-dependent translation contributes to overexpression of oncogenic Aurora A Kinase. Mol Cancer Res 2013; 11:887-900. [PMID: 23661421 DOI: 10.1158/1541-7786.mcr-12-0707] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UNLABELLED Overexpression of the oncoprotein Aurora A kinase occurs in multiple types of cancer, often early during cell transformation. To identify the mechanism(s) contributing to enhanced Aurora A protein expression, a comparison between normal human lung fibroblast and breast epithelial cells to nontumorigenic breast (MCF10A and MCF12A) and tumorigenic breast (MCF-7) and cervical cell lines (HeLa S3) was performed. A subset of these immortalized lines (MCF10A, MCF12A, and HeLa S3) exhibited increased levels of Aurora A protein, independent of tumorigenicity. The increase in Aurora A protein in these immortalized cells was not due to increased transcription/RNA stability, protein half-life, or cap-dependent translation. Assays utilizing monocistronic and dicistronic RNA constructs revealed that the 5'-leader sequence of Aurora A contains an internal ribosomal entry site (IRES), which is regulated in a cell cycle-dependent manner, peaking in G2/M phase. Moreover, IRES activity was increased in the immortalized cell lines in which Aurora A protein expression was also enhanced. Additional studies indicated that the increased internal initiation is specific to the IRES of Aurora A and may be an early event during cancer progression. These results identify a novel mechanism contributing to Aurora A kinase overexpression. IMPLICATIONS The current study indicates that Aurora A kinase contributes to immortalization and tumorigenesis.
Collapse
Affiliation(s)
- Tara Dobson
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, 6767 Bertner Ave, Houston, TX 77030, USA
| | | | | |
Collapse
|
30
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
31
|
Virtanen A, Henriksson N, Nilsson P, Nissbeck M. Poly(A)-specific ribonuclease (PARN): an allosterically regulated, processive and mRNA cap-interacting deadenylase. Crit Rev Biochem Mol Biol 2013; 48:192-209. [PMID: 23496118 DOI: 10.3109/10409238.2013.771132] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Deadenylation of eukaryotic mRNA is a mechanism critical for mRNA function by influencing mRNA turnover and efficiency of protein synthesis. Here, we review poly(A)-specific ribonuclease (PARN), which is one of the biochemically best characterized deadenylases. PARN is unique among the currently known eukaryotic poly(A) degrading nucleases, being the only deadenylase that has the capacity to directly interact during poly(A) hydrolysis with both the m(7)G-cap structure and the poly(A) tail of the mRNA. In short, PARN is a divalent metal-ion dependent poly(A)-specific, processive and cap-interacting 3'-5' exoribonuclease that efficiently degrades poly(A) tails of eukaryotic mRNAs. We discuss in detail the mechanisms of its substrate recognition, catalysis, allostery and processive mode of action. On the basis of biochemical and structural evidence, we present and discuss a working model for PARN action. Models of regulation of PARN activity by trans-acting factors are discussed as well as the physiological relevance of PARN.
Collapse
Affiliation(s)
- Anders Virtanen
- Department of Cell and Molecular Biology, Program of Chemical Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
32
|
He GJ, Zhang A, Liu WF, Yan YB. Distinct roles of the R3H and RRM domains in poly(A)-specific ribonuclease structural integrity and catalysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1089-98. [PMID: 23388391 DOI: 10.1016/j.bbapap.2013.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Deadenylases specifically catalyze the degradation of eukaryotic mRNA poly(A) tail in the 3'- to 5'-end direction with the release of 5'-AMP as the product. Among the deadenylase family, poly(A)-specific ribonuclease (PARN) is unique in its domain composition, which contains three potential RNA-binding domains: the catalytic nuclease domain, the R3H domain and the RRM domain. In this research, we investigated the roles of these RNA-binding domains by comparing the structural features and enzymatic properties of mutants lacking either one or two of the three RNA-binding domains. The results showed that the R3H domain had the ability to bind various oligonucleotides at the micromolar level with no oligo(A) specificity. The removal of the R3H domain dissociated PARN into monomers, which still possessed the RNA-binding ability and catalytic functions. Unlike the critical role of the RRM domain in PARN processivity, the removal of the R3H domain did not affect the catalytic pattern of PARN. Our results suggested that both R3H and RRM domains were essential for the high affinity of long poly(A) substrate, but the R3H domain did not contribute to the substrate recognition of PARN. Compared to the RRM domain, the R3H domain played a more important role in the structural integrity of the dimeric PARN. The multiple RNA-binding domain architecture endows PARN the property of highly efficient catalysis in a highly processive mode.
Collapse
Affiliation(s)
- Guang-Jun He
- School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
33
|
Vlasova-St Louis I, Dickson AM, Bohjanen PR, Wilusz CJ. CELFish ways to modulate mRNA decay. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:695-707. [PMID: 23328451 DOI: 10.1016/j.bbagrm.2013.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 12/14/2022]
Abstract
The CELF family of RNA-binding proteins regulates many steps of mRNA metabolism. Although their best characterized function is in pre-mRNA splice site choice, CELF family members are also powerful modulators of mRNA decay. In this review we focus on the different modes of regulation that CELF proteins employ to mediate mRNA decay by binding to GU-rich elements. After starting with an overview of the importance of CELF proteins during development and disease pathogenesis, we then review the mRNA networks and cellular pathways these proteins regulate and the mechanisms by which they influence mRNA decay. Finally, we discuss how CELF protein activity is modulated during development and in response to cellular signals. We conclude by highlighting the priorities for new experiments in this field. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
34
|
Godwin AR, Kojima S, Green CB, Wilusz J. Kiss your tail goodbye: the role of PARN, Nocturnin, and Angel deadenylases in mRNA biology. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:571-9. [PMID: 23274303 DOI: 10.1016/j.bbagrm.2012.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/12/2012] [Accepted: 12/16/2012] [Indexed: 01/06/2023]
Abstract
PARN, Nocturnin and Angel are three of the multiple deadenylases that have been described in eukaryotic cells. While each of these enzymes appear to target poly(A) tails for shortening and influence RNA gene expression levels and quality control, the enzymes differ in terms of enzymatic mechanisms, regulation and biological impact. The goal of this review is to provide an in depth biochemical and biological perspective of the PARN, Nocturnin and Angel deadenylases. Understanding the shared and unique roles of these enzymes in cell biology will provide important insights into numerous aspects of the post-transcriptional control of gene expression. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Alan R Godwin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Shortening of the poly(A) tail is the first and often rate-limiting step in mRNA degradation. Three poly(A)-specific 3' exonucleases have been described that can carry out this reaction: PAN, composed of two subunits; PARN, a homodimer; and the CCR4-NOT complex, a heterooligomer that contains two catalytic subunits and may have additional functions in the cell. Current evidence indicates that all three enzymes use a two-metal ion mechanism to release nucleoside monophosphates in a hydrolytic reaction. The CCR4-NOT is the main deadenylase in all organisms examined, and mutations affecting the complex can be lethal. The contribution of PAN, apparently an initial deadenylation preceding the activity of CCR4-NOT, is less important, whereas the activity of PARN seems to be restricted to specific substrates or circumstances, for example, stress conditions. Rapid deadenylation and decay of specific mRNAs can be caused by recruitment of both PAN and the CCR4-NOT complex. This function can be carried out by RNA-binding proteins, for example, members of the PUF family. Alternatively, miRNAs can recruit the deadenylase complexes with the help of their associated GW182 proteins.
Collapse
Affiliation(s)
- Christiane Harnisch
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Bodo Moritz
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Christiane Rammelt
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Claudia Temme
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany
| | - Elmar Wahle
- Martin-Luther-University of Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, Halle, Germany.
| |
Collapse
|
36
|
Veo BL, Krushel LA. Secondary RNA structure and nucleotide specificity contribute to internal initiation mediated by the human tau 5' leader. RNA Biol 2012; 9:1344-60. [PMID: 22995835 DOI: 10.4161/rna.22181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mechanisms by which eukaryotic internal ribosomal entry sites (IRESs) initiate translation have not been well described. Viral IRESs utilize a combination of secondary/tertiary structure concomitant with sequence specific elements to initiate translation. Eukaryotic IRESs are proposed to utilize the same components, although it appears that short sequence specific elements are more common. In this report we perform an extensive analysis of the IRES in the human tau mRNA. We demonstrate that the tau IRES exhibits characteristics similar to viral IRESs. It contains two main structural domains that exhibit secondary interactions, which are essential for internal initiation. Moreover, the tau IRES is extremely sensitive to small nucleotide substitutions. Our data also indicates that the 40S ribosome is recruited to the middle of the IRES, but whether it scans to the initiation codon in a linear fashion is questioned. Overall, these results identify structural and sequence elements critical for tau IRES activity and consequently, provide a novel target to regulate tau protein expression in disease states including Alzheimer disease and other tauopathies.
Collapse
Affiliation(s)
- Bethany L Veo
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | | |
Collapse
|
37
|
Lee JE, Lee JY, Trembly J, Wilusz J, Tian B, Wilusz CJ. The PARN deadenylase targets a discrete set of mRNAs for decay and regulates cell motility in mouse myoblasts. PLoS Genet 2012; 8:e1002901. [PMID: 22956911 PMCID: PMC3431312 DOI: 10.1371/journal.pgen.1002901] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/02/2012] [Indexed: 11/22/2022] Open
Abstract
PARN is one of several deadenylase enzymes present in mammalian cells, and as such the contribution it makes to the regulation of gene expression is unclear. To address this, we performed global mRNA expression and half-life analysis on mouse myoblasts depleted of PARN. PARN knockdown resulted in the stabilization of 40 mRNAs, including that encoding the mRNA decay factor ZFP36L2. Additional experiments demonstrated that PARN knockdown induced an increase in Zfp36l2 poly(A) tail length as well as increased translation. The elements responsible for PARN-dependent regulation lie within the 3′ UTR of the mRNA. Surprisingly, changes in mRNA stability showed an inverse correlation with mRNA abundance; stabilized transcripts showed either no change or a decrease in mRNA abundance. Moreover, we found that stabilized mRNAs had reduced accumulation of pre–mRNA, consistent with lower transcription rates. This presents compelling evidence for the coupling of mRNA decay and transcription to buffer mRNA abundances. Although PARN knockdown altered decay of relatively few mRNAs, there was a much larger effect on global gene expression. Many of the mRNAs whose abundance was reduced by PARN knockdown encode factors required for cell migration and adhesion. The biological relevance of this observation was demonstrated by the fact that PARN KD cells migrate faster in wound-healing assays. Collectively, these data indicate that PARN modulates decay of a defined set of mRNAs in mammalian cells and implicate this deadenylase in coordinating control of genes required for cell movement. Almost all cellular mRNAs terminate in a 3′ poly(A) tail, the removal of which can induce both translational silencing and mRNA decay. Mammalian cells encode many poly(A)-specific exoribonucleases, but their individual roles are poorly understood. Here, we undertook an analysis of the role of PARN deadenylase in mouse myoblasts using global measurements of mRNA decay rates. Our results reveal that a discrete set of mRNAs exhibit altered mRNA decay as a result of PARN depletion and that stabilization is associated with increased poly(A) tail length and translation efficiency. We determined that stabilization of mRNAs does not generally result in their increased abundance, supporting the idea that mRNA decay is coupled to transcription. Importantly, knockdown of PARN has wide ranging effects on gene expression that specifically impact the extracellular matrix and cell migration.
Collapse
Affiliation(s)
- Jerome E. Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ju Youn Lee
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Jarrett Trembly
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail: (JW); (CJW)
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Carol J. Wilusz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail: (JW); (CJW)
| |
Collapse
|
38
|
Abstract
The Ccr4–Not complex is one of the major deadenylase factors present in eukaryotic cells. This multi-subunit protein complex is composed of at least seven stably associated subunits in mammalian cells including two enzymatic deadenylase subunits: one DEDD (Asp-Glu-Asp-Asp)-type deadenylase (either CNOT7/human Caf1/Caf1a or CNOT8/human Pop2/Caf1b/Calif) and one EEP (endonuclease–exonuclease–phosphatase)-type enzyme (either CNOT6/human Ccr4/Ccr4a or CNOT6L/human Ccr4-like/Ccr4b). Here, the role of the human Ccr4–Not complex in cytoplasmic deadenylation of mRNA is discussed, including the mechanism of its recruitment to mRNA and the role of the BTG/Tob proteins.
Collapse
|
39
|
Berndt H, Harnisch C, Rammelt C, Stöhr N, Zirkel A, Dohm JC, Himmelbauer H, Tavanez JP, Hüttelmaier S, Wahle E. Maturation of mammalian H/ACA box snoRNAs: PAPD5-dependent adenylation and PARN-dependent trimming. RNA (NEW YORK, N.Y.) 2012; 18:958-72. [PMID: 22442037 PMCID: PMC3334704 DOI: 10.1261/rna.032292.112] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/14/2012] [Indexed: 05/17/2023]
Abstract
Small nucleolar and small Cajal body RNAs (snoRNAs and scaRNAs) of the H/ACA box and C/D box type are generated by exonucleolytic shortening of longer precursors. Removal of the last few nucleotides at the 3' end is known to be a distinct step. We report that, in human cells, knock-down of the poly(A) specific ribonuclease (PARN), previously implicated only in mRNA metabolism, causes the accumulation of oligoadenylated processing intermediates of H/ACA box but not C/D box RNAs. In agreement with a role of PARN in snoRNA and scaRNA processing, the enzyme is concentrated in nucleoli and Cajal bodies. Oligo(A) tails are attached to a short stub of intron sequence remaining beyond the mature 3' end of the snoRNAs. The noncanonical poly(A) polymerase PAPD5 is responsible for addition of the oligo(A) tails. We suggest that deadenylation is coupled to clean 3' end trimming, which might serve to enhance snoRNA stability.
Collapse
Affiliation(s)
- Heike Berndt
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christiane Harnisch
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Nadine Stöhr
- Section for Molecular Cell Biology, Department of Medicine, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Anne Zirkel
- Section for Molecular Cell Biology, Department of Medicine, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Juliane C. Dohm
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | | | - Joao-Paulo Tavanez
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Department of Medicine, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
- Corresponding author.E-mail .
| |
Collapse
|
40
|
Abstract
The shortening of the 3′-end poly(A) tail, also called deadenylation, is crucial to the regulation of mRNA processing, transportation, translation and degradation. The deadenylation process is achieved by deadenylases, which specifically catalyze the removal of the poly(A) tail at the 3′-end of eukaryotic mRNAs and release 5′-AMP as the product. To achieve their physiological functions, all deadenylases have numerous binding partners that may regulate their catalytic properties or recruit them into various protein complexes. To study the effects of various partners, it is important to develop new deadenylase assay that can be applied either in vivo or in vitro. In this research, we developed the deadenylase assay by the size-exclusion chromatography (SEC) method. The SEC analysis indicated that the poly(A) or oligo(A) substrate and the product AMP could be successfully separated and quantified. The enzymatic parameters of deadenylase could be obtained by quantifying the AMP generation. When using the commercial poly(A) as the substrate, a biphasic catalytic process was observed, which might correlate to the two distinct states of poly(A) in the commercial samples. Different lots of commercial poly(A) had dissimilar size distributions and were dissimilar in response to the degradation of deadenylase. The deadenylation pattern, processive or distributive, could also be investigated using the SEC assay by monitoring the status of the substrate and the generation kinetics of AMP and A2. The SEC assay was applicable to both simple samples using the purified enzyme and complex enzyme reaction conditions such as using protein mixtures or crude cell extracts as samples. The influence of solutes with absorption at 254 nm could be successfully eliminated by constructing the different SEC profiles.
Collapse
|
41
|
Balatsos N, Vlachakis D, Chatzigeorgiou V, Manta S, Komiotis D, Vlassi M, Stathopoulos C. Kinetic and in silico analysis of the slow-binding inhibition of human poly(A)-specific ribonuclease (PARN) by novel nucleoside analogues. Biochimie 2012; 94:214-21. [DOI: 10.1016/j.biochi.2011.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/17/2011] [Indexed: 11/16/2022]
|
42
|
Niedzwiecka A, Lekka M, Nilsson P, Virtanen A. Global architecture of human poly(A)-specific ribonuclease by atomic force microscopy in liquid and dynamic light scattering. Biophys Chem 2011; 158:141-9. [DOI: 10.1016/j.bpc.2011.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 11/26/2022]
|
43
|
Villalba A, Coll O, Gebauer F. Cytoplasmic polyadenylation and translational control. Curr Opin Genet Dev 2011; 21:452-7. [DOI: 10.1016/j.gde.2011.04.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 12/22/2022]
|
44
|
PolyA-specific ribonuclease (PARN-1) function in stage-specific mRNA turnover in Trypanosoma brucei. EUKARYOTIC CELL 2011; 10:1230-40. [PMID: 21743004 DOI: 10.1128/ec.05097-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Deadenylation is often the rate-limiting event in regulating the turnover of cellular mRNAs in eukaryotes. Removal of the poly(A) tail initiates mRNA degradation by one of several decay pathways, including deadenylation-dependent decapping, followed by 5' to 3' exonuclease decay or 3' to 5' exosome-mediated decay. In trypanosomatids, mRNA degradation is important in controlling the expression of differentially expressed genes. Genomic annotation studies have revealed several potential deadenylases. Poly(A)-specific RNase (PARN) is a key deadenylase involved in regulating gene expression in mammals, Xenopus oocytes, and higher plants. Trypanosomatids possess three different PARN genes, PARN-1, -2, and -3, each of which is expressed at the mRNA level in two life-cycle stages of the human parasite Trypanosoma brucei. Here we show that T. brucei PARN-1 is an active deadenylase. To determine the role of PARN-1 on mRNA stability in vivo, we overexpressed this protein and analyzed perturbations in mRNA steady-state levels as well as mRNA half-life. Interestingly, a subset of mRNAs was affected, including a family of mRNAs that encode stage-specific coat proteins. These data suggest that PARN-1 functions in stage-specific protein production.
Collapse
|
45
|
Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Mol Cell Biol 2010; 31:256-66. [PMID: 21078877 DOI: 10.1128/mcb.00717-10] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
mRNA turnover is a critical step in the control of gene expression. In mammalian cells, a subset of mRNAs regulated at the level of mRNA turnover contain destabilizing AU-rich elements (AREs) in their 3' untranslated regions. These transcripts are bound by a suite of ARE-binding proteins (AUBPs) that receive information from cell signaling events to modulate rates of ARE mRNA decay. Here we show that a key destabilizing AUBP, tristetraprolin (TTP), is repressed by the p38 mitogen-activated protein kinase (MAPK)-activated kinase MK2 due to the inability of phospho-TTP to recruit deadenylases to target mRNAs. TTP is tightly associated with cytoplasmic deadenylases and promotes rapid deadenylation of target mRNAs both in vitro and in cells. TTP can direct the deadenylation of substrate mRNAs when tethered to a heterologous mRNA, yet its ability to do so is inhibited upon phosphorylation by MK2. Phospho-TTP is not impaired in mRNA binding but does fail to recruit the major cytoplasmic deadenylases. These observations suggest that phosphorylation of TTP by MK2 primarily affects mRNA decay downstream of RNA binding by preventing recruitment of the deadenylation machinery. Thus, TTP may remain poised to rapidly reactivate deadenylation of bound transcripts to downregulate gene expression once the p38 MAPK pathway is deactivated.
Collapse
|
46
|
Ling SHM, Qamra R, Song H. Structural and functional insights into eukaryotic mRNA decapping. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:193-208. [PMID: 21957006 DOI: 10.1002/wrna.44] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The control of messenger RNA (mRNA) translation and degradation is important in regulation of eukaryotic gene expression. In the general and specialized mRNA decay pathways which involve 5(') →3(') decay, decapping is the central step because it is the controlling gate preceding the actual degradation of mRNA and is a site of numerous control inputs. Removal of the cap structure is catalyzed by a decapping holoenzyme composed of the catalytic Dcp2 subunit and the coactivator Dcp1. Decapping is regulated by decapping activators and inhibitors. Recent structural and kinetics studies indicated that Dcp1 and the substrate RNA promote the closed form of the enzyme and the catalytic step of decapping is rate limiting and accelerated by Dcp1. The conformational change between the open and closed decapping enzyme is important for controlling decapping, and regulation of this transition has been proposed to be a checkpoint for determining the fate of mRNAs. Here we summarize the past and recent advances on the structural and functional studies of protein factors involved in regulating mRNA decapping.
Collapse
Affiliation(s)
- Sharon H M Ling
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | | | | |
Collapse
|
47
|
Marchese FP, Aubareda A, Tudor C, Saklatvala J, Clark AR, Dean JLE. MAPKAP kinase 2 blocks tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment. J Biol Chem 2010; 285:27590-600. [PMID: 20595389 DOI: 10.1074/jbc.m110.136473] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tristetraprolin (TTP) directs its target AU-rich element (ARE)-containing mRNAs for degradation by promoting removal of the poly(A) tail. The p38 MAPK pathway regulates mRNA stability via the downstream kinase MAPK-activated protein kinase 2 (MAPKAP kinase 2 or MK2), which phosphorylates and prevents the mRNA-destabilizing function of TTP. We show that deadenylation of endogenous ARE-containing tumor necrosis factor mRNA is inhibited by p38 MAPK. To investigate whether phosphorylation of TTP by MK2 regulates TTP-directed deadenylation of ARE-containing mRNAs, we used a cell-free assay that reconstitutes the mechanism in vitro. We find that phosphorylation of Ser-52 and Ser-178 of TTP by MK2 results in inhibition of TTP-directed deadenylation of ARE-containing RNA. The use of 14-3-3 protein antagonists showed that regulation of TTP-directed deadenylation by MK2 is independent of 14-3-3 binding to TTP. To investigate the mechanism whereby TTP promotes deadenylation, it was necessary to identify the deadenylases involved. The carbon catabolite repressor protein (CCR)4.CCR4-associated factor (CAF)1 complex was identified as the major source of deadenylase activity in HeLa cells responsible for TTP-directed deadenylation. CAF1a and CAF1b were found to interact with TTP in an RNA-independent fashion. We find that MK2 phosphorylation reduces the ability of TTP to promote deadenylation by inhibiting the recruitment of CAF1 deadenylase in a mechanism that does not involve sequestration of TTP by 14-3-3. Cyclooxygenase-2 mRNA stability is increased in CAF1-depleted cells in which it is no longer p38 MAPK/MK2-regulated.
Collapse
Affiliation(s)
- Francesco P Marchese
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, London W6 8LH, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
MicroRNA-mediated mRNA deadenylation and repression of protein synthesis in a mammalian cell-free system. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2010; 50:85-97. [PMID: 19841883 DOI: 10.1007/978-3-642-03103-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Cell-free systems are valuable tools for analyses of a post-transcriptional gene expression. The biochemical aspects of RNA interference have been extensively studied by using extracts prepared from Drosophila embryos. However, the mechanism by which microRNAs regulate protein synthesis is still elusive. We established a mammalian cell-free system that recapitulates let-7 microRNA-mediated repression of protein synthesis. Using this system, we found that a target mRNA was deadenylated when it was translationally repressed. The experimental data strongly suggested that the deadenylation was a cause, but not a result, of translational repression. In this chapter, we describe our cell-free system and discuss the significance of microRNA-mediated mRNA deadenylation in the repression of protein synthesis.
Collapse
|
49
|
Jeong MS, Kim EJ, Jang SB. Expression and RNA-binding of human zinc-finger antiviral protein. Biochem Biophys Res Commun 2010; 396:696-702. [PMID: 20451500 DOI: 10.1016/j.bbrc.2010.04.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 04/29/2010] [Indexed: 11/19/2022]
Abstract
Zinc-finger antiviral protein (ZAP) is a recently isolated host antiviral factor that inhibits the replication of many viruses such as Moloney murine leukemia virus (MLV) and Sindbis virus (SIN) by preventing the accumulation of viral mRNA in the cytoplasm. ZAP comprises four CCCH zinc-finger motifs, the second and fourth of which are responsible for protein activity based on their integrity. Thus far, there have been no reports on whether or not ZAP expressed in Escherichia coli is soluble. Therefore, we expressed N-terminal ZAP (NZAP, 254 amino acids) in E. coli as a fusion protein with several different cleavage sites and protein tags. Cleaved ZAP in soluble form strongly bound to RNA through its four CCCH zinc-finger motifs. Here, we provide evidence indicating that ZAP directly interacted with viral RNA. Each conserved zinc-finger motif of ZAP coordinates a zinc ion using three cysteines and one histidine. These findings suggest that ZAP recruits the cellular RNA degradation machinery for the degradation of viral RNA.
Collapse
Affiliation(s)
- Mi Suk Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | | | | |
Collapse
|
50
|
Nuclear deadenylation/polyadenylation factors regulate 3' processing in response to DNA damage. EMBO J 2010; 29:1674-87. [PMID: 20379136 DOI: 10.1038/emboj.2010.59] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 03/05/2010] [Indexed: 12/23/2022] Open
Abstract
We previously showed that mRNA 3' end cleavage reaction in cell extracts is strongly but transiently inhibited under DNA-damaging conditions. The cleavage stimulation factor-50 (CstF-50) has a role in this response, providing a link between transcription-coupled RNA processing and DNA repair. In this study, we show that CstF-50 interacts with nuclear poly(A)-specific ribonuclease (PARN) using in vitro and in extracts of UV-exposed cells. The CstF-50/PARN complex formation has a role in the inhibition of 3' cleavage and activation of deadenylation upon DNA damage. Extending these results, we found that the tumour suppressor BARD1, which is involved in the UV-induced inhibition of 3' cleavage, strongly activates deadenylation by PARN in the presence of CstF-50, and that CstF-50/BARD1 can revert the cap-binding protein-80 (CBP80)-mediated inhibition of PARN activity. We also provide evidence that PARN along with the CstF/BARD1 complex participates in the regulation of endogenous transcripts under DNA-damaging conditions. We speculate that the interplay between polyadenylation, deadenylation and tumour-suppressor factors might prevent the expression of prematurely terminated messengers, contributing to control of gene expression under different cellular conditions.
Collapse
|