1
|
McCaig CD. Electrical Forces Improve Memory in Old Age. Rev Physiol Biochem Pharmacol 2025; 187:453-520. [PMID: 39838022 DOI: 10.1007/978-3-031-68827-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
This penultimate chapter is based on a single paper published in Nature in 2022. I have used it specifically as an exemplar, in this case to show that memory improvement in old age may be regulated by a multiplicity of electrical forces. However, I include it because I believe that one could pick almost any other substantial single paper and show that a completely disparate set of biological mechanisms similarly depend crucially on multiple electrical forces.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
2
|
Leimu L, Holm P, Gąciarz A, Haavisto O, Prince S, Pesonen U, Huovinen T, Lamminmäki U. Epitope-specific antibody fragments block aggregation of AGelD187N, an aberrant peptide in gelsolin amyloidosis. J Biol Chem 2024; 300:107507. [PMID: 38944121 PMCID: PMC11298591 DOI: 10.1016/j.jbc.2024.107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Aggregation of aberrant fragment of plasma gelsolin, AGelD187N, is a crucial event underlying the pathophysiology of Finnish gelsolin amyloidosis, an inherited form of systemic amyloidosis. The amyloidogenic gelsolin fragment AGelD187N does not play any physiological role in the body, unlike most aggregating proteins related to other protein misfolding diseases. However, no therapeutic agents that specifically and effectively target and neutralize AGelD187N exist. We used phage display technology to identify novel single-chain variable fragments that bind to different epitopes in the monomeric AGelD187N that were further maturated by variable domain shuffling and converted to antigen-binding fragment (Fab) antibodies. The generated antibody fragments had nanomolar binding affinity for full-length AGelD187N, as evaluated by biolayer interferometry. Importantly, all four Fabs selected for functional studies efficiently inhibited the amyloid formation of full-length AGelD187N as examined by thioflavin fluorescence assay and transmission electron microscopy. Two Fabs, neither of which bound to the previously proposed fibril-forming region of AGelD187N, completely blocked the amyloid formation of AGelD187N. Moreover, no small soluble aggregates, which are considered pathogenic species in protein misfolding diseases, were formed after successful inhibition of amyloid formation by the most promising aggregation inhibitor, as investigated by size-exclusion chromatography combined with multiangle light scattering. We conclude that all regions of the full-length AGelD187N are important in modulating its assembly into fibrils and that the discovered epitope-specific anti-AGelD187N antibody fragments provide a promising starting point for a disease-modifying therapy for gelsolin amyloidosis, which is currently lacking.
Collapse
Affiliation(s)
- Laura Leimu
- R&D, Orion Pharma, Orion Corporation, Turku, Finland; Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Patrik Holm
- R&D, Orion Pharma, Orion Corporation, Turku, Finland; Department of Life Technologies, University of Turku, Turku, Finland; Organon R&D Finland, Turku, Finland
| | - Anna Gąciarz
- R&D, Orion Pharma, Orion Corporation, Turku, Finland; Mobidiag, A Hologic Company, Espoo, Finland
| | - Oskar Haavisto
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Stuart Prince
- R&D, Orion Pharma, Orion Corporation, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Ullamari Pesonen
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Tuomas Huovinen
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland.
| |
Collapse
|
3
|
Puri S, Schulte T, Chaves-Sanjuan A, Mazzini G, Caminito S, Pappone C, Anastasia L, Milani P, Merlini G, Bolognesi M, Nuvolone M, Palladini G, Ricagno S. The Cryo-EM STRUCTURE of Renal Amyloid Fibril Suggests Structurally Homogeneous Multiorgan Aggregation in AL Amyloidosis. J Mol Biol 2023; 435:168215. [PMID: 37516426 DOI: 10.1016/j.jmb.2023.168215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Immunoglobulin light chain amyloidosis (AL) is caused by the aberrant production of amyloidogenic light chains (LC) that accumulate as amyloid deposits in vital organs. Distinct LC sequences in each patient yield distinct amyloid structures. However different tissue microenvironments may also cause identical protein precursors to adopt distinct amyloid structures. To address the impact of the tissue environment on the structural polymorphism of amyloids, we extracted fibrils from the kidney of an AL patient (AL55) whose cardiac amyloid structure was previously determined by our group. Here we show that the 4.0 Å resolution cryo-EM structure of the renal fibril is virtually identical to that reported for the cardiac fibril. These results provide the first structural evidence that LC amyloids independently deposited in different organs of the same AL patient share a common fold.
Collapse
Affiliation(s)
- Sarita Puri
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@Saritapuri1504
| | - Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy. https://twitter.com/@timpaul81
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@ChavesSanjuan
| | - Giulia Mazzini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Serena Caminito
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy; Faculty of Medicine, University of Vita-Salute San Raffaele, 20132 Milan, Italy; Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, San Donato, 20097 Milan, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy; Faculty of Medicine, University of Vita-Salute San Raffaele, 20132 Milan, Italy. https://twitter.com/@skinski74
| | - Paolo Milani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Martino Bolognesi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@Martinobologne2
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Ricagno
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy.
| |
Collapse
|
4
|
Jiang Y, Wan M, Xiao X, Lin Z, Liu X, Zhou Y, Liao X, Lin J, Zhou H, Zhou L, Weng L, Wang J, Guo J, Jiang H, Zhang Z, Xia K, Li J, Tang B, Jiao B, Shen L. GSN gene frameshift mutations in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2023; 94:436-447. [PMID: 36650038 DOI: 10.1136/jnnp-2022-330465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND The pathogenic missense mutations of the gelsolin (GSN) gene lead to familial amyloidosis of the Finnish type (FAF); however, our previous study identified GSN frameshift mutations existed in patients with Alzheimer's disease (AD). The GSN genotype-phenotype heterogeneity and the role of GSN frameshift mutations in patients with AD are unclear. METHOD In total, 1192 patients with AD and 1403 controls were screened through whole genome sequencing, and 884 patients with AD were enrolled for validation. Effects of GSN mutations were evaluated in vitro. GSN, Aβ42, Aβ40 and Aβ42/40 were detected in both plasma and cerebrospinal fluid (CSF). RESULTS Six patients with AD with GSN P3fs and K346fs mutations (0.50%, 6/1192) were identified, who were diagnosed with AD but not FAF. In addition, 13 patients with AD with GSN frameshift mutations were found in the validation cohort (1.47%, 13/884). Further in vitro experiments showed that both K346fs and P3fs mutations led to the GSN loss of function in inhibiting Aβ-induced toxicity. Moreover, a higher level of plasma (p=0.001) and CSF (p=0.005) GSN was observed in AD cases than controls, and a positive correlation was found between the CSF GSN and CSF Aβ42 (r=0.289, p=0.009). Besides, the GSN level was initially increasing and then decreasing with the disease course and cognitive decline. CONCLUSIONS GSN frameshift mutations may be associated with AD. An increase in plasma GSN is probably a compensatory reaction in AD, which is a potential biomarker for early AD.
Collapse
Affiliation(s)
- Yaling Jiang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - XueWen Xiao
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Zhuojie Lin
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,Department of Geriatrics Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,Department of Geriatrics Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Jingyi Lin
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine, Key Laboratory of Molecular Precision Medicine of Hunan Province, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jiada Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital Central South University, Changsha, Hunan, China .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
5
|
Bollati M, Peqini K, Barone L, Natale C, Beeg M, Gobbi M, Diomede L, Trucchi M, de Rosa M, Pellegrino S. Rational Design of a Peptidomimetic Inhibitor of Gelsolin Amyloid Aggregation. Int J Mol Sci 2022; 23:ijms232213973. [PMID: 36430461 PMCID: PMC9698219 DOI: 10.3390/ijms232213973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Gelsolin amyloidosis (AGel) is characterized by multiple systemic and ophthalmic features resulting from pathological tissue deposition of the gelsolin (GSN) protein. To date, no cure is available for the treatment of any form of AGel. More than ten single-point substitutions in the GSN gene are responsible for the occurrence of the disease and, among them, D187N/Y is the most widespread variant. These substitutions undergo an aberrant proteolytic cascade, producing aggregation-prone peptides of 5 and 8 kDa, containing the Gelsolin Amyloidogenic Core, spanning residues 182-192 (GAC182-192). Following a structure-based approach, we designed and synthesized three novel sequence-specific peptidomimetics (LB-5, LB-6, and LB-7) built on a piperidine-pyrrolidine unnatural amino acid. LB-5 and LB-6, but not LB-7, efficiently inhibit the aggregation of the GAC182-192 amyloidogenic peptides at sub-stoichiometric concentrations. These peptidomimetics resulted also effective in vivo, in a C. elegans-based assay, in counteracting the proteotoxicity of aggregated GAC182-192. These data pave the way to a novel pharmacological strategy against AGel and also validate a toolbox exploitable in other amyloidogenic diseases.
Collapse
Affiliation(s)
- Michela Bollati
- Institute of Biophysics, National Research Council (IBF-CNR), c/o Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | - Kaliroi Peqini
- Department of Pharmaceutical Science, “A. Marchesini” General and Organic Chemistry Section, University of Milano, Via Venezian 21, 20133 Milano, Italy
| | - Luigi Barone
- Department of Pharmaceutical Science, “A. Marchesini” General and Organic Chemistry Section, University of Milano, Via Venezian 21, 20133 Milano, Italy
| | - Carmina Natale
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Marten Beeg
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Michelangelo Trucchi
- Institute of Biophysics, National Research Council (IBF-CNR), c/o Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | - Matteo de Rosa
- Institute of Biophysics, National Research Council (IBF-CNR), c/o Department of Biosciences, University of Milano, Via Celoria 26, 20133 Milano, Italy
- Correspondence: (M.d.R.); (S.P.)
| | - Sara Pellegrino
- Department of Pharmaceutical Science, “A. Marchesini” General and Organic Chemistry Section, University of Milano, Via Venezian 21, 20133 Milano, Italy
- Correspondence: (M.d.R.); (S.P.)
| |
Collapse
|
6
|
Li J, Guo M, Chen L, Chen Z, Fu Y, Chen Y. p53 amyloid aggregation in cancer: function, mechanism, and therapy. Exp Hematol Oncol 2022; 11:66. [PMID: 36171607 PMCID: PMC9520902 DOI: 10.1186/s40164-022-00317-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Similar to neurodegenerative diseases, the concept that tumors are prion like diseases has been proposed in recent years. p53, the most well-known tumor suppressor, has been extensively studied for its expression, mutation, and function in various tumors. Currently, an interesting phenomenon of p53 prion-like aggregation has been found in several tumors, and studies have found that its pathological aggregation may lead to functional alterations and ultimately affect tumor progression. It has been demonstrated that the mechanism of p53 aggregation involves its mutation, domains, isoform, etc. In addition to p53 itself, some other factors, including Zn2+ concentration, pH, temperature and chaperone abnormalities, can also contribute to p53 aggregation. Although there are some studies about the mechanism and role of p53 aggregation and amyloidosis in tumors, there still exist some controversies. In this paper, we review the mechanism of p53 amyloid fibril structure and discuss the characteristics and effects of p53 amyloid aggregation, as well as the pathogenic mechanism leading to the occurrence of aggregation in tumors. Finally, we summarize the various inhibitors targeting p53 aggregation and prion-like behavior. In conclusion, a comprehensive understanding of p53 aggregation can expand our understanding of the causes leading its loss of physiological function and that targeting p53 aggregation might be a promising therapeutic strategy for tumor therapy.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
7
|
Bollati M, Diomede L, Giorgino T, Natale C, Fagnani E, Boniardi I, Barbiroli A, Alemani R, Beeg M, Gobbi M, Fakin A, Mastrangelo E, Milani M, Presciuttini G, Gabellieri E, Cioni P, de Rosa M. A novel hotspot of gelsolin instability triggers an alternative mechanism of amyloid aggregation. Comput Struct Biotechnol J 2021; 19:6355-6365. [PMID: 34938411 PMCID: PMC8649582 DOI: 10.1016/j.csbj.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 01/02/2023] Open
Abstract
Gelsolin comprises six homologous domains, named G1 to G6. Single point substitutions in this protein are responsible for AGel amyloidosis, a hereditary disease causing progressive corneal lattice dystrophy, cutis laxa, and polyneuropathy. Although several different amyloidogenic variants of gelsolin have been identified, only the most common mutants present in the G2 domain have been thoroughly characterized, leading to clarification of the functional mechanism. The molecular events underlying the pathological aggregation of 3 recently identified mutations, namely A551P, E553K and M517R, all localized at the interface between G4 and G5, are here explored for the first time. Structural studies point to destabilization of the interface between G4 and G5 due to three structural determinants: β-strand breaking, steric hindrance and/or charge repulsion, all implying impairment of interdomain contacts. Such rearrangements decrease the temperature and pressure stability of gelsolin but do not alter its susceptibility to furin cleavage, the first event in the canonical aggregation pathway. These variants also have a greater tendency to aggregate in the unproteolysed forms and exhibit higher proteotoxicity in a C. elegans-based assay. Our data suggest that aggregation of G4G5 variants follows an alternative, likely proteolysis-independent, pathway.
Collapse
Affiliation(s)
- Michela Bollati
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Toni Giorgino
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Carmina Natale
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Elisa Fagnani
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Irene Boniardi
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milano, Italy
| | - Rebecca Alemani
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Marten Beeg
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Eloise Mastrangelo
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Mario Milani
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | | | - Edi Gabellieri
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Patrizia Cioni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Matteo de Rosa
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| |
Collapse
|
8
|
Mullany S, Souzeau E, Klebe S, Zhou T, Knight LSW, Qassim A, Berry EC, Marshall H, Hussey M, Dubowsky A, Breen J, Hassall MM, Mills RA, Craig JE, Siggs OM. A novel GSN variant outside the G2 calcium-binding domain associated with Amyloidosis of the Finnish type. Hum Mutat 2021; 42:818-826. [PMID: 33973672 DOI: 10.1002/humu.24214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022]
Abstract
Gelsolin (GSN) variants have been implicated in amyloidosis of the Finnish type. This case series reports a novel GSN:c.1477T>C,p.(Trp493Arg) variant in a family with ocular and systemic features consistent with Finnish Amyloidosis. Exome sequencing performed on affected individuals from two families manifesting cutis laxa and polymorphic corneal stromal opacities demonstrated the classic GSN:c.654G>A,p.Asp214Asn variant in single affected individual from one family, and a previously undocumented GSN:c.1477T>C variant in three affected first-degree relatives from a separate family. Immunohistochemical studies on corneal tissue from a proband with the c.1477T>C variant identified gelsolin protein within histologically defined corneal amyloid deposits. This study reports a novel association between the predicted pathogenic GSN:c.1477T>C variant and amyloidosis of the Finnish type, and is the first to provide functional evidence of a pathological GSN variant at a locus distant to the critical G2 calcium-binding region, resulting in the phenotype of amyloidosis of the Finnish type.
Collapse
Affiliation(s)
- Sean Mullany
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Emmanuelle Souzeau
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Sonja Klebe
- Department of Pathology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia.,Department of Anatomical Pathology, SA Pathology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Tiger Zhou
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Lachlan S W Knight
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Ayub Qassim
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Ella C Berry
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Henry Marshall
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Matthew Hussey
- Department of Anatomical Pathology, SA Pathology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Dubowsky
- Department of Anatomical Pathology, SA Pathology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - James Breen
- SAHMRI Bioinformatics Core, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Mark M Hassall
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Richard A Mills
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Jamie E Craig
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Owen M Siggs
- Flinders Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
9
|
Cheong EN, Paik W, Choi YC, Lim YM, Kim H, Shim WH, Park HJ. Clinical Features and Brain MRI Findings in Korean Patients with AGel Amyloidosis. Yonsei Med J 2021; 62:431-438. [PMID: 33908214 PMCID: PMC8084699 DOI: 10.3349/ymj.2021.62.5.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE AGel amyloidosis is systemic amyloidosis caused by pathogenic variants in the GSN gene. In this study, we sought to characterize the clinical and brain magnetic resonance image (MRI) features of Korean patients with AGel amyloidosis. MATERIALS AND METHODS We examined 13 patients with AGel amyloidosis from three unrelated families. Brain MRIs were performed in eight patients and eight age- and sex-matched healthy controls. Therein, we analyzed gray and white matter content using voxel-based morphometry (VBM), tract-based spatial statistics (TBSS), and FreeSurfer. RESULTS The median age at examination was 73 (interquartile range: 64-76) years. The median age at onset of cutis laxa was 20 (interquartile range: 15-30) years. All patients over that age of 60 years had dysarthria, cutis laxa, dysphagia, and facial palsy. Two patients in their 30s had only mild cutis laxa. The median age at dysarthria onset was 66 (interquartile range: 63.5-70) years. Ophthalmoparesis was observed in three patients. No patient presented with muscle weakness of the limbs. Axial fluid-attenuated inversion recovery images of the brain showed no significant differences between the patient and control groups. Also, analysis of VBM, TBSS, and FreeSurfer revealed no significant differences in cortical thickness between patients and healthy controls at the corrected significance level. CONCLUSION Our study outlines the clinical manifestations of prominent bulbar palsy and early-onset cutis laxa in 13 Korean patients with AGel amyloidosis and confirms that AGel amyloidosis mainly affects the peripheral nervous system rather than the central nervous system.
Collapse
Affiliation(s)
- E Nae Cheong
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Wooyul Paik
- Department of Radiology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Young Chul Choi
- Department of Neurology, Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woo Hyun Shim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Hyung Jun Park
- Department of Neurology, Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea.
| |
Collapse
|
10
|
Koskelainen S, Zhao F, Kalimo H, Baumann M, Kiuru-Enari S. Severe elastolysis in hereditary gelsolin (AGel) amyloidosis. Amyloid 2020; 27:81-88. [PMID: 31814469 DOI: 10.1080/13506129.2019.1699785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AGel amyloidosis is a dominantly inherited systemic amyloidosis caused by mutations p.D214N or p.D214Y resulting in gelsolin amyloid (AGel) formation. AGel accumulates extracellularly in many tissues and alongside elastic fibres. AGel deposition associates with elastic fibre degradation leading to severe clinical manifestations, such as cutis laxa and angiopathic complications. We analysed elastic fibre pathology in dermal and vascular tissue and plasma samples from 35 patients with AGel amyloidosis and 40 control subjects by transmission electron microscopy, immunohistochemistry and ELISA methods. To clarify the pathomechanism(s) of AGel-related elastolysis, we studied the roles of MMP-2, -7, -9, -12 and -14, TIMP-1 and TGFβ. We found massive accumulation of amyloid fibrils along elastic fibres as well as fragmentation and loss of elastic fibres in all dermal and vascular samples of AGel patients. Fibrils of distinct types formed fibrous matrix. The degradation pattern of elastic fibres in AGel patients was different from the age-related degradation in controls. The elastin of elastic fibres in AGel patients was strongly decreased compared to controls. MMP-9 was expressed at lower and TGFβ at higher levels in AGel patients than in controls. The accumulation of amyloid fibrils with severe elastolysis characterises both dermal and vascular derangement in AGel amyloidosis.
Collapse
Affiliation(s)
- Susanna Koskelainen
- Faculty of Medicine, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Fang Zhao
- Faculty of Medicine, Advanced Microscopy Unit, University of Helsinki, Helsinki, Finland
| | - Hannu Kalimo
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Marc Baumann
- Faculty of Medicine, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Sari Kiuru-Enari
- Department of Neurosciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
The structure of N184K amyloidogenic variant of gelsolin highlights the role of the H-bond network for protein stability and aggregation properties. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 49:11-19. [PMID: 31724080 DOI: 10.1007/s00249-019-01409-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 11/03/2019] [Indexed: 10/25/2022]
Abstract
Mutations in the gelsolin protein are responsible for a rare conformational disease known as AGel amyloidosis. Four of these mutations are hosted by the second domain of the protein (G2): D187N/Y, G167R and N184K. The impact of the latter has been so far evaluated only by studies on the isolated G2. Here we report the characterization of full-length gelsolin carrying the N184K mutation and compare the findings with those obtained on the wild type and the other variants. The crystallographic structure of the N184K variant in the Ca2+-free conformation shows remarkable similarities with the wild type protein. Only minimal local rearrangements can be observed and the mutant is as efficient as the wild type in severing filamentous actin. However, the thermal stability of the pathological variant is compromised in the Ca2+-free conditions. These data suggest that the N to K substitution causes a local disruption of the H-bond network in the core of the G2 domain. Such a subtle rearrangement of the connections does not lead to significant conformational changes but severely affects the stability of the protein.
Collapse
|
12
|
Pande M, Srivastava R. Molecular and clinical insights into protein misfolding and associated amyloidosis. Eur J Med Chem 2019; 184:111753. [PMID: 31622853 DOI: 10.1016/j.ejmech.2019.111753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
Abstract
The misfolding of normally soluble proteins causes their aggregation and deposition in the tissues which disrupts the normal structure and function of the corresponding organs. The proteins with high β-sheet contents are more prone to form amyloids as they exhibit high propensity of self-aggregation. The self aggregated misfolded proteins act as template for further aggregation that leads to formation of protofilaments and eventually amyloid fibrils. More than 30 different types of proteins are known to be associated with amyloidosis related diseases. Several aspects of the amyloidogenic behavior of proteins remain elusive. The exact reason that causes misfolding of the protein and its association into amyloid fibrils is not known. These misfolded intermediates surpass the over engaged quality control system of the cell which clears the misfolded intermediates. This promotes the self-aggregation, accumulation and deposition of these misfolded species in the form of amyloids in the different parts of the body. The amyloid deposition can be localized as in Alzheimer disease or systemic as reported in most of the amyloidosis. The amyloidosis can be of acquired type or familial. The current review aims at bringing together recent updates and comprehensive information about protein amyloidosis and associated diseases at one place.
Collapse
Affiliation(s)
- Monu Pande
- Department of Biochemistry, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ragini Srivastava
- Department of Biochemistry, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
13
|
Abstract
In the disease familial amyloidosis, Finnish type (FAF) the mechanism by which point mutations in gelsolin domain 2 (G2) lead to furin cleavage is not understood for the intact protein. Here, we determine that FAF mutants adopt similar conformations to the wild-type protein. However, the mutations appear to affect the dynamics of domain:domain interactions. Thus, proper domain:domain interactions are needed to protect G2 from protease cleavage. We make mutations in the following domain (G3) that functionally mimic the FAF mutations in G2. We conclude that G2 is on the limits of stability, and perturbations that affect domain:domain stabilizing interactions tip the balance toward cleavage. These data explain how multiple FAF mutations give rise to amyloid formation. In the disease familial amyloidosis, Finnish type (FAF), also known as AGel amyloidosis (AGel), the mechanism by which point mutations in the calcium-regulated actin-severing protein gelsolin lead to furin cleavage is not understood in the intact protein. Here, we provide a structural and biochemical characterization of the FAF variants. X-ray crystallography structures of the FAF mutant gelsolins demonstrate that the mutations do not significantly disrupt the calcium-free conformations of gelsolin. Small-angle X-ray–scattering (SAXS) studies indicate that the FAF calcium-binding site mutants are slower to activate, whereas G167R is as efficient as the wild type. Actin-regulating studies of the gelsolins at the furin cleavage pH (6.5) show that the mutant gelsolins are functional, suggesting that they also adopt relatively normal active conformations. Deletion of gelsolin domains leads to sensitization to furin cleavage, and nanobody-binding protects against furin cleavage. These data indicate instability in the second domain of gelsolin (G2), since loss or gain of G2-stabilizing interactions impacts the efficiency of cleavage by furin. To demonstrate this principle, we engineered non-FAF mutations in G3 that disrupt the G2-G3 interface in the calcium-activated structure. These mutants led to increased furin cleavage. We carried out molecular dynamics (MD) simulations on the FAF and non-FAF mutant G2-G3 fragments of gelsolin. All mutants showed an increase in the distance between the center of masses of the 2 domains (G2 and G3). Since G3 covers the furin cleavage site on G2 in calcium-activated gelsolin, this suggests that destabilization of this interface is a critical step in cleavage.
Collapse
|
14
|
Giorgino T, Mattioni D, Hassan A, Milani M, Mastrangelo E, Barbiroli A, Verhelle A, Gettemans J, Barzago MM, Diomede L, de Rosa M. Nanobody interaction unveils structure, dynamics and proteotoxicity of the Finnish-type amyloidogenic gelsolin variant. Biochim Biophys Acta Mol Basis Dis 2019; 1865:648-660. [DOI: 10.1016/j.bbadis.2019.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/11/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
|
15
|
Bonì F, Milani M, Barbiroli A, Diomede L, Mastrangelo E, de Rosa M. Gelsolin pathogenic Gly167Arg mutation promotes domain-swap dimerization of the protein. Hum Mol Genet 2019; 27:53-65. [PMID: 29069428 PMCID: PMC5886171 DOI: 10.1093/hmg/ddx383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Abstract
AGel amyloidosis is a genetic degenerative disease characterized by the deposition of insoluble gelsolin protein aggregates in different tissues. Until recently, this disease was associated with two mutations of a single residue (Asp187 to Asn/Tyr) in the second domain of the protein. The general opinion is that pathogenic variants are not per se amyloidogenic but rather that the mutations trigger an aberrant proteolytic cascade, which results in the production of aggregation prone fragments. Here, we report the crystal structure of the second domain of gelsolin carrying the recently identified Gly167Arg mutation. This mutant dimerizes through a three-dimensional domain swapping mechanism, forming a tight but flexible assembly, which retains the structural topology of the monomer. To date, such dramatic conformational changes of this type have not been observed. Structural and biophysical characterizations reveal that the Gly167Arg mutation alone is responsible for the monomer to dimer transition and that, even in the context of the full-length protein, the pathogenic variant is prone to form dimers. These data suggest that, in addition to the well-known proteolytic-dependent mechanism, an alternative oligomerization pathway may participate in gelsolin misfolding and aggregation. We propose to integrate this alternative pathway into the current model of the disease that may also be relevant for other types of AGel amyloidosis, and other related diseases with similar underlying pathological mechanisms.
Collapse
Affiliation(s)
- Francesco Bonì
- CNR Istituto di Biofisica, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mario Milani
- CNR Istituto di Biofisica, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy
| | - Luisa Diomede
- Dipartimento di Biochimica e Farmacologia Molecolare, IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', 20156 Milan, Italy
| | - Eloise Mastrangelo
- CNR Istituto di Biofisica, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Matteo de Rosa
- CNR Istituto di Biofisica, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
16
|
Maidorn M, Olichon A, Rizzoli SO, Opazo F. Nanobodies reveal an extra-synaptic population of SNAP-25 and Syntaxin 1A in hippocampal neurons. MAbs 2018; 11:305-321. [PMID: 30466346 PMCID: PMC6380399 DOI: 10.1080/19420862.2018.1551675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synaptic vesicle fusion (exocytosis) is a precisely regulated process that entails the formation of SNARE complexes between the vesicle protein synaptobrevin 2 (VAMP2) and the plasma membrane proteins Syntaxin 1 and SNAP-25. The sub-cellular localization of the latter two molecules remains unclear, although they have been the subject of many recent investigations. To address this, we generated two novel camelid single domain antibodies (nanobodies) specifically binding to SNAP-25 and Syntaxin 1A. These probes penetrated more easily into samples and detected their targets more efficiently than conventional antibodies in crowded regions. When investigated by super-resolution imaging, the nanobodies revealed substantial extra-synaptic populations for both SNAP-25 and Syntaxin 1A, which were poorly detected by antibodies. Moreover, extra-synaptic Syntaxin 1A molecules were recruited to synapses during stimulation, suggesting that these are physiologically-active molecules. We conclude that nanobodies are able to reveal qualitatively and quantitatively different organization patterns, when compared to conventional antibodies.
Collapse
Affiliation(s)
- Manuel Maidorn
- a Institute of Neuro- and Sensory Physiology , University Medical Center Göttingen , Göttingen , Germany.,b Center for Biostructural Imaging of Neurodegeneration (BIN) , University of Göttingen Medical Center , Göttingen , Germany
| | - Aurélien Olichon
- c Inserm, UMR 1037-CRCT , Toulouse , France.,d Université Toulouse III-Paul Sabatier , Toulouse , France
| | - Silvio O Rizzoli
- a Institute of Neuro- and Sensory Physiology , University Medical Center Göttingen , Göttingen , Germany.,b Center for Biostructural Imaging of Neurodegeneration (BIN) , University of Göttingen Medical Center , Göttingen , Germany
| | - Felipe Opazo
- a Institute of Neuro- and Sensory Physiology , University Medical Center Göttingen , Göttingen , Germany.,b Center for Biostructural Imaging of Neurodegeneration (BIN) , University of Göttingen Medical Center , Göttingen , Germany
| |
Collapse
|
17
|
Bai F, Matton DP. The Arabidopsis Mitogen-Activated Protein Kinase Kinase Kinase 20 (MKKK20) C-terminal domain interacts with MKK3 and harbors a typical DEF mammalian MAP kinase docking site. PLANT SIGNALING & BEHAVIOR 2018; 13:e1503498. [PMID: 30081740 PMCID: PMC6149407 DOI: 10.1080/15592324.2018.1503498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 05/21/2023]
Abstract
Mitogen-activated protein kinase (MAPKs) constitute a major component in plant cellular signaling considering the sheer number of MAPKKKKs, MAPKKKs, MAPKKs and MAPKs when compared to yeast and animal systems. Nevertheless, only few complete MAPK cascades have been deciphered and the same hold true for their substrates. Furthermore, cascades often share kinase components, but little is known about their specific interactions and domains. The Arabidopsis thaliana MAP kinase kinase kinase 20 (MKKK20) was recently showed to interact with MKK3 and MPK18 in two non-complementary signaling cascades involved in root cortical microtubule functions. Here, MKKK20 and MKK3 proteins where dissected and tested in yeast two-hybrid assays followed by an in planta validation through bimolecular fluorescence complementation (BiFC) assays and showed that the MKKK20 C-terminal region interacted with MKK3 that comprised a typical DEF domain akin to MAPKs docking domains.
Collapse
Affiliation(s)
- Fangwen Bai
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Canada
| | - Daniel P. Matton
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Canada
- CONTACT Daniel P. Matton Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Canada
| |
Collapse
|
18
|
Verhelle A, Van Overbeke W, Peleman C, De Smet R, Zwaenepoel O, Lahoutte T, Van Dorpe J, Devoogdt N, Gettemans J. Non-Invasive Imaging of Amyloid Deposits in a Mouse Model of AGel Using 99mTc-Modified Nanobodies and SPECT/CT. Mol Imaging Biol 2017; 18:887-897. [PMID: 27130233 DOI: 10.1007/s11307-016-0960-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Gelsolin amyloidosis (AGel), also known as familial amyloidosis, Finnish type (FAF), is an autosomal, dominant, incurable disease caused by a point mutation (G654A/T) in the gelsolin (GSN) gene. The mutation results in loss of a Ca2+-binding site in the second gelsolin domain. Subsequent incorrect folding exposes a cryptic furin cleavage site, leading to the formation of a 68-kDa C-terminal cleavage product (C68) in the trans-Golgi network. This C68 fragment is cleaved by membrane type 1-matrix metalloproteinase (MT1-MMP) during secretion into the extracellular environment, releasing 8- and 5-kDa amyloidogenic peptides. These peptides aggregate and cause disease-associated symptoms. We set out to investigate whether AGel-specific nanobodies could be used to monitor amyloidogenic gelsolin buildup. PROCEDURES Three nanobodies (FAF Nb1-3) raised against the 8-kDa fragment were screened as AGel amyloid imaging agents in WT and AGel mice using 99mTc-based single-photon emission computed tomography (SPECT)/X-ray tomography (CT), biodistribution analysis, and immunofluorescence (IF). The quantitative characteristics were analyzed in a follow-up study with a Nb11-expressing mouse model. RESULTS All three nanobodies possess the characteristics desired for a 99mTc-based SPECT/CT imaging agent, high specificity and a low background signal. FAF Nb1 was identified as the most potent, based on its superior signal-to-noise ratio and signal specificity. As a proof of concept, we implemented 99mTc-FAF Nb1 in a follow-up study of the Nb11-expressing AGel mouse model. Using biodistribution analysis and immunofluorescence, we demonstrated the validity of the data acquired via 99mTc-FAF Nb1 SPECT/CT. CONCLUSION These findings demonstrate the potential of this nanobody as a non-invasive tool to image amyloidogenic gelsolin deposition and assess the therapeutic capacity of AGel therapeutics currently under development. We propose that this approach can be extended to other amyloid diseases, thereby contributing to the development of specific therapies.
Collapse
Affiliation(s)
- Adriaan Verhelle
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | - Wouter Van Overbeke
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | - Cindy Peleman
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rebecca De Smet
- Department of Medical and Forensic Pathology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Olivier Zwaenepoel
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | - Tony Lahoutte
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo Van Dorpe
- Department of Medical and Forensic Pathology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Gettemans
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium.
| |
Collapse
|
19
|
Chiti F, Dobson CM. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu Rev Biochem 2017; 86:27-68. [DOI: 10.1146/annurev-biochem-061516-045115] [Citation(s) in RCA: 1756] [Impact Index Per Article: 219.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Peptides and proteins have been found to possess an inherent tendency to convert from their native functional states into intractable amyloid aggregates. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidoses. In this review, we describe this field of science with particular reference to the advances that have been made over the last decade in our understanding of its fundamental nature and consequences. We list the proteins that are known to be deposited as amyloid or other types of aggregates in human tissues and the disorders with which they are associated, as well as the proteins that exploit the amyloid motif to play specific functional roles in humans. In addition, we summarize the genetic factors that have provided insight into the mechanisms of disease onset. We describe recent advances in our knowledge of the structures of amyloid fibrils and their oligomeric precursors and of the mechanisms by which they are formed and proliferate to generate cellular dysfunction. We show evidence that a complex proteostasis network actively combats protein aggregation and that such an efficient system can fail in some circumstances and give rise to disease. Finally, we anticipate the development of novel therapeutic strategies with which to prevent or treat these highly debilitating and currently incurable conditions.
Collapse
Affiliation(s)
- Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” Section of Biochemistry, Università di Firenze, 50134 Firenze, Italy
| | - Christopher M. Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
20
|
Verhelle A, Nair N, Everaert I, Van Overbeke W, Supply L, Zwaenepoel O, Peleman C, Van Dorpe J, Lahoutte T, Devoogdt N, Derave W, Chuah MK, VandenDriessche T, Gettemans J. AAV9 delivered bispecific nanobody attenuates amyloid burden in the gelsolin amyloidosis mouse model. Hum Mol Genet 2017; 26:1353-1364. [PMID: 28334940 DOI: 10.1093/hmg/ddx056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/07/2017] [Indexed: 12/23/2022] Open
Abstract
Gelsolin amyloidosis is a dominantly inherited, incurable type of amyloidosis. A single point mutation in the gelsolin gene (G654A is most common) results in the loss of a Ca2+ binding site in the second gelsolin domain. Consequently, this domain partly unfolds and exposes an otherwise buried furin cleavage site at the surface. During secretion of mutant plasma gelsolin consecutive cleavage by furin and MT1-MMP results in the production of 8 and 5 kDa amyloidogenic peptides. Nanobodies that are able to (partly) inhibit furin or MT1-MMP proteolysis have previously been reported. In this study, the nanobodies have been combined into a single bispecific format able to simultaneously shield mutant plasma gelsolin from intracellular furin and extracellular MT1-MMP activity. We report the successful in vivo expression of this bispecific nanobody following adeno-associated virus serotype 9 gene therapy in gelsolin amyloidosis mice. Using SPECT/CT and immunohistochemistry, a reduction in gelsolin amyloid burden was detected which translated into improved muscle contractile properties. We conclude that a nanobody-based gene therapy using adeno-associated viruses shows great potential as a novel strategy in gelsolin amyloidosis and potentially other amyloid diseases.
Collapse
Affiliation(s)
- Adriaan Verhelle
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Nisha Nair
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Inge Everaert
- Department of Movement and Sport Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wouter Van Overbeke
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lynn Supply
- Department of Medical and Forensic Pathology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Olivier Zwaenepoel
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Cindy Peleman
- In Vivo Cellular and Molecular Imaging Laboratory, Free University of Brussels (VUB), Brussels, Belgium
| | - Jo Van Dorpe
- Department of Medical and Forensic Pathology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tony Lahoutte
- In Vivo Cellular and Molecular Imaging Laboratory, Free University of Brussels (VUB), Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Free University of Brussels (VUB), Brussels, Belgium
| | - Wim Derave
- Department of Movement and Sport Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium.,Department of Cardiovascular Sciences, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium.,Department of Cardiovascular Sciences, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Gettemans
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Blank B, von Blume J. Cab45-Unraveling key features of a novel secretory cargo sorter at the trans-Golgi network. Eur J Cell Biol 2017; 96:383-390. [PMID: 28372832 DOI: 10.1016/j.ejcb.2017.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
The accurate and efficient delivery of proteins to specific domains of the plasma membrane or to the extracellular space is critical for the ordered function of surface receptors and proteins such as insulin, collagens, antibodies, extracellular proteases. The trans-Golgi network is responsible for sorting proteins onto specific carriers for transport to their final destination. The role of the mannose-6-phosphate receptor in the sorting of hydrolases destined for lysosomes has been studied extensively, but the sorting mechanisms for secreted proteins remains poorly understood. We recently described a novel process that links the cytoplasmic actin cytoskeleton to the membrane-anchored Ca2+ ATPase SPCA1 and the lumenal Ca2+-binding protein Cab45, which mediates sorting of a subset of secretory proteins at the TGN. In response to Ca2+ influx, Cab45 forms oligomers, enabling it to bind a variety of specific cargo molecules. Thus, we suggest that this represents a novel way to export cargo molecules without the need for a bona fide transmembrane cargo receptor. This review focuses on Cab45's molecular function and highlights its possible role in disease.
Collapse
Affiliation(s)
- Birgit Blank
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
22
|
Abstract
Amyloidoses are a spectrum of disorders caused by abnormal folding and extracellular deposition of proteins. The deposits lead to tissue damage and organ dysfunction, particularly in the heart, kidneys, and nerves. There are at least 30 different proteins that can cause amyloidosis. The clinical management depends entirely on the type of protein deposited, and thus on the underlying pathogenesis, and often requires high-risk therapeutic intervention. Application of mass spectrometry-based proteomic technologies for analysis of amyloid plaques has transformed the way amyloidosis is diagnosed and classified. Proteomic assays have been extensively used for clinical management of patients with amyloidosis, providing unprecedented diagnostic and biological information. They have shed light on the pathogenesis of different amyloid types and have led to identification of numerous new amyloid types, including ALECT2 amyloidosis, which is now recognized as one of the most common causes of systemic amyloidosis in North America.
Collapse
Affiliation(s)
- Ahmet Dogan
- Departments of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| |
Collapse
|
23
|
Molecular basis of a novel renal amyloidosis due to N184K gelsolin variant. Sci Rep 2016; 6:33463. [PMID: 27633054 PMCID: PMC5025852 DOI: 10.1038/srep33463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
Mutations in gelsolin are responsible for a systemic amyloidosis first described in 1969. Until recently, the disease was associated with two substitutions of the same residue, leading to the loss of the calcium binding site. Novel interest arose in 2014 when the N184K variant of the protein was identified as the etiological agent of a novel kidney-localized amyloidosis. Here we provide a first rationale for N184K pathogenicity. We show that the mutation induces a destabilization of gelsolin second domain, without compromising its calcium binding capacity. X-ray data combined with molecular dynamics simulations demonstrates that the primary source of the destabilization is a loss of connectivity in proximity of the metal. Such rearrangement of the H-bond network does not have a major impact on the overall fold of the domain, nevertheless, it increases the flexibility of a stretch of the protein, which is consequently processed by furin protease. Overall our data suggest that the N184K variant is subjected to the same aberrant proteolytic events responsible for the formation of amyloidogenic fragments in the previously characterized mutants. At the same time our data suggest that a broader number of mutations, unrelated to the metal binding site, can lead to a pathogenic phenotype.
Collapse
|
24
|
Koskelainen S, Pihlamaa T, Suominen S, Zhao F, Salo T, Risteli J, Baumann M, Kalimo H, Kiuru-Enari S. Gelsolin amyloid angiopathy causes severe disruption of the arterial wall. APMIS 2016; 124:639-48. [PMID: 27198069 DOI: 10.1111/apm.12554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 11/26/2022]
Abstract
Hereditary gelsolin amyloidosis (HGA) is a dominantly inherited systemic disease reported worldwide. HGA is characterized by ophthalmological, neurological, and dermatological manifestations. AGel amyloid accumulates at basal lamina of epithelial and muscle cells, thus amyloid angiopathy is encountered in nearly every organ. HGA patients have cardiovascular, hemorrhagic, and potentially vascularly induced neurological problems. To clarify pathomechanisms of AGel angiopathy, we performed histological, immunohistochemical, and electron microscopic analyses on facial temporal artery branches from 8 HGA patients and 13 control subjects. We demonstrate major pathological changes in arteries: disruption of the tunica media, disorganization of vascular smooth muscle cells, and accumulation of AGel fibrils in arterial walls, where they associate with the lamina elastica interna, which becomes fragmented and diminished. We also provide evidence of abnormal accumulation and localization of collagen types I and III and an increase of collagen type I degradation product in the tunica media. Vascular smooth muscle cells appear to be morphologically and semi-quantitatively normal, only their basal lamina is often thickened. In conclusion, angiopathy in HGA results in severe disruption of arterial walls, characterized by prominent AGel deposition, collagen derangement and severe elastolysis, and it may be responsible for several, particularly hemorrhagic, disease manifestations in HGA.
Collapse
Affiliation(s)
- Susanna Koskelainen
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiia Pihlamaa
- Department of Plastic Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Sinikka Suominen
- Department of Plastic Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Fang Zhao
- Advanced Microscopy Unit, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Research Group of Cancer and Translational Medicine, Medical Faculty, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Juha Risteli
- Research Group of Cancer and Translational Medicine, Medical Faculty, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Marc Baumann
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Kalimo
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Forensic Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sari Kiuru-Enari
- Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Camilloni C, Sala BM, Sormanni P, Porcari R, Corazza A, De Rosa M, Zanini S, Barbiroli A, Esposito G, Bolognesi M, Bellotti V, Vendruscolo M, Ricagno S. Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability. Sci Rep 2016; 6:25559. [PMID: 27150430 PMCID: PMC4858664 DOI: 10.1038/srep25559] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/20/2016] [Indexed: 01/27/2023] Open
Abstract
A wide range of human diseases is associated with mutations that, destabilizing proteins native state, promote their aggregation. However, the mechanisms leading from folded to aggregated states are still incompletely understood. To investigate these mechanisms, we used a combination of NMR spectroscopy and molecular dynamics simulations to compare the native state dynamics of Beta-2 microglobulin (β2m), whose aggregation is associated with dialysis-related amyloidosis, and its aggregation-resistant mutant W60G. Our results indicate that W60G low aggregation propensity can be explained, beyond its higher stability, by an increased average protection of the aggregation-prone residues at its surface. To validate these findings, we designed β2m variants that alter the aggregation-prone exposed surface of wild-type and W60G β2m modifying their aggregation propensity. These results allowed us to pinpoint the role of dynamics in β2m aggregation and to provide a new strategy to tune protein aggregation by modulating the exposure of aggregation-prone residues.
Collapse
Affiliation(s)
- Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.,Department of Chemistry and Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching, Germany
| | - Benedetta Maria Sala
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Pietro Sormanni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Riccardo Porcari
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London NW3 2PF, UK
| | - Alessandra Corazza
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy
| | - Matteo De Rosa
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano Zanini
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milano, Italy
| | - Gennaro Esposito
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, 33100 Udine, Italy.,Science and Math Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy.,CIMAINA and CNR Istituto di Biofisica, c/o Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London NW3 2PF, UK
| | | | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
26
|
Pihlamaa T, Salmi T, Suominen S, Kiuru-Enari S. Progressive cranial nerve involvement and grading of facial paralysis in gelsolin amyloidosis. Muscle Nerve 2016; 53:762-9. [PMID: 26422119 DOI: 10.1002/mus.24922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2015] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Hereditary gelsolin amyloidosis (GA) is a rare condition caused by the gelsolin gene mutation. The diagnostic triad includes corneal lattice dystrophy (type 2), progressive bilateral facial paralysis, and cutis laxa. Detailed information on facial paralysis in GA and the extent of cranial nerve injury is lacking. METHODS 29 GA patients undergoing facial corrective surgery were interviewed, examined, and studied electroneurophysiologically. RESULTS All showed dysfunction of facial (VII) and trigeminal (V) nerves, two-thirds of oculomotor (III) and hypoglossal (XII) nerves, and half of vestibulocochlear (acoustic) (VIII) nerve. Clinical involvement of frontal, zygomatic, and buccal facial nerve branches was seen in 97%, 83%, and 52% of patients, respectively. Electromyography showed marked motor unit potential loss in facial musculature. CONCLUSIONS Cranial nerve involvement in GA is more widespread than previously described, and correlates with age, severity of facial paralysis, and electromyographic findings. We describe a grading method for bilateral facial paralysis in GA, which is essential for evaluation of disease progression and the need for treatment.
Collapse
Affiliation(s)
- Tiia Pihlamaa
- Department of Plastic and Reconstructive Surgery, Töölö Hospital of Helsinki University Central Hospital, P.O. Box 266, 00029 HUS, Finland
| | - Tapani Salmi
- Department of Clinical Neurophysiology, Helsinki University Central Hospital, Helsinki, Finland
| | - Sinikka Suominen
- Department of Plastic and Reconstructive Surgery, Töölö Hospital of Helsinki University Central Hospital, P.O. Box 266, 00029 HUS, Finland
| | - Sari Kiuru-Enari
- Department of Neurology, Helsinki University Central Hospital, Finland
| |
Collapse
|
27
|
Atula S, Nikoskinen T, Saastamoinen A, Strbian D, Schmidt EK, Kiuru-Enari S. Gender differences in the clinical course of Finnish gelsolin amyloidosis. Amyloid 2016; 23:33-8. [PMID: 26805765 DOI: 10.3109/13506129.2015.1119111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE To investigate gender differences in Finnish gelsolin amyloidosis (AGel amyloidosis). PATIENTS AND METHODS AGel amyloidosis patients, who were members of Finnish Amyloidosis Association (SAMY), filled in a questionnaire compiling known and suspected aspects of their disease. Telephone interviews and hospital medical records, when available, complemented the questionnaire. The data were entered to the database in order to create a national AGel amyloidosis patient registry (FIN-GAR). RESULTS A total of 227 patients, 156 women and 71 men, participated in the study. The women in our registry noticed their first symptoms at the median age of 39 years versus 43 years for men (p = 0.01). At the age in which the diagnosis was made there was a trend to be observed between men and women (women: 39 years versus men: 43 years, p = 0.053). Corneal lattice dystrophy was diagnosed in significantly younger women than men (median ages 41 versus 49 years, respectively, p = 0.01). Of other ophthalmological manifestations, corneal ulcer, impaired vision and glaucoma were all diagnosed at least 5 years earlier in women, although differences were not statistically significant. Ophthalmological manifestations, such as dry eyes and corneal ulcer; dermatological signs, such as blepharochalasis, and also neurological symptoms, such as myokymia and carpal tunnel syndrome, were more prevalent among women. CONCLUSIONS In the largest so far available study on AGel amyloidosis we show that women developed symptoms and signs of AGel amyloidosis at younger age. Especially eye-related problems occurred earlier and together with nerve and skin manifestations, the characteristic clinical triad in AGel amyloidosis, were more common in women. However, a clear limitation of our study was a selection bias caused by a significant underrepresentation of men in the study population.
Collapse
Affiliation(s)
- Sari Atula
- a Department of Neurology , Clinical Neurosciences, University of Helsinki and Helsinki University Hospital , Helsinki , Finland and
| | - Tuuli Nikoskinen
- b University of Helsinki, Faculty of Medicine , Helsinki , Finland
| | | | - Daniel Strbian
- a Department of Neurology , Clinical Neurosciences, University of Helsinki and Helsinki University Hospital , Helsinki , Finland and
| | | | - Sari Kiuru-Enari
- a Department of Neurology , Clinical Neurosciences, University of Helsinki and Helsinki University Hospital , Helsinki , Finland and
| |
Collapse
|
28
|
Van Overbeke W, Wongsantichon J, Everaert I, Verhelle A, Zwaenepoel O, Loonchanta A, Burtnick LD, De Ganck A, Hochepied T, Haigh J, Cuvelier C, Derave W, Robinson RC, Gettemans J. An ER-directed gelsolin nanobody targets the first step in amyloid formation in a gelsolin amyloidosis mouse model. Hum Mol Genet 2015; 24:2492-507. [PMID: 25601851 DOI: 10.1093/hmg/ddv010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/14/2015] [Indexed: 01/01/2023] Open
Abstract
Hereditary gelsolin amyloidosis is an autosomal dominantly inherited amyloid disorder. A point mutation in the GSN gene (G654A being the most common one) results in disturbed calcium binding by the second gelsolin domain (G2). As a result, the folding of G2 is hampered, rendering the mutant plasma gelsolin susceptible to a proteolytic cascade. Consecutive cleavage by furin and MT1-MMP-like proteases generates 8 and 5 kDa amyloidogenic peptides that cause neurological, ophthalmological and dermatological findings. To this day, no specific treatment is available to counter the pathogenesis. Using GSN nanobody 11 as a molecular chaperone, we aimed to protect mutant plasma gelsolin from furin proteolysis in the trans-Golgi network. We report a transgenic, GSN nanobody 11 secreting mouse that was used for crossbreeding with gelsolin amyloidosis mice. Insertion of the therapeutic nanobody gene into the gelsolin amyloidosis mouse genome resulted in improved muscle contractility. X-ray crystal structure determination of the gelsolin G2:Nb11 complex revealed that Nb11 does not directly block the furin cleavage site. We conclude that nanobodies can be used to shield substrates from aberrant proteolysis and this approach might establish a novel therapeutic strategy in amyloid diseases.
Collapse
Affiliation(s)
| | - Jantana Wongsantichon
- Institute of Molecular and Cellular Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Inge Everaert
- Department of Movement and Sport Sciences, Faculty of Medicine and Health Sciences
| | - Adriaan Verhelle
- Department of Biochemistry, Faculty of Medicine and Health Sciences
| | | | - Anantasak Loonchanta
- Department of Chemistry and Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leslie D Burtnick
- Department of Chemistry and Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ariane De Ganck
- Department of Biochemistry, Faculty of Medicine and Health Sciences
| | - Tino Hochepied
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium, Department of Biomedical Molecular Biology and
| | - Jody Haigh
- Department of Biomedical Molecular Biology and Vascular Cell Biology Unit, VIB Inflammation Research Centre, Ghent, Belgium and Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Department of Clinical Haematology, Monash University and Alfred Health Centre, Melbourne, Australia
| | - Claude Cuvelier
- Department of Pathology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sport Sciences, Faculty of Medicine and Health Sciences
| | - Robert C Robinson
- Institute of Molecular and Cellular Biology, A*STAR, Biopolis, Singapore 138673, Singapore, Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore,
| | - Jan Gettemans
- Department of Biochemistry, Faculty of Medicine and Health Sciences,
| |
Collapse
|
29
|
Kienzle C, von Blume J. Secretory cargo sorting at the trans-Golgi network. Trends Cell Biol 2014; 24:584-93. [DOI: 10.1016/j.tcb.2014.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 12/22/2022]
|
30
|
Single-molecule force spectroscopy reveals force-enhanced binding of calcium ions by gelsolin. Nat Commun 2014; 5:4623. [PMID: 25100107 PMCID: PMC4143929 DOI: 10.1038/ncomms5623] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/08/2014] [Indexed: 01/30/2023] Open
Abstract
Force is increasingly recognized as an important element in controlling biological processes. Forces can deform native protein conformations leading to protein-specific effects. Protein–protein binding affinities may be decreased, or novel protein–protein interaction sites may be revealed, on mechanically stressing one or more components. Here we demonstrate that the calcium-binding affinity of the sixth domain of the actin-binding protein gelsolin (G6) can be enhanced by mechanical force. Our kinetic model suggests that the calcium-binding affinity of G6 increases exponentially with force, up to the point of G6 unfolding. This implies that gelsolin may be activated at lower calcium ion levels when subjected to tensile forces. The demonstration that cation–protein binding affinities can be force-dependent provides a new understanding of the complex behaviour of cation-regulated proteins in stressful cellular environments, such as those found in the cytoskeleton-rich leading edge and at cell adhesions. The application of force can influence biological processes such as ligand and protein–protein binding, with mechanical stress typically hindering such interactions. Here, the authors use atomic force microscopy to show that the binding of calcium to gelsolin can be improved under stress.
Collapse
|
31
|
Chaperone nanobodies protect gelsolin against MT1-MMP degradation and alleviate amyloid burden in the gelsolin amyloidosis mouse model. Mol Ther 2014; 22:1768-78. [PMID: 25023329 DOI: 10.1038/mt.2014.132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/07/2014] [Indexed: 01/11/2023] Open
Abstract
Gelsolin amyloidosis is an autosomal dominant incurable disease caused by a point mutation in the GSN gene (G654A/T), specifically affecting secreted plasma gelsolin. Incorrect folding of the mutant (D187N/Y) second gelsolin domain leads to a pathological proteolytic cascade. D187N/Y gelsolin is first cleaved by furin in the trans-Golgi network, generating a 68 kDa fragment (C68). Upon secretion, C68 is cleaved by MT1-MMP-like proteases in the extracellular matrix, releasing 8 kDa and 5 kDa amyloidogenic peptides which aggregate in multiple tissues and cause disease-associated symptoms. We developed nanobodies that recognize the C68 fragment, but not native wild type gelsolin, and used these as molecular chaperones to mitigate gelsolin amyloid buildup in a mouse model that recapitulates the proteolytic cascade. We identified gelsolin nanobodies that potently reduce C68 proteolysis by MT1-MMP in vitro. Converting these nanobodies into an albumin-binding format drastically increased their serum half-life in mice, rendering them suitable for intraperitoneal injection. A 12-week treatment schedule of heterozygote D187N gelsolin transgenic mice with recombinant bispecific gelsolin-albumin nanobody significantly decreased gelsolin buildup in the endomysium and concomitantly improved muscle contractile properties. These findings demonstrate that nanobodies may be of considerable value in the treatment of gelsolin amyloidosis and related diseases.
Collapse
|
32
|
Bannykh SI, Balch WE, Kelly JW, Page LJ, Shelton GD. Formation of gelsolin amyloid fibrils in the rough endoplasmic reticulum of skeletal muscle in the gelsolin mouse model of inclusion body myositis: comparative analysis to human sporadic inclusion body myositis. Ultrastruct Pathol 2014; 37:304-11. [PMID: 24047347 DOI: 10.3109/01913123.2013.810684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sporadic inclusion body myositis has a significant impact on the life of the elderly. Despite some similarities to other myopathies with established genetic defects, little is known about mechanisms of its development and no effective treatment is available. Therefore, there is a need for animal models that can faithfully reconstitute important aspects of this human disease. The authors recently expressed a mutant form of human gelsolin in mice under the control of a muscle-specific promoter. This induced myopathic changes reminiscent of human inclusion body myositis. In this study, immunogold labeling is used to further characterize this model. The study demonstrates a presence of gelsolin amyloid deposits within the rough endoplasmic reticulum. It further compares this mouse model to human sporadic inclusion body myositis.
Collapse
Affiliation(s)
- Sergei I Bannykh
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center , Los Angeles, California , USA
| | | | | | | | | |
Collapse
|
33
|
Ida CM, Yan X, Jentoft ME, Kip NS, Scheithauer BW, Morris JM, Dogan A, Parisi JE, Kovacs K. Pituicytoma with gelsolin amyloid deposition. Endocr Pathol 2013; 24:149-55. [PMID: 23817895 DOI: 10.1007/s12022-013-9254-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pituicytoma is a rare low-grade (WHO grade I) sellar region glioma. Among sellar tumors, pituitary adenomas, mainly prolactinomas, may show amyloid deposits. Gelsolin is a ubiquitous calcium-dependent protein that regulates actin filament dynamics. Two known gene point mutations result in gelsolin amyloid deposition, a characteristic feature of a rare type of familial amyloid polyneuropathy (FAP), the Finnish-type FAP, or hereditary gelsolin amyloidosis (HGA). HGA is an autosomal-dominant systemic amyloidosis, characterized by slowly progressive neurological deterioration with corneal lattice dystrophy, cranial neuropathy, and cutis laxa. A unique case of pituicytoma with marked gelsolin amyloid deposition in a 67-year-old Chinese woman is described. MRI revealed a 2.6-cm well-circumscribed, uniformly contrast-enhancing solid sellar mass with suprasellar extension. Histologically, the lesion was characterized by solid sheets and fascicles of spindle cells with slightly fibrillary cytoplasm and oval nuclei with pinpoint nucleoli. Surrounding brain parenchyma showed marked reactive piloid gliosis. Remarkably, conspicuous amyloid deposits were identified as pink homogeneous spherules on light microscopy that showed apple-green birefringence on Congo red with polarization. Mass spectrometric-based proteomic analysis identified the amyloid as gelsolin type. Immunohistochemically, diffuse reactivity to S100 protein and TTF1, focal reactivity for GFAP, and no reactivity to EMA, synaptophysin, and chromogranin were observed. HGA-related mutations were not identified in the tumor. No recurrence was noted 14 months after surgery. To the knowledge of the authors, amyloid deposition in pituicytoma or tumor-associated gelsolin amyloidosis has not been previously described. This novel finding expands the spectrum of sellar tumors that may be associated with amyloid deposition.
Collapse
Affiliation(s)
- Cristiane M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nag S, Larsson M, Robinson RC, Burtnick LD. Gelsolin: The tail of a molecular gymnast. Cytoskeleton (Hoboken) 2013; 70:360-84. [DOI: 10.1002/cm.21117] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Mårten Larsson
- Institute of Molecular and Cell Biology, A*STAR; Singapore
| | | | - Leslie D. Burtnick
- Department of Chemistry and Centre for Blood Research; Life Sciences Institute, University of British Columbia; Vancouver; British Columbia; Canada
| |
Collapse
|
35
|
Grimster NP, Connelly S, Baranczak A, Dong J, Krasnova LB, Sharpless KB, Powers ET, Wilson IA, Kelly JW. Aromatic sulfonyl fluorides covalently kinetically stabilize transthyretin to prevent amyloidogenesis while affording a fluorescent conjugate. J Am Chem Soc 2013; 135:5656-68. [PMID: 23350654 PMCID: PMC3630275 DOI: 10.1021/ja311729d] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Molecules that bind selectively to a given protein and then undergo a rapid chemoselective reaction to form a covalent conjugate have utility in drug development. Herein a library of 1,3,4-oxadiazoles substituted at the 2 position with an aryl sulfonyl fluoride and at the 5 position with a substituted aryl known to have high affinity for the inner thyroxine binding subsite of transthyretin (TTR) was conceived of by structure-based design principles and was chemically synthesized. When bound in the thyroxine binding site, most of the aryl sulfonyl fluorides react rapidly and chemoselectively with the pKa-perturbed K15 residue, kinetically stabilizing TTR and thus preventing amyloid fibril formation, known to cause polyneuropathy. Conjugation t50s range from 1 to 4 min, ~1400 times faster than the hydrolysis reaction outside the thyroxine binding site. X-ray crystallography confirms the anticipated binding orientation and sheds light on the sulfonyl fluoride activation leading to the sulfonamide linkage to TTR. A few of the aryl sulfonyl fluorides efficiently form conjugates with TTR in plasma. Eleven of the TTR covalent kinetic stabilizers synthesized exhibit fluorescence upon conjugation and therefore could have imaging applications as a consequence of the environment sensitive fluorescence of the chromophore.
Collapse
Affiliation(s)
- Neil P Grimster
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu Z, Ono S. Regulatory role of the second gelsolin-like domain of Caenorhabditis elegans gelsolin-like protein 1 (GSNL-1) in its calcium-dependent conformation and actin-regulatory activities. Cytoskeleton (Hoboken) 2013; 70:228-39. [PMID: 23475707 DOI: 10.1002/cm.21103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/23/2013] [Accepted: 02/25/2013] [Indexed: 12/22/2022]
Abstract
Caenorhabditis elegans gelsolin-like protein-1 (GSNL-1) is an unconventional member of the gelsolin family of actin-regulatory proteins. Unlike typical gelsolin-related proteins with three or six G domains, GSNL-1 has four gelsolin-like (G) domains (G1-G4) and exhibits calcium-dependent actin filament severing and capping activities. The first G domain (G1) of GSNL-1 is necessary for its actin-regulatory activities. However, how other domains in GSNL-1 participate in regulation of its functions is not understood. Here, we report biochemical evidence that the second G domain (G2) of GSNL-1 has a regulatory role in its calcium-dependent conformation and actin-regulatory activities. Comparison of the sequences of gelsolin-related proteins from various species indicates that sequences of G2 are highly conserved. Among the conserved residues in G2, we focused on D162 of GSNL-1, since equivalent residues in gelsolin and severin are part of the calcium-binding sites and is a pathogenic mutation site in human gelsolin causing familial amyloidosis, Finish-type. The D162N mutation does not alter the inactive and fully calcium-activated states of GSNL-1 for actin filament severing (at 20 nM GSNL-1) and capping activities (at 50 nM GSNL-1). However, under these conditions, the mutant shows reduced calcium sensitivity for activation. By contrast, the D162N mutation strongly enhances susceptibility of GSNL-1 to chymotrypsin digestion only at high calcium concentrations but not at low calcium concentrations. The mutation also reduces affinity of GSNL-1 with actin monomers. These results suggest that G2 of GSNL-1 functions as a regulatory domain for its calcium-dependent actin-regulatory activities by mediating conformational changes of the GSNL-1 molecule.
Collapse
Affiliation(s)
- Zhongmei Liu
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
37
|
Watt B, van Niel G, Raposo G, Marks MS. PMEL: a pigment cell-specific model for functional amyloid formation. Pigment Cell Melanoma Res 2013; 26:300-15. [PMID: 23350640 DOI: 10.1111/pcmr.12067] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/15/2013] [Indexed: 12/15/2022]
Abstract
PMEL is a pigment cell-specific protein responsible for the formation of fibrillar sheets within the pigment organelle, the melanosome. The fibrillar sheets serve as a template upon which melanins polymerize as they are synthesized. The PMEL fibrils are required for optimal pigment cell function, as animals that either lack PMEL expression or express mutant PMEL variants show varying degrees of hypopigmentation and pigment cell inviability. The PMEL fibrils have biophysical properties of amyloid, a protein fold that is frequently associated with neurodegenerative and other diseases. However, PMEL is one of a growing number of non-pathogenic amyloid proteins that contribute to the function of the cell and/or organism that produces them. Understanding how PMEL generates amyloid in a non-pathogenic manner might provide insights into how to avoid toxicity due to pathological amyloid formation. In this review, we summarize and reconcile data concerning the fate of PMEL from its site of synthesis in the endoplasmic reticulum to newly formed melanosomes and the role of distinct PMEL subdomains in trafficking and amyloid fibril formation. We then discuss how its progression through the secretory pathway into the endosomal system might allow for the regulated and non-toxic conversion of PMEL into an ordered amyloid polymer.
Collapse
Affiliation(s)
- Brenda Watt
- Department of Pathology and Laboratory Medicine, Department of Physiology, and Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Hereditary gelsolin amyloidosis (HGA) is an autosomally dominantly inherited form of systemic amyloidosis, characterized mainly by cranial and sensory peripheral neuropathy, corneal lattice dystrophy, and cutis laxa. HGA, originally reported from Finland and now increasingly from other countries in Europe, North and South America, and Asia, may still be underdiagnosed worldwide. It is the first and so-far only known disorder caused by a gelsolin gene defect, namely a G654A or G654T mutation. Gelsolin is a principal actin-modulating protein, implicated in multiple biological processes, also in the nervous system, e.g. axonal transport, myelination, neurite outgrowth, and neuroprotection. The gelsolin gene defect causes expression of variant gelsolin, followed by systemic deposition of gelsolin amyloid (AGel) in HGA patients and even other consequences on the metabolism and function of gelsolin. In HGA, specific therapy is not yet available but correct diagnosis enables adequate symptomatic treatment which decisively improves the quality of life in these patients. A transgenic murine model of HGA expressing AGel is available, in anticipation of new treatment options targeted toward this slowly progressive but devastating amyloidosis. Present and future lessons learned from HGA may be applicable even in diagnosis and treatment of other hereditary and sporadic amyloidoses.
Collapse
Affiliation(s)
- Sari Kiuru-Enari
- Department of Neurology, Unit for Neuromuscular Diseases, Helsinki University Central Hospital, Helsinki, Finland.
| | | |
Collapse
|
39
|
Sethi S, Theis JD, Quint P, Maierhofer W, Kurtin PJ, Dogan A, Highsmith EW. Renal amyloidosis associated with a novel sequence variant of gelsolin. Am J Kidney Dis 2012; 61:161-6. [PMID: 22938848 DOI: 10.1053/j.ajkd.2012.07.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/25/2012] [Indexed: 11/11/2022]
Abstract
We present a case of a 75-year-old woman who presented with progressive kidney failure. Kidney biopsy performed to determine the cause of kidney failure showed amyloidosis of undetermined type. Laser microdissection of the Congo Red-positive glomeruli followed by mass spectrometry studies showed a large number of spectra matching apolipoprotein E, serum amyloid P component, and gelsolin, consistent with a diagnosis of gelsolin-associated renal amyloidosis. Sequencing of the gelsolin gene revealed a previously undescribed sequence variant, a guanine to adenine substitution at nucleotide 580 of the coding sequence, corresponding to a predicted glycine to arginine mutation at amino acid 194. Gelsolin amyloidosis typically involves the nerves and skin, with only rare reported involvement of the kidney. An atypical finding on electron microscopy was that of a swirling pattern of the amyloid fibrils. The novel gelsolin variant may be responsible for the unusual clinical and pathologic presentation. The report also highlights the usefulness of laser microdissection and mass spectrometry in the typing of difficult cases of amyloidosis.
Collapse
Affiliation(s)
- Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Mazumdar B, Meyer K, Ray R. N-terminal region of gelsolin induces apoptosis of activated hepatic stellate cells by a caspase-dependent mechanism. PLoS One 2012; 7:e44461. [PMID: 22952982 PMCID: PMC3430645 DOI: 10.1371/journal.pone.0044461] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/03/2012] [Indexed: 11/18/2022] Open
Abstract
Activated hepatic stellate cells (HSCs) are the major source for alteration of extracellular matrix in fibrosis and cirrhosis. Conditioned medium (CM) collected from immortalized human hepatocytes (IHH) have earlier been shown to be responsible for apoptosis of HSCs. In this study, we have shown that antibodies raised against a peptide derived from a linear B-cell epitope in the N-terminal region of gelsolin identified a gelsolin fragment in IHH CM. Analysis of activated stellate cell death by CM collected from Huh7 cells transfected with plasmids encoding gelsolin deletion mutants suggested that the N-terminal half of gelsolin contained sequences which were responsible for stellate cell death. Further analysis determined that this activity was restricted to a region encompassing amino acids 1–70 in the gelsolin sequence; antibody directed to an epitope within this region was able to neutralize stellate cell death. Gelsolin modulation of cell death using this fragment involved upregulation of TRAIL-R1 and TRAIL-R2, and involved caspase 3 activation by extrinsic pathway. The apoptotic activity of N-terminal gelsolin fragments was restricted to activated but not quiescent stellate cells indicating its potential application in therapeutic use as an anti-fibrotic agent. Gelsolin fragments encompassing N-terminal regions in polypeptides of different molecular sizes were detected by N-terminal peptide specific antiserum in IHH CM immunoprecipitated with chronically HCV infected patient sera, suggesting the presence of autoantibodies generated against N-terminal gelsolin fragments in patients with chronic liver disease.
Collapse
Affiliation(s)
- Budhaditya Mazumdar
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| | | | | |
Collapse
|
41
|
Kerschen P, Planté-Bordeneuve V. Neuropatie amiloidi familiari. Neurologia 2012. [DOI: 10.1016/s1634-7072(12)60703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
42
|
Abstract
The term amyloid describes the deposition in the extracellular space of certain proteins in a highly characteristic, insoluble fibrillar form. Amyloidosis describes the various clinical syndromes that occur as a result of damage by amyloid deposits in tissues and organs throughout the body. The clinical significance of amyloid varies enormously, ranging from incidental asymptomatic deposits to localized disease through to rapidly fatal systemic forms that can affect multiple vital organs. Currently available therapy is focused on reducing the supply of the respective amyloid fibril precursor protein and supportive medical care, which together have greatly improved survival. Chemotherapy and anti-inflammatory treatment for the disorders that underlie AL and AA amyloidosis are guided by serial measurements of the respective circulating amyloid precursor proteins, i.e. serial serum free light chains in AL and serum amyloid A protein in AA type. Quality of life and prognosis of some forms of hereditary systemic amyloidosis can be improved by liver and other organ transplants. Various new therapies, ranging from silencing RNA, protein stabilizers to monoclonal antibodies, aimed at inhibiting fibril precursor supply, fibril formation or the persistence of amyloid deposits, are in development; some are already in clinical phase.
Collapse
Affiliation(s)
- Jennifer H Pinney
- UCL Centre for Nephrology, UCL Medical School, Royal Free Hampstead NHS Trust, Rowland Hill Street, London NW3 2PF, UK.
| | | |
Collapse
|
43
|
Solomon JP, Page LJ, Balch WE, Kelly JW. Gelsolin amyloidosis: genetics, biochemistry, pathology and possible strategies for therapeutic intervention. Crit Rev Biochem Mol Biol 2012; 47:282-96. [PMID: 22360545 DOI: 10.3109/10409238.2012.661401] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein misassembly into aggregate structures, including cross-β-sheet amyloid fibrils, is linked to diseases characterized by the degeneration of post-mitotic tissue. While amyloid fibril deposition in the extracellular space certainly disrupts cellular and tissue architecture late in the course of amyloid diseases, strong genetic, pathological and pharmacologic evidence suggests that the process of amyloid fibril formation itself, known as amyloidogenesis, likely causes these maladies. It seems that the formation of oligomeric aggregates during the amyloidogenesis process causes the proteotoxicity and cytotoxicity characteristic of these disorders. Herein, we review what is known about the genetics, biochemistry and pathology of familial amyloidosis of Finnish type (FAF) or gelsolin amyloidosis. Briefly, autosomal dominant D187N or D187Y mutations compromise Ca(2+) binding in domain 2 of gelsolin, allowing domain 2 to sample unfolded conformations. When domain 2 is unfolded, gelsolin is subject to aberrant furin endoproteolysis as it passes through the Golgi on its way to the extracellular space. The resulting C-terminal 68 kDa fragment (C68) is susceptible to extracellular endoproteolytic events, possibly mediated by a matrix metalloprotease, affording 8 and 5 kDa amyloidogenic fragments of gelsolin. These amyloidogenic fragments deposit systemically, causing a variety of symptoms including corneal lattice dystrophy and neurodegeneration. The first murine model of the disease recapitulates the aberrant processing of mutant plasma gelsolin, amyloid deposition, and the degenerative phenotype. We use what we have learned from our biochemical studies, as well as insight from mouse and human pathology to propose therapeutic strategies that may halt the progression of FAF.
Collapse
Affiliation(s)
- James P Solomon
- Departments of Chemistry and Molecular and Experimental Medicine, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA
| | | | | | | |
Collapse
|
44
|
Dueholm MS, Nielsen SB, Hein KL, Nissen P, Chapman M, Christiansen G, Nielsen PH, Otzen DE. Fibrillation of the major curli subunit CsgA under a wide range of conditions implies a robust design of aggregation. Biochemistry 2011; 50:8281-90. [PMID: 21877724 DOI: 10.1021/bi200967c] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The amyloid fold is usually considered a result of protein misfolding. However, a number of studies have recently shown that the amyloid structure is also used in nature for functional purposes. CsgA is the major subunit of Escherichia coli curli, one of the most well-characterized functional amyloids. Here we show, using a highly efficient approach to prepare monomeric CsgA, that in vitro fibrillation of CsgA occurs under a wide variety of environmental conditions and that the resulting fibrils exhibit similar structural features. This highlights how fibrillation is "hardwired" into amyloid that has evolved for structural purposes in a fluctuating extracellular environment and represents a clear contrast to disease-related amyloid formation. Furthermore, we show that CsgA polymerization in vitro is preceded by the formation of thin needlelike protofibrils followed by aggregation of the amyloid fibrils.
Collapse
Affiliation(s)
- Morten S Dueholm
- Interdisciplinary Nanoscience Center, Centre for Insoluble Protein Structures, Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Mahalka AK, Maury CPJ, Kinnunen PKJ. 1-Palmitoyl-2-(9′-oxononanoyl)-sn-glycero-3-phosphocholine, an Oxidized Phospholipid, Accelerates Finnish Type Familial Gelsolin Amyloidosis in Vitro. Biochemistry 2011; 50:4877-89. [DOI: 10.1021/bi200195s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ajay K. Mahalka
- Helsinki Biophysics and Biomembrane Group, Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland
| | | | - Paavo K. J. Kinnunen
- Helsinki Biophysics and Biomembrane Group, Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland
| |
Collapse
|
46
|
Solomon JP, Bourgault S, Powers ET, Kelly JW. Heparin binds 8 kDa gelsolin cross-β-sheet oligomers and accelerates amyloidogenesis by hastening fibril extension. Biochemistry 2011; 50:2486-98. [PMID: 21348501 DOI: 10.1021/bi101905n] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycosaminoglycans (GAGs) are highly sulfated linear polysaccharides prevalent in the extracellular matrix, and they associate with virtually all amyloid deposits in vivo. GAGs accelerate the aggregation of many amyloidogenic peptides in vitro, but little mechanistic evidence is available to explain why. Herein, spectroscopic methods demonstrate that GAGs do not affect the secondary structure of the monomeric 8 kDa amyloidogenic fragment of human plasma gelsolin. Moreover, monomerized 8 kDa gelsolin does not bind to heparin under physiological conditions. In contrast, 8 kDa gelsolin cross-β-sheet oligomers and amyloid fibrils bind strongly to heparin, apparently because of electrostatic interactions between the negatively charged polysaccharide and a positively charged region of the 8 kDa gelsolin assemblies. Our observations are consistent with a scaffolding mechanism whereby cross-β-sheet oligomers, upon formation, bind to GAGs, accelerating the fibril extension phase of amyloidogenesis, possibly by concentrating and orienting the oligomers to more efficiently form amyloid fibrils. Notably, heparin decreases the 8 kDa gelsolin concentration necessary for amyloid fibril formation, likely a consequence of fibril stabilization through heparin binding. Because GAG overexpression, which is common in amyloidosis, may represent a strategy for minimizing cross-β-sheet oligomer toxicity by transforming them into amyloid fibrils, the mechanism described herein for GAG-mediated acceleration of 8 kDa gelsolin amyloidogenesis provides a starting point for therapeutic strategy development. The addition of GAG mimetics, small molecule sulfonates shown to reduce the amyloid load in animal models of amyloidosis, to a heparin-accelerated 8 kDa gelsolin aggregation reaction mixture neither significantly alters the rate of amyloidogenesis nor prevents oligomers from binding to GAGs, calling into question their commonly accepted mechanism.
Collapse
Affiliation(s)
- James P Solomon
- Department of Chemistry and Molecular and Experimental Medicine and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | |
Collapse
|
47
|
Hayashida K, Bartlett AH, Chen Y, Park PW. Molecular and cellular mechanisms of ectodomain shedding. Anat Rec (Hoboken) 2010; 293:925-37. [PMID: 20503387 DOI: 10.1002/ar.20757] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extracellular domain of several membrane-anchored proteins is released from the cell surface as soluble proteins through a regulated proteolytic mechanism called ectodomain shedding. Cells use ectodomain shedding to actively regulate the expression and function of surface molecules, and modulate a wide variety of cellular and physiological processes. Ectodomain shedding rapidly converts membrane-associated proteins into soluble effectors and, at the same time, rapidly reduces the level of cell surface expression. For some proteins, ectodomain shedding is also a prerequisite for intramembrane proteolysis, which liberates the cytoplasmic domain of the affected molecule and associated signaling factors to regulate transcription. Ectodomain shedding is a process that is highly regulated by specific agonists, antagonists, and intracellular signaling pathways. Moreover, only about 2% of cell surface proteins are released from the surface by ectodomain shedding, indicating that cells selectively shed their protein ectodomains. This review will describe the molecular and cellular mechanisms of ectodomain shedding, and discuss its major functions in lung development and disease.
Collapse
Affiliation(s)
- Kazutaka Hayashida
- Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
48
|
Li GH, Arora PD, Chen Y, McCulloch CA, Liu P. Multifunctional roles of gelsolin in health and diseases. Med Res Rev 2010; 32:999-1025. [PMID: 22886630 DOI: 10.1002/med.20231] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gelsolin, a Ca(2+) -regulated actin filament severing, capping, and nucleating protein, is an ubiquitous, multifunctional regulator of cell structure and metabolism. More recent data show that gelsolin can act as a transcriptional cofactor in signal transduction and its own expression and function can be influenced by epigenetic changes. Here, we review the functions of the plasma and cytoplasmic forms of gelsolin, and their manifold impacts on cancer, apoptosis, infection and inflammation, cardiac injury, pulmonary diseases, and aging. An improved understanding of the functions and regulatory mechanisms of gelsolin may lead to new considerations of this protein as a potential biomarker and/or therapeutic target.
Collapse
Affiliation(s)
- Guo Hua Li
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
49
|
Murray AN, Solomon JP, Wang YJ, Balch WE, Kelly JW. Discovery and characterization of a mammalian amyloid disaggregation activity. Protein Sci 2010; 19:836-46. [PMID: 20162625 DOI: 10.1002/pro.363] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The formation of amyloid, a cross-beta-sheet fibrillar aggregate, is associated with a variety of aging-associated degenerative diseases. Herein, we report the existence of a mammalian amyloid disaggregase activity that is present in all tissues and cell types tested. Homogenates from mammalian tissues and cell lines are able to disaggregate amyloid fibrils composed of amyloid beta (A beta)(1-40) or the 8 kDa plasma gelsolin fragment. The mammalian disaggregase activity is sensitive to proteinase K digestion and can be uncoupled from proteolysis activity using a protease inhibitor cocktail. Amyloid disaggregation and proteolysis activities are remarkably resistant to changes in temperature and pH. Identification and manipulation of the proteins responsible for the amyloid disaggregation/degradation activities offers the possibility of ameliorating aggregation-associated diseases.
Collapse
Affiliation(s)
- Amber N Murray
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
50
|
Cauwe B, Opdenakker G. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 2010; 45:351-423. [DOI: 10.3109/10409238.2010.501783] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|